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This thesis discusses the inner model obtained from the cofinality quantifier introduced in the paper
Inner Models From Extended Logics: Part 1 by Juliette Kennedy, Menachem Magidor and Jouko
Väänänen, to appear in the Journal of Mathematical Logic. The paper is a contribution to inner
model theory, presenting many different inner models obtained by replacing first order logic by
extended logics in the definition of the constructible hierarchy Lα. We will focus on the model C∗

obtained from the logic that extends first order logic by Qcfω , the cofinality quantifier for ω. The
goal of this thesis is to present two major theorems of the paper and the theory that is needed to
understand their proofs. The first theorem states that the Dodd-Jensen core model of V is contained
in C∗. The second theorem, the Main Theorem of the thesis, is a characterization of C∗ assuming
V = L[U ].
Chapters 2-5 present the theory needed to understand the proofs. Our presentation in these chapters
mostly follows standard sources but we present the proofs of many lemmas in much greater detail
than our source material. Chapter 2 presents the basics of iterated ultrapowers. If a model 〈M,U〉
of ZFC− satisfies “U is a normal ultrafilter on κ” for some ordinal κ, then we can construct its
ultrapower by U . We can take the ultrapower of the resulting model M1 and then continue taking
ultrapowers at successor ordinals and direct limits at limit ordinals. If the constructed iterated
ultrapowers Mα are well-founded for all ordinals α, the model M is called iterable.
Chapter 3 presents L[A], the class of sets constructible relative to a set or class A. The hierarchy
Lα[A] is a generalization of the constructible hierachy Lα. The difference is that the formulas
defining the successor level Lα+1[A] can use A ∩ Lα[A] as a unary predicate. The Main Theorem
uses the model L[U ], where U is a normal measure on some cardinal κ. Chapter 4 presents the basics
of Prikry forcing, a notion of forcing defined from a measurable cardinal. The sequence of critical
points of the iterable ultrapowers of L[U ] generates a generic set for the Prikry forcing defined from
the critical point of the ω-th iterated ultrapower.
Chapter 5 presents the theory of the Dodd-Jensen core model which is an important inner model.
The core model is based on the Jensen hierarchy JAα which produces L[A] as the union of all levels.
The theory is concerned with so called premice which are levels of the J-hierarchy JUα satisfying
“U is a normal ultrafilter on κ” for some ordinal κ ∈ JUα . A mouse is a premouse satisfying some
specific properties and the core model K is the union of all mice.
The last chapter presents the approach of the paper in detail. We present the definition of C(L∗),
the class of sets constructible using an extended logic L∗, and the exact definition of C∗. Then
we present the proofs of the two major theorems mentioned above. The chapter naturally follows
the paper but presents the proofs in greater detail and adds references to lemmas in the previous
chapters that are needed for the arguments in the proofs.
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Chapter 1

Introduction

This thesis discusses the inner model obtained from the cofinality quantifier introduced in
the paper Inner Models From Extended Logics: Part 1 by Juliette Kennedy, Menachem
Magidor and Jouko Väänänen [12]. The paper, which we will refer to as the KMV paper,
presents many different inner models obtained by replacing first order logic by extended
logics in the definition of the constructible hierarchy Lα. We will focus on the model C∗
obtained from the logic that extends first order logic by Qcf

ω , the cofinality quantifier for
ω.

We will present two major theorems of the paper concerning C∗. The first theorem is
about the Dodd-Jensen core model:

Theorem. The Dodd-Jensen core model of V is contained in C∗.

The second theorem is the Main Theorem of this thesis:

Main Theorem. Suppose V = Lµ, where µ is a normal measure on κ and Mβ, β ∈ On,
are the iterated ultrapowers of V by the measure µ. Then C∗ isMω2 [E], the Prikry forcing
extension of the ω2-th iterate by the sequence E = {κω·n : n < ω} of the critical points of
the iterates Mω·n for n < ω.

The KMV paper is a contribution to a branch of set theory called inner model theory,
which we briefly outline below.

1.1 Inner model theory
Inner model theory studies inner models that are consistent with large cardinals existing
in V . An inner model is a transitive model of ZF that contains all the ordinals. The
smallest inner model is L, the class of all constructible sets. It is included in all other
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inner models and is a very robust model of ZFC. Inner model theorists endeavour to
find models that are similar to L in its robustness and well-understood structure but also
cover as much of V as possible.

L was introduced by Kurt Gödel in 19381 to show the consistency of the Continuum
Hypothesis. The construction of L is as follows. For a set X, Def(X) denotes the set of
all subsets of X definable in first order logic, i.e.,

Def(X) = {{y ∈ X : (X,∈) � φ(y, a1, . . . , an)} : a1, . . . , an ∈ X,φ ∈ Lωω}. (1.1)

The constructible hierarchy is defined recursively as follows:

L0 = ∅
Lα+1 = Def(Lα)

Lδ =
⋃
α<δ

for limit ordinal δ.

L is the union of all levels of the constructible hierarchy: L =
⋃
α∈On Lα.

If there exist large cardinals, then V cannot be L. Dana Scott proved in 1961 2 that
if there exists a measurable cardinal, i.e., a cardinal κ that has a κ-complete nonprincipal
ultrafilter U on κ, then V 6= L. That ultrafilter allows us to define an ultrapower of
UltU(V ) of V . Scott’s construction differs from the usual ultrapower construction of
model theory in that the equivalence classes are modified by the so called Scott’s trick
to make them sets. The κ-completeness of the ultrafilter U ensures that UltU(V ) is well-
founded, so it has a transitive collapse M and we can define an elementary embedding
j : V →M .

The elementarity of j implies that M must be a model of ZFC and since j is injective
and maps ordinals to ordinals, M must contain all ordinals. Hence, M is an inner model.
It can be proved that j(κ) > κ. But if V is L, the only inner model is L, so, in particular,
M must be L. But if κ is the least measurable cardinal, then the elementarity of j implies
that M � “j(κ) is the least measurable cardinal”. That is a contradiction, since j(κ) and
κ cannot both be the least measurable cardinal. This shows that if there is a measurable
cardinal, then V cannot be L.

Scott’s discovery sparked the search for inner models that would be consistent with
some large cardinal axioms. One important model is Lµ which is the class of sets con-
structible relative to a normal measure µ. That is the smallest inner model consistent
with the existence of a measurable cardinal. Another important inner model that will
also figure prominently in this thesis is the Dodd-Jensen core model which started the

1The result was announced in [8].
2Published in [17].
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development of different core models. We mention also the model HOD of hereditarily
ordinal definable sets which is identical to the model obtained by replacing first order
logic by second order logic in the construction of L.

The novel contribution of the KMV paper is the systematic study of the models ob-
tained by replacing first order logic by extended logics in the construction of the con-
structible hierarchy. Although HOD and other inner models based on strong logics had
been studied before, the approach of the KMV paper had not been developed systemati-
cally.

1.2 Goals
The goal of this thesis is to present the theory that is needed to understand the proofs
of the two major theorems concerning C∗ mentioned above. For this purpose we will
present many fundamental concepts and results in set theory. We will mostly limit our
discussion to those results that are necessary for the proofs in the last chapter but we
will also discuss some basic results that are fundamental in their fields. We will give the
proofs of almost all basic lemmas but some proofs have to be omitted to keep the thesis
reasonably compact. Our presentation and proofs follow mostly our sources but we add
many details to proofs and present some things differently than the sources. Some proofs
of lemmas that are not proven in our source literature are our own, including Lemmas
2.13, 5.67 and 5.69.

The first important piece of theory is the theory of iterated ultrapowers discussed in
Chapter 2. Iterated ultrapowers are a very central concept and tool in set theory and
they have an important role in the proofs concerning C∗. If a model 〈M,U〉 of ZFC−
satisfies M � “U is a normal ultrafilter on κ” for some ordinal κ, then we can construct
its ultrapower by U . If that ultrapower is well-founded, its transitive closure 〈M1, U1〉 also
thinks that U1 is a normal ultrafilter on some κ1 and we can continue the process defining
iterated ultrapowers Mα for all cardinals α as long as the ultrapowers are well-founded.
We will present the basic properties of iterated ultrapowers focusing on those that are
needed later on in the thesis. Chapter 2 follows closely Kanamori’s presentation in [11].

Chapter 3 presents L[A], the class of sets constructible relative to a set or class A.
The hierarchy Lα[A] is a generalization of the constructible hierachy Lα. The difference
is that the formulas defining the successor level Lα+1[A] can use A ∩ Lα[A] as a unary
predicate. Those basic properties of L[A] that are analogous to the properties of L have
also analogous proofs, so we do not present their proofs. The most important model
obtained from relative constructibility is the model L[U ], where U is a normal measure
on some cardinal κ. It is sometimes denoted by Lµ if the measure is denoted by µ. L[U ]
satisfies GCH and has the special property that κ is the only measurable cardinal in L[U ].
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L[U ] has a central role in the proofs concerning C∗. This chapter is also mostly based on
Kanamori’s book [11].

Chapter 4 presents Prikry forcing, which is a notion of forcing defined for a measurable
cardinal κ. The fundamental property of Prikry forcing is that the forcing extension
preserves all cardinalities and all cofinalities except the cofinality of κ which has cofinality
ω in the forcing extension. Another important property is the connection to iterated
ultrapowers. The sequence of critical points of iterated ultapowers of a model {κn : n < ω}
is Prikry sequence over the ω-th iterate Mω, i.e., it generates a generic set for the Prikry
forcing defined from κω. In this chapter we mostly follow Jech’s textbook [9].

The largest and most technical piece of theory needed for the proofs concerning C∗
is the Dodd-Jensen core model presented in chapter 5. The core model is based on the
Jensen hierarchy JAα which produces L[A] as the union of all levels:

⋃
α∈On J

A
α = L[A].

The building blocks of the theory are so called premice which are levels of the J-hierarchy
satisfying JUα � “U is a normal ultrafilter on κ” for some ordinal κ ∈ JUα . A mouse is
a premouse satisfying some specific properties and the core model K is the union of all
mice. Chapter 5 follows the original paper by Jensen and Dodd [5] and book by Dodd [4]
that introduced the core model. To avoid making the thesis excessively long, we will not
prove all the fine structure theoretical results of [10] that the core model theory is based
on but we will present the proofs of the results concerning the core model.

The last chapter presents the approach of the KMV paper in detail. We present the
definition of C(L∗), the class of sets constructible using an extended logic L∗, and the
exact definition of C∗. Then we present the proofs of the two major theorems mentioned
at the beginning. The chapter naturally follows the KMV paper but presents the proofs
in greater detail and adds references to lemmas in the previous chapters that are needed
for the arguments in the proofs.
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Chapter 2

Iterated ultrapowers

Iterated ultrapowers are one of the most fundamental concepts in set theory and they will
also figure prominently in our proofs concerning C∗ in the last chapter of this thesis.

The intuitive idea of iterated ultrapowers can be described as follows. When we form
the ultrapower M1 of V by a κ-complete ultrafilter U defined on a measurable cardinal
κ, M1 is well-founded due to the κ-completeness of U . Moreover, κ1 = j(κ), the image
of κ under the canonical embedding j : V → M1, is measurable in M1 and U1 = j(U)
is a κ1-complete ultrafilter on κ1 by the elementarity of j. Thus we can again form the
ultrapower ofM1 by U1 and then continue this process and define, for all natural numbers
n, a well-founded model Mn, a measurable κn, an ultrafilter Un on κn and elementary
embeddings in,m : Mn → Mm for all n ≤ m. Finally, at ω we can take a direct limit
of 〈Mn : n ∈ ω〉 and again we get a well-founded model Mω, a measurable cardinal, an
ultrafilter and the embeddings from previous models to Mω. When we continue by taking
ultrapowers at successor ordinals and direct limits at limit ordinals we can define iterated
ultrapowers Ma of V for all ordinals Mα and elementary embeddings iαβ : Mα → Mβ for
all α < β.

The details of this idea were first developed by Haim Gaifman in the 1960s1. Kenneth
Kunen showed in his 1968 dissertation and 1970 article [13] that iterated ultrapowers can
be defined for a model M of set theory even in the case that the ultrafilter U is not in the
model M . In this chapter we present the definition of iterated ultrapowers for a model of
ZFC− along with the basic results that are needed for our proofs concerning C∗. We will
mostly follow Kanamori’s development of the subject in his textbook [11]. Kanamori’s
definition is slightly different from Kunen’s original version but they result in isomorphic
models. However, Kanamori’s definition follows more explicitly the general idea outlined
above, so we find his development more intuitive as an introduction to the subject.

1Published in [6], [7].
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2.1 M-ultrafilter and M-ultrapower
We begin our discussion of iterated ultrapowers by defining the concept of M -ultrafilter.

Definition 2.1. 2 Suppose that M is a transitive model of ZFC−, that is, ZFC minus
the power set axiom, and κ is an infinite cardinal in M . Then U is an M-ultrafilter over
κ if the following hold:

(i) U is a proper subset of P(κ) ∩M containing no singletons.

(ii) If X ⊂ Y ∈ P(κ) ∩M and X ∈ U , then Y ∈ U .
(iii) For all X ∈ P(κ) ∩M , either X ∈ U or κ−X ∈ U .
(iv) If η < κ and 〈Xξ : ξ < η〉 ∈M and each Xξ ∈ U , then

⋂
{Xξ : ξ < η} ∈ U .

(v) For any F ∈Mκ ∩M , {ξ < κ : F (ξ) ∈ U} ∈M .

Condition (iv) says that U satisfies κ-completeness for tuples from U that are in M .
Condition (v) is called weak amenability. It is important that U need not be in M , so
κ need not be a measurable cardinal in V . We are mostly interested in ultrafilters that
satisfy the further condition of normality, which is defined below. For the rest of this
chapter, when we talk of anM -ultrafilter for some modelM , we assume that it is normal.

Definition 2.2. An M -ultrafilter U is called normal if for any tuple {Xα : α < κ} ∈ M
such that each Xα is in U , the diagonal intersection ∆α<κXα = {ξ : ξ ∈

⋂
α<ξXα}

is in U .

As a first step in the construction of iterated ultrapowers, we define the ultrapower of
a model 〈M,∈, U〉3. The definition is similar to the ultrapower of V by a measure over a
measurable cardinal κ. Let U be an M -ultrafilter over κ. Let the language of 〈M,∈ U〉
be L∈(U̇), i.e., the normal language of set theory augmented with the unary predicate
symbol U̇ . For any f, g ∈Mκ ∩M , define the equivalence relation

f ∼U g iff {ξ < κ : f(ξ) = g(ξ)} ∈ U .

Because the equivalence classes of ∼U may not be sets, Scott’s trick is applied to them:

[f ]U = {g : g ∼U f and for all h ∼U f, rank(g) ≤ rank(h)}.

The domain of the ultrapower is the collection of these sets:

Mκ/U = {[f ]U : f ∈Mκ ∩M}.
2We modify the definition on pp. 182-183 of [13].
3We follow pp. 245-246 of [11].
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The membership relation is defined by

[f ]EU [g] iff {ξ < κ : f(ξ) ∈ g(ξ)} ∈ U .

The predicate symbol U̇ is interpreted in the ultrapower by

[f ]U EU U̇U iff {ξ < κ : f(ξ) ∈ U} ∈ U .

Weak amenability is needed to make the last definition possible. Łoś’s theorem holds
for 〈Mκ/U,EU , U̇U〉 by the usual induction on the complexity of formulas. Since U is
κ-complete only for the sequences that are in M , the relation EU may not be well-
founded. If it is, it is isomorphic to its transitive collapse 〈M1,∈, U1〉 by a function
π : 〈Mκ/U,EU , U̇U〉 ∼= 〈M1,∈, U1〉. We identify [f ]U with it’s image π([f ]U) and usually
mean π([f ]U) when we speak of [f ]U . The subscript U is usually omitted if it is clear from
the context.

We can define an embedding j : 〈M,∈, U〉 → 〈M1,∈, U1〉, called the canonical embed-
ding, by j(x) = [cx], where cx is the constant function with value x. Łoś’s theorem implies
that j really is an embedding, so M1 is a model of ZFC− and On ∩M ⊂ On ∩M1.

By induction on α, we can see that j(α) ≥ α for all ordinals α and κ-completeness
for sequences in M implies that, in fact, j(α) = α for all α < κ. However, j(κ) must be
greater than κ. For any ξ < κ, we have cκ(ξ) = κ > ξ = id(ξ), where id is the identity on
κ, so [cκ] > [id]. On the other hand, for all α < κ, id(ξ) > α for all ξ > α, so [id] > α.
Thus, j(κ) = [cκ] > [id] > α for all α < κ, so j(κ) > κ. Thus, j(κ) is the least ordinal
moved by j, and we call it the critical point of j and denote it by crit(j).

The following lemma lists some important properties of the ultrapower 〈M1,∈, U1〉.
Parts (a) – (e) and their proofs follow Kanamori’s Lemma 19.1. We sometimes say that
a condition holds for almost all α when the set of α’s that satisfy the condition is in U .

Lemma 2.3. 4

(a) The embedding j is cofinal: for any y ∈ M1, there is x ∈ M such that y ∈ j(x).
Moreover, if y is an ordinal, x can be taken to be an ordinal as well.

(b) If M is a set, |M | = |M1|.
(c) j(x) = x for every x ∈ Vκ ∩M . Moreover, Vκ ∩M = Vκ ∩M1 and P(κ) ∩M =
P(κ) ∩M1.

(d) U /∈M1.

(e) U1 is a normal M1-ultrafilter over j(κ).
4(a) - (e) follow Lemma 19.1 of [11]. The proof of (f) is our elaboration of a basic fact about normal

(M -)ultrafilters
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(f) Since U is normal, κ = [id]U , where id is the identity function on κ.

Proof. (a) If y ∈ M1, then y = [f ] for some f . Thus, we can take x = ran(f). If y
is ordinal, then f(α) is an ordinal for almost all α < κ, so we can assume that
ran(f) ⊂ On. Thus, we can let x = sup(ran(f)) + 1.

(b) On the one hand, |M1| ≤ |Mκ∩M | ≤ |M |. On the other hand, |M | ≤ |M1| because
j is an embedding.

(c) We show by induction on α that for all α ≤ κ

j(x) = x for every x ∈ Vα ∩M and Vα ∩M = Vα ∩M1. (∗)

The limit stage is immediate. So suppose that α < κ and (∗) holds for α. Let
x ∈ M and rank(x) = α, so x ∈ Vα+1 ∩M . The formula saying that rank(v0) = v1

can be defined in ZF , so rank(j(x)) = j(α) = α. Thus by the induction hypothesis

j(x) = {y ∈ Vα ∩M1 : y ∈ j(x)}
= {y ∈ Vα ∩M : y ∈ j(x)}
= {y ∈ Vα ∩M : j(y) ∈ j(x)}
= {y : y ∈ x}
= x.

This also shows that Vα+1∩M ⊂ Vα+1∩M1, so we need to show the other direction
to complete the successor stage.

Suppose that x ∈ M1 with rank(x) = α. Let x = [f ]. By Łoś’s theorem we can
assume that rank(f(ξ)) = α for all ξ < κ. Let u =

⋃
ran(f), which is in M since

M is a model of ZFC−. Then we have |u| < κ in M . Suppose this is not the case,
so there is in M a surjection s : u→ κ. Then there is in M an injection g such that
s(g(ξ)) = ξ for every ξ < κ. Since g(ξ) is in some yξ ∈ ran(f), rank(g(ξ)) < α for
every ξ < κ. Hence, rank([g]) < α, so [g] ∈ Vα∩M1 = Vα∩M . Let [g] = z ∈ Vα∩M .
Now [cz] = j(z) = z = [g], which is a contradiction since g is an injection.

Since |u| < κ in M , there is an injection g0 : u → κ in M . Let g1 ∈ Mκ ∩M
be such that g0(g1(α)) = α for all α ∈ ran(g0). Let g2 ∈ Mκ ∩M be defined by
g2(α) = {ξ < κ : g1(α) ∈ f(ξ)}. Then A = {α < κ : g2(α) ∈ U} is in M , so

x′ = {y ∈ u : {ξ < κ : y ∈ f(ξ)} ∈ U} = g1[A ∩ ran(g0)] ∈M .

For all y ∈ x ∪ u, rank(y) < α, so y is in Vα ∩M1 = Vα ∩M . Since by induction
[cy] = j(y) = y for such y, x′ = x. Thus, Vα+1 ∩M1 ⊂ Vα+1 ∩M , so we have proved
(∗) for all α ≤ κ.
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To prove the last claim of (c), we note that if X ∈ P(κ) ∩M , then j(X) ∩ κ =
X ∈ M1. Hence, P(κ) ∩ M ⊂ P(κ) ∩ M1. For the other direction, let Y be in
P(κ) ∩M1 and let Y = [f ]. Then as with x′ and x above, we can see that

Y = {α < κ : {ξ < κ : α ∈ f(ξ)} ∈ U},

so Y is in M .

(d) Suppose that U ∈ M1. Then P(κ) ∩M = U ∪ {κ −X : X ∈ U} is in M1. By (c),
we have P(κ)∩M1 = P(κ)∩M , so P(κ)∩M1 is in M1. There is in M1 a surjection
f : P(κ) ∩M → 2κ ∩M defined by f(X)(α) = 1 if α ∈ f(X). There is also in M1

a surjection g : 2κ ∩M → κκ ∩M defined, e.g., by

g(h)(α) =the order type of the α-th sequence of consecutive 0’s
or consecutive 1’s in h(α)

when we interpret h as a κ-sequence of 0’s and 1’s. Hence, there is inM1 a surjection
from P(κ) ∩M1 = P(κ) ∩M onto κκ ∩M . Since U ∈ M1, the function that maps
f ∈ κκ ∩M to [f ] is in M1. But j(κ) = {[f ] : f ∈ κκ ∩M}, so we have

M1 � ∃α < j(κ)∃y∃g (y = P(α) and g : y → j(κ) is surjective).

Since j is an embedding, this implies that

M � ∃α < κ∃y∃g (y = P(α) and g : y → κ is surjective).

Hence, α and g show that κ is not strong limit in M . But we can see that this is
impossible: then there is an injective function f : κ→ 2α inM . For all β < α, there
is iβ < 2 such that Xβ = {ξ < κ : f(ξ)(β) = iβ} is in U . Since {Xβ : β < α} ∈ M ,
X =

⋂
β<αXβ is in U and for ξ ∈ X, f(ξ)(β) = iβ for all β < α. But since f is an

injection, X can have at most one member, a contradiction.

(e) Denote κ1 = j(κ). We show that U1 satisfies the definition of an M -ultrafilter for
M = M1. The first condition is clear, so suppose for condition (ii) that x ∈ U1

and x ⊂ y ∈ P(κ1) ∩ M1. Let [fx] = x and [fy] = y. Since x ⊂ y, the set of
those ξ < κ such that fx(ξ) ⊂ fy(ξ) is in U . Hence, {ξ < κ : fy(ξ) ∈ U} is in U ,
so y ∈ U1. Condition (iii) holds because if x ∈ P(κ1) ∩M1 and x /∈ U1, the set
{ξ ∈ κ : κ− fx(ξ) ∈ U} is in U , so κ1 − x is in U1. For condition (iv), suppose that
γ < κ1, X = {Xα : α < γ} is in M1 and each Xα is in U1. Let [f ] =

⋂
α<γ Xα and

let [fX ] = X. Then by Łoś A0 = {ξ < κ : ∀x (x ∈ fX(ξ) → x ∈ U)} is in U and
A1 = {ξ < κ : f(ξ) =

⋂
fX(ξ)} is in U . Thus A2 = {ξ < κ : f(ξ) ∈ U} ⊃ A0 ∩A1 ∈

U , so A2 is in U and [f ] ∈ U1.
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To prove weak amenability, suppose that F ∈ Mκ1
1 ∩ N and F = [f ]. We can

assume that f(ξ) ∈ Mκ for each ξ < κ. Define the function f ′ : κ × κ → M by
f ′(ξ, η) = f(ξ)(η). Since f ′ is in M , the weak amenability of 〈M,∈, U〉 implies that
X = {(ξ, η) : f ′(ξ, η) ∈ U} is in M . Define g ∈ Mκ by g(ξ) = {η : (ξ, η) ∈ X}.
Then g ∈ M and for any h ∈ Mκ ∩M and ξ < κ, h(ξ) ∈ g(ξ) holds if and only if
f(ξ)(h(ξ)) is in U . Thus we have for any h ∈Mκ ∩M

[h] ∈ [g] iff {ξ < κ : h(ξ) ∈ g(ξ)} ∈ U
iff {ξ < κ : f(ξ)(h(ξ)) ∈ U} ∈ U
iff F ([h]) ∈ U1.

Hence, [g] = {α < j(κ) : F (α) ∈ U1}. So we have proved that U1 is anM1-ultrafilter
on j(κ).

We have normality left to prove. Suppose that X = {Xα : α < κ1} is in M1

and each Xα is in U1. Let [f ] = X and let [g] = ∆α<κ1Xα, the diagonal intersection
of X. Then A0 = {ξ < κ : g(ξ) is the diagonal intersection of f(ξ)} is in U and
A1 = {ξ < κ : ∀x (x ∈ f(ξ) → x ∈ U)} is also in U . Thus A2 = {ξ < κ : g(ξ) ∈
U} ⊃ A0 ∩ A1 ∈ U , so A2 is in U and ∆α<κ1Xα is in U1.

(f) Let f ∈ Mκ ∩M be such that A = {ξ < κ : f(ξ) < ξ} ∈ U . Suppose there is no
α < κ such that {ξ < κ : f(ξ) = α} ∈ U . Let for all α < κ, Xα = {ξ < κ : f(ξ) 6=
α}. Then each Xα is in U and {Xα : α < κ} is in M , so the diagonal intersection
∆α<κXα is in U , so its intersection with A is in U . If ξ ∈ ∆α<κXα ∩ A, f(ξ) = α
for all α < ξ, so f(ξ) ≥ ξ. However, since ξ ∈ A, f(ξ) < ξ. This is a contradiction,
so there must be α < κ such that {ξ < κ : f(ξ) = α} ∈ U . Hence, [f ] = α.

If [f ] < [id], f is regressive on a set that is in U . Thus, [f ] = α for some α < κ.
Hence, [id] ≤ κ. On the other hand, [id] > α for all α < κ, so [id] = κ.

2.2 Iterated ultrapowers
To define iterated ultrapowers, we need the concept of direct limit that is employed to
define the iterated ultrapowers at limit ordinals5.

Definition 2.4. A directed set is a partially ordered set 〈S,≤〉 such that for any i, j ∈ S
there is k ∈ S such that i ≤ k and j ≤ k.

A directed system is a pair 〈〈Mi : i ∈ S〉, 〈fij : i ≤ j〉〉, where 〈S,≤〉 is a directed set,
eachMi is a model in some fixed language L and every fij :Mi ≺Mj is an elementary
embedding satisfying fik = fjk ◦ fij for all i ≤ j ≤ k. Moreover, fii is the identity onMi.

5The definitions follow pp. 9-10 of [11].
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A direct limit of a directed system is an L-modelM such that there are elementary
embeddings fi :Mi ≺M for all i ∈ S satisfying fi = fj ◦ fij for all i ≤ j. Moreover, for
each x ∈ dom(M) there are i ∈ S and x′ ∈Mi such that x = fi(x

′).

The following lemma shows that the direct limit of a directed system always exists.
The proof works also in the case that the models are classes.

Lemma 2.5. 6 Suppose 〈〈Mi : i ∈ S〉, 〈fij : i ≤ j〉〉 is a directed system. Then it has a
direct limit.

Proof. Suppose Mi the domain ofMi for i ∈ S. Let A =
⋃
i∈S{i} ×Mi, a disjoint union

of copies of the Mi’s. We define a relation ∼ on A as follows:

(i, x) ∼ (j, y) iff ∃k ∈ S (i ≤ k and j ≤ k and fik(x) = fjk(y)).

Clearly ∼ is an equivalence relation and we let the domain of the direct limit be the set
of equivalence classes: M = {[(i, x)] : (i, x) ∈ A}. To get a structure M from M , the
symbols of L are interpreted as follows. Suppose [(i1, x1)], . . . , [(in, xn)] ∈ M and pick
some k ∈ S such that i1, . . . , in ≤ k. Then we set for relation, function and constant
symbols R, f and c:

([(i1, x1)], . . . , [(in, xn)]) ∈ RM iff (fi1k(x1), . . . fink(xk)) ∈ RMk ,

fM([(i1, x1)], . . . , [(in, xn)]) = [fMk(fi1k(x1), . . . fink(xk))] and
cM = [(i, x)] if cMi = x.

It follows easily from the definition of ∼ that the above definitions do not depend on the
choice of representatives for the equivalence classes. For i ∈ S, the embedding fi :Mi →
M is defined by fi(x) = [(i, x)]. This definition clearly satisfies fi = fj ◦ fij for all i ≤ j.

We can easily see that the fi’s are elementary embeddings. By induction on the length
of the formula φ we can show that for any i ∈ S and ai, . . . , an ∈Mi,Mi � φ(a1, . . . , an) if
and only ifM � φ(fi(a1), . . . , fi(an)). For atomic φ this follows directly from the definition
of fi and the interpretation of the symbols of L. The steps for negation and conjunction are
trivial and Mi � ∃xφ(x, a1, . . . , an) clearly implies that M � ∃xφ(x, fi(a1), . . . , fi(an)).
For the other direction, if M � ∃xφ(x, fi(a1), . . . , fi(an)), then there is some [(j, b)] ∈
M such that M � φ([(j, b)], fi(a1), . . . , fi(an)). Pick any k such that i, j ≤ k. Then
fk(fjk(b)) = fj(b) = [(j, b)] and fk(fik(as)) = fi(as) for all 1 ≤ s ≤ n. Thus we have
M � φ(fk(fjk(b)), fk(fik(a1)), . . . , fk(fik(an))), whence by the induction hypothesisMk �
φ(fjk(b), fik(a1), . . . , fik(an)), soMk � ∃xφ(x, fik(a1), . . . , fik(an)). But this implies that
Mi � ∃xφ(x, a1, . . . , an) since fik is an elementary embedding. Thus, the fi’s show that
M is a direct limit of 〈〈Mi : i ∈ S〉, 〈fij : i ≤ j〉〉.

6The proof follows p. 10 in [11]
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The following property of direct limits is needed in the discussion of iterability in the
last section of this chapter.

Lemma 2.6. 7 Suppose 〈〈Mi : i ∈ S〉, 〈fij : i ≤ j〉〉 is a directed system and M is a
direct limit with embeddings fi :Mi ≺ M. Suppose N is a structure such that each Mi

is embeddable into it by gi :Mi ≺ N and the embeddings satisfy gi = gj ◦ fij for all i ≤ j.
Then there is an elementary embedding g :M≺ N such that gi = g ◦ fi.

Proof. The elementary embedding g can be defined as follows: for x ∈ dom(M), choose
any i ∈ S and x′ ∈ dom(Mi) such that x = fi(x

′). Then define g(x) = gi(x
′). Since

the gi’s satisfy gi = gj ◦ fij, g is well-defined. It is straightforward to see that g is an
elementary embedding.

Before we can define iterated ultrapowers, we need one more concept. We let
h : 〈X,∈, R〉 ≺− 〈X ′, E,R′〉 mean that h is elementary for L∈-formulas and h also pre-
serves the unary predicate, that is, h is an embedding of 〈X,∈, R〉 into 〈X ′, E,R′〉. The
following lemma shows that if the direct limit of iterated ultrapowers taken at some limit
ordinal is well-founded, we can continue the definition of iterated ultrapowers beyond that
limit ordinal.

Lemma 2.7. 8 Suppose that for each α < δ, Wα is a normal Nα-ultrafilter over κα and
that 〈〈〈Nα,∈,Wα〉 : α < δ〉, 〈jαβ : α ≤ β〉〉 is a directed system of ≺−-embeddings with
a well-founded direct limit 〈M,E,U〉. Then it has a transitive collapse 〈N,∈,W 〉 and if
for α < δ, jαδ : 〈Nα,∈,Wα〉 ≺− 〈N,∈ W 〉 is the direct limit embedding composed with the
transitive collapse, then W is a normal N-ultrafilter over κ = jαδ(κα) for some, and thus
all, α < δ.

Proof. To prove the first claim, the extensionality of 〈M,E〉 follows straightforwardly
from the extensionality of the 〈Nα,∈〉’s. Let iα : 〈Nα,∈,Wα〉 → 〈M,E,U〉 be the direct
limit embeddings for α < δ. Let a ∈M , so a = iα(a′) for some α < δ and a′ ∈ Nα. Then
for any x ∈M ,

xEa iff ∃β∃y (α ≤ β < δ and iβ(y) = x and y ∈ jαβ(b)),

so {x ∈ M : xEa} is a set by Replacement. Hence, we can apply Mostowski collapse to
〈M,E,U〉.

Then we prove that W is an N -ultrafilter over κ. The first condition is obvious, so
suppose for condition (ii) that x ∈ W and x ⊂ y ∈ P(κ)∩N . Let x = iα(x′) and y = iβ(y′)

7Lemma 0.7 of [11].
8Exercise 19.3 of [11]. The proof that Mostovski collapse can be applied and the proof of amenability

are given by Kanamori, the rest is our own.
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for some α, β < δ. Then there is γ < δ such that α, β ≤ γ. Now jαγ(x
′) ⊂ jβγ(y

′) so
jβγ(y

′) ∈ Wγ, whence y ∈ W . The proof of condition (iii) is equally straighforward. For
condition (iv) suppose that λ < κ, X = {Xη : η < λ} is in N and each Xη is in W .
Let Y ∈ N be the intersection of X. Let λ = iα(λ′) and X = iβ(X ′) for some α, β ≤ δ.
Then λ′ < κα so in fact λ′ = λ. Pick some γ < δ such that α, β ≤ γ. Then every
element of X̄ = jβγ(X

′) is in Wγ and X̄ has size λ < κγ in Nγ so Ȳ =
⋂
X̄ is in Wγ.

Thus Y = iγ(Ȳ ) is in W . To prove weak amenability, suppose that F ∈ Nκ ∩ N , so
F = iα(F ′) for some α < δ and F ′ ∈ Nκα

α ∩Nα. By the weak amenability of 〈Nα,∈,Wα〉,
X = {ξ < κα : F ′(ξ) ∈ Wα} is in Nα, so jαβ(X) = {ξ < κ : F (ξ) ∈ W} is in N . Hence,
W is an N -ultrafilter.

To prove normality, suppose that X = {Xη : η < κ} is in N and each Xη is in W . Let
Y = ∆η<κXη be the diagonal intersection of X. Let X = iα(X ′) for some α < δ. Then
X ′ has size κα in Nα and each element of X ′ is in Wα. Let Y ′ be the diagonal intersection
of X ′ in Nα. Be the normality of Nα, Y ′ is in Wα, so Y = iα(Y ′) is in W .

We are now ready to define the iterated ultrapowers of a model 〈M,∈, U〉9. We define
recursively for each α ∈ τ , where τ will be the length of the iteration, L∈(U̇)-structures
〈Mα,∈, Uα〉 such that Uα is an Mα-ultrafilter over κα, and embeddings
iαβ : 〈Mα,∈, Uα〉 ≺− 〈Mβ,∈ Uβ〉 for all α ≤ β < τ . First we let M0 = M , U0 = U , κ0 = κ
and let i0,0 be the identity on M .

Suppose Mα, Uα, κα and iαβ have been defined for α ≤ β < δ. Suppose first that δ is
a successor ordinal, say δ = γ + 1. If the ultrapower of Mγ by Uγ is well-founded, we let
〈Mδ,∈, Uδ〉 be its transitive collapse. Further we set κδ = j(κγ), iγδ = j and iαδ = j ◦ iαγ
for α < γ, where j is the canonical embedding from 〈Mγ,∈, Uγ〉 into 〈Mδ,∈, Uδ〉. If the
ultrapower is not well-founded, we let τ = δ.

Suppose then that δ is a limit ordinal. If the direct limit of

〈〈〈Mα,∈, Uα〉 : α < δ〉, 〈iαβ : α ≤ β〉〉

is well-founded, we let 〈Mδ,∈, Uδ〉 be its transitive collapse. For each α < δ, the direct
limit embedding followed by the collapsing function is an embedding 〈Mα,∈, Uα〉 ≺−
〈Mδ,∈, Uδ〉. We let iαγ be that embedding for each α < δ and let κδ = iαδ(κα) for some,
and consequently all, α < δ and let iδδ be the the identity on Mδ. If the direct limit is
not well-founded, we set τ = δ.

If the definition process goes on through all the ordinals, i.e., no ultrapower or direct
limit is ill-founded, we set τ = On. Otherwise, τ is defined to be some ordinal, and τ is
the stage at which the iteration encounters ill-founded structures. In this thesis we do not
define the ultrapowers beyond τ . The following definition summarizes our terminology:

9We follow the definitions on pp. 249-250 of [11].
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Definition 2.8. 〈Mα, Uα, κα, iαβ〉α≤β∈τ is the iteration of 〈M,∈, U〉 and τ is called the
length of the iteration. For each α ∈ τ , 〈Mα,∈, Uα〉 is called the α-th iterate or iterated
ultrapower of 〈M,∈, U〉.

Naturally, a central question concerning iterated ultrapowers is whether the iterated
ultrapowers of a given model are defined for all ordinals or whether they are only defined
up to the ordinal τ . We call a model 〈M,∈, U〉 iterable, if the iterates are defined for all
ordinals, i.e., τ = On. If that case we also say that U is an iterable M -ultrafilter. In
the last section of this chapter we will present and prove a sufficient condition for the
iterability of a model. Before that we discuss a few lemmas that state some important
properties of iterated ultrapowers.

Lemma 2.9. 10 Suppose that α < β < τ . Then the following hold:

(a) crit(iαβ) = κα and iαβ(κα) = κβ.

(b) iαβ(x) = x for every x ∈ Vκα ∩ Mα, Vκα ∩ Mα = Vκα ∩ Mβ and P(κα) ∩ Mα =
P(κα) ∩Mα.

(c) If β is a limit ordinal, then κβ = sup{κγ : γ < β}
(d) If M is a set, then |Mα| = |M | · α.

Proof. (a) Follows directly from the definition of the iteration.

(b) Consequence of Lemma 2.3(b).

(c) If ξ < κβ, then since Mβ is a direct limit, ξ = iγβ(ξ′) for some γ < β and ξ′ ∈ Mγ.
Since iγβ is an embedding, ξ′ < κγ. But then iγβ(ξ′) = ξ′, so ξ < κγ. Thus we have
sup{κγ : γ < β} ≥ κβ, so necessarily sup{κγ : γ < β} = κβ.

(d) By induction on α we see that |Mα| ≤ |M | · |α|. For successors the induction step
follows from Lemma 2.3(b) and for limits it follows from the standard construction
of a direct limit. On the other hand, i0α is an injection from M to Mα and
{κγ : γ < α} ⊂Mα, so |Mα| ≥ |M | · |α|.

Lemma 2.10. 11 If β ∈ τ is a limit ordinal, then for all X ∈ P(κβ) ∩Mβ,

X ∈ Uβ iff ∃α < β such that {κγ : α ≤ γ < β} ⊂ X.

10We follow Lemma 19.4 of [11]
11We follow Lemma 19.5 of [11].
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Proof. Suppose that X = iαβ(X ′) for some α < β and X ′ ∈ P(κα) ∩Mα. Then

X ∈ Uβ iff X ′ ∈ Uα iff iαγ(X
′) ∈ Uγ for all α ≤ γ < β

since iαβ = iγβ ◦ iαγ for any α ≤ γ < β. On the other hand we have for all γ such that
α ≤ γ < β,

iαγ(X
′) ∈ Uγ iff κγ ∈ iγ,γ+1(iαγ(X

′)) iff κγ ∈ iαβ(X ′),

since iγ+1,β(κγ) = κγ. Therefore, for any α < β, if X ∈ ran(iαβ), then X ∈ Uβ iff
{κγ : α ≤ γ < β} ⊂ X.

Since Mβ is the transitive collapse of a direct limit, if X ∈ P(κβ) ∩Mβ, then there
are α < β and X ′ ∈ P(κα) ∩Mα such that X = iαβ(X ′). Thus for all X ∈ P(κβ) ∩Mβ,
X ∈ Uβ if and only if there is α < β such that {κγ : α ≤ γ < β} ⊂ X.

Lemma 2.11. 12 For any α ∈ τ and x ∈ Mα, there are n ∈ ω, f ∈ M [κ]n ∩ M and
γ1, . . . γn < α such that x = i0α(f)(κγ1 , . . . κγn).

Proof. We prove the claim by induction on α. Suppose that the claim holds for α, α+1 ∈ τ
and x ∈ Mα+1. Then x = [g]Uα for some g ∈ Mκα

α ∩ Mα. Since Uα is a normal Mα-
ultrafilter, iα,α+1(g)(κα) = [cg]Uα([idα]Uα) where cg : κα → Mα is the constant function
with value g and idα is the identity on κα. Since for all ξ < κα, cg(ξ)(idα(ξ)) = g(ξ),
[cg]Uα([idα]Uα) = [g]Uα and, therefore, iα,α+1(g)(κα) = x. If α = 0, we have proved the
claim.

If α > 0, by induction g = i0α(h)(κγ1 , . . . , κγn) for some n ∈ ω, h ∈ M [κ]n ∩M and
γ1 < · · · < γn < α where it can be assumed that ran(h) consists of functions. Define
f ∈M [κ]n+1 ∩M by f(ξ1, . . . , ξn, ξn+1) = h(ξ1, . . . , ξn)(ξn+1). Now we have:

i0,α+1(f)(κγ1 , . . . , κγn , κα) = i0,α+1(h)(κγ1 , . . . , κγn)(κα)

= iα,α+1(i0,α(h)(κγ1 , . . . , κγn))(κα)

= iα,α+1(g)(κα)

= x.

This shows that if the claim holds for α, it holds for α+ 1 as well. We have the limit case
left to prove.

So suppose α < τ is a limit ordinal and the claim holds for all β < α and x ∈ Mα.
Then x = iβα(x′) for some β < α and x′ ∈ Mβ since Mα is a direct limit. By induction,
x′ = i0β(f)(κγ1,...,κγn ) for some n ∈ ω, f ∈ M [κ]n ∩ M and γ1, . . . , γn < α. Hence,
x = iβα(i0β(f)(κγ1 , . . . , κγn)) = i0α(f)(κγ1 , . . . , κγn), since iβα(κγi) = κγi for all i ≤ n.
Thus, the claim holds for limit ordinals as well.

12The proof follows Lemmas 19.6 and 5.13(a) of [11].
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Lemma 2.11 shows that Mα is generated from ran(i0α) and {κγ : γ < α}. The lemma
is needed in the proof of the Main Theorem and it is also used in the proof of following
lemma. The cardinals and the cardinalities of sets mentioned in the lemma are in the
sense of V .

Lemma 2.12. 13

(a) If ξ ∈ On ∩M and α < τ , then i0α(ξ) < (|ξκ ∩M | · |α|)+

(b) If θ is a cardinal such that |κκ ∩M | < θ ∈ τ , then κθ = i0θ(κ0) = θ.
(c) If θ is a cardinal, α < min(θ, τ) and M � ZFC ∧ “θ is a strong limit" ∧cf(θ) > κ,

then i0α(θ) = θ.

Proof. (a) By Lemma 2.11, η < i0α(ξ) if and only if η = i0α(f)(κγ1 , . . . , κγn) for some
n ∈ ω, f ∈ ξ[κ]n ∩M and γ1 < · · · < γn < α. The claim holds, since |ξ[κ]n ∩M | =
|ξκ ∩M | and |[α]<ω| = |α| · ω.

(b) By (a) and Lemma 2.9(c) we have

θ ≤ κθ = sup{κα : α < θ} ≤ sup{(|κκ ∩M | · |α|)+ : α < θ} ≤ θ.

(c) Since i0α(θ) ≥ θ, it suffises to show that η < i0α(θ) implies that η < θ. So suppose
η < i0α(θ). By Lemma 2.11, η = i0α(f)(κγ1,...,γn) for some n ∈ ω, f ∈ θ[κ]n ∩M ,
and γ1 < . . . , < γn < α. Since cf(θ) > κ in M , there is a ξ < θ such that f ∈ ξ[κ]n .
Thus, i0α(f) ∈ i0ξ(ξ)[κα]n , so η < i0α(ξ). By (a) and the assumptions on θ we get
that

η < i0α(ξ) < (|ξκ ∩M | · |α|)+ ≤ θ.

2.3 Iterability
We conclude this chapter with a sufficient condition for the iterability of 〈M,∈, U〉: U is
countably complete if for any {Xn : n ∈ ω} ⊂ U ,

⋂
nXn 6= ∅. The condition requires that

any countable intersection of members of U is in U while the definition of anM -ultrafilter
only concerns the intersections of those subsets of U that are in M . The sufficiency of
this condition was proved by Kunen in [13] but our proofs mostly follow Kanamori’s [11]
discussion of the matter.

We need the following auxiliary concept. For n ∈ ω, define

Un = {X ∈ P([κ]n) ∩M : ∃H ∈ U ([H]n ⊂ X)}.

The following lemma gives a more useful characterization of Un.
13We follow Lemma 19.7 of [11].
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Lemma 2.13. 14 For n ∈ ω and X ∈ P([κ]n+1) ∩M ,

X ∈ Un+1 iff {s ∈ [κ]n : {ξ < κ : s ∪ {ξ} ∈ X} ∈ U} ∈ Un.

To prove the lemma we need the following result that holds also for a normal M -
ultrafilter and those f : [κ]n → 2 that are in M .

Lemma 2.14. 15 Suppose κ is a measurable cardinal and U is a normal measure on κ.
If F is a partition of [κ]<ω into less than κ parts, then there is a set H ∈ U homogeneous
for F .

Proof. It suffices to show that for each n < ω there is Hn ∈ U such that F is constant on
[Hn]n. Then H =

⋂
n<ωHn is in U by the κ-completeness of D and H is homogeneous for

F .
We prove by induction on n that for every partition F of [κ]n into fewer than κ parts

there is some H ∈ U that is homogeneous for F . For n = 1, we can assume that a
partition F is a function from κ to some λ < κ. Define Xα = F−1{α} for each
α < λ . Now κ =

⋃
α<λXα, whence some Xα must be in U . Otherwise, each κ−Xα would

be in U , so
⋂
α<λ(κ−Xα) would be in U . But that is impossible since

⋂
α<λ(κ−Xα) = ∅

as every β < κ is in some Xα. Since F is constant on every Xα, the claim holds for n = 1.
Suppose then that the claim holds for n. We prove that it holds for n + 1 as well.

Let F : [κ]n+1 → λ be a partition for some λ < κ. For each α < κ define a function
Fα : [κ−{α}]n → λ by Fα(X) = F (X∪{α}). By the induction hypothesis, for each α < κ,
there is Xα ∈ U such that Fα is constant on Xα. Denote for each α the constant value by
iα. Defining Yα = {γ < κ : iγ = α} for all α < λ, the same argument as in the case n = 1
shows that some Yα is in U . Denote that Yα by Y and the value iα by i. Since U is normal,
the diagonal intersection X = ∆α<κXα is in U . Let H = X ∩Y . If γ < α0 < · · · < αn are
in X, then α0, . . . , αn ∈ Xγ, so F{γ, α0, . . . , αn} = Fγ(α0, . . . , αn) = iγ. Hence, for every
Y ′ ∈ [H]n+1, F (Y ′) = i, so the claim holds for n+ 1.

Proof of lemma 2.13.

Let n ∈ ω and X ∈ P([κ]n+1)∩M . If X ∈ Un+1, then there is H ∈ U such that [H]n+1

is a subset of X. Then for any s ∈ [H]n, H − s ∈ U , so {ξ < κ : s∪ {ξ} ∈ X} ∈ U . Since
[H]n ∈ Un, we have {s ∈ [κ]n : {ξ < κ : s ∪ {ξ} ∈ X} ∈ U} ∈ Un.

14Exercise 19.8 of [11]. The proof is our own.
15We follow Lemma 10.22 of Jech [9].
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For the other direction, suppose that the lemma holds for all k ≤ n and suppose that
A0 = {s ∈ [κ]n : {ξ < κ : s∪ {ξ} ∈ X} ∈ U} ∈ Un. By the induction assumption we have

A1 = {s ∈ [κ]n−1 : {ξ < κ : s ∪ {ξ} ∈ A0} ∈ U} ∈ Un−1,
A2 = {s ∈ [κ]n−2 : {ξ < κ : s ∪ {ξ} ∈ A1} ∈ U} ∈ Un−2,

and so on until

An−1 = {s ∈ [κ]1 : {ξ < κ : s ∪ {ξ} ∈ An−2} ∈ U} ∈ U1.

Clearly X ∈ U1 if and only if
⋃
X ∈ U , so

⋃
An−1 ∈ U . Let f : [κ]n+1 → 2 be such

that f(s) = 1 if s ∈ X. Since f is in M , by Lemma 2.14 there is H ∈ U homogeneous
for f . Then H ′ = H ∩ (

⋃
An−1) is in U . Choose any a1 ∈ H ′. Since {a1} is in An−1,

{ξ < κ : {a1} ∪ {ξ} ∈ An−2} is in U , so there is a2 in H ′ ∩ {ξ < κ : {a1} ∪ {ξ} ∈ An−2}.
Now {a1, a2} ∈ An−2, so there is again a3 ∈ H ′ such that {a1, a2, a3} is in A3. Continuing
like this we find a1, . . . , an ∈ H ′ such that {a1, . . . , an} ∈ A0, so finally there is an+1 ∈ H ′
such that {a1, . . . , an+1} ∈ X. Hence, f(s) = 1 for all s in [H ′]n+1, so [H ′]n+1 ⊂ X and
X is in Un+1.

The characterization of Un given by Lemma 2.13 allows us to prove the following
lemma.

Lemma 2.15. 16 For any formula φ(v0, . . . vn) ∈ L∈(U̇), x0, . . . , xk ∈M and
γ1 < · · · < γn < α ∈ τ ,

〈Mα,∈ Uα〉 � φ[i0α(x0), . . . , i0α(xk), κγ1 , . . . , κγn ]

iff 〈M,∈, U〉 � {{ξ1, . . . , ξn} ∈ [κ]n : φ[x0, . . . xk, ξ1, . . . , ξn]} ∈ Un.

Proof. The proof is by induction on n. Since U0 = {∅}, the claim holds for n = 0.
Suppose that the claim holds for n− 1. Then we have

〈Mα,∈, Uα〉 � φ[i0α(x0), . . . , i0α(xk), κγ1 , . . . , κγn ]

iff 〈Mγn+1,∈, Uγn+1〉 � φ[i0γn+1(x0), . . . , i0γn+1(xk), κγ1 , . . . , κγn ]

iff 〈Mγn ,∈, Uγn〉 � {ξ < κγn : φ[i0γn(x0), . . . , i0γn(xk), κγ1 , . . . , κγn−1 , ξ]} ∈ Uγn
iff 〈Mγn ,∈, Uγn〉 � {ξ <

⋃
Uγn : φ[i0γn(x0), . . . , i0γn(xk), κγ1 , . . . , κγn−1 , ξ]} ∈ Uγn .

The second step uses Łoś’s theorem. The last step is based on the fact that
⋃
Uγn = κγn .

Since Uγn and U are the interpretations of U̇ in Mγn and M , respectively, when we apply
16We follow Lemma 19.9(a) of [11].

19



the induction assumption to the statement to the right of � on the last line, we get that
the last line is equivalent to

〈M,∈, U〉 � {{ξ1, . . . , ξn−1} ∈ [κ]n−1 :

{ξ <
⋃

U : φ[x0, . . . xk, ξ1, . . . , ξn−1, ξ]} ∈ U} ∈ Un−1.

By lemma 2.13, since κ =
⋃
U , this is equivalent with

〈M,∈ U〉 � {{ξ1, . . . , ξn} ∈ [κ]n : φ[x0, . . . , xk, ξ1, . . . , ξn]} ∈ Un.

Thus, the claim holds for n.

We need one more concept before we can prove that countable completeness implies
iterability.

Definition 2.16. 17

We call 〈M,∈, U〉 countably iterable if for any countable 〈N,∈,W 〉 such that W is an
N -ultrafilter and 〈N,∈,W 〉 is ≺−-embeddable into 〈M,∈, U〉, the length of the iteration
of 〈N,∈,W 〉 is at least ω1.

Lemma 2.17. 18 If U is countably complete, then 〈M,∈, U〉 is countably iterable.

Proof. Suppose that W is an N -ultrafilter over λ, 〈N,∈,W 〉 is countable and e is an
≺−-embedding of 〈N,∈,W 〉 into 〈M,∈, U〉. We need to show that the iteration
〈Nα,Wα, λα, jαβ〉α≤β∈τ of 〈N,∈,W 〉 has length ≥ ω1, i.e., that τ ≥ ω1.

We show by induction on α < ω1 that:

(i) 〈Nα,∈,Wα〉 is defined
(ii) there is eα : 〈Nα,∈,Wα〉 ≺− 〈M,∈, U〉 such that eγ = eα ◦ jγα for γ < α.

For α = 0, set e0 = e. To prove the induction step from α to α + 1, suppose that (i)
and (ii) have been proved for all β ≤ α. Then, for any X ∈ Wα, we have eα(X) ∈ U ,
and since 〈N,∈,W 〉 is countable, 〈Nα,∈,Wα〉 is countable by lemma 2.9(d). Hence, the
countable completeness of U implies that

⋂
{eα(X) : X ∈ Wα} is nonempty, so there is

some η in it. Define an embedding of the ultrapower 〈Nλα
α /Wα, EWα , U̇α〉 into 〈M,∈, U〉

by j[f ]Wα = eα(f)(η).
17Definition on p. 254 of [11].
18We follow Lemma 19.11 of [11].
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We show that j is an elementary embedding. Since eα is elementary, for any ξ < λα
and f ∈ Nλα

α ∩ Nα, 〈Nα,∈〉 � φ[f(ξ)] if and only if 〈M,∈〉 � φ[eα(f)(eα(ξ))]. Thus we
have

〈Nλα
α /Wα, EWα〉 � φ[[f ]Wα ] iff {ξ < λα : 〈Nα,∈〉 � φ[f(ξ)]} ∈ Wα

iff η ∈ {eα(ξ) < κ : 〈M,∈〉 � φ[eα(f)(eα(ξ))]}
iff 〈M,∈〉 � φ[eα(f)(η)].

Now 〈Nλα
α /Wα, EWα , U̇α〉 is well-founded because it is embeddable into a well-founded

structure. Hence, 〈Nα+1,∈,Wα+1〉 is defined as its transitive collapse and j ◦ π−1, where
π is the collapsing map, gives an embedding eα+1 : 〈Nα+1,∈,Wα+1〉 ≺− 〈M,∈, U〉. More-
over, since eα+1(jα,α+1(x)) = j[cx] = eα(cx)(η) = eα(x) for every x ∈ Nα, we have
eα = eα+1 ◦ jα,α+1. Hence, for every γ < α + 1, eγ = eα ◦ jγα = eα+1 ◦ jγ,α+1. So (i) and
(ii) hold for α + 1 as well.

Suppose then that δ < ω1 is a limit ordinal and (i) and (ii) hold for all γ < δ. By
Lemma 2.6, the direct limit of

〈〈〈Nα,∈,Wα〉 : α < β〉, 〈jαβ : α ≤ β〉〉

is ≺−-embeddable into 〈M,∈, U〉 due to the embeddings eα, α < δ. Hence, the direct limit
is well-founded, and 〈Nδ,∈,Wδ〉 can be defined as its transitive collapse. The embedding
of the direct limit composed with the inverse of the collapsing function gives an embedding
eδ : 〈Nδ,∈,Wδ〉 ≺− 〈M,∈ U〉. By Lemma 2.6, eγ = eδ ◦ jγδ for all γ < δ. Thus, (i) and
(ii) hold for δ.

We now prove that countable iterability implies iterability, a result first proved by
Gaifman.

Lemma 2.18. 19 If 〈M,∈ U〉 is countably iterable, then it is iterable.

Proof. Suppose that 〈M,∈, U〉 is not iterable, i.e., τ ∈ On. If τ is a successor, say
τ = γ + 1, let 〈Mτ ,∈, Uτ 〉 denote the ultrapower 〈Mκγ

γ /Uγ, EUγ , U̇Uγ〉 of 〈Mγ,∈, Uγ〉 and
let iτ : 〈M,∈, U〉 ≺− 〈Mτ ,∈, Uτ 〉 be the natural embedding into the ultrapower composed
with i0γ.

If τ is limit, let 〈Mτ ,∈, Uτ 〉 denote the direct limit of the iteration of 〈M,∈, U〉 and
let iτ : 〈M,∈, U〉 ≺− 〈Mτ ,∈, Uτ 〉 be the embedding given by the direct limit.

In either case, 〈Mτ ,∈, Uτ 〉 is ill-founded by assumption. However, the proofs of Lem-
mas 2.11 and 2.15 work also with α = τ , 〈Mτ ,∈, Uτ 〉 substituted for 〈Mα,∈, Uα〉 and iτ
substituted for i0α. If τ = γ + 1, κγ needs to be replaced by [id]κγ .

19Lemma 19.12 of [11].
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So suppose xk ∈ Mτ , k ∈ ω, are such that xk+1 Eτ xk for all k ∈ ω. By Lemma 2.11
at τ , for each k, xk = iτ (fk)(κγk1 , . . . , κγkn(k)

) for some n(k) ∈ ω, fk ∈ M [κ]n(k) ∩M and
γk1 < · · · < γkn(k) < τ . Taking the transitive collapse of the Skolem hull of {fk : k ∈ ω} in
〈M,∈, U〉, we get a countable 〈N,∈,W 〉 where W is an N -ultrafilter. The inverse of the
collapsing map is an embedding e : 〈N,∈,W 〉 ≺− 〈M,∈, U〉. By the construction of N ,
for each k there is f ′k ∈ N such that e(f ′k) = fk.

Since 〈M,∈, U〉 is countably iterable, the iteration 〈Nα,Wα, λα, jαβ〉α≤β∈σ of 〈N,∈,W 〉
has length ≥ ω1 by the previous lemma. Let ζ < ω1 be the order type of the set S =
{γkm : 1 ≤ m ≤ n(k), k ∈ ω} and let h : S → ζ be the unique order-preserving function.
For all k ∈ ω, define

δkm = h(γkm) for 1 ≤ m ≤ n(k), and
x′k = j0ζ(f

′
k)(λδk1 , . . . , λδkn(k)

).

For all k ∈ ω, let φκ(v0, v1, . . . ) be a formula such that φk[iτ (fk), iτ (fk+1), κk1, . . . , κ
k
m(k)],

where κk1, . . . , κkm(k) list the elements of the set {κγk1 , . . . , κγkn(k)
, κγk+1

1
, . . . , κγk+1

n(k+1)
} in in-

creasing order, says that iτ (fk+1)(κγk+1
1
, . . . , κγk+1

n(k+1)
) ∈ iτ (fk)(κγk1 , . . . , κγkn(k)

). By Lemma
2.15 at τ , for every k ∈ ω,

xk+1Eτxk iff 〈Mτ , Eτ , Uτ 〉 � φk[iτ (fk), iτ (fk+1), κk1, . . . , κ
k
m(k)]

iff 〈M,∈, U〉 � {{ξ1, . . . , ξm(k)} ∈ [κ]m(k) : φk[fk, fk+1, ξ1, . . . , ξm(k)]} ∈ Um(k)

iff 〈N,∈,W 〉 � {{ξ1, . . . , ξm(k)} ∈ [λ]m(k) : φk[f
′
k, f

′
k+1, ξ1, . . . , ξm(k)]} ∈ Wm(k)

iff 〈Nζ ,∈,Wζ〉 � φk[iζ(f ′k), iζ(f ′k+1), λk1, . . . , λ
k
m(k)]

iff x′k+1 ∈ x′k,

where on the second last line, λk1, . . . , λkm(k) list the elements of the set {λδk1 , . . . , λδkn(k)
,

λδk+1
1
, . . . , λδk+1

n(k+1)
} in increasing order. Hence, x′k+1 ∈ x′k for each k, which is a contradic-

tion since 〈Nζ ,∈,Wζ〉 is well-founded.

The two preceding lemmas show that the countably completeness of U is a sufficient
condition for 〈M,∈, U〉 to be iterable.
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Chapter 3

Relative constructibility and L[U ]

In this chapter we introduce the definition and basic properties of a generalization of
L developed by Azriel Lévy1. For a class or set A, he defined the inner model L[A] of
sets constructible relative to A. This is the smallest inner model M such that for every
x ∈ M , x ∩ A ∈ M . L[A] has many of the same or analogous properties as L. Unlike in
L, GCH is generally true in L[A] only for sufficiently large cardinals. Whether it holds
for all cardinals depends on A.

In this thesis, the most important inner model obtained from relative constructibility
will be L[U ]. That is constructed from a κ-complete ultrafilter U over a measurable
cardinal κ. L[U ] satisfies GCH for all cardinals and in L[U ], κ is the only measurable
cardinal. Our proofs in this chapter follow Kanamori [11].

3.1 Relative constructibility
The idea of the definition of L[A] is that in the definition of the successor level we can
make assertions about membership in A of sets defined so far2. We let

defA(x) = {y ⊂ x : y is definable over 〈x,∈, A ∩ x〉}
1Presented in 1960 in [14].
2We follow here pp. 34-35 of [11].
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where A ∩ x is considered a unary predicate and can be used in the defining formulas.
L[A] is defined recursively in analogy with L:

L0[A] = ∅,
Lα+1[A] = defA(Lα[A]),

Lδ[A] =
⋃
α<δ

Lα[A] for limit δ,

L[A] =
⋃
α∈On

Lα[A].

Like L, L[A] is a model of ZFC and has a definable well-ordering:

Lemma 3.1. 3 There is a formula φ1(v0, v1) of the language L∈(Ȧ) such that it defines a
well-ordering <L[A] of L[A] in any transitive 〈L[A],∈, A ∩ L[A]〉 and for any limit δ > ω,
any y ∈ Lδ[A] and any x,

x <L[A] y iff x ∈ Lδ[A] and 〈Lδ[A],∈, A ∩ Lδ[A]〉 � φ(x, y).

The existence of the sentence σ in the following lemma implies that L[A] satisfies the
condensation lemma: if 〈X,A ∩X〉 is an elementary submodel of Lα[A], then there is a
limit β ≤ α such that X = Lβ[A]. The proofs of these facts and the preceding lemma are
analogous to the corresponding proofs for L that can be found, e.g., in [2].

Lemma 3.2. 4 There is a sentence σ of L∈(Ȧ) with Ȧ unary such that for any A and
any transitive class N ,

〈N,∈, A ∩N〉 � σ iff N = L[A] or N = Lδ[A] for some limit δ > ω.

The following lemma shows that L[A] satisfies GCH for sufficiently large cardinals.
Whether L[A] satisfies GCH for all cardinals depends on A.

Lemma 3.3. 5 Suppose V = L[A] and λ is a cardinal such that A ⊂ P(λ). Then 2λ = λ+.

Proof. We will show that P(λ) ∩ (L[A]) ⊂ Lλ+ [A]. This suffices since |Lλ+ [A]| = λ+.
Suppose that x ∈ P(λ) ∩ L[A]. Let γ > λ be a limit ordinal such that x and A are

members of Lγ[A]. By the Löwenheim-Skolem theorem there is an elementary submodel
〈H,∈, A∩H〉 ≺ 〈Lγ[A],∈, A〉 such that λ∪{x,A} ⊂ H and |H| = λ. Let 〈N,∈,W 〉 be the
transitive collapse of 〈H,∈, A∩H〉 and let π be the collapsing isomorphism. Since λ ⊂ H,
π(y) = y for every y ∈ P(λ) ∩H. Hence, π(x) = x and W = π“(A ∩H) = A ∩N . Since
〈N,∈,W 〉 is elementarily equivalent to 〈Lγ[A],∈, A〉, it satisfies the sentence σ of Lemma
3.2, so N = Lδ[A] for some δ. Since |N | = λ, we have δ < λ+, so x ∈ Lδ[A] ⊂ Lλ+ [A].

3The analogous result for L can be found e.g. on p. 74 of [2].
4The analogous result for L can be found e.g. on p. 70 of [2].
5We follow Lemma 20.2(a) of [11].
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3.2 L[U ]

Suppose there is a measurable cardinal κ and U is a κ-complete measure on κ. L[U ] is
the inner model of sets constructible relative to U . It is sometimes denoted Lµ when the
measure is denoted by µ. In this section we present the most important properties of L[U ]

A fundamental feature of L[U ] is that κ is measurable in the sense of L[U ].

Lemma 3.4. 6 Let Ū = U ∩ L[U ]. Then L[U ] � "Ū is a κ-complete ultrafilter on κ".
Moreover, if U is normal, then L[U ] � "Ū is normal".

Proof. The proof is straightforward since X ∈ L[U ] is in Ū if and only if X ∈ U . Suppose
X ⊂ κ is in L[U ]. Then κ\X ∈ L[U ] so either X ∈ Ū or κ\X ∈ Ū . Suppose X ⊂ Y ⊂ κ,
X ∈ Ū and Y ∈ L[U ]. Then if Y is not in Ū , κ \ Y is in Ū , so κ \ Y ∈ U . But then
X ∩ (κ \ Y ) = ∅ is in U , a contradiction. Hence, Y ∈ Ū .

If {Xα : α < λ < κ} is in L[U ], then A =
⋂
{Xα : α < λ} is in P(κ)∩L[U ]. If A /∈ Ū ,

then κ \ A is in Ū . But then κ \ A ∈ U , so A /∈ U , contradiction. Hence, A is in Ū . If U
is normal and f ∈ L[U ] is a regressive function on κ, then there is γ < κ such that the
set X = {α : f(α) = γ} is in U . X is in L[U ] by separation, so L[U ] �“ f is constant on
some X ∈ Ū".

We start proving a few of the important properties of L[U ].

Theorem 3.5. 7 If V = L[U ], then κ is the only measurable cardinal.

Proof. Suppose for reductio that there is a measurable cardinal λ 6= κ. Let W be a λ-
complete ultrafilter over λ and let j : V ≺ M ∼= Ult(V,W ) be the canonical embedding,
where Ult(V,W ) is the ultrapower of V by W . Since V is the class L[U ], by elementarity
and Lemma 3.2, M = L[j(U)]M . Since j(U) is in M and M is an inner model, L[j(U)]M

is the same as L[j(U)]. We will show that M = L[U ] which is a contradiction since by
Lemma 2.3(d), W /∈M .

If λ > κ, then j(U) = U , so we get the contradiction. So suppose λ < κ. The
normality of U implies that every club in κ is in U , so

E = {α < κ : α > λ and α is inaccessible} ∈ U .

By Lemma 2.12(c), j(α) = α for all α ∈ E and j(κ) = κ. From this it follows that
j(U) = U∩M . SupposeX ∈ j(U) and letX = [f ]W for f ∈ Uλ. Then Y =

⋂
ξ<λ f(ξ) is in

U by κ-completeness and j(Y ) ⊂ X by Łoś’s theorem. Now j(Y ) ⊃ j“(Y ∩E) = Y ∩E ∈ U
because j is the identity on E. Since j(Y ) ⊂ κ, j(Y ) ∈ U ∩M , so as X is a subset of κ,

6Lemma 19.1 of [9]. Normality is proved by Jech, the rest of the proof is our own.
7We follow Lemma 20.2(b) of [11].
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X ∈ U ∩M . Hence, j(U) ⊂ U ∩M , which implies that j(U) = U ∩M since j(U) is an
ultrafilter on κ in M . Since for any A, L[A] = L[A ∩ L[A]], we get that

M = L[j(U)] = L[U ∩M ] = L[U ],

which concludes the proof.

To prove GCH in L[U ], we need a lemma that uses the following concept.

Definition 3.6. 8 Suppose F is a filter over a cardinal κ and ω < ν < κ. F is called
ν-Rowbottom if for any function f : [κ]<ω → γ with γ < κ, there is a set H ∈ F such
that |f“[H]<ω| < ν.

By Lemma 2.14 every normal measure U on a measurable cardinal κ is ν-Rowbottom
for any ω < ν < κ. Another concept needed in the following lemma is that of a complete
set of Skolem functions. For a modelM of language L, a complete set of Skolem functions
is the closure under functional composition of any set {fφ : φ a formula of L}, where each
fφ is a Skolem function for φ. Such a set has size |L|. For X ⊂ M and a complete set of
Skolem functions {fα : α < |L|}, the Skolem hull of X is

⋃
α<|L| fα“[X]k(α) where k(α) is

the arity of fα. The Skolem Hull is an elementary submodel ofM by the Tarski-Vaught
criterion.

Lemma 3.7. 9 Suppose U is a normal measure on a measurable cardinal κ and λ+ > ω is
a successor cardinal smaller than κ. Suppose that A = 〈Lγ[U ], R, . . . 〉, where γ is a limit
ordinal greater than κ and R is a subset of Lγ[U ], is a structure for a first-order language
of cardinality λ containing a constant symbol cα with cAα = α for all α < λ, and suppose
|R| = λ+. Then there is an elementary submodel 〈B,R ∩ B, . . . 〉 ≺ 〈Lγ[U ], R, . . . 〉 such
that |B| = κ, λ ⊂ B, B ∩ κ ∈ U , and |R ∩B| ≤ λ.

Proof. Let R = {ri : i < λ+}. Let {hα : α < λ}, be a complete set of Skolem functions
for the language and let each hα be k(α)-ary. Define the functions f ′ and f with domain
[κ]<ω by

f ′(ξ1, . . . , ξn) = {i : α < λ, n = k(α) and hα(ξ1, . . . , ξn) = ri},
f(ξ1, . . . , ξn) = sup (f ′(ξ1, . . . , ξn)).

Since λ+ is regular, each value of f is smaller than λ+, so ran(f) ⊂ λ+. Since U is
ν-Rowbottom, there is H ∈ U such that |f“[H]<ω| < λ+. Let B =

⋃
α<λ hα“[H]k(α) be

the Skolem hull of H. Then 〈B,R ∩B, . . . 〉 is an elementary submodel of 〈Lγ[U ], R, . . . 〉
and |R ∩ B| ≤ |

⋃
f“[H]<ω|. Since every value of f is smaller than λ+, the regularity of

λ+ implies that |
⋃
f“[H]<ω| ≤ λ, so |R ∩ B| ≤ λ. Since the language contains constant

symbols for all α < λ, λ ⊂ B. Moreover, clearly |B| = κ and H ⊂ B, so B ∩ κ ∈ U .
8This definition is found on p. 218 in [11].
9We adapt the proof of Lemma 8.4 of [11].
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Now we can prove GCH in L[U ].

Theorem 3.8. 10 If V = L[U ], then GCH holds.

Proof. By Lemma 3.3 we only need to show that GCH holds below κ. Suppose λ < κ.
Let <L[U ] be the well-ordering of L[U ]. We will prove that <L[U ]� (P(λ)×P(λ)) has order
type ≤ λ+. That means that for any y ∈ P(λ) ∩ L[U ],

|{x ∈ P(λ) ∩ L[U ] : x <L[U ] y}| ≤ λ.

Suppose that this does not hold, i.e., there is y ∈ P(λ) ∩ L[U ] such that
R := {x ∈ P(λ) ∩ L[U ] : x <L[U ] y} has size λ+. Let γ be a limit ordinal greater than
κ such that y and U are in Lγ[U ] and let A = 〈Lγ[U ],∈, U,R, {y}〉. By augmenting the
language of A with constant symbols for all α < λ and taking the reduct of the elementary
submodel given by Lemma 3.7 we get an elementary submodel

B = 〈B,∈, U ∩B,R ∩B, {y}〉 ≺ A.

such that |R ∩ B| ≤ λ, λ ⊂ B and B ∩ κ ∈ U . Let 〈N,∈,W 〉 be the transitive collapse
of 〈B,∈, U ∩ B〉 and let π be the collapsing isomorphism. Since λ ⊂ B, π(x) = x for all
x ∈ P(λ) ∩B, so y ∈ N and R ∩N = R ∩B.

We show that W = U ∩ N . Because π is injective, B ∩ κ ∈ U and π(ξ) ≤ ξ for any
ξ ∈ B, the set E = {ξ ∈ B∩κ : π(ξ) = ξ} is in U . Otherwise, the set {ξ ∈ B∩κ : π(ξ) < ξ}
would be in U , so by normality there would be Z ∈ U such that π is constant on Z. For
any x ∈ N , let x′ ∈ B be such that x = π(x′). Since W = π“(U ∩ B), we have for any
x ∈ N :

x ∈ W iff ∃D ∈ U (D ∩ E ⊂ x′)

iff ∃D ∈ U (D ∩ E ⊂ x)

iff x ∈ U .

The middle step holds because π is the identity on D ∩ E. Hence, W = U ∩N .
But now by elementarity and Lemma 3.2 N = Lδ[U ] for some limit δ and R ⊂ N since

y ∈ N . Thus we get the contradiction |R| = |R ∩N | = |R ∩B| ≤ λ.

We conclude the chapter with a result concerning the iterated ultrapowers of L[U ].

Theorem 3.9. 11 Suppose M = L[U ], where U is a normal ultrafilter on κ, and let
〈Mα, Uα, κα, iαβ〉α≤β∈τ be the iteration of M . Let λ be a regular cardinal with λ > |κκ∩M |
and let F be the filter generated by the end segments of {κα : α < λ}.

Then Mλ = L[Uλ] = L[F ] and Uλ = F ∩ L[F ].
10We follow Lemma 20.3 of [11].
11We follow Lemma 20.6 of [11].

27



Proof. By Lemma 2.12(b) we have κλ = λ and by Lemma 2.10 Uλ ⊂ F ∩Mλ. Since Uλ
is a normal ultrafilter on P(λ) ∩Mλ, Uλ = F ∩Mλ. Since Mλ satisfies the sentence σ of
Lemma 3.2, Mλ = L[Uλ] = L[F ].
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Chapter 4

Prikry forcing

Prikry forcing is notion of forcing for measurable cardinals developed by Karel Prikry 1.
When Prikry forcing is defined for a measurable cardinal κ, the forcing extension preserves
all cardinals and all cofinalities except the cofinality of κ which becomes ω in the forcing
extension. Another important property is the connection to iterated ultrapowers. For a
modelM with an iterableM -ultrafilter, the sequence of critical points of the iterates forms
a Prikry generic sequence in the ω-th iterated ultrapower, i.e., the sequence {κn : n < ω}
generates a Mω-generic filter G for the Prikry forcing defined from κω. In this chapter
we give the definition of Prikry forcing and present the proofs for the central properties
mentioned above. Our presentation follows closely Jech’s textbook [9] but we present
many proofs in more detail.

4.1 Definition and the basic properties
Definition 4.1. 2 Let κ be a measurable cardinal and let D be a normal measure on κ.
Prikry forcing defined from D is the following notion of forcing: The forcing conditions
are pairs p = (s, A), where s ∈ [κ]<ω, that is, s is a finite subset of κ, and A ∈ D. A
condition (s, A) is stronger than a condition (t, B) if the following hold:

(i) t is an initial segment of s, that is, t = s ∩ α for some α ∈ κ
(ii) A ⊂ B

(iii) s− t ⊂ B

We first show that the Prikry forcing defined from a normal measure on κ preserves
all cardinals and cofinalities above κ and changes the cofinality of κ to ω.

1Prikry forcing was introduced in [16].
2Definition part of Theorem 21.10 of [9].
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Lemma 4.2. 3 Suppose κ is a measurable cardinal, D is a normal measure on κ and
(P,<) is the Prikry forcing defined from D. Let G be a generic filter on P . Then in V [G]
cf(κ) = ω and all cardinals and cofinalities above κ are preserved.

Proof. Any two conditions (s, A) and (s, B) with the same first coordinate are compatible
since (s, A ∩ B) is stronger than either of the two. Thus, any antichain W ⊂ P has size
at most κ because |[κ]<ω| = κ. Thus, P satisfies the κ+-chain condition, so all cofinalities
and cardinals above κ are preserved.

We also notice that if (s, A) and (t, B) are compatible then either s is an initial segment
of t or t is an initial segment of s. This is because if (u,C) ≤ (s, A) and (u,C) ≤ (t, B)
then both s and t are initial segments of u. Since G is a filter, every two conditions in G
are compatible, so S :=

⋃
{s : (s, A) ∈ G for some A} is a subset of κ of order type ω.

It is also easy to see that S is an unbounded subset of κ and, therefore, κ has cofinality
ω in V [G]. For each α < κ and condition (s, A) ∈ P , define the condition (s, A)α as
follows: If s− α 6= ∅, let (s, A)α = (s, A). If s− α = ∅, let sα = s∪ {min(A− α)} and let
(s, A)α = (sα, A). Define for all α < κ the dense set Dα = {(s, A)α : (s, A) ∈ P}. Since G
is generic, Dα ∩G 6= ∅ for all α < κ, so G is unbounded in κ.

Next we prove the lemmas needed to show that V [G] preserves all the cardinals smaller
or equal to κ and the cofinality of every ordinal below κ.

Lemma 4.3. 4 Suppose σ is a sentence of the forcing language. There exists a set A ∈ D
such that the condition (∅, A) decides σ, that is, either (∅, A)  σ or (∅, A)  ¬σ.
Proof. Define S+ = {s ∈ [κ]<ω : (s,X)  σ for some X ∈ D} and S− = {s ∈ [κ]<ω :
(s,X)  ¬σ for some X ∈ D} and let T = [κ]<ω − (S+ ∪S−). If s ∈ S+ ∩S−, then there
are X and Y such that (s,X)  σ and (s, Y )  ¬σ. But then (s,X ∩ Y ) ≤ (s,X) and
(s,X∩Y ) ≤ (s, Y ) so (s,X∩Y )  σ and (s,X∩Y )  ¬σ, a contradiction. Thus, S+ and
S− are disjoint. By Lemma 2.14, there is A ∈ D such that for every n, either [A]n ⊂ S+

or [A]n ⊂ S− or [A]n ⊂ T . We show that (∅, A) decides σ.
If (∅, A) does not decide σ, then there are conditions (s,X), (t, Y ) ≤ (∅, A) such that

(s,X) forces σ and (t, Y ) forces ¬σ. By extending, if necessary, one of s or t by elements
fromX or Y , respectively, we can assume that |s| = |t| = n for some n. Thus, s ∈ S+∩[A]n

and t ∈ S− ∩ [A]n so S+ ∩ [A]n 6= ∅ and S− ∩ [A]n 6= ∅, a contradiction. Hence, (∅, A)
decides σ.

Lemma 4.4. 5 Suppose σ is a sentence of the forcing language and (s0, A0) is a condition.
Then there exists a set A ⊂ A0 in D such that the condition (s0, A) decides σ.

3We follow Theorem 21.10 of [9].
4Lemma 21.11 of [9].
5We follow Lemma 21.12 of [9].
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Proof. The proof is similar to the proof of the preceding lemma. We define S+ =
{s ∈ [A0 −max(s0)]<ω : (s0 ∪ s,X)  σ for some X ⊂ A0} and S− =
{s ∈ [A0−max(s0)]<ω : (s0∪s,X)  ¬σ for some X ⊂ A0} and let T = [A0−max(s0)]<ω−
(S+ ∪ S−). As in the preceding proof, there is some A ⊂ (A0 −max(s0)) in D such that
for all n, [A]n does not intersect both S+ and S−. The same argument as above shows
that (s0, A) decides σ.

We have shown in Lemma 4.2 that the Prikry forcing preserves all cardinals above κ
and κ has cofinality ω in the forcing extension. With the previous lemma we can show
that Prikry forcing preserves all the cardinals less or equal to κ as well.

The proof is based on the fact that in the Boolean-value approach to forcing we can
add a name M̌ for the ground model. Then we can define that a condition p forces
that ȧ ∈ M̌ for a name ȧ if and only if p ≤

∑
x∈M [[ȧ = x̌]] which is equivalent to

∀q ≤ p ∃r ≤ q ∃x ∈M (r  ȧ = x̌).
We show that the definition of p  ȧ ∈ M̌ gives M̌ the right interpretation6. If

ȧG = x for some generic G and x ∈ M , then some condition p ∈ G forces that ȧ = x̌ so
p ≤

∑
x∈M [[ȧ = x̌]]. If ȧG /∈M but some p ∈ G forces ȧ ∈ M̌ , then the set

S = {r ≤ p : ∃x ∈ M (r  ȧ = x̌)} is dense below p. Since G is generic, there exists
q0 ∈ G ∩ S. Then q0  ȧ = x̌ for some x ∈ M . On the other hand, since ȧG /∈ M , there
is q1 ∈ G such that q1  ¬ȧ = x̌. Since G is a filter, there exists r ≤ q0, q1. But then
r  ȧ = x̌ and r  ¬ȧ = x̌ which is a contradiction. Hence, for any generic G there is
a condition p in G such that p  ȧ ∈ M̌ if and only if ȧG = x for some x ∈ M , so the
definition works.

Theorem 4.5. 7 Suppose κ is a measurable cardinal, D is a normal measure on κ and
(P,<) is the Prikry forcing defined from D. Let G be a generic filter on P . Then in V [G]
all cardinals are preserved and all cofinalities except the cofinality of κ are preserved.

Proof. We show that if X is a bounded subset of κ in V [G], then X ∈ V . So suppose
X ∈ V [G] and X ⊂ λ < κ and let Ẋ be a name such that ẊG = X and let p be a
condition such that p  Ẋ ⊂ λ. By the definition of p  ȧ ∈ M̌ above, it is enough to
show that for all q ≤ p there are r ≤ q and Z ∈ V such that r  Ẋ = Ž.

Let q ≤ p, say q = (s, A). By Lemma 4.4, there is for each α < λ a set Aα ⊂ A such
that (s, Aα) decides the sentence α ∈ Ẋ. Let B =

⋂
α<λAα. Since r = (s, B) is stronger

than each (s, Aα), r decides α ∈ Ẋ for each α < λ. Let Z = {α < λ : r  α ∈ Ẋ}. Since
r  α ∈ Ẋ can be decided within V , Z is in V and we have q  Ẋ = Ž.

6The proof is our own.
7We follow Corollary 21.13 of [9].
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Since all bounded subsets of κ are in V , we can show by induction on rank that
V
V [G]
κ = Vκ, so every cardinal below κ is preserved. Since κ is a limit cardinal, κ is

preserved as well.

4.2 Prikry sequences
We show that the sequence of critical points of iterated ultrapowers yields a Prikry generic
sequence in the ω-th iterate. When we say that a subset S ⊂ κ is a Prikry generic sequence
over M , we mean that the filter

G = {(s, A) ∈ P : s is an initial segment of S and S − s ⊂ A}

is M -generic.
For the next Theorem, which is due to Adrian Mathias [15], we also need a variant of

the diagonal intersection. If {As : s ∈ [κ]<ω} is a collection of subsets of κ, define

∆sAs = {α < κ : α ∈
⋂
{As : max(s) < α}}. (4.1)

It is easy to see that every normal ultrafilter D on κ is closed under these diagonal
intersections8. Suppose Xs ∈ D for every s ∈ [κ]<ω. Choose some well-ordering <′ of
[κ]<ω such that max(s) < max(t) implies s <′ t and let {sα : α < κ} be an increasing
enumeration of of ([κ]<ω, <′). Then for each infinite cardinal λ < κ, max(sβ) is smaller
than λ if and only if β < λ. Setting X ′α = Xsα for each α < κ, we see that for all infinite
cardinals λ < κ,

⋂
{Xs : max(s) < λ} =

⋂
{X ′α : α < λ}. Hence, ∆sXs ⊃ ∆α<κX

′
α ∩ A,

where A := {λ < κ : λ is an infinite cardinal}. Since κ is a limit cardinal, the set A is a
club in κ. The normality of D implies that A ∈ D and ∆α<κX

′
α ∈ D, so ∆sXs ∈ D.

Now we are ready to present the lemma.

Theorem 4.6. 9 Suppose M is a transitive model of ZFC, U is a normal measure on κ
in M and P is the Prikry forcing defined from U . Then for every S ⊂ κ of order type ω,
S is Prikry generic over M if and only if for every X ∈ U , S \X is finite.

Proof. First, suppose that G is a generic filter on P and let S =
⋃
{s : (s, A) ∈ G}. Let

X ∈ U and pick any (s, A) ∈ G. The set DX = {(t, B ∩ X) : (t, B) ≤ (s, A)} is dense
below (s, A), so there is some (t, B ∩X) ∈ DX ∩G. Now, every α ∈ S − t must be in X
because any two conditions in G are compatible. Thus, S −X is finite.

8The proof is our own.
9We follow Theorem 21.14 of [9].
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For the other direction, suppose that S ⊂ κ of order type ω is such that S−X is finite
for all X ∈ U . We want to show that the filter

G = {(s, A) ∈ P : s is an initial segment of S and S − s ⊂ A}

is M -generic. So suppose D ∈ M is an open dense subset of P and we will show that
G ∩D 6= ∅.

For each s ∈ [κ]<ω, let Fs : [κ]<ω → {0, 1} be a partition such that Fs(t) = 1 if and
only if max(s) < max(t) and there is X such that (s ∪ t,X) ∈ D. By lemma 2.14 there
is As ∈ U that is homogeneous for Fs. If there is X ∈ U such that (s,X) ∈ D, choose
Xs to be one such X and let Bs = As ∩Xs, otherwise we let Bs = As. Let A = ∆sBs be
the diagonal intersection as defined in (4.1). For any s ∈ [κ]<ω, if there is X such that
(s,X) ∈ D, then (s,Xs) ∈ D and Bs ⊂ Xs. By the definition (4.1), (A \ s) ⊂ Xs, where
(A \ s) = A − (max(s) + 1). Since A and A \ s are in U and D is open, (s, A \ s) ∈ D.
We have shown that for all s ∈ [κ]<ω,

If there is X such that (s,X) ∈ D, then (s, A \ s) ∈ D. (4.2)

By assumption, S has an initial segment s such that S − s ⊂ A. By the density of D
there are t ∈ [A \ s]<ω and X such that (s ∪ t,X) ∈ D. Let u be an initial segment of
S − s such that |u| = |t|. By the homogeneity of (A \ s) ⊂ As for Fs, Fs(u) = Fs(t) so
there is some Y such that (s ∪ u, Y ) ∈ D. By (4.2) we have (s ∪ u,A \ u) ∈ D. Since
(s ∪ u,A \ u) ∈ G by the definition of G, D ∩G 6= ∅.

Now we have everything we need to prove that the sequence of critical points forms a
Prikry generic sequence over the ω-th iterate Mω. For the Main Theorem of this thesis
we also need to show that the set {κω·n : n < ω}, where κω·n is the ω · n-th critical point,
is Prikry generic over the ω2-th iterate Mω2 .

Theorem 4.7. 10

Suppose U is a normal measure on κ in M and 〈Mα, Uα, κα, iαβ〉α<β∈On is the iteration
of M . Suppose further that Pω is the Prikry forcing for the measure Uω on κω in the ω-th
iterate Mω and Pω2 is the Prikry forcing for the measure Uω2 on κω2 in Mω2. Then the set
Sω = {κn : n < ω} is Pω-generic over Mω and the set Sω2 = {κω·n : n < ω} is Pω2-generic
over Mω2.

Proof. By Lemma 2.10, for every X ∈ Uω there is βX < ω such that {κγ : βX ≤ γ < ω}
is included in X. Therefore, Sω − X is finite for every X ∈ Uω. Similarly, Lemma 2.10
implies that Sω2 −X is finite for every X ∈ Uω2 . Hence, by Theorem 4.6 Sω is Pω-generic
over Mω and Sω2 is Pω2-generic over Mω2 .

10We follow a part of the proof of Theorem 21.15 of [9].
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Chapter 5

The core model

The Dodd-Jensen core model K was developed by Ronald Jensen and Anthony Dodd in
the late 1970s. Its development was based on results in fine structure theory that Jensen
had been developing. Fine structure theory is the detailed study of the structure of L.

A fundamental concept in fine structure theory and for the core model is the Jensen
hierarchy which is a modification of the construction of L. JAα , the Jensen hierarchy
constructed relative to a set A, produces L[A] as the union of all levels: L[A] =

⋃
α∈On J

A
α .

The individual levels of the Jensen hierarchy, JAα , are in general different from the levels
Lα[A]. The building blocks of the core model theory are premice that are of the form
N = JUα , where U is a normal ultrafilter in N . A mouse is a premouse with certain specific
properties and the core model is the union of all mice. The core model is an inner model
of ZFC and satisfies GCH.

One of the major results of the KMV paper is that the core model of C∗ is identical
to the core model of V . We will present the proof of that theorem in the last chapter
and the core model is also needed in the proof of the Main Theorem. In this chapter we
will present the basics of core model theory and especially those results that are needed
in the proofs of the last chapter. Different ways of constructing the core model have been
developed after the concept’s introduction but we will follow Jensen’s and Dodd’s original
construction. This chapter is mostly based on Dodd’s and Jensen’s 1981 paper [5] that
first introduced the core model. Some of our proofs follow or adapt ideas from Dodd’s
1982 book [4] and the first section mostly follows Jensen’s 1972 paper about fine structure
theory [10].
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5.1 Jensen hierarchy
The construction of the core model uses concepts from fine structure theory. This section
presents those fine structural concepts and results that are needed for the construction
of K. To avoid making the thesis excessively long, we do not present proofs for all the
results. In those cases we indicate where the proof can be found.

We begin with the definition of rudimentary functions on which Jensen hierarchy is
based.

Definition 5.1. A function f : V n → V is rudimentary if it is finitely generated from
the following schemas:

(a) f(x̄) = xi,

(b) f(x̄) = xi \ xj,
(c) f(x̄) = {xi, xj},
(d) f(x̄) = h(g(x̄)),

(e) f(y, x̄) =
⋃
z∈y g(z, x̄).

A function is rudimentary in A for a set or class A if it is generated from (a)-(e) and
the schema: fA(x̄) = xi ∩ A.

X is rudimentarily closed if it is closed under rudimentary function. M = 〈X,A〉 is
rudimentarily closed if its closed under functions which are rudimentary in A.

Lemma 5.2. 1 Every rudimentary function is a composition of the following functions:

F0(x, y) = {x, y},
F1(x, y) = x \ y,
F2(x, y) = x× y,
F3(x, y) = {(u, z, v) : z ∈ x and (u, v) ∈ y},
F4(x, y) = {(u, v, z) : z ∈ x and (u, v) ∈ y},

F5(x, y) =
⋃

x,

F6(x, y) = dom(x),
F7(x, y) =∈ ∩x2,
F8(x, y) = {x“(z) : z ∈ y}.

Every function rudimentary in A is a composition of F0, . . . , F8 and FA(x, y) = x ∩ A.
1Lemmas 1.8 and 1.9 of [10].

35



To define the Jensen hierarchy we need the following concepts:

Definition 5.3. rud(X) denotes the closure of X ∪ {X} under rudimentary functions.
Similarly, rudA(X) denotes the closure of X ∪ {X} under functions rudimentary in A.

The functions s(u) and sA(u) are defined by

s(u) = u ∪
8⋃
i=0

Fi“(u2),

sA(u) = u ∪
8⋃
i=0

Fi“(u2) ∪ FA(u).

By Lemma 5.2
⋃
n<ω s

n(u) is the rudimentary closure of u. We define further
S(u) = s(u ∪ {u}) and SA(u) = sA(u ∪ {u}).

An important property of rud(X) is given by the following lemma. When we say
that a subset B of A is ΣC

n (A) we mean that it is defined over A by a Σn formula with
parameters from C. B ∈ Σn(A) means that B is Σn over A with parameters from A
unless the parameters are specified otherwise. Σω(A) =

⋃
n<ω Σn(A).

Lemma 5.4. 2 P(X) ∩ rud(X) = Σω(X).

Now we can define the Jensen hierarchy and the finer Sα-hierarchy.

Definition 5.5. Jensen hierarchy is defined recursively as follows:

J0 = ∅,
Jα+1 = rud(Jα),

Jλ =
⋃
α<λ

Jα for limit λ.

Sα-hierarchy is defined by

S0 = ∅,
Sα+1 = S(Sα),

Sλ =
⋃
α<λ

Sα for limit λ.

2Corollary 1.7 of [10].
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By induction we can see that both Jα and Sα are transitive for all α and always
Jα = Sωα. The Jα’s generate L:

⋃
α<On Jα = L. Always On ∩ JAα = ωα. If an ordinal α

satisfies α = ωα, then Jα = Lα
3.

Core model theory is mostly concerned with JAα , the Jensen hierarchy defined relative
to A:

Definition 5.6. Suppose A is a class or set. Then the hierarchy JAα is defined recursively
as follows:

JA0 = ∅,
JAα+1 = rudA(Jα),

JAλ =
⋃
α<λ

JAα for limit λ.

The finer SAα -hierarchy is defined as follows:

SA0 = ∅,
SAα+1 = SA(SAα ),

SAλ =
⋃
α<λ

SAα for limit λ.

Again, the JAα ’s and SAα ’s are transitive and JAα = SAωα. The hierarchy JAα generates
L[A] as the union of all levels:

⋃
α∈On J

A
α = L[A]. In our discussion of core model theory,

we conceive of JAα as the structure 〈JAα , A ∩ JAα 〉. It will always be clear from the context
whether we mean just the level of the hierarchy or the structure. Function FA in the
definition of SAα+1 guarantees that for all α, 〈JAα , A∩ JAα 〉 is amenable, which is defined as
follows:

Definition 5.7. We call a structure M = 〈M,A〉 amenable if for all x ∈M , A ∩ x ∈M .

An important feature of JAα is that it has a Σ1 Skolem function 4.

Definition 5.8. Suppose M = 〈M,A〉 is amenable and ω ⊂ M and suppose 〈φi〉i<ω is a
recursive enumeration of Σ1 formulas with 2 free variables. The Σ1 Skolem function for
M is a Σ1(M) function h such that dom(h) ⊂ ω ×M and for every A ∈ Σ1(M) defined
over M by φi and parameter x, if A 6= ∅, then h(i, x) ∈ A.

The Σ1 Skolem hull of X ⊂M in M is hM“[ω ×X<ω].
3See note on p. 255 of [10].
4The existence is proved in Lemma 2.8 of [10].
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When we speak of a Skolem function in this chapter, we mean the Σ1 Skolem function.
We will usually denote the Skolem hull hM“[ω ×X<ω] by just hM(X) if there is no risk
of confusion.

We now present concepts that are needed for the core model. From now on, we are
mostly following [5]. The following lemma lists some useful properties of JAα = 〈JAα , A ∩
JAα 〉.

Lemma 5.9. 1. 5 There is a Σ1(JAα ) function from ωα onto JAα .

2. 6 There is a Σ1(JAα ) map of ωα onto (ωα)2.

3. 7 〈JAβ : β < α〉 is uniformly parameter free Σ1(JAα ).

4. 8 There is a well-ordering relation <JAα
on JAα . The relation is Σ1(JAα ).

In some definitions we use the following well-ordering9 on [On]<ω:

p ≤∗ q iff ∃α [p \ α = q \ α ∧ q ∩ α 6= ∅
∧ (p ∩ α = ∅ ∨max(p ∩ α) < max(q ∩ α)].

Lemma 5.10. 10

(a) If x ∈ JAα , then TC(x) ∈ JAα .
(b) 〈JAα , TC � JAα 〉 is amenable.

(c) The relations y = TC � x and y = TC(x) are uniformly Σ1(JAα ).

Proof. For any ν we have

f = TC � SAν iff f is a function ∧ dom(f) = SAν

∧ (∀x ∈ SAν )[f(x) = x ∪
⋃
z∈x

f(z)].

Every x ∈ JAα is in SAν for some ν < ωα. Hence, to show (a) it suffices to show

(1) TC � SAν ∈ JAα for all ν < ωα.
5Lemma 2.36 of [4].
6Lemma 2.30 of [4].
7Corollary 2.3 of [10] gives the result for Jα.
8Corollary 2.5 of [10] gives the analogous result for Jα.
9That this really is a well-ordering is proved e.g. in Lemma 9.2 of [4].

10We follow Lemma 2.1 of [5].
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Then (b) holds, too, since TC � JAα ∩ x = TC � SAν ∩ x. Moreover,

y = TC � x⇔ ∃ν(x ∈ SAν ∧ y = (TC � SAν ) ∩ (x× TC(x)), and
y = TC(x)⇔ ∃ν(x ∈ SAν ∧ y = (TC � SAν )(x),

so (c) holds as well.
We prove (1) by induction on α. Case α = 0 is trivial and the limit case follows

immediately from the induction hypothesis. Suppose α = β + 1. Then TC � JAβ ∈ JAα
since TC � JAβ =

⋃
ν<ωβ TC � SAν is Σ1(JAβ ). The definition of the functions F0, . . . , F8, F

A

implies that for every n < ω there is mn < ω such that
⋃mn SAωβ+n ⊂ JAβ .

For i ≤ mn we define tni as follows:

tn0 = TC � JAβ ,

tni+1 = {(x, y) : x ∈ Sωβ+n, x ⊂ dom(tni ) and y = x ∪
⋃
x∈x

ti(z)}

Since TC � JAβ is in JAα , each tni is in JAα . For all n, tnmn = TC � SAωβ+n, so (1) holds.

The following lemma can be proved in a similar way as the previous one using the
definition of the rank function. We omit the proof for brevity.

Lemma 5.11. 11

(a) If x ∈ JAα , then rank(x) ∈ JAα .
(b) 〈JAα , rank � JAα 〉 is amenable.

(c) y = rank � x and y = rank(x) are uniformly Σ1(JAα ).

The following concept is needed to get a useful characterization of set of hereditarily
small elements of N = JAα

Definition 5.12. N = JAα is δ-tidy if for all ν < δ and all a ∈ P(ν) ∩N ⊂, Jaδ ⊂ N .

Lemma 5.13. 12 Suppose N = JAα is δ-tidy, and either ωδ is a cardinal in N or δ = α
and δ = ωδ. Then

HN
ωδ =

⋃
ν<δ

a⊂ν, a∈N

Jaδ .

11Lemma 2.2 of [5].
12We combine the proofs of Lemma 2.5 of [5] and Lemma 3.17 of [4].
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Proof. There is always a Σ1(JAδ ) function from δ onto ωδ. If ωδ is in N , then necessarily
δ = ωδ since ωδ is a cardinal in N . Hence, in either case of the assumption, δ = ωδ.

To prove inclusion from right to left, suppose ν < δ and a ∈ P(ν) ∩N . By δ-tidiness
Jaδ ⊂ N . Every x ∈ Jaδ is in Jaξ+1 for some ξ < δ. Since there is a Σ1(Jaξ ) surjection from
ωξ onto Saωξ+k for every k ∈ ω, there is a function fk ∈ Jaξ+1 from ωξ onto Saωξ+k for every
k ∈ ω. Since every Saωξ+k is transitive and Jaξ+1 =

⋃
k<ω S

a
ων+k, |TC(x)|N < ωξ < ωδ for

every x ∈ Jaδ .
For the other direction, suppose x ∈ HN

ωδ and let u = TC({x}). Then there are a
ν < ωδ and f ∈ N such that ν is a cardinal in N and f is a bijection from ν to u. Let
e = {(ξ1, ξ2) ∈ ν2 : f(ξ1) ∈ f(ξ2)}. Since ν is a cardinal in N , it is a limit ordinal, say
ν = ωξ. There is a Σ1(JAξ ) function g from ν2 onto ν, so e′ = g“(e) is in N . Now e′ is
a subset of ν < δ and since g−1 is Σ1(JAξ ), Je′δ = Jeδ . Hence, it is enough to show that
x ∈ Jeδ .

We define functions fi, i ≤ rank({x}), as follows

f0 = ∅,
fi+1 = {〈ξ, fi“{τ : (τ, ξ) ∈ e}〉 : ξ < ν and {τ : (τ, ξ) ∈ e} ⊂ dom(fi)},

fλ =
⋃
i<λ

fi for limit λ.

By induction on i we can see that if ξ ∈ dom(fi), then fi(ξ) = f(ξ). In particular,
the limit case is well-defined. If i is a limit ordinal, the claim is clear by the induction
hypothesis. If i = j + 1 and ξ ∈ dom(fi), then

fi(ξ) = fj“{τ : f(τ) ∈ f(ξ)} = {f(τ) : f(τ) ∈ f(ξ)} = f(ξ),

where the last equation holds since f is a surjection onto TC({x}). We can also see by
induction that if rank(f(ξ)) < i, then ξ ∈ dom(fi). The limit case is again clear by the
induction hypothesis. If i = j + 1, and rank(f(ξ)) < i, then f(τ) < f(ξ) implies that
rank(f(τ)) < j. Hence, by the induction hypothesis {τ : f(τ) ∈ f(ξ)} ⊂ dom(fj), so ξ is
in dom(fi). Then frank({x}) = f , so we need to show that frank({x}) ∈ Jeδ .

By Lemma 5.11(a), rank({x}) = γ for some γ < ωα. Since rank � u = (rank �
N) ∩ u × γ is in N by Lemma 5.11(b), f ′ = (rank � u) ◦ f is in N and f ′ is an onto
function from ν onto γ. If γ ≥ δ, then δ = ωδ is in N but is not a cardinal in N , a
contradiction. Hence, rank({x}) < δ.

For any α′ < δ, we have

ν + α′ ≤ 2 max{ν, α′} ≤ ωmax{ν, α′} < ωδ = δ.

Thus, to show frank({x}) ∈ Jeδ it suffices to prove by induction on α′ ≤ rank({x}) the
following:

fα′ ∈ Jeν+α′+1 and 〈fi : i < α′〉 ∈ Jeν+α′+1.
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The case α′ = 0 is trivial. The case α′ = β + 1 follows from the induction assumption
since fβ+1 is definable in Jeν+β+1 from fβ. If α′ is a limit, then 〈fi : i < α′〉 is Σ1(Jeν+α′)
by the definition of the fi’s. Hence, 〈fi : i < α′〉 and fα′ are in Jeν+α′+1.

Definition 5.14. N = JAα is acceptable if whenever ν < α and δ < ων with P (δ)∩JAν+1 6⊂
JAα , then for each u ∈ Jν+1 there is a sequence of functions 〈fξ : δ ≤ ξ < ων〉 ∈ JAν+1 such
that each fξ : ξ → {ξ} ∪ (P(ξ) ∩ u) is onto.

For the rest of this section we suppose that N = JAα is acceptable.

Lemma 5.15. 13 Suppose ω ∈ N . For every ν ∈ On ∩ N we let ν+ = (ν+)N denote
the least cardinal in N greater than ν, or ωα if there is no such cardinal. There is a
uniformly, without parameters, Σ1(N) sequence

〈aνji : ω ≤ ν ∈ N , j < ν, ωi < ν+〉

satisfying

(i) {aνji : j < ν, ωi < ν+} = P(ν) ∩N ,

(ii) 〈aνji : j < ν, ωi < τ〉 ∈ N for τ < ν+.

Proof. For ν ≥ ω we let

Bν = {ξ < α : ν ≤ ωξ and P(ν) ∩ JAξ+1 6⊂ JAξ }.

Bν is Σ1(N) so there is a Σ1(N) increasing enumeration of 〈ξνi : i < ν∗〉 of Bν . For
n < ω and i < ν∗, let f νi,n be the <N -least surjection from ν onto P(ν) ∩ SAωξνi +n. The
acceptability of N guarantees that f νi,n exists. Let gν be the <N -least bijection between
ων and ν. Such a bijection exists since ν ≥ ω. Finally let

aνgν(ωj+n),i = f νi,n(j)

for j < ν, n < ω and i < ν∗.
The sequence 〈aνji : ω ≤ ν ∈ N , j < ν, ωi < ν∗〉 is uniformly Σ1(N). Every member

of P(ν) ∩N is in some SAωξνi +n, so the bijectivity of gν implies that

P(ν) ∩N = {aνji : j < ν, i < ν∗} = {aνji : j < ν, ωi < ων∗}.

If ωi < τ < ων∗, then i < τ ′ for some τ ′ < ν∗. For τ ′ > ν, {aνji : j < ν, i < τ ′} is definable
in JAτ ′ so {aνji : j < ν, i < τ ′} is in N . Hence, {aνji : j < ν, ωi < τ} is in N for all τ < ων∗.
Thus, we only need to show that ων∗ = ν+.

13We follow Lemma 2.12 of [5].
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Suppose first that ων∗ > ν+. Then ν+ < ωα, so ν+ is a cardinal in N which implies
that ων+ = ν+ and ν∗ > ν+. Define an injection b : ν+ → P(ν) by

b(i) = the <N -least a ∈ P(ν) ∩ JAξνi +1 \ JAξνi .

{b(i) : i < ν+} is in JAξν++1 so it is in some SAωξν++n, and hence by acceptability there is a
surjection f ∈ N from ν onto {b(i) : i < ν+}. But then b−1 ◦ f is in N and b−1 ◦ f is a
surjection from ν onto ν+, a contradiction. Hence, ων∗ ≤ ν+.

Suppose then that ων∗ < ν+. Now ων∗ < ωα so P(ν) ∩ N = {aνji : j < ν, i < ν∗}
is in N . As ν∗ < ν+, we have |ν × ν∗|N < ν+, so |P(ν)|N ≤ ν, a contradiction. Hence,
ων∗ = ν+.

A fundamentally important concept in core model theory is that of a projectum.

Definition 5.16. 14 The projectum of N is the least ρ ≤ α such that there is a Σ1(N)
subset of ωρ that is not in N , in other words, P(ωρ) ∩ Σ1(N) 6⊂ N . The projectum is
denoted by ρN .

Lemma 5.17. 15 N is ρN -tidy.

Proof. Since ρN is a limit ordinal, it suffices to show the following:

(1) For any infinite ν < ρN and a ∈ P(ν) ∩N , Jaν is in N .

Suppose (1) does not hold for some a and ν. Let τ be the least ordinal such that a ∈ JAτ .
Then for all τ + ξ < α, Jaξ ∈ JAτ+ξ+1 and 〈Sαη : η < ωξ〉 is Σ1(JAτ+ξ). Thus, α must be less
than τ + ν + 1.

Suppose τ = η+ 1 and α = η+ γ for some γ ≤ ν. Define Sξn = SAω(η+ξ)+n for all ξ < γ
and n < ω. Then we have

(2) |P(ν) ∩ Sξn|J
A
η+ξ+1 ≤ ν for all ξ < γ and n < ω.

Suppose (2) does not hold and let ξ be the least such that (2) fails for ξ and some
n. Since N is acceptable, (2) holds for every ξ < γ such that P(ν) ∩ JAη+ξ+1 6⊂ JAη+ξ.
Hence, ξ > 0 and P(ν) ∩ JAη+ξ+1 ⊂ JAη+ξ. In particular, P(ν) ∩ Sξn = P(ν) ∩ JAη+ξ. For
β < ξ, let fβn be the <JAη+β+1

-least surjection from ν onto P(ν)∩ Sβn. Then the sequence
〈fβn : β < ξ, n < ω〉 is Σ1(Jη+ξ). Since 1 ≤ ξ < ν, there is a Σ1(JAη+ξ) function from ν
onto ξ × ω, and hence there is a Σ1(JAη+ξ) onto function g : ν → P(ν) ∩ JAη+ξ. But then
g ∈ JAη+ξ+1, a contradiction. Hence, (2) holds.

14Definition 2.14 of [5].
15We follow Lemma 2.16 of [5].
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Since (2) holds, we can let fξn be the <JAη+ξ+1
-least function from ν onto P(ν) ∩ Sξn

for every ξ < γ and n < ω. As in the proof of (2) we get a Σ1(N) onto function
g : ν → P(ν) ∩ N . If g /∈ N , then there is a Σ1(N) subset of ν that is not in N ,
which is impossible as ν < ωρN . Hence, g and P(N) ∩ N are in N , and |P(ν)|N ≤ ν, a
contradiction. Hence, (1) holds.

Definition 5.18. 16

(i) Suppose N = JAα . Then pN is the <∗-least p ∈ [On]<ω such that there is A ⊂ On
such that A is Σ1(N) in parameters from ωρN ∪ p and A ∩ (ωρN) /∈ N .

(ii) AN = {(i, x) ∈ JρN : N � φi(x, pN)} where {φi : i < ω} is a fixed recursive
enumeration of the Σ1 formulas with two free variables.

(iii) N∗ = JANρN .

Lemma 5.19. 17 N∗ = HN
ωρN

.

Proof. Since for every β < α there is a uniformly Σ1(Jβ) map of ωβ onto Jβ, there is a
Σ1(N) set Ā ⊂ ωρN such that J ĀρN = JANρN = N∗. For every ν < ωρN , Ā ∩ ν is in N , and
hence J Ā∩νρN

⊂ N by the ρN -tidiness of N . But

J ĀρN =
⋃

ν<ωρN

J Ā∩νρN
,

so J ĀρN ⊂ HN
ωρN

by Lemma 5.17.
To prove the other direction, it suffices by Lemma 5.13 to show that JaρN ⊂ N∗ for

every a ⊂ ν < ωρN such that a ∈ N . Since N is acceptable, JaρN ⊂ N by Lemma 5.17. If
a ∈ N∗, then a ∈ JANβ for some β < ρN . Since ρN is a Σ1 cardinal in N , β + ν + 1 < ρN ,
so Jaν ∈ N∗. Similarly Jaν′ ⊂ N∗ for every ν ′ such that ν ≤ ν ′ < ρN , so JaρN ⊂ N∗ since
ρN is a limit ordinal. Hence, it suffices to show that every a ⊂ ν < ωρN , a ∈ N , is in N∗.

Fix such a and ν. Since the sequence in the statement of Lemma 5.15 has a uniform
Σ1(N) definition without parameters, and since ν+ ≤ ωρN in N , there are i < ω, i′ < ν,
ξ < ωρN such that a = hN(i, 〈i′, ξ, ν〉). Let φj be a Σ1 formula satisfying

N � ∀y∀x1∀x2∀x3 [φj(〈y, x1, x2, x3〉, pN)↔ y ∈ hN(i, 〈x1, x2, x3〉)].

Then
a = {γ < ν : (j, 〈i′, ξ, ν〉)} ∈ N∗.

16Definition 2.17 of [5].
17We follow Lemma 2.19 of [5].

43



This result is needed mostly for the following easy but important corollary.

Corollary 5.20. 18 Suppose N is a premouse and ρN > ρN∗. If a ⊂ ωρN∗ is not in N∗,
then a is not in N .

Proof. Since a is a subset of ωρN∗ < ωρN , if a is in N , it is in HN
ωρN

. But N∗ = HN
ωρN

, so
then a is in N∗.

5.2 Premice and their iterations
Premice and their iterations are an essential part of the core model theory. A premouse
is just a level of the Jensen hierarchy. The iteration of a premouse is very similar to the
iteration of a model by an M -ultrafilter and premouse iterations share many properties
with iterated ultrapowers.

Definition 5.21. 19 N = JUα is called a premouse if N � “U is a normal measure on κ"
for some κ < α. Then N is said to be a premouse at κ.

If JUα is a premouse at κ, the ordinal α must be greater than κ because otherwise no
member of U can be in JUα . If we set Ū = U ∩JUα , then JUα = J Ūα since in the construction
up to JUα the function FU(x, y) is only applied to sets that already belong to some previous
level of the S-hierarchy.

The definition of the iteration of a premouse is very similar to the definition of iterated
ultrapowers for a model of ZFC−. First we define the ultrapower of a premouse. Scott’s
trick is not needed because premice are sets. As in Chapter 2, let the language of premice
be L∈(U̇).

Definition 5.22. 20 Let N = JUα be premouse at κ. Define the equivalence relation ∼ on
Nκ ∩N by

f ∼ g iff {ξ : f(ξ) = g(ξ)} ∈ U .
Let the domain of the ultrapower be the set of equivalence classes:

Ñ = {[f ]∼ : f ∈ Nκ ∩N}.

Define the interpretations of ∈ and U̇ by

[f ]EÑ [g] iff {ξ : f(ξ) ∈ g(ξ)} ∈ U and
UÑ([f ]) iff {ξ : f(ξ) ∈ U} ∈ U .

Then Ñ = 〈Ñ , EÑ , UÑ〉 is the ultrapower of N by U .
18The proof is our own.
19Definition 3.1 of [5].
20Definition 3.2 of [5].
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Unlike in the case of an M -ultrapower by an M -ultrafilter, for an ultrapower of a
premouse, Łoś’s theorem holds only for Σ0 formulas. The proof is by induction on the
length of the formula.

Lemma 5.23. 21 For all Σ0 formulas φ, Ñ � φ([f ]) if and only if {ξ : N � φ(f(ξ))} ∈ U .

We are only interested in ultrapowers of premice that are well-founded. The canonical
embedding is defined similarly as in chapter 2.

Definition 5.24. 22 If Ñ is well-founded, letN+ be its transitive collapse and let gN : Ñ ∼=
N+ be the collapsing function. Define the embedding πN : N → N+ by πN(x) = gN([cx]),
where cx ∈ Nκ ∩N is the constant function with value x.

By Lemma 5.23 πN is Σ0-elementary. The proof of the next lemma is identical to the
beginning of the proof of Lemma 2.11.

Lemma 5.25. 23 If x ∈ N+, then x = πN(f)(κ) for some f ∈ Nκ ∩N .

This allows us to prove the next lemma.

Lemma 5.26. 24 The range of the embedding πN is cofinal in On ∩N+.

Proof. Suppose x ∈ On ∩ N+. Then x = πN(f)(κ) for some f ∈ Nκ ∩ N . Let β ≥
sup(ran(f)). Since N � (∀x ∈ κ) (f(x) ≤ β), the Σ0-elementarity of πN implies that
N+ � ∀x ∈ πN(κ)(πN(f)(x) ≤ πN(β)), so πN(β) ≥ x.

From this it follows that πN is actually Σ1-elementary. However, this does not imply
full elementarity since a premouse is not necessarily a model of ZF .

Lemma 5.27. 25 πN is Σ1-elementary.

Proof. Let N = JUα . Let S ′ν = πN(Sν) for all ν < ωα. Suppose x ∈ N+, say πN(f)(κ). If
f ∈ Sν , then f(ξ) ∈ Sν for all ξ < κ, so πN(f)(κ) is in S ′ν . Thus N+ =

⋃
ν<ωα S

′
ν .

Let φ(y, x̄) be Σ0. Then we have by Σ0-elementarity

N � ∃y φ(y, ā) iff ∃ν such that N � (∃y ∈ Sν)φ(y, ā)

iff ∃ν such that N+ � (∃y ∈ S ′ν)φ(y, πN(ā))

iff ∃ν∃y ∈ S ′ν such that N+ � φ(y, πN(ā))

iff N+ � ∃y φ(y, πN(ā)).

21Lemma 3.3 of [5].
22Definition 3.4 of [5].
23Lemma 3.5 of [5].
24Lemma 3.6 of [5].
25We follow Lemma 3.7 [5].
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This allows us to prove that N+ is a premouse as well.

Lemma 5.28. 26 N+ is a premouse.

Proof. S ′ν = SU
+

πN (ν) where U+ = gN“(UÑ). So N+ =
⋃
ν<ωα S

U+

πN (ν) = SU
+

α′ , where α′ =

sup(πN“(ωα)). Moreover, since ’U is normal’ is Π1(N), the Σ1-elementarity of πN implies
that N+ � ’U+ is a normal measure on κ’.

The proof of the following lemma is identical to the proof for an M -ultrafilter in
Chapter 2.

Lemma 5.29. 27 πN � κ = id � κ and P(κ) ∩N = P(κ) ∩N+.

Next we define the full iteration of a premouse through all ordinals. The construction
and the main results are very similar to the ones for iterated ultrapowers. The main
difference is that the embeddings are not necessarily more than Σ1-elementary.

Definition 5.30. 28

Let N = N0 be a premouse. Nα, πij and α-iterability are defined recursively for
i, j, α ∈ On as follows:

1. If N is α-iterable and Ñα is well-founded, then N is α+ 1-iterable, Nα+1 = N+
α and

πi,α+1 = πNα ◦ πiα.
2. If λ is a limit ordinal, N is α-iterable for all α < λ and the direct limit of
〈〈Nα : α < λ〉, 〈παβ : α ≤ β < λ〉〉 with Σ1-elementary limit maps is well-founded,
then N is λ-iterable and Nλ is the transitive collapse of the limit. For all α < λ,
παλ is the direct limit embedding composed with the collapsing map.

N is iterable if it is α-iterable for all ordinals α. If N is a premouse at κ, we denote
κi = π0i(κ). Then 〈Ni, πij, κi〉 is called the iteration of N .

The following lemma is proved in the same way as the corresponding results for iterated
ultrapowers in Chapter 2.

Lemma 5.31. 29 Suppose N is iterable. Then

(a) πij is Σ1-elementary and cofinal,

(b) πij � κi = id � κi and πij(κi) = κj > κi,

26Lemma 3.8 of [5].
27Lemmas 3.9 and 3.10 of [5].
28Definition 3.11 of [5].
29Lemma 3.12 of [5].
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(c) For any x ∈ Nj, there are n < ω, f ∈ Ni, f : [κ]n → Ni and i ≤ κγ1 < · · · <
κγn < j such that x = πij(f)(κγ1 < · · · < κγn). Hence, Nj is Σ0-generated from
ran(πij) ∪ {κh : i ≤ h < j},

(d) P(κi) ∩Ni = P(κi) ∩Nj for i ≤ j.

The following two lemmas will be useful in later proofs.

Lemma 5.32. 30 Suppose N̄ = J Ūᾱ and N = JUα are iterable premice at κ̄ and κ, respec-
tively. Suppose σ : N̄ → N is a Σ1-embedding. Then there is a unique σ+ : N̄+ →Σ1 N

+

such that σ+ ◦ πN̄ = πN ◦ σ and σ+(κ̄) = κ.

Proof. Uniqueness follows from Lemma 5.25 and the conditions σ+ ◦ πN̄ = πN ◦ σ and
σ+(κ̄) = κ. Let σ+ be defined by σ+(πN̄(f)(κ̄)) = πN(σ(f))(κ), so the conditions σ+ ◦
πN̄ = πN ◦ σ and σ+(κ̄) = κ are immediately satisfied. Suppose φ(x) is a Σ1-formula.
Then we have by Łoś’s theorem and the assumption on σ,

N+ � φ(σ+(πN̄(f)(κ̄))) iff N+ � φ(πN(σ(f))(κ))

iff {ξ : N � φ(σ(f)(ξ))} ∈ U
iff {ξ : N̄ � φ(f(ξ)) ∈ Ū
iff N̄+ � φ(πN̄(f)(κ̄)).

Lemma 5.33. 31 Let N̄ , N and σ be as in the preceding lemma. Let f : On → On be
monotone. Then there are unique σi : N̄i →Σ1 Nf(i) such that σ0 = π0f(0) ◦ σ, σj ◦ π̄ij =
πf(i)f(j) ◦ σi and σi(κ̄i) = κf(i) for all i ≤ j.

Proof. Uniqueness is again clear by the assumptions and 5.31(c). We define σi by in-
duction on i. First we set σ0 = π0f(0) ◦ σ. Suppose σi has been defined. Set σi+1 =
πf(i)+1,f(i+1) ◦ σ+

i , where σ
+
i is given by the preceding lemma. Then by the requirements

on σ+ in the preceding lemma,

σi+1 ◦ π̄i,i+1 = πf(i)+1,f(i+1) ◦ σ+
i ◦ π̄i,i+1 = πf(i)+1,f(i+1) ◦ πf(i),f(i)+1 ◦ σi

= πf(i),f(i+1) ◦ σi,

from which condition σi+1◦ π̄j,i+1 = πf(j)f(i+1)◦σi follows for all j ≤ i+1. That σi+1(κ̄j) =
κf(j) for j ≤ i+ 1 follows from the induction hypothesis and the preceding lemma.

30We follow Lemma 3.13 of [5].
31We follow Lemma 3.14 of [5].
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Suppose then that λ is a limit and σi has been defined for all i < λ. Let λ̃ = sup{f(i) :
i < λ}. Define σ∗ : N̄λ → Nλ̃ so that it satisfies σ∗ ◦ π̄iλ = πf(i)λ̃ ◦ σi for i < λ. Then set
σλ = πλ̃f(λ) ◦ σ∗. Then σλ satisfies σλ ◦ π̄iλ = πf(i)f(λ) ◦ σi for all i ≤ λ.

To prove the last requirement, pick any i ≤ λ. If i < λ, then choose any i′ such that
i < i′ < λ. Then by the requirement on σ∗ for i′, we have σ∗(κ̄i) = κf(i) since π̄i′λ(κ̄i) = κ̄i
and πf(i′)λ̃(σi′(κ̄i)) = κf(i). Thus, σλ(κ̄i) = πλ̃f(λ)(σ

∗(κ̄i)) = κf(i). If i = λ, then again by
the requirement on σ∗, σ∗(κ̄λ) = κλ̃, so σλ(κ̄λ) = πλ̃f(λ)(σ

∗(κ̄λ)) = κf(λ).

We use this result first to show that the set of critical points {κi : i < j} are Σ1

indiscernibles in Nj.

Lemma 5.34. 32 {κh : i ≤ h < j} is a set of Σ1 indiscernibles for 〈Nj, x〉x∈ran(πij), i.e., for
any Σ1-formula φ, x̄ ∈ ran(πij)

<ω and κh1 , . . . , κh2n, i ≤ hk < j, Nj � φ(x̄, κh1 , . . . , κhn)
holds if and only if Nj � φ(x̄, κhn+1 , . . . , κh2n) holds.

Proof. Let φ be a Σ1-formula. Let x ∈ N<ω
i and κh0 < . . . , κhn−1< i ≤ hk < j be arbitrary.

Define f : On→ On by

f(k) = k if k < i,
f(i+m) = hm if m ≤ n− 1,
f(i+ n+m) = j +m .

Let σi, i ∈ On, be the functions given by Lemma 5.33. Since we start from id : Ni → Ni,
the functions are simply σi = πif(i). Then using σi+n we get

Nj � φ(πij(x̄), κh0 , . . . , κhn−1) iff Nf(i+n) � φ(πi,f(i+n)(x̄), κh0 , . . . , κhn−1)

iff Ni+n � φ(πi,i+n(x̄), κi, . . . , κi+n−1).

This equivalence if independent of the choice h0, . . . , hn−1, so the claim concerning Σ1

formulas holds.

Next we show that a subset of {κi : i < j} is a set of Σn indiscernibles in Nj. We need
the following auxiliary definition and lemmas.

Definition 5.35. 33 Suppose i and j are ordinal multiples of ωω and suppose i1 < · · · <
ip < i and j1 < · · · < jp < j. Let ik = ωnᾱk + β̄k and jk = ωnαk + βk for all k ≤ p. Then
(i1, . . . , ip) ∼n (j1, . . . , jp) ∼n if and only if for k, l ≤ p

1. β̄k = βk,
32We follow Lemma 3.15 of [5].
33Definition 3.16 of [5].
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2. ᾱk = ᾱl iff αk = αl.

Lemma 5.36. 34 Suppose ī ∼n+1 j̄ where ī < i and j̄ < j, i.e., each ik < i and jk < j.
Suppose j̄′ extends j̄, i.e., each jk is j′l for some l, and suppose further that j̄′ < j. Then
there is ī′ extending such that ī ∼n j̄ and ī′ < i.

Proof. Let j̄ = (j′1, . . . , j
′
p′). Suppose first that jk < j′l+1 < . . . j′l+r < jk+1. Let

jk = ωn+1α + ωnk + β,
jk+1 = ωn+1α′ + ωnk′ + β′,
ik = ωn+1ᾱ + ωnk + β,

ik+1 = ωn+1ᾱ′ + ωnk′ + β′.

Case 1 : α = α′. Then ᾱ = ᾱ′ must hold by Definition 5.36. Define i′l+m =

ωn+1ᾱ + ωnk̃ + β̃ where j′l+m = ωn+1α + ωnk̃ + β̃..
Case 2 : α < α′. Then ᾱ < ᾱ′ must hold again. Suppose j′l+m = ωn+1αm+ωnkm+βm.
Let m′ be greatest such that αm′ 6= α′. m′ must exist by the case hypothesis.
Case 2a: m > m′. Define i′l+m = ωn+1ᾱ′ + ωnkm + βm.
Case 2b: m ≤ m′. We handle this by induction. Let k′0 = k and suppose i′l+m is
defined. I km = km+1, then i′l+m+1 = ωn+1ᾱ + ωnk′m + βm+1. Otherwise i′l+m+1 =
ωn+1ᾱ + ωn(k′m + 1) + βm+1.

If jp < j′l+1 < · · · < j′p′ , we use the same definition. The only case that can arise is the
case 2b. If j′1 · · · < jl′ < j1, we can first extend j̄′ and ī to (0, j̄′) and (0, ī), then argue
as in the case jk < j′l+1 < . . . j′l+r < jk+1, and finally delete the first component from the
resulting tuples ī′′ and j̄′′ to get ī′ and j̄′.

Lemma 5.37. 35 Suppose i and j are multiples of ωω. If Ni and Nj are iterates of N
and (i1, . . . , ip) = ī ∼n= j̄ = (j1, . . . , jn), then

Ni � φ(κi1 , . . . , κip , π0i(x̄)) iff Nj � φ(κj1 , . . . , κjp , π0j(x̄)), (5.1)

where x̄ ∈ N<ω and φ is Σi+1.

Proof. We prove the claim by induction on n.For n = 0, pick any k such that p < k < i, j.
Then there are monotone functions f i : On→ On and f j : On→ On such that f i(m) = im
and f j(m) = jm for 1 ≤ m ≤ p. As in Lemma 5.34 we get

Ni � φ(κi1 , . . . , κip , π0i(x̄)) iff Nk � φ(κ1, . . . , κp, π0k(x̄))

iff Nj � φ(κj1 , . . . , κjp , π0j(x̄)).
34We follow Lemma 3.17 of [5].
35We follow Lemma 3.18 of [5].
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For n > 0, suppose Nj � ∃yφ(y, κj1 , . . . , κjp , π0j(x̄)), where φ is Πn. Then for some
κj∗1 , . . . , κj∗r and f ∈ κ[r] → N

Nj � φ(π0j(f)(κj∗1 , . . . , κj∗r ), κj1 , . . . , κjp , π0j(x̄)),

so there is a rudimentary function t such that

Nj � φ(t(π0j(f), κj∗1 , . . . , κj∗r ), κj1 , . . . , κjp , π0j(x̄))

Let j̄′ = (j′1, . . . , j
′
l) list {κj∗1 , . . . , κj∗r , κj1 , . . . , κjp} in ascending order. Then j̄′ extends j̄

so by Lemma 5.36 there is ī′ extending ī such that ī′ ∼n−1 j̄
′. For 1 ≤ k ≤ r, let i∗k be

the ih such that jh = j∗k . The induction hypothesis holds also for Πn formulas since the
negation of a Πn formula is Σn. So by the induction hypothesis we get

Ni � φ(t(π0i(f), κi∗1 , . . . , κi∗r), κi1 , . . . , κip , π0i(x̄)).

Hence,
Ni � ∃yφ(y, κi1 , . . . , κip , π0i(x̄)),

which proves the induction step by symmetry.

As an immediate corollary we get:

Corollary 5.38. 36 Let i be a multiple of ωω and let φ be a Σn+1 formula. If (i1, . . . , ip) ∼n
(j1, . . . , jp) and ip, jp < i, then

Ni � φ(κi1 , . . . , κip , π0i(x̄))↔ φ(κj1 , . . . , κjp , π0i(x̄)).

The following corollary is useful to us Sections 5 and 6.

Corollary 5.39. 37 If i is a multiple of ωω and C = {κj : j < i and j is a multiple of ωn},
then C is a set of Σn indiscernibles for 〈Ni, x〉x∈ran(π0i).

Proof. Suppose i1, . . . , ip, j1, . . . , jp are all multiples of ωn. If i1 < · · · < ip and j1 < · · · <
jp, then necessarily (i1, . . . , ip) ∼n (j1, . . . , jp). Hence the claim follows from the previous
lemma.

As in the case of iterated ultrapowers, we can show that if U is countably closed,
then JUα is iterable. This could be proved similarly as in Chapter 2 but we will follow
the proof in [5] which is based on a modification of Kunen’s original definition of iterated
ultrapowers in [13].

36Corollary 3.19 of [5].
37Corollary 3.20 of [5]. The short proof is our own.
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Lemma 5.40. 38 Suppose N = JUα is a premouse at κ and U is countably closed, i.e., for
any Xi, i < ω, such that each Xi is in U , their intersection

⋂
i<ωXi is in U . Then N is

iterable.

Proof. First we define Uk for all k < ω by:

U0 = {∅},
Uk+1 = {X ∈ P(κn+1) ∩N : {ξ : {v̄ : (ξ, v̄) ∈ X} ∈ Uk} ∈ U}.

For every ordinal i, let Vi = {f : κu → N : u ⊂ i and u is finite}. Suppose φ
is a Σ1- formula and suppose u1, . . . , um are finite subsets of i and fh : κuh → N for
h ≤ m. Let u =

⋃m
h=1 uh and let {j1, . . . , jn} enumerate u in increasing order. Suppose

uh = {jq1 , . . . , jqr} where q1 < · · · < qr. For v̄ = (v1, . . . , vn) ∈ κn, define

f ∗uh (v1, . . . , vn) = fh((jq1 , vq1), . . . , (jqr , vqr)).

Then we define the relation

T φi (f1, . . . , fm) iff {v̄ : N � φ(f ∗u1 (v̄), . . . , f ∗um (v̄))} ∈ Uk,

where v̄ = (v1, . . . , vk).
We define an equivalence relation ∼ on Vi by

f ∼ g iff T
′x=y′

i (f, g).

We let Ṽi be the set of equivalence classes and say the relation Ei by

[f ]Ei[g] iff T
′x∈y′
i (f, g).

Now Ṽi is just a slight modification of Kunen’s definition of the i-th iterated ultrapower
and the definition of premouse iteration is a modification of the iterated ultrapowers.
Thus, the corresponding modification of Theorem 2.11 in [13] shows that if Ei is well-
founded, then 〈Ṽi, Ei〉 is isomorphic to Ni, the i-th premouse iterate of N . Hence, if
〈N ′i ,∈〉 is the transitive collapse of 〈Ṽi, Ei〉, then 〈N ′i ,∈〉 = 〈Ni,∈〉 by the uniqueness of
the transitive collapse.

So we have to show that Ei is well-founded. Suppose it is not. Then there are [fh],
h < ω, such that [fh+1]Ei[fh] for all h. Then T

′x∈y′
i (fh+1, fh) for all h. Define for h < ω

Yh = {v̄ : N � f ∗ûhh+1(v̄) ∈ f ∗ûhh (v̄)} ∈ U l(h)

38We follow Lemma 3.22 of [5]. The connection to Kunen’s definition is not mentioned in [5].
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where fh : κuh → N , ûh = uh ∪ uh+1 and ûh = {j1, . . . , jl(h)}. By the definition of U l(h)

there are Y 1
h , . . . , Y

l(h)
h ∈ U so that if vk ∈ Y k

h for all 1 ≤ k ≤ l(h), then v̄ ∈ Yh. Now
Y ∗h =

⋂l(h)
k=1 is in U , so Y =

⋂
n∈ω Y

∗
h is nonempty.

So we can pick some δ ∈ Y . Then for all h f ∗ûhh+1(δ . . . δ) ∈ f ∗ûhh (δ . . . δ). Because
f ∗ûhh+1(δ . . . δ) = f

∗ûh+1

h+1 (δ . . . δ), there is an infinite descending sequence in V , a contradic-
tion.

The first consequence of the preceding lemma is the following useful result.

Lemma 5.41. 39 Suppose N = JUα is a premouse and U is countably closed. Suppose B
is a rudimentary relation over N and well-founded. If Bi is defined over Ni with the same
rudimentary definition, then Bi is well-founded.

Proof. Let φ be the formula defining B and the Bi’s. The proof of well-foundedness of Ei
in the previous proof works for Bi with T φi in place of T

′x∈y′
i .

Lemma 5.42. 40 Suppose N is iterable, N̄ a premouse and σ : N̄ →Σ0 N . Then N̄ is
iterable and the conclusion of Lemma 5.33 holds for Σ0 functions.

Proof. We prove by induction that N̄ is i-iterable for all i and there is a Σ0 embedding
σi : N̄i → Ni. Let σ0 = σ.

Claim. Suppose N̄i exists and σi : N̄i →Σ0 Ni. Then N̄+
i exists and there is a unique

σ+
i : N̄+

i →Σ0 N
+
i such that σ+

i ◦ πN̄i = πNi ◦ σi and σ+
i (κ̄i) = κi.

Proof. For any Σ0 formula φ, Ñi � φ([f ]) if and only if {ν : Ni � φ(f(ν))} ∈ Ui. Define
σ̃i : ˜̄N → Ñ by σ̃i([f ] ˜̄N

) = [σi(f)]Ñ . Then ˜̄Ni must be well-founded because otherwise
σ̃i shows that Ñi is not well-founded. Hence N̄+

i exists. Define σ+
i : N̄+

i →Σ0 N
+
i by

σ+
i = gNi ◦ σ̃i ◦ g−1

N̄i
. � Claim.

If σi : N̄i →Σ0 Ni is defined, then we define σi+1 : N̄i+1 →Σ0 Ni+1 by σi+1 = σ+
i .

Now suppose λ is a limit, N̄ is i-iterable and σi exists for all i < λ. Then Nλ is
the direct limit of 〈Ni, πij〉i<j<λ. Since for all i < j < λ, σj ◦ π̄ij = πij ◦ σi, the direct
limit of 〈N̄i, πij〉i<j<λ must be well founded. Otherwise the infinite descending sequence
of elements of Nλ would yield an infinite descending sequence of elements of some N̄i.
Hence, N̄λ exists. Then σλ can be defined by σλ ◦ π̄iλ = πiλ ◦ σi. The definition works
since N̄λ and Nλ are direct limits.

The conclusion of Lemma 5.33 is proved by a similar argument and is omitted for
brevity.

39Lemma 3.23 of [5].
40We follow Lemma 3.24 of [5].
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The following important lemma allows as to define a prewellordering on the class of
all premice. Its proof uses the same argument as to the proof of Lemma 3.9 so we omit
it.

Lemma 5.43. 41 Let N be an iterable premouse at κ. Suppose θ is a regular cardinal in
V and θ > |κκ ∩N |. Then Nθ = JFθα where Fθ is the club filter on θ.

An immediate consequence is the following:

Corollary 5.44. 42 Suppose M and N are iterable premice. Then there are iterates M̄
and N̄ of M and N , respectively such that either M̄ ∈ N̄ or M̄ = N̄ or N̄ ∈ M̄ .

Definition 5.45. 43 The partial order <pm is defined on the class of all premice by
M <pm N if for some iterates M̄, N̄ of M,N , respectively, it holds that M̄ ∈ N̄ . The
equivalence relation ≈ is defined on iterable premice by M ≈ N if for some θ, Mθ = Nθ.

If M,N are iterable premice with iterates M̄, N̄ satisfying M̄ ∈ N̄ , then for all α, M̄α

is a proper subset of N̄α. Thus, by lemma 5.43, for any regular θ > |N̄κ ∩ N̄ |, M̄θ ∈ N̄θ.
Hence the above definition makes sense and <pm is a well-ordering on the equivalence
classes of ≈.

We conclude the section with a lemma that is needed in the proofs concerning mice.

Lemma 5.46. 44 Suppose M ≈ N , say Q = Nθ = Mθ. Let 〈Mi, κ̄i, π̄ij〉 and 〈Ni, κi, πij〉
be the respective iterations. If ran(π̄0θ) ⊂ ran(π0θ), then N is an iterate of M .

Proof. Suppose N = JUα is a premouse at κ. Suppose κ 6= κ̄ξ for all ξ. We show that
κ ∈ ran(π0θ). If κ < κ̄, then immediately κ ∈ ran(π̄0θ) ⊂ ran(π0θ). So suppose κ > κ̄.
Then there is ξ < θ such that κ̄ξ < κ < κ̄ξ+1.

By Lemma 5.31(c) there are f : κ̄[n] →M in M and κ̄ξ1 < · · · < κ̄ξn < κ̄ξ+1 such that
Mξ+1 � κ = π̄0,ξ+1(f)(κ̄ξ1 , . . . , κ̄ξn). Then

Q � κ = π̄0θ(f)(κ̄ξ1 , . . . , κ̄ξn). (5.2)

Because ran(π̄0θ) ⊂ ran(π0θ), there must be in N a function f ′ : κ[n] → N such that
π0θ(f

′) = π̄0θ(f). But κ̄ξ1 , . . . , κ̄ξn < κ, so N � y = f ′(κ̄ξ1 , . . . , κ̄ξn) for some y ∈ N .
Hence, π0θ(y) = π0θ(f

′)(κ̄ξ1 , . . . , κ̄ξn) , so κ ∈ ran(π0θ), which is a contradiction. Thus,
κ = κ̄ξ for some ξ < θ.

41Lemma 3.25 of [5].
42Corollary 3.26 of [5].
43Definition 3.27 of [5].
44We follow lemma 3.28 of [5].
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We show that N = Mξ. Let Mξ = J
Uξ
α′ . Then, as with iterated ultrapowers, we have

X ∈ N ∩ U iff κ ∈ π0θ(X)

and
X ′ ∈Mξ ∩ Uξ iff κ̄ξ ∈ π̄ξθ(X ′).

But if X ′ ∈ Mξ ∩ Uξ, then π̄ξθ(X
′) ∈ ran(π0θ), so there is Y ∈ N such that π̄ξθ(X ′) =

π0θ(Y ). But then Y ∈ N ∩ U , so

X ′ = π̄ξθ(X
′) ∩ κ = π0θ(Y ) ∩ κ = Y .

Hence, Mξ ∩ Uξ ⊂ N ∩ U , so Mξ ∩ Uξ ⊂ M ∩ U , which implies that Mξ ∩ Uξ = M ∩ U
since Uξ is an ultrafilter on κ in Mξ. Thus, in fact, Mξ = JUα′ . Then we must have α′ = α
because otherwise either N ∈ Mξ or Mξ ∈ N contradicting the assumption M ≈ N .
Hence, N = Mξ.

5.3 Soundness
This section presents some lemmas that are related to soundness or Σ1 Skolem hulls of
premice. They will be needed in the definition of mice and the core model in the last two
sections.

Definition 5.47. 45 Suppose N = JUα is a premouse. N is sound if N = hN(jρN ∪{pN}).
δN is the <N -least δ ≤ α such that U ⊂ JUδ .

We can assume that for a premouse N = JUα , U = U ∩ N , so the definition of δN
makes sense. The following lemma is important in the proofs of this section.

Lemma 5.48. 46 If ρN ≥ δN , then N∗ = JUρN .

Proof. By Lemmas 5.13 and 5.19 we have

N∗ = HN
ωρN

=
⋃
ν<ρN

a⊂ν, a∈N

JaρN .

Because ρN ≥ δN and ρN is a limit ordinal, every member of U is a subset of some
ν < ρN . Every member of U is in JUβ for some β < ρN . Since ρN is a Σ1-cardinal in N ,
β + ρN = ρN . This implies that JUρN ⊂ HN

ωρN
.

On the other hand, if a ⊂ ν < ρN and a is in N , then either κ ∩ a or κ \ a must be in
U as N thinks that U is a normal ultrafilter on κ. Hence, κ∩ a or κ \ a is in JUβ for some
β < ρN , so a ∈ JUβ+1. Since ρN is a Σ1-cardinal in N , JaρN is included in JUρN .

45Definition 4.1 of [5].
46Result mentioned on p. 60 of [5]. The proof is our own.
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Definition 5.49. 47 Suppose N = JUα is a premouse. Then we define

(i) N (0) = N ; N (i+1) = (N (i))∗,

(ii) ρ0
N = α; ρi+1

N = ρN(n) ,

(iii) p0
n = ∅ ; pi+1

N = pN(i) ,

(iv) A0
N = U ; Ai+1

N = AN(i) .

N is n-sound if N (i) is sound for every i < n.

By Lemma 5.19, N (j) ⊂ N i holds for all i ≤ j.
For α > δN , the function FU is not needed in the construction of the levels JUα so

the following lemmas can be proved as in the case of the Jα-hierarchy. The proofs can
be found in the standard fine-structure theoretical sources [10], [2] and [3] and they are
omitted for brevity. The lemmas use the concept of a Σn master code, defined below:

Definition 5.50. 48 A Σn master code for JAα is a set B ∈ Σn(JAα ) such that, setting
ρ = ρnJAα , B ⊂ Jρ and

Σm(JBρ ) = P(JBρ ) ∩ Σn+m(JAα ).

for m ≥ 1 and n, α ≥ 0.

Lemma 5.51. 49 Suppose N = JUα and ρN ≥ δN . Then N is sound and AN is a Σ1

master code for N .

Lemma 5.52. 50 Suppose N is as in Lemma 5.51 and π : M →Σ1 N
∗. Then

(i) There is a unique N̄ such that N̄ is sound and M = N̄∗.

(ii) There is a unique π̃ ⊃ π such that π̃ : N̄ →Σ1 N and π̃(pN̄) = pN .

(iii) If π : M →Σi N
∗, then π̃ : N̄ →Σi+1

N .

(iv) ρN̄ ≥ δN̄ .

Lemma 5.53. 51 Suppose N̄ = J Ūᾱ is a premouse with ρN̄ ≥ δN̄ . Then there is a well-
founded relation Ē ⊂ JρN̄ uniformly rudimentary in AN̄ such that for π : N̄∗ →Σ1 M , E
defined over M with the same rudimentary definition as Ē over N̄∗, if E is well-founded,
then

47Definition 4.5 of [5].
48We modify the definition for Jα on p. 260 of [10].
49Lemma 4.2 of [5]. Soundness follows from the proof of Lemma 11, Chapter 7 of [1]. Master code is

proved in Theorem 14 of Chapter 7 of [1] and in Lemma 3.4 of [10].
50Lemma 4.3 of [5]. Part of Theorem 4.1 of [10] and part of Lemma 20 in Chapter 7 of [1].
51Lemma 4.4 of [5]. This follows from the proof of Lemma 3 in [3].
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(i) There is a unique N such that N is sound and M = N∗.

(ii) There is a unique π̃ ⊃ π such that π̃ : N̄ →Σ1 N and π̃(pN̄) = pN .

(iii) If π : N̄∗ →Σi M , then π̃ : N̄ →Σi+1
N .

(iv) ρN ≥ δN .

The following lemma iterates the results of Lemmas 5.51-5.53.

Lemma 5.54. 52 Suppose N = JUα is a premouse with ρnN ≥ δN . Then

(a) 53 N is n-sound and AnN is a Σn master code for N .

(b) 54Suppose π : M →Σ1 N
(n). Then

(i) There is a unique N̄ such that N̄ is n-sound and M = N̄ (n).
(ii) There is a unique π̃ ⊃ π such that

π̃ : N̄ →Σ1 N , π̃ � N̄ j : N̄ j →Σ1 N
(j) and π̃(pj

N̄
) = pjN

for j ≤ n.

(iii) If π : M →Σi N
(n), then π̃ � N̄ (j) : N̄ (j) →Σi+n−j N

(j), for j ≤ n.
(iv) ρn

N̄
≥ δN̄ .

(c) 55 There are relations Ē1, . . . , Ēn ⊂ JρnN uniformly rudimentary in AnN such that for
π : N (n) →Σ1 M and Ei defined over M with the same rudimentary definition, if
E1, . . . , En are well-founded, then

(i) There is a unique N̄ such that N̄ is n-sound and M = N̄ (n).
(ii) There is a unique π̃ ⊃ π such that

π̃ : N →Σ1 N̄ , π̃ � N (j) →Σ1 N̄
(j) and π̃(pjN) = pj

N̄
for j ≤ n.

(iii) If π : N (n) →Σi M , then π̃ � N (j) : N (j) →Σi+n−j N̄
(j) for j ≤ n.

(iv) ρn
N̄
≥ δN̄ .

The following two lemmas are useful in the proofs of Section 5.4.

Lemma 5.55. 56 Suppose N = JUα is a premouse at κ, ρnN ≥ δN > κ ≥ ρn+1
N and

JUδN � ∀ν (|ν| ≤ κ). Then hN(n)(Jκ ∪ pn+1
N ) = N (n).

52Lemma 4.6 of [5].
53Proved in Lemma 3.4 of [10] and Theorem 14 of [1].
54Theorem 4.1 of [10] and Lemma 20 in Chapter 7 of [1].
55This is based on an iteration of Lemma 3 of [3].
56We follow Lemma 4.7 of [5].
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Proof. To simplify notation we let h = hN(n) , p = pn+1
N , ρ = ρnN and A = AnN . Let

X = h(Jκ ∪ p) and let π : M ∼= 〈X,U ∩ X〉, where M is transitive. Then M = J Ū
β̄

for
some β̄, Ū . Then by Lemma 5.54(b) there is a unique N̄ = J Ūᾱ such that N̄ is n-sound
and N̄ (n) = M . Since ρnN ≥ δN , N (n) = JUρnN by Lemma 5.48.

Since JUδN � ∀ν (|ν| ≤ κ), for each ν < ωδN there is a surjection fν ∈ N (n) from κ onto
ν. Thus, if ν ∈ ωδN ∩X, the Σ1-definability of the <N(n)-least surjection from κ onto ν
shows that every ordinal below ν must be in ωδN ∩X. Hence, ωδN ∩X is transitive. Let
ωδ̄ be ωδN ∩X. Then transitivity implies that π � ωδ̄ = id � ωδ̄, so π(ωδ̄) ≥ ωδN . Hence,
π � J Ū

δ̄
= id � J Ū

δ̄
. Since π(ωδ̄) ≥ ωδN , Ū ⊂ U ∩ J Ū

δ̄
. For every x ∈ M , x ∈ Ū if and only

if π(x) ∈ U , so Ū = U ∩ J Ū
δ̄
. Hence, J Ū

δ̄
= JU

δ̄
, so Ū = U ∩ JU

δ̄
.

Suppose ᾱ < α. Since M is isomorphic to X which is a Σ1 elementary submodel of
N (n),M � φ(x) if and only ifN (n) � φ(π(x)) for any x ∈M and Σ1 φ. Hence AN(n) ⊂ Jρn+1

N

is Σ1 definable over M and thus Σn+1 definable over N̄ . Because N̄ ∈ N , AN(n) ∈ N .
Since AN(n) ⊂ κ, the definition of δN implies that AN(n) ∈ JUδN ⊂ N (n), a contradiction. If
α < ᾱ, a similar argument for AN̄(n) yields a contradiction. Hence, ᾱ = α, so N̄ = J Ūα .

Next we show that Ū ∩ N̄ = U ∩N . If not, then there is γ ≥ δ̄ such that γ < δN and
P(κ) ∩ JUγ+1 6⊂ JUγ . Let γ be the least such ordinal. Suppose P(κ) ∩ Σω(JUγ ) ⊂ JUγ . Let

M̃ be JU∩J
U
γ

γ+1 = Σω(JUγ ). M̃ is transitive, so for any x ∈ M̃ , x ∩ (M̃ ∩ U) = x ∩ U . If

y ∈ x ∈ M̃ , then y ∈ Σω(JUγ ) ⊂ JUγ . Hence, x ∩ U = x ∩ (U ∩ JUγ ). Since x ∈ SU∩J
U
γ

ωγ+k for
some k, x ∩ (U ∩ JUγ ) ∈ M̃ . Hence, for any x ∈ M̃ , x ∩ (U ∩ M̃) ∈ M̃ , i.e., 〈M̃, U ∩ M̃〉
is amenable. If x is in SUωγ+k and x ∈ M̃ , then by amenability x ∩ U ∈ M̃ . Thus, since
JUγ+1 =

⋃
k<ω S

U
ωγ+k, we see by induction on k that every element of JUβ+1 must be in

M̃ . On the other hand, M̃ = rudU∩M(M) is obviously a subset of rudU(M) = JUγ+1, so

J
U∩JUγ
γ+1 = JUγ+1. But then P(κ) ∩ JUγ+1 ⊂ P(κ) ∩ Σω(JUγ ) ⊂ JUγ , which contradicts the

definition of γ.
So there is a ⊂ κ such that a ∈ Σω(JUγ )\JUγ . But because γ+1 is the least ordinal ≥ δ̄

such that JUγ+1 has a new subset of κ, JUγ = J Ūγ . Hence, a ∈ Σω(J Ūγ ), so a ∈ J Ūα . Thus,
either a or κ \ a is in Ū ∩ N̄ \ J Ūγ . But γ ≥ δ̄, a contradiction. Hence, Ū ∩ N̄ = U ∩ N ,
so N̄ = N . In particular, N̄ (n) = N (n) and p̄ = π−1(p) = p. Hence, π(hN̄(i, x, p̄)) =
hN(i, x, p) for all x ∈ Jκ, so π is the identity and X = N (n).

Lemma 5.56. 57 Let N = JUα be a premouse at κ.

(a) δN > κ and JUδN � ∀ν (|ν| ≤ κ).

57The proof follows Lemma 4.8 of [5].
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(b) If ρnN > κ, then N is n-sound.

(c) If ρnN > κ, then ρnN ≥ δN and N (n) = JUρNn .

(d) If ρn+1
N ≤ κ < ρnN , then hN(n)(κ ∪ pn+1

N ) = N (n).

Proof. Suppose (a) holds. If ρnN < δN , then JUδN � |ρnN | ≤ κ, so ρnN ≤ κ. Thus, if ρnN > κ,
then ρnN ≥ δN . Hence, (a) implies (c), so by Lemma 5.54(a), (a) implies (b). Moreover,
if ρnN > κ, since there is a Σ1 surjection from κ to Jκ in N (n) = JUρnN , hN(n)(κ ∪ pn+1

N ) =

hN(n)(Jκ∪pn+1
n ) = N (n) by the previous lemma. Hence, (a) implies (d) as well, so we only

need to prove (a).
δN > κ is clear since JUκ only has bounded subsets of κ. We prove the other claim

in (a) by induction on α. So suppose the claim holds for all β < α. Suppose ν < δN .
We show that JUδN � |ν| ≤ κ. Pick the least γ ≥ ν such that P(κ) ∩ JUγ+1 6⊂ JUγ . Then
γ < δN . As in the previous lemma P(κ) ∩ Σω(JUγ ) 6⊂ JUγ . Then setting M = JUγ , there
is n such that ρnM > κ ≥ ρn+1

M . By the induction hypothesis |ν|J
U
δN ≤ |ν|JUγ+1 ≤ κ since

ν < γ + 1.

The following lemma shows that if there is a bounded subset of κ in JUα+1 \ JUα , then
ρnJUα < κ for some n.

Lemma 5.57. 58 Let N = JUβ+1 be iterable, so M = JUβ is iterable by Lemma 5.42, too.
If ρnM = κ for some n, then HM

κ = HN
κ .

Proof. Let 〈Ni, πij, κi〉 be the iteration of N . Then Ni = JUiβi+1 for some βi. Let Mi = JUiβi
and let Bi = AnMi

and Hi = Mn
i = JBiρnMi

. Since ρnM = κ is Σ1 definable in N , ρnMi
= κi.

Hence, Hi = JBiκi . In this proof, the notation for sets Hi is distinguished from the notation
for the collection of hereditarily small sets HX

λ because we only consider hereditarily small
sets in some model X. We do not claim that Mi is an iterate of M .

Since Hi = HMi
κi

is Σ1(Ni) definable from κi, πij(Hi) = Hj. Since by Lemma 5.13

H
J
Ui
βi

κi =
⋃
ν<κi

a⊂ν, a∈JUiβi

Jaκi ,

from Lemmas 5.9(3) and 5.31(b) it follows that πij � Hi = id � Hi. The embedding
πij � Hi : Hi → Hj is fully elementary:59 because πij(Hi) = Hj, we have for any φ and

58We combine the proof of Lemma 4.9 of [5] and Lemmas 11.11 - 11.20 on pp. 88-91 of [4].
59The proof of the fact follows Lemma 11.11 of [4].
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x1, . . . , xn ∈ Hi,

Hj � φ(πij(xn), . . . , πij(xn)) iff Nj � φ
Hj(πij(x1), . . . , πij(xn))

iff Ni � φ
Hi(x1, . . . , xn)

iff Hi � φ(x1, . . . , xn).

Hence, Hi ≺ Hj for i ≤ j.
To proof proceeds through a series of claims:

Claim 1. Hi � ZF .
Proof. Clearly Hi satisfies pairing, union, extensionality and foundation. Hi satisfies

Σ0 separation, i.e., Hi � ∀u∀x̄∃y∀z (z ∈ y ↔ z ∈ u ∧ φ(z, x̄)) for any Σ0 φ. Fixing u, x̄ ∈
Hi, Σ0 separation for Hj, i < j, implies that Hj � ∃y∀z (z ∈ y ↔ z ∈ u∧φHi(z, x̄)). Since
Hi ≺ Hj, Hi � φ(z, x̄) implies Hj � φ(z, x̄). Hence, Hj � ∃y∀z (z ∈ y ↔ z ∈ u ∧ φ(z, x̄)),
so by elementarity Hi � ∃y∀z (z ∈ y ↔ z ∈ u∧φ(z, x̄)). Hence, Hi satisfies full separation.

To prove replacement, we show that

Hi � ∀x∃y φ(x, y)→ ∀u∃v(∀x ∈ u)(∃y ∈ v)φ(x, y).

Then replacement follows by separation. Suppose Hi � ∀x∃y φ(x, y) and u ∈ Hi. Then
since Hi ≺ Hj for j > i, we have

Hj � (∀x ∈ u)(∃y ∈ Hi)φ(x, y), so
Hj � ∃v(∀x ∈ u)(∃y ∈ v)φ(x, y), so by elementarity
Hi � ∃v(∀x ∈ u)(∃y ∈ v)φ(x, y).

To prove power set, let x ∈ Hi. Take a regular cardinal θ > κi such that θ > 2|x|
V .

Then κθ = θ and |P(x) ∩Hθ|V < θ, so there is γ < θ such that P(x) ∩Hθ ⊂ JBθγ . Thus,
Hθ � ∃y(P(x) ⊂ y), so by separation Hθ � ∃y(y = P(x)). Hence, Hi � ∃y(y = P(x)). �
Claim 1.

Claim 2. Hi = H
Hj
κi for i ≤ j.

Proof. Hi ⊂ Hj, so Hi ⊂ H
Hj
κi . For the other direction, suppose that a ⊂ γ < κi and

a ∈ Hj. Since Hi is a model of ZF , there is x ∈ Hi such that Hi � x = P(γ). Because
πij � Hi = id, Hj � x = P(γ). Hence, a ∈ x ∈ Hi. � Claim 2.

Claim 3. {κi : i < j} is a set of Σω indiscernibles for Hj.

Proof. {κi : i < j} are Σ1 indiscernibles for 〈Nj, x〉x∈ran(π0i) by Lemma 5.34. Hj =
π0j(H0) ∈ ran(π0j) � Claim 3.
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Claim 4. If i < j, then Mi ∈ Hj and is uniformly Σω(Hj) from κi.
Proof. Bi = Bj ∩ Jκi since x ∈ Bi iff πij(x) ∈ Bj. Let U ′i = Ui ∩ JUiβi . Then βi and U

′
i

are the unique β and U such that U ⊂ JUβ , κi = ρn
JUβ

and Bi = An
JUβ

. Hence, JUiβi = J
U ′i
βi

is
in Hj since Hj is a model of ZF . � Claim 4.

60 Let Xm
i be the smallest elementary substructure of Hi+m containing

κi ∪ {κi+1, . . . , κi+m−1}, i.e., the Σω Skolem hull of κi ∪ {κi+1, . . . , κi+m−1} in Hi+m. Let
Mm

i be the transitive collapse of Xm
i and let πmi : Mm

i
∼= Hi+m � Xm

i . Let Km
i = H

Mm
i

κ+
i

where κ+
i is the least cardinal greater than κi in Hi+m. So Km

i is transitive by definition.

Claim 5. 61 πmi � Km
i = id � Km

i .
Proof. We show that Xm

i ∩H
Hi+m

κ+
i

is transitive. So suppose x ∈ Xm
i ∩H

Hi+m

κ+
i

. Since

J
Bi+m
βi+m

is transitive, x ⊂ H
Hi+m

κ+
i

. Since Hi+m � |x| ≤ κi, there is a function f ∈ Hi+m from
κi onto x. Let fx be the <Hi+m-least such function. Then fx is definable over Hi+m from
x and every y ∈ x is definable over Hi+m from fx and some γ < κi. Hence, x ⊂ Xm

i , so
Xm
i ∩H

Hi+m

κ+
i

is transitive. � Claim 5.

X0
i = Hi so K0

i = Hi. Claim 5 implies that Km
i = Xm

i ∩ h
Hi+m

κ+
i

, and Claim 4

implies that Xm
i and Hi+m are in Xm+1

i . From the definition of Xm
i it follows that

Hi+m+1 � |Xm
i | = κi, so Hi+m+1 � |Km

i | = κi. Hence, Km
i ∈ Km+1

i . Claim 4 implies that
Mi ∈ X1

i and |Mi|Hi+1 = κi. Thus, Mi ∈ K1
i .

Let fmi be the <Hi+m+1
-least function from κi onto P(κi)∩Km

i . Such a function exist
since Hi+m+1 � |Km

i | = κi. fmi is definable over Hi+m+1 from κi, κi+1, . . . , κi+m and the
definition is uniform for all i.

Claim 6.62 πij(f
m
i (γ)) = fmj (γ) for all i ≤ j and γ < κi.

Proof. Let σ : Ni+m+1 → Nj+m+1 be the Σ1 embedding given by Lemma 5.33 satisfying
σ ◦ πi,i+m+1 = πi,j+m+1 and σ(κi+p) = κj+p for p ≤ m + 1. Since Hi ∈ Ni for all i, the
uniform definability of fmi implies that σ(fmi (γ)) = fmj (γ) for all γ < κi. Then by the
properties of σ,

fmj (γ) = σ(fmi (γ)) = σ(πi,i+m+1(fmi (γ)) ∩ κi)
= πi,j+m+1(fmi (γ)) ∩ κj
= πij(f

m
i (γ)). �Claim 6.

60The rest of the proof follows the presentation on pp. 90-91 of [4].
61Lemma 11.17 of [4].
62Lemma 11.18 of [4].
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Claim 7.63 Ui ∩Km
i ∈ Km+2

i .
Proof. By Claim 6

fmi (γ) ∈ Ui iff κi ∈ πi,i+1(fmi (γ)) iff κi ∈ fmi+1(γ).

Hence, Ui ∩Km
i = {fmi (γ) : γ < κi and κi ∈ fmi+1(γ)}. Since fmi+1 is definable over Hi+m+2

from κi, . . . , κi+m+1, Ui ∩Km
i ∈ Km+2

i . � Claim 7.

Define Ki =
⋃
m<ωK

m
i . Ki is transitive and rudimentarily closed since every Km

i is.
Claim 7 implies that 〈Ki, Ui〉 is amenable. Since Mi ∪ {Mi} is a subset of Ki, Ni ⊂ Ki.
But Ki ⊂ H

Hi+ω

κ+
i

⊂ Hi+ω, so Ni ⊂ Hi+ω. By Claim 2 Hi = H
Hi+ω
κi , so HNi

κi
⊂ Hi. On

the other hand, Hi = HMi
κi
⊂ HNi

κi
because Mi ⊂ Ni. Hence, HNi

κi
= HMi

κi
, so in particular

HN
κ = HM

κ .

5.4 Mice
In this section we present the definition of a mouse and those central properties that are
needed to prove the basic properties of the core model. We begin with the definition of a
critical premouse.
Definition 5.58. 64 A premouse N at κ is critical if N is acceptable and P(κ)∩Σ1(N) 6⊂
N , i.e., there is a Σ1-definable subset of κ that is not in N .

By Lemma 5.54(a), criticality implies that there is n such that ρnN > κ ≥ ρNn . This n
is called the critical number of N and is denoted by n(N). The following definition gives
the concept of N ′ that we need to define mice.
Definition 5.59. 65 Suppose N is a critical premouse. Then we define

ρ′ = ρnN
A′ = AnN

N ′ = 〈N (n), U〉
where n = n(N).

Now we can define a mouse.
Definition 5.60. 66 Let N be a critical premouse. Then N is a mouse if N ′ is iterable

63Lemma 11.19 of [4].
64Definition 5.1 of [5].
65Definition 5.2 of [5].
66Definition 5.4 of [5].
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and for each i ∈ On there is a critical premouse Ni such that (Ni)
′ = N ′i where 〈N ′i , π′ij, κi〉

is the iteration of N ′ and n(Ni) = n(N) for each i ∈ On.
By Lemma 5.54(b) the embedding π′ij can be extended to πij : Ni →Σ1 Nj. Then

〈Ni, πij, κi〉 is an iteration of N , called the mouse iteration of N .
If a mouse N is a critical premouse at κ, N is called a mouse at κ.

The following lemma gives a useful sufficient condition for the mouseness of a premouse.

Lemma 5.61. 67 Suppose N ′ is an iterable premouse and the iteration maps are strong,
i.e., for any T rudimentary over N ′ in parameter r and T̄ rudimentary over Ni in pa-
rameter π0i(r), if T is well-founded, then T̄ is well-founded. Then N is a mouse.

Proof. The result is immediate by Lemma 5.54(c).

Lemma 5.62. 68 Suppose N is a mouse and σ : M →Σ1 N ′. (So M = 〈J Ū
β̄
, Ā〉 is

amenable and ρM ≤ κ̄ where M � ′Ū is normal at κ̄′). Then

(a) there is a unique N̄ = J Ūᾱ such that N̄ ′ = M ,

(b) n(N̄) = n(N) and

(c) N̄ is a mouse.

Proof. Let 〈Ni, πij, κi〉 be the mouse iteration of N . Then π′ij = πij � N ′i is the iteration
of N ′. Since N ′ is iterable, by Lemma 5.42 M is iterable as well. Let 〈Mi, π̄

′
ij, κ̄i〉 be its

iteration. By Lemma 5.33 there are σi : Mi →Σ1 N
′
i such that σ0 = σ, σj ◦ π̄′ij = π′ij ◦ σi

and σj(κ̄i) = κi for all i ≤ j. Thus, by Lemma 5.54(b) there are N̄i such that N̄ ′i = Mi.
Hence, N̄ is a mouse and n(N̄) = n(N).

For the next lemma we make the following definitions 69 for a mouse N at κ with
n(N) = n, let rN = pn+1

N \ κ and qN = pn+1
N ∩ κ.

Lemma 5.63. 70 Let N be a mouse with n(N) = n and the mouse iteration 〈Ni, πij, κi〉.
Then n(Ni) = n, ρN ′i = ρN ′, AN ′i = AN ′ and pN ′i = pN ′.

Proof. n = n(Ni) follows from the definition of a mouse. Let π′0i = π0i � N ′. By the
definition of a mouse, π′0i is a Σ1 embedding of N ′ to N ′i . From π0i � κ = id it follows
that if A ⊂ κ is Σ1(N ′) with parameter b̄, then A is Σ1(N ′i) with parameter π′0i(b̄). Hence,
since P(κ) ∩N = P(κ) ∩Ni, ρN ′i = ρN ′ . Thus, AN ′ = AN ′i follows from pN ′i = π0i(pN ′).

67We follow Lemma 5.5 of [5].
68The proof follows Lemma 5.6 of [5].
69These definitions are made in the proof of Lemma 10.5 of [4].
70We follow Lemma 10.5 of [4] and Lemma 5.7 of [5].
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We show that π0i(rN) = rNi . We let r = rN and r̄ = π0i(r). Suppose rNi <∗ r̄. Then
we have

N ′i � (∃r′ <∗ r̄)(∃x̄ < π0i(κ))(∃j < ω) (r̄ = hN ′i (j, x̄, r
′)), so by elementarity

N ′ � (∃r′ <∗ r)(∃x̄ < κ)(∃j < ω) (r = hN ′(j, x̄, r
′)).

Then every ΣN ′
1 (ωρN ′∪pN ′) set is a ΣN ′

1 (ωρN ′∪qN∪r′), but qN∪r′ <∗ pN ′ , a contradiction.
Hence, rNi ≥∗ r̄. Again, if A ⊂ κ is Σ1(N ′) with parameter pN ′ , then A is Σ1(N ′i) with
parameter π0i(pN ′). If A /∈ N ′, then A /∈ N ′i . Thus, pN ′i ≤∗ π0i(pN ′), so rNi ≤∗ r̄. Hence,
r̄ = rN ′i .

Then we show that qN = qNi . Since π0i(pN ′) ≥∗ pN ′i and π0i(pN ′) \ κi = pN ′i \ κi,
π0i(pN ′) ∩ κi ≥∗ pN ′i ∩ κi = qN ′i . Because

π0i(pN ′) ∩ κi = π0i(pN ′ ∩ κ) = π0i(qN) = qN ⊂ κ,

we have qN ≥∗ qNi and qNi ⊂ κ. Thus, qNi = π0i(qNi). Let A be Σ1(N ′i) with parameters
from ωρN ′∪pN ′i such that A /∈ N ′i . Because pN ′i = qNi∪rNi and π0i(rN) = rNi , A is Σ1(N ′)
with parameters from qNi∪rN . Hence, qNi must be ≥∗ qN since otherwise qNi∪rN <∗ pN ′ .
Thus, pN ′i = qN ∪ π0i(rN) = π0i(pN ′).

Next we define the important concept of the core of a mouse. This will be needed in
the definition of the core model and in the proof of Theorem 6.2 in the last chapter.

Definition 5.64. 71 SupposeN is a mouse andX = hN ′(JρN′∪pN ′). Then 〈X,A
′∩X〉 ≺Σ1

N ′. Let M ∼= X be the transitive collapse of X and π : M ∼= X an isomorphism. By
Lemma 5.62, there is a mouse N̄ such that M = N̄ ′. The mouse N̄ is called the core of
N .

The following lemmas prove that a mouse is an iterate of its core.

Lemma 5.65. 72 Suppose N̄ and N are as in the preceding definition and N̄ is the core
of N . Then there is a mouse Q that is an iterate of both N̄ ′ and N ′.

Proof. Let 〈N̄ ′i , π̄ij, κ̄i〉 and 〈N ′i , πij, κi〉 be the iterations of N̄ ′ and N , respectively. Let θ
be a regular cardinal above κ0. By Lemma 5.43, N̄ ′θ = JFθᾱ and Nθ = JFθα for some ᾱ and
α, where Fθ is the club filter over θ. We show that ᾱ and α must be in fact be identical.

Suppose ᾱ < α. Then N̄ ′θ is in N ′θ. AN ′ is Σ1(N ′) with parameters from {pN ′} ∪ JρN′ .
Since AN ′ is a subset of JρN′ ⊂ N̄ ′ and N̄ ′ ∼= X ≺Σ1 N

′, AN ′ is also Σ1(N̄ ′) with parameters
from JρN′ ∪ {π

−1(pN ′)}. By the Σ1-elementarity of π̄0θ, AN ′ is Σ1(N̄ ′θ). Since ᾱ < α, AN ′

71Definition 5.9 of [5].
72We follow Lemma 5.10 of [5].
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is in N ′θ. Since the iterates have the same subsets of κ0 as N ′, AN ′ is in N ′. But that is a
contradiction. If ᾱ > α, we get a similar contradiction.

Hence, ᾱ = α, so Q = N ′θ = N̄ ′θ is a common iterate of N̄ ′ and N ′.

Lemma 5.66. 73 Suppose N̄ and N are as in the preceding lemma. Then N ′ is an iterate
of N̄ ′.

Proof. Let Q = N ′θ = N̄ ′θ be the common iterate from the preceding lemma. Since N̄ is
the core of N , the definition of core implies that N̄ ′ = hN̄ ′(JρN′ ∪ {π

−1(pN ′)}). Since the
Σ1 Skolem function is Σ1 definable, we have

ran(π̄0θ) = π̄0θ“(N̄ ′)

= π̄0θ“(hN̄ ′(Jρ′N ∪ {π
−1(pN ′)}))

= hQ(JρN′ ∪ {π̄0θ(π
−1(pN ′))}).

We show that π−1(pN ′) = pN̄ ′ . As in the proof of the preceding lemma, AN ′ is Σ1(N̄ ′)
with parameters from JρN′ ∪ {π

−1(pN ′)}. But AN ′ cannot be in N̄ ′ because otherwise
it would be in N ′. Thus, π−1(pN ′) ≥∗ pN̄ ′ . If π−1(pN ′) >∗ pN̄ ′ , then pN ′ >∗ π(pN̄ ′), so
π0θ(pN ′) >∗ π0θ(π(pN̄ ′)). But π0θ(pN ′) = pQ, so now π0θ(π(pN̄ ′)) <∗ pQ. Because N̄ ′ is
isomorphic to X by π, AN̄ ′ is Σ1(N ′) with parameters in JρN′ ∪ {π(pN̄ ′)}. Thus, AN̄ ′ is
Σ1(Q) with parameters in JρN′ ∪ {π0θ(π(pN̄ ′))}. Hence, AN̄ ′ is in Q, so since AN̄ ′ ⊂ JρN̄′ ,
it is in N̄ ′. That is a contradiction. Hence, π−1(pN ′) = pN̄ ′ .

Thus we have

ran(π̄0θ) = hQ(JρN′ ∪ {π̄0θ(pN̄ ′)})
= hQ(JρN′ ∪ {pQ}).

Since by lemma 5.55 N ′ = hN ′(Jκ ∪ {pN ′}), we have

ran(π̄0θ) = hQ(JρN′ ∪ {pQ})
⊂ hQ(Jκ ∪ {pQ})
= ran(π0θ).

Hence by lemma 5.46, N ′ is an iterate of N̄ ′.

Lemma 5.67. 74 Suppose N̄ is the core of N . Then N̄ = core(N̄).
73We follow Lemma 5.11 of [5].
74The proof is our own.
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Proof. Let 〈N̄i, π̄ij, κ̄i〉 be the iteration of N̄ . By lemma 5.66, N = N̄ξ for some ξ. Let
M be the transitive collapse of X = hN ′(JρN′ ∪ {pN ′}). Since N = N̄ξ, we have X =
hN̄ ′ξ(JρN̄′ξ

∪ {pN̄ ′ξ}) = π̄0ξ“(hN̄ ′(JρN̄′ ∪ {pN̄ ′})). As π̄0ξ is injective, π̄0ξ � hN̄ ′(JρN̄′ ∪ {pN̄ ′})
is a bijection between hN̄ ′(JρN̄′ ∪ {pN̄ ′}) and X. Hence, we can easily see by induction
on Σn that π̄0ξ is actually an isomorphism between and hN̄ ′(JρN̄′ ∪ {pN̄ ′}) and X. Hence,
M is also the transitive collapse of hN̄ ′(JρN̄′ ∪ {pN̄ ′}) by the uniqueness of the transitive
collapse. Thus, N̄ = core(N̄).

Definition 5.68. A mouse N is a core mouse if N = core(N).

The following lemma is important in the proof of Theorem 6.2.

Lemma 5.69. 75 Suppose N̄ is a core mouse and N is an iterate of N̄ . Then N̄ is the
core of N .

Proof. Let 〈N̄i, π̄ij, κ̄i〉 be the iteration of N̄ . Suppose N = N̄ξ. Let M be the transitive
collapse of X = hN ′(JN ′ ∪{pN ′}) = π̄0ξ“(hN̄ ′(JρN̄′ ∪{pN̄ ′})). Again we get that hN̄ ′(JρN̄′ ∪
{pN̄ ′}) is isomorphic to hN ′(JN ′ ∪{pN ′}), so since by Lemma 5.67 N̄ ′ = hN̄ ′(JρN̄′ ∪{pN̄ ′}),
N̄ ′ is isomorphic to M . Since N̄ ′ is transitive, the uniqueness of the transitive collapse
implies that N̄ ′ = M . Hence, N̄ = core(N).

Definition 5.70. Suppose N is a mouse with core M . If N = Mξ and the iteration of
M is 〈Mi, πij, κi〉, we define CN = {κi : i < ξ}.

From the following lemma it follows that CN = Π1(N ′).

Lemma 5.71. 76 Suppose N and M are as above. Then λ < κξ is in CN if and only if
λ /∈ hN ′(λ ∪ pN ′) and λ > ωρN ′.

Proof. Suppose λ ∈ CN , say λ = κγ. If κγ ∈ hN ′(λ ∪ pN ′), then κγ = hN ′(i, 〈ā, pN ′〉) for
some i ∈ ω and ā ∈ (κγ)

<ω. Thus, κγ = πγξ(hMγ (i, 〈ā, pM ′γ〉)), so λ ∈ ran(πγξ), which is
impossible. Hence, λ /∈ hN ′(λ ∪ pN ′). Since ρN ′ = ρM ′ , we also have λ > ωρN ′ .

For the other direction, suppose that λ /∈ CN and κ > ωρN ′ . Let γ be the least ordinal
such that λ < κγ. We have ρN ′ = ρM ′ = ρM ′γ for all γ. Thus, if γ = 0, then λ ∈ M , so
there is ā ∈ ρ<ωN ′ ⊂ λ<ω such that κ = hM ′(i, 〈ā, pM ′〉 = hM ′γ (i, 〈ā, pM ′γ〉) for some i < ω.
If γ > 0, we can show that M ′

γ = hM ′γ (ωρN ′ ∪ {κi : i < γ} ∪ pM ′γ ). By 5.31(c) we have
M ′

γ = hM ′γ (π0γ“(M ′) ∪ {κi : i < γ}). Since M ′ = hM ′(JM ′ ∪ pM ′) and there is a uniformly
Σ1(JρM′ ) function from ωρM ′ onto JρM′ , JρM′ is a subset of hM ′(ωρM ′). Thus, we have

π0γ“(M ′) = π0γ“(hM ′(ωρM ′ ∪ pM ′)) = hM ′γ (ωρN ′ ∪ pM ′γ ),
75The proof is our own.
76The proof follows Lemmas 10.23 and 10.19 of [4].
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so, indeed, M ′
γ = hM ′γ (ωρN ′ ∪ {κi : i < γ} ∪ pM ′γ ). Hence, there is again ā ∈ κ<ω such

that κ = hM ′γ (i, 〈ā, pM ′γ〉) for some i < ω. Thus, in either case, κ = hN ′(i, 〈ā, pN ′〉), so
κ ∈ hN ′(κ ∪ pN ′).

Next we show that for N = JUα , a mouse at κ, CN =
⋂

(U ∩ hN ′(JρN′ ∪ pN ′))
77. So let

DN =
⋂

(U ∩ hN ′(JρN′ ∪ pN ′)) in the following lemmas.

Lemma 5.72. 78 CN is a Σ1-generating set of Σ1 indiscernibles for 〈N ′i , pN ′i , x〉x∈Jκ, i.e.,
N ′i = hN ′i (Jκ ∪ pN ′i ) and for every Σ1 formula φ, x ∈ J<ωκ and κi1 < · · · < κi2n < κi,
N ′i � φ(x, pN ′i , κi1 , . . . , κin) if and only if N ′i � φ(x, pN ′i , κin+1 , . . . , κi2n).

Proof. By Lemma 5.56(d), N ′i = hN ′i (Jκ ∪ pN ′i ). By Lemma 5.34 CN is a set of Σ1

indiscernibles for 〈N ′i , x〉x∈ran(π0i�N ′). But π0i(pN ′) = pN ′i and π0i keeps every element of
Jκ unchanged, so Jκ ∪ pN ′i ⊂ ran(π0i).

Lemma 5.73. 79 DN is a set of Σ1 indiscernibles for 〈N ′, pN ′ , x〉x∈JρN′

Proof. Let φ := ∃yψ be a Σ1 formula. Let K = hN ′(JρN′ ∪ pN ′).

Claim. K ∩ ρ′ is cofinal in ρ′.
Proof. Suppose K ∩ ρ′ is bounded in ρ′. AN ′ is definable in over K. If K ∩ ρ′ is

bounded in ρ′, then K ⊂ JA
′

β for some β < ρ′. Suppose there is no such β. For every
x ∈ K the <N ′-least βx such that x ∈ JA

′

βx
is definable from x without parameters, so

βX ∈ K. Thus, K ∩ ρ′ is cofinal in ρ′, a contradiction. Hence, K ⊂ JA
′

β for some β < ρ′.
But JA′β is in N ′, so AN ′ is in N ′, a contradiction. � Claim.

For ν ∈ K ∩ ρ′ and x ∈ J<ωρN′ set

fν,x(ā) =

{
1 if N ′ � (∃y ∈ SUν )ψ(y, ā, pN ′ , x)

0 otherwise

where ā ∈ [κ]n. Every fν,x is in K because fν,x is Σ1(N ′) with parameters in JρN′ ∪ pN ′ .
Lemma 2.14 works for fν,x since fν,x and κ are in N ′. There is a Σ1 formula φ′ such
that N ′ � φ′(X, fν,xi) if and only if X is in U and is homogeneous for fν,x. Hence, some
Xν,x with N ′ � φ′(Xν,x, fν,x) is in K. Since {Xν,x : ν ∈ K ∩ ρ′, x ∈ J<ωρN′} is a subset of
U ∩ hN ′(Jρ′ ∪ pN ′), DN ⊂

⋂
ν,xXν,x.

77[5] takes this as the definition of CN
78We follow Lemma 5.8 of [5].
79We follow Lemma 5.13 of [5].
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To prove the claim of the lemma, let ā ∈ (DN)n. If N ′ � φ(ā, pN ′ , x), then for some
ν fν,x(ā) = 1 since K ∩ ρ′ is cofinal in ρ′. Thus, fν,x(ā′) = 1 for all ā′ ∈ (Xν,x)

n, so
in particular N ′ � φ(ā′, pN ′ , x) for all ā′ ∈ (DN)n. If N ′ 6� φ(ā, pN ′ , x), then for all
ν ∈ K ∩ ρ′, fν,x(ā) = 0, so fν,x(ā′) = 0 for all ν and ā′ ∈ DN . Hence, N ′ 6� φ(ā′, pN ′ , x) for
all ā′ ∈ DN .

Lemma 5.74. 80 CN = DN .

Proof. We show first that CN ⊂ DN . Let N̄ = core(N) and let 〈N̄i, κi, πij〉 be the iteration
of N̄ . Suppose N = N̄λ, so κ = κλ. Suppose x ∈ U ∩ hN ′(JρN′ ∪ pN ′). N̄

′ is the transitive
collapse of hN̄ ′i (JρN̄′i ∪ pN̄ ′i ) for every i. Hence, for every i < λ, x = πiλ(x

i) for some
xi ∈ hN̄ ′i (JρN̄′i ∪ pN̄ ′i ). Thus we have

x ∈ U iff xi ∈ Ūi iff κi ∈ πiλ(xi) iff κi ∈ x.

where Ūi is the ultrafilter of N̄i. Hence, CN = {κi : i < λ} ⊂ x for every x in
U ∩ hN ′(JρN′ ∪ pN ′), so CN ⊂ DN .

CN is a set of Σ1 generating indiscernibles for 〈N ′, pN ′ , x〉x∈Jκ0
by Lemma 5.72. Since

ρN ′ = ρN̄ ′ ≤ κ0, CN are also Σ1 indiscernibles for 〈N ′, pN ′ , x〉x∈JρN′ . There is a Σ1(N̄ ′)

mapping from κ0 onto Jκ0 . The same formula defines a Σ1(N ′) mapping from κ0 onto Jκ0 .
Since π0λ � κ0 = id � κ0, for each x ∈ Jκ0 , πiλ(x) = x. Thus, since N̄ ′ = hN̄ ′(JρN′ ∪ pN̄ ′)
and hN̄ ′(i, x) = hN ′(i, π0λ(x)), we have Jκ0 ⊂ hN ′(JρN′ ∪ pN′), so N

′ is Σ1 generated by
CN ∪ pN ′ ∪ JρN′ . Hence, CN is a Σ1 generating set of indiscernibles for 〈N, pN ′ , x〉x∈JρN′ .

If CN is a proper subset of DN , then there is a ∈ DN \ CN . But then a ∈ N ′

so N ′ � a = x ↔ φ(x, κi1 , . . . , κin , z, pN ′) for some Σ1 formula φ, z ∈ (JρN′ )
<ω and

κi1 , . . . , κin ∈ CN . Hence, N ′ 6� φ(κj1 , . . . , κjn+1 , z, pN ′) for all κj1 , . . . , κjn+1 ∈ CN . But
on the other hand N ′ � φ(a, κi1 , . . . , κin , z, pN ′), which is a contradiction since DN are Σ1

indiscernibles and CN ⊂ DN . Hence, CN = DN .

The following two lemmas are needed for their corollary which we will use in the proof
of Theorem 6.2. The argument of the proof of Lemma 5.76 is also used in the proof of
Lemma 5.84.

Lemma 5.75. 81 Suppose N = JUα is an iterable premouse and κ < β < α. If M = JUβ
is critical, then it is a mouse.

Proof. Clearly M is a premouse. M ′ is JUλ for some λ so M ′ is iterable by Lemma 5.42.
Let 〈M ′

i , πij, κi〉 be the iteration of M ′.
80We follow Lemma 5.14 of [5] and the paragraph immediately following it.
81We follow Lemma 5.18 of [5].
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Let n = n(M). M ′ = HM(n−1)

ωρnM
and ρnM is a Σ1 cardinal in Mn−1, so M ′ satisfies

replacement82 Claim 1. Suppose T is a rudimentary relation over M ′ in parameter p.
If T is well-founded, then replacement guarantees that there is a Σ1(M ′) ordinal-valued
function f with domain dom(T ) ∪ ran(T ) such that for all x ∈ dom(T ) ∪ ran(T ),
f(x) = sup{f(y) + 1 : yTx}.

Suppose Ti is defined over M ′
i with the same rudimentary definition in parameter

π0i(p). Then since πij is Σ1-elementary, there is also Σ1(M ′
i) function fi : dom(Ti) ∪

ran(Ti) → On such that for all x ∈ dom(Ti) ∪ ran(Ti), fi(x) = sup{f(y) + 1 : yTix}.
Hence, the relation Ti is well-founded, so the iteration maps are strong. By Lemma 5.61
M is a mouse.

Lemma 5.76. 83 Suppose N = JUα is a mouse at κ and κ < β < α. Then if M = JUβ is
critical with ρn+1

M < κ, then JUβ+1 = JU∩Mβ+1 .

Proof. M is acceptable because N is a mouse, so M is critical. Hence, M is a mouse by
the previous lemma. Let M̃ = rudU∩M(M) = JU∩Mβ+1 . Suppose 〈M̃, U ∩M̃〉 is amenable. If
x is in SUωβ+k and x ∈ M̃ , then by amenability x∩U ∈ M̃ . Thus, since JUβ+1 =

⋃
k<ω S

U
ωβ+k,

we see by induction on k that every element of JUβ+1 must be in M̃ . On the other hand
M̃ = rudU∩M(M) is obviously a subset of rudU(M) = JUβ+1. Hence, it is enough to show
that 〈M̃, M̃ ∩ U〉 is amenable.

Suppose M̄ is the core of M and 〈M̄i, πij, κi〉 is the iteration of M̄ . Let M = M̄λ,
so CM = {κi : i < λ}. By Lemma 5.71, CM ∈ Σω(M), so CM is in M̄ . Because
CM =

⋂
(U∩hM ′(ωρM ′∪pM ′)) and hM ′(ωρM ′∪pM ′) is a subset of M̃ , CM is the intersection

of at most |ρn(M)+1
M | members of U ∩ M̃ . Since

JUβ+1 � “U is a normal ultrafilter on κ”.

and ρn(M)+1
M < κ, we have

JUβ+1 � “U is |ρn(M)+1
M |-complete”.

Hence CM ∈ U , so CM ∈ U ∩ M̃ . We define Ck for k < ω as follows: C0 = CM and
Ck+1 = the limit points of Ck. For all k, Ck ∈ U and Ck ∈ Σω(M), so Ck ∈ U ∩ M̃ .
Hence, λ is a multiple of ωω. By Corollary 5.39 Ck \ κi are Σk+1 indiscernibles for
〈M,x〉x∈ran(πiλ). Because λ is a limit, M =

⋃
i<λ ran(πiλ). If X ∈ Σk+1(M) and X is

in U , then Ck \ κi ⊂ X for some i since Ck \ κi are Σ1 indiscernibles. On the other hand,
82See the proof of Lemma 5.57
83We follow Lemma 5.19 of [5].

68



if Ck \ X is bounded in κ, then X ∈ U . Hence, a Σk+1(M) set X is in U if and only if
Ck \X is bounded in κ. Thus, U ∩ Σk+1(M) is a Σω(M) set, so U ∩ Σk+1(M) ∈ M̃ .

To prove the amenability of 〈M̃, U ∩ M̃〉, suppose x ∈ M̃ . Then x ⊂ SUωβ+k for some
k and there is a Σω(M) map from β onto SUωβ+k. Hence, x ⊂ Σp(M) for some p, so
U ∩ x = (U ∩ Σp(M)) ∩ x which is in M̃ .

From Lemma 5.57 it follows that if a is a bounded subset of κ such that a ∈ JUβ+1 \JUβ ,
then ρn(M)+1

M < κ where M = JUβ . But then from the previous lemma it follows that a is
in Σω(M). This yields the following corollary.

Corollary 5.77. 84 If N is a mouse at κ and β ∈ N , then for γ < κ, P(γ) ∩ JUβ+1 =
P(γ) ∩ Σω(JUβ ).

We conclude the section by mentioning without proof an important result that we will
use in the last section. The proof is too long to be presented here in complete detail.

Lemma 5.78. 85 If a premouse M = JUα is iterable, then it is acceptable.

5.5 The core model
In this section we define the core model and present its most important properties.

Lemma 5.79. 86 There is at most one mouse N such that N is a mouse at κ and the
order type of CN is ω.

Proof. Suppose that N and N̄ are two such mice. Then we can show that N ≈ N̄ . Let
M = core(N) and M̄ = core(N̄) and let 〈Mi, πij, κi〉 and 〈M̄, π̄ij, κ̄i〉 be the respective
enumerations. Then N = Mω, N̄ = M̄ω and κ = κω = κ̄ω. Suppose N <pm N̄ .
Take large enough regular θ > κ as given by Lemma 5.43. Then Nθ ∈ N̄θ, and since
CN = CNθ ∩κ ∈ Π1(N ′θ), CN is in N̄θ. As P(κ)∩ N̄θ = P(κ)∩ N̄ , we have CN ∈ N̄ . Thus,
N̄ � cf(κ) = ω, which is a contradiction. If N̄ <pm N , we get the same contradiction.
Hence, core(N) = core(N̄), so N = Mω = M̄ω = N̄ .

Now we are ready to define the core model K.

Definition 5.80.

(i) We define D = {〈ξ, κ〉 : ξ ∈ CN , N a mouse at κ with ot(CN) = ω}.
84Corollary 5.20 of [5]. The above argument follows the lines immediately before the corollary on p.

71 of [5].
85The proof can be found e.g. in Lemmas 11.24-11.26 of [4].
86The proof follows Lemma 6.2 of [5].
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(ii) The core model is defined by K = L[D].

(iii) The α-th level of the core model is defined by Kα = JDα .

We now start to prove that K is the union of all mice87. Towards that end we define
the following concept. Suppose κ is a regular uncountable cardinal. We let

Q = Qκ =
⋃
{Nκ : N ∈ Kκ, N is a core mouse}.

By Lemma 5.43 each Nκ is JFα for some α, where F = Fκ is the club filter on κ. Since
κ is regular and JFα is a direct limit, we must have α < κ+. By Lemma 5.79 there can be
at most κ-many core mice in Kκ, so Q = JFθ with θ = θκ < κ+.

Lemma 5.81. 88 θ is a limit ordinal.

Proof. Suppose Nκ = JFα where N ∈ Kκ is a core mouse at λ < κ. Then by Lemma 5.63
ρN ′κ = ρN ′ ≤ λ < κ. Hence, there is a ∈ P(λ)∩Σn(N)+1(Nκ)\Nκ, so a ∈ N+ := JFα+1. Since
F is countably complete, N+ is iterable and acceptable. Suppose ρN+ > λ. Acceptability
implies that for all k there is a surjection fk : λ → P(λ) ∩ SFωα+k in N+. Let fk be the
<N+-least such map for all k. Then 〈fk : k < ω〉 is Σ1(N+). There is in N+ a bijection
g : λ× ω → λ. Thus, we can define a surjection f : λ→ P(λ) ∩N+ by f(g(δ, i)) = fi(δ).
But since ρN+ > λ, the Σ1(λ) set b = {δ < λ : δ /∈ f(δ)} is in N+, a contradiction.
Hence, ρN+ ≤ λ < κ so N+ is critical. Since F is countably closed, the iteration maps are
strong by Lemma 5.41, so N+ is a mouse. Let N̄ = core(N+). Since core mice are sound,
N̄ 6= N+, so N̄ is a mouse at some κ′ < κ. Hence, N̄ ∈ Kκ and N+ = N̄κ, so N+ ⊂ Q.
Consequently, θ is a limit.

Lemma 5.82. 89 ρQ ≤ κ.

Proof. We define

B = {γ < θ : κ < γ and P(δ) ∩ JFγ+1 6⊂ JFγ for some δ < κ}.

Since 〈JFγ : γ < θ〉 is Σ1(JFθ ), B is Σ1(Q). If a core mouse N is in Kκ, then On ∩N ⊂ α
for some α < κ. Hence, ρN ′ < κ so ρN ′κ < κ. Thus, there is δ such that ρN ′κ ≤ δ < κ,
so there is a Σn(N)+1(Nκ)-subset of δ that is not in Nκ. If Nκ = JFγ , P(δ) ∩ JFγ+1 6⊂ JFγ .
Hence, B is cofinal in θ.

If γ is in B, then ρnJFγ < κ for some n because otherwise Lemma 5.57 implies that

H
JFγ
κ = H

JFγ+1
κ . Hence, JFγ is a critical premouse. Since F is countably closed, JFγ is iterable

87Our presentation follows mostly pp. 74-75 of [5].
88The proof adapts Claim 2 from the proof of Lemma 3.16 of [4].
89We follow Lemma 6.5 of [5].
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and the iteration map is strong. Thus, JFγ is a mouse. Define the function f : B → κ by
f(γ) = the ω-th point of CJFγ . Then f is Σ1(Q) and f is injective by Lemma 5.79. Let
A = f“(B). If A ∈ Q, then we can define similarly as in the proof of the previous lemma
a Σ1(Q) surjection g from κ onto P(κ) ∩Q. If ρQ > κ, then {α < κ : α /∈ g(α)} is in Q,
a contradiction. Hence, either A /∈ Q or ρQ ≤ κ, so necessarily ρQ ≤ κ.

Lemma 5.83. 90 Q is a mouse.

Proof. Q is a premouse by definition. It is iterable and acceptable since F is countably
closed. The previous lemma shows that Q is also critical. Since the iteration maps are
strong, Q is a mouse.

Lemma 5.84. 91 ρQ = κ.

Proof. Suppose ρQ < κ. Then there is a ⊂ γ < κ such that a ∈ Σ1(Q) \ Q. Let
M = JFθ+1. Then a ∈ M , so the argument from the proof of Lemma 5.81 shows that
ρM < κ. Moreover, M is iterable and hence acceptable, so M is a critical premouse.
Since the ieration maps are strong, M is a mouse. But then core(M) is in Kκ, so M ⊂ Q,
a contradiction.

Lemma 5.85. 92 For every regular uncountable κ, Kκ = HQκ
κ .

Proof. We show first that Kκ ⊂ HQκ
κ . Kκ = JDκ =

⋃
γ<κ J

D∩γ2

γ . Thus, it suffices to show
that for all γ, D ∩ γ2 ∈ Qκ. For λ < γ, if there is a mouse M at λ with ot(CM) = ω, let
ξλ = α where Mκ = JFα . Let ξ = sup{ξλ : λ < γ}. Then clearly ξ ≤ θκ. We show that
ξ < θκ. Suppose for a contradiction that ξ = θκ. For every λ < κ, acceptability implies
that there is a map in JFξλ+1 from γ onto P(γ) ∩ JFξλ . Since CJFξλ is definable in JFξλ ,
{ξλ : λ < γ} is Σ1(Qκ). Hence, we can define a Σ1(Qκ) map from γ onto P(γ) ∩
Qκ. If ρQκ > γ, we get the same contradiction as in Lemma 5.81. Hence, ρQκ ≤ λ, a
contradiction. Thus, ξ < θκ. Since D ∩ γ2 is Σ1(JFξ ), D ∩ γ2 is in Qκ.

For the other direction, since HQκ
κ =

⋃
{Jaκ : a ⊂ γ < κ, a ∈ Qκ}, it suffices to show

that if a ⊂ γ < κ and a ∈ Qκ, then a ∈ Kκ. Suppose ξ is the least such that ξ ≥ κ and
a ∈ N = JFκξ+1. Then ρN ≤ γ, so N is critical and a mouse since Fκ is countably closed.
Let M be the core of N with iteration 〈Mi, κi, πij〉. Since κ = κκ, there is i < κ such that
κi > γ. Since P(κi) ∩Mi = P(κi) ∩N , a is in Mi. M is in Kκ so all iterates Mj, j < κ,
are in Kκ. Hence, in particular, Mi ∈ Kκ, so a is in Kκ.

This gives the following fundamental property of the core model.
90Lemma 6.6 of [5].
91We follow Lemma 6.7 of [5].
92We follow Lemmas 14.12 and 14.13 of [4].
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Corollary 5.86. 93 The core model is the union of all mice.

Proof. We show that every mouse is in K. Then the previous lemma implies that K
contains exactly all mice. Suppose N = JUα is a mouse at κ with ot(CN) = ω. Then for
all x ∈ P(κ) ∩ N , x ∈ U if and only if x contains an end segment of CN . Let F be the
filter on κ generated by the end segments of CN . Since F ∈ K, also U = F ∩N is in K.
Hence, N is in K. Because K is a model of ZFC, the core of N and all the iterates of
the core are in K. This shows that every mouse is in K.

Lemma 5.87. 94 If β ≥ ω is a cardinal in K, then Kβ = HK
β .

Proof. The case β = ω is clear, so suppose β > ω. Let a ⊂ γ < β be in K. We show
that a ∈ Kβ. This is clear if a ∈ L so we may assume a /∈ L. Let κ be the least regular
cardinal ≥ β such that a ∈ Kκ. Then a ∈ Qκ since Kκ = HQκ

κ . Since a /∈ L and Qκ = JFθκ ,
there is a least δ ≥ κ such that a ∈ JFδ+1 \ JFδ . Then, as in previous proofs in this section,
N = JFδ+1 is a mouse and ρN ≤ γ < β. Let M be the core of N and let 〈Mi, κ̄i, πij〉 be the
iteration of M . Suppose that N = Mλ. Since core mice are sound, M = hM(JρM ∪{pM}).
Thus, |M |K ≤ ρN < β, so N = Mκ and Mi ∈ Kβ for i < β. Let i < β be such that
κ̄i ≥ γ. Then P(κ̄i) ∩Mi = P(κ̄i) ∩N , so a ∈ P(κ̄i) ∩Mi ⊂ Kβ.

This immediately gives the corollary.

Corollary 5.88. K satisfies GCH.

We end the chapter with a result that is useful in the proof of the Main Theorem.

Lemma 5.89. Let U be a normal measure at κ and let 〈Mi, Ui, κi, πij〉 be the iteration of
L[U ]. Then K =

⋃
i∈OnH

L[Ui]
κi .

Proof. Every x ∈ HL[Ui]
κi is in H

J
Ui
β

κi for some β. Hence, by Lemma 5.13

HL[Ui]
κi

=
⋃
ν<κi

a⊂ν, a∈L[Ui]

Jaκi ,

Thus, it is enough to show x ∈ K for every x ⊂ γ < κi such that x ∈ L[Ui]. If x ∈ L, then
x ∈ K. If x /∈ L, then there is β > κi such that β is the least ordinal such that x ∈ JUiβ+1.
Then as in the proof of, e.g., Lemma 5.81 we can see that JUiβ+1 is a mouse. Hence, x ∈ K.

For the other direction, suppose that M is a mouse. Let θ be a regular cardinal in V
such that θ > max{|M |, |κκ∩L[U ]|}. Then by Lemmas 3.9 and 5.43, L[Uθ] = L[F ], where

93Corollary 14.14 of [4]. The proof uses Lemma 14.4 of [4].
94We follow Lemma 6.9 of [5].
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F is the club filter on θ, and Mθ = JFα for some α. Thus, an iterate of M is in L[Uθ], so
every iterate of the core of M is in L[Uθ] since L[Uθ] is a model of ZFC. In particular,
M is in L[Uθ] and M ∈ HL[Uθ]

κθ .
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Chapter 6

Inner model from the cofinality
quantifier

In this final chapter we will present in detail the KMV paper’s definition of the hierarchy
of sets constructible using an extended logic L∗, and, in particular, the definition of C∗.
Then we will present the proofs of two major theorems of the paper concerning C∗, the
second one being the Main Theorem of this thesis. This chapter is entirely based on the
KMV paper but we often refer to lemmas presented in the previous chapters that are
needed to understand the proofs.

6.1 Inner models from extended logics and C∗

The authors of the paper conceive of a logic L∗ as having two essential components: S∗,
the set of sentences of L∗, and T ∗, the the truth predicate for L∗ 1. Every logic considered
in the paper has first order logic as a sublogic. The logic L(Q) with a generalized quantifier
Q is the logic (S∗, Q∗) where S∗ is obtained by extending first order logic with the new
quantifier Q. The truth predicate is defined by fixing the defining model class KQ of Q
and then defining T ∗ by induction on formulas using the following clause for Q:

M � Qx1, . . . , xnφ(x1, . . . , xn, b̄)

⇔ (M, {(a1, . . . , an) ∈Mn :M � φ(a1, . . . , an, b̄)}) ∈ KQ.

For an extended logic L∗, the hierarchy (L′α) of sets constructible using L∗ is defined
as follows. For a set M , DefL∗(M) denotes the set of all sets of the form x = {a ∈ M :
(M,∈) � φ(a, b̄)}, where φ is a formula of L∗ and b̄ ∈ M . The hierarchy (L′α) is defined
by induction:

1We follow the discussion on pp. 4-7 of KMV.
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L′0 = ∅
L′α+1 = DefL∗(L′α)

L′δ =
⋃
α<δ

L′α for limit δ.

The class Uα∈OnL
′
α is denoted by C(L∗). A set of a successor level has the form

x = {a ∈ L′α : (L′α,∈) � φ(a, b̄)}, where (L′α,∈) � φ(a, b̄) means T ∗ in the sense of V , not
in the sense of C(L∗).

The usual proof of ZF in L shows that for any logic L∗ the class C(L∗) is a transitive
model of ZF containing all the ordinals, i.e., an inner model. For a logic L∗ that is
adequate for truth in itself, as most logics considered in literature are, C(L∗) satisfies the
Axiom of Choice as well.

We now present the inner model obtained by extending first order logic with the
cofinality quantifier2. The quantifier was introduced by Saharon Shelah in [18] and the
logic it gives satisfies the compactness theorem for a vocabulary of any cardinality. The
cofinality quantifier Qcf

κ for a regular cardinal κ is defined as follows:

M � Qcf
κxyφ(x, y, ā) ⇔ {(c, d) :M � φ(c, d, ā)}

is a linear order of cofinality κ.

The inner model C(L(Qcf
κ )) is denoted by C∗κ and C∗ω is denoted by C∗. The model C∗κ

knows which ordinals have cofinality κ in V but ordinals need not have the same cofinality
in C∗κ as in V . Thus, even though an ordinal does not have cofinality κ in C∗κ, the fact that
its cofinality in V is κ is recognized by in C∗κ in the sense that for all β and A,R ∈ C∗κ:

(i) {α < β : cfV (α) = κ} ∈ C∗κ
(ii) {α < β : cfV (α) 6= κ} ∈ C∗κ
(iii) {a ∈ A : {(b, c) : (a, b, c) ∈ R} is a linear order on A with cofinality κ in V } ∈ C∗κ.

Lemma 6.1. 3 C∗ = L[Onω] where Onω is the class of all ordinals of cofinality ω.

Proof. Clearly L[Onω] is included in C∗ so we need to show that C∗ is included in L[Onω].
For any α, a subset of Lα[Onω] of the form (i) or (ii) above is obviously definable in Lα[Onω]
using Onω ∩ Lα[Onω] as a predicate in the defining formula.

A subset of Lα[Onω] of the form (iii) is also definable in some Lλ[Onω], λ ≥ α. For
each a ∈ A, let Ra = {(b, c) : (a, b, c) ∈ R}. Since L[Onω] is a model of ZFC, there are

2This follows p. 20 of KMV.
3The result stated on p. 20 of KMV, the proof is our own.
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λ ≥ α and βa, fa ∈ Lλ[Onω] such that each fa is an increasing function from βa to Rα. If
βa /∈ Onω, then cf(Ra)

V > ω. Otherwise there is a cofinal increasing function g : ω → Ra.
But then g′ : ω → βa defined by g′(n) = sup{γ < βa : fa(γ) < g(n)} shows that
cf(βa)V = ω, a contradiction. On the other hand, if βa ∈ Onω, then cf(Ra)

V = ω. Hence,
the set B = {a ∈ A : {(b, c) : (a, b, c) ∈ R} is a linear order on A with cofinality κ in V }
is definable in Lλ[Onω] by

a ∈ B iff a ∈ A ∧ ∃fa∃βa (βa ∈ Onω ∩ Lλ[Onω]

∧ fa is a cofinal increasing function from βa onto Ra).

Hence, B ∈ Lλ+1[Onω], so B ∈ L[Onω].

The remainder of this chapter presents the proofs of two major theorems about C∗.

6.2 The core model and C∗

One of the major results of the KMV paper is that C∗ and V have the same core model.
This section presents the proof of that theorem.

Theorem 6.2. 4 The Dodd-Jensen core model is contained in C∗.

Proof. We denote the core model of C∗ by K∗ and the core model of V by just K. For a
contradiction we suppose that K is not contained in C∗. Since the core model is the union
of all mice, if K∗ is not K, C∗ does not contain all the mice of V . Let M0 be the minimal
mouse of V missing from C∗. Suppose M0 = JU0

α is a mouse at κ. Let 〈Mα, jαβ, κα〉 be
the iteration ofM . We will show that an iterate ofM0, sayMα, is in C∗. Then the core of
Mα must be in C∗ since C∗ is a model of ZFC and the existence of the core is a theorem
of ZFC. Hence, all the iterates of the core are in C∗, so in particular M0 is in C∗. That
is a contradiction, so K∗ must be the whole K.

We start proving that an iterate ofM0 is in C∗. Define ξ0 = (κ+)M0 and let δ = cfM(ξ0).
If (κ+)M0 does not exist in M0, we let ξ0 be On ∩M0. For β > 0, we let ξβ = jαβ(ξ0).

Claim 1: For all β, ξβ = j0β“(ξ0). Hence, cfV (ξβ) = δ.
Proof. By Lemma 5.31(c) every x ∈ Mβ is of the form j0β(f)(κi1 , . . . , κin) for some

function f : κn → M0, f ∈ M0 and some i1 < · · · < in < β. If η < ξβ and η =
j0β(f)(κi1 , . . . , κin), we can assume that f(a1, . . . , an) < ξ0 for all (a1, . . . , an) ∈ κn. Since
ξ0 is regular in M0, there is ρ such that f(a1, . . . , an) < ρ for all (a1, . . . , an) ∈ κn. Hence,
j0β(f)(κi1 , . . . , κin) < j0β(ρ) for all i1 < · · · < in < β. Thus, ξβ = j0β“(ξ0), so cfV (ξβ) ≤ δ.

4Theorem 5.5 of KMV.
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To show that cfV (ξβ) must be exactly δ, suppose it is smaller, say γ < δ. Then there
is a cofinal function in V from γ to ξβ. Define g : γ → ξ0 by g(η) = sup{α < ξ0 : j0β(α) <
f(η)}. Then g ∈ V is cofinal in ξ0, which contradicts the assumption cfV (ξ0) = γ. Hence,
cfV (ξβ) must be δ. � Claim 1.

Since κβ and ξβ are cardinals inMβ, ωκβ = κβ and ωξβ = ξβ. Therefore, J
Uβ
κβ = Lκβ [Uβ]

and JUβξβ = Lξβ [Uβ]. Hence, the proof of Lemma 3.3 implies that κκββ ∩Mβ ⊂ J
Uβ
ξβ

. More-

over, JUβξβ is the increasing union of δ members of Mβ, each one having size κβ in Mβ.

Claim 2: Let κ0 < η < κβ be such that η is regular in Mβ. Then either there is γ < β
such that η = κγ or cfV (η) = δ.

Proof. We prove the claim by induction on β. The case β = 0 is impossible. If β is a
limit, then κβ = sup{κγ : γ < β}. Hence, there is α < β such that η < κα. Since jαβ � κα
is the identity, jαβ(η) = η. Thus, the Σ1-elementarity of jαβ implies that η is regular in
Mα. Then the claim holds by the induction assumption on α.

We have the successor case left to prove, so suppose β = α + 1. If η ≤ κα, the claim
follows as in the limit case. So suppose κα < η < κβ. Then η is represented in the
ultrapower of Mα by a function f ∈Mα whose domain is κα. Since η < κβ = jαβ(κα), we
an assume that f(γ) < κα for all γ < κα. Since κα = [id] in the ultrapower and η > κα,
we can assume that γ < f(γ) for all γ < κα. Finally, since η is regular in Mβ, we can
assume that f(γ) is regular inMα for all γ < κα. To simplify notation, we set temporarily
M = Mα, κ = κα, U = Uα and ξ = ξα.

To show that cfV (η) = δ, it suffices to define in V a sequence 〈gν : ν < δ〉 of functions
from κκ ∩M satisying the following conditions:

1. The sequence is increasing modulo U , i.e., for all ν1, ν2, the set {γ < κ : gν1(γ) <
gν2(γ)} is in U .

2. For all γ < κ, gν(γ) < f(γ).

3. The ordinals represented by these functions in the ultrapower are cofinal in η.

By the remark before the claim, κκ ∩M =
⋃
ψ<δ Fψ, where Fψ is in M and has size

κ in M . For ψ < δ, we fix in M an enumeration 〈hψγ : γ < κ〉 of the set Gψ = {h ∈ Fψ :
∀γ < κ (h(γ) < f(γ)}. Define the function fψ ∈ κκ by fψ(γ) = sup{hψµ(γ) : µ < γ}. Then
fψ is in M and fψ bounds all functions in Gψ modulo U . Since h(γ) < f(γ) for all γ < κ
and h ∈ Gψ and f(γ) is regular in M for all γ, we get also that fψ(γ) < f(ψ) for all ψ.

Now we can define by induction on ν < δ gν and ψν such that ψν < δ and gν ∈ Gψν .
Given 〈ψµ : µ < ν〉, let σ be their supremum. Then let gν be fσ and let ψν be the least
member of δ − σ such that fσ ∈ Gψν . We show that the sequence of ordinals represented
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by 〈gν : ν < δ〉 is cofinal in η. Every ordinal below η is represented by some function h
bounded everywhere by f . Since h belongs to Gψ′ for some ψ′ < δ, there is ψν < δ such
that ψν > ψ′. Hence, gψν+1 bounds h modulo U . � Claim 2.

M0 and thus every Mβ are minimal mice missing from K∗. For any mouse N ∈ K∗
and large enough regular θ, Nθ must be in Mθ. Otherwise, as in the beginning of the
proof, M0 would be in K∗. Thus, P(κβ)∩N ⊂ P(κβ ∩Mβ). Hence, any subset of κβ that
is in K∗ must be in Mβ, that is, P(κβ)∩K ⊂ P(κβ)∩Mβ. This implies that if ρ ≤ κβ is
regular in Mβ it is regular in K∗.

On the other hand, if a ∈ Mβ is a bounded subset of κβ, then by Corollary 5.77 a is
definable in a mouse smaller than Mβ, so a ∈ K∗. Thus, if ρ < κβ is regular in K∗, it is
regular in Mβ. Since κβ is always regular in Mβ, every ρ ≤ κ is regular in Mβ if and only
if ρ is regular in K∗. In particular, every κβ is regular in K∗ since it is regular in Mβ.

Claim 3: Let θ be a regular cardinal greater than max(|M0|, δ). Then there is D ∈ C∗
such that D is a subset of E = {κβ : β < θ} and D is cofinal in θ.

Proof. By Lemma 5.43 κθ = θ. Then E is a club in θ. Let Sθ0 = {α < θ : cfV (α) = ω}.
Since E is closed, both E ∩ Sθ0 and E − Sθ0 are unbounded in θ. Define C = {α ∈ θ \ κ0 :
α regular in K∗}. By the definition of C∗, Sθ0 is in C∗. Since K∗ is the union of all mice
in C∗ and a mouse can be defined in first-order logic, C is also in C∗. Since κβ is regular
in Mβ and hence in K∗, E is a subset of C.

If δ 6= ω, we can let D = C ∩ Sθ0 . By Claim 2, every element of C \E has cofinality δ
in V , so D ⊂ E. Also, D is unbounded in θ because κβ is in D if cfV (β) = ω. If δ = ω,
we let D = C \ Sθ0 . Again, D ⊂ E and D is cofinal in θ. In either case, D is in C∗, so the
claim has been proved. � Claim 3.

Now we can prove that an iterate of M0 is in C∗. Pick θ and E as in Claim 3 and let
D ⊂ θ witness the claim. Let FE be the filter generated by the end segments of E. Since
every end segment of E is a club in θ, Lemma 5.43 implies that Uθ = FE ∩Mθ. But Uθ
is an ultrafilter on θ in Mθ, so every x in Uθ must contain an end segment of D. Hence,
FE ∩Mθ = FD ∩Mθ, where FD is the filter generated by the end segments of D. Thus,
Mθ = JFDα for some α. Since D is in C∗, L[D] is included in C∗, so Mθ is in C∗.

6.3 The Main Theorem
For the proof we need the following lemma which is proved in exactly the same way as
Claim 2 in the proof of Theorem 6.2.
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Lemma 6.3. 5 LetM = Lµ and let κ be the cardinal on which Lµ has the normal measure.
Let Mβ be the iterated ultrapowers of M . If κ < η < κβ and η is regular in Mβ, then
either cfV (η) = κ+ or there is γ < β such that η = κγ.

Main Theorem. 6 If V = Lµ, then C∗ is exactly the inner model Mω2 [E] where Mω2 is
the ω2-th iterate of V and E = {κω·n : n < ω}.

To prove the Main Theorem we need to be able to know inside Mω2 which ordinals
have cofinality ω in V . That is established by the following lemma and its corollary.

Lemma 6.4. 7 Let M be a transitive model of ZFC +GCH with a measurable cardinal
κ. For β ∈ On, let Mβ be the β-th iterate of M and let κβ be the image of κ under the
canonical embedding j0β from M to Mβ. Then for every ordinal δ ∈ Mβ, if cfM(δ) < κ,
then either cfMβ(δ) =cfM(δ) or there is a limit γ ≤ β such that cfMβ(δ) = κγ.

Proof. For each ordinal β, let ξβ = (κ+
β )Mβ , and let η = cfM(ξ0). We prove first the

following claims:

Claim 1 : For every β, cfM(ξβ) = η.
Proof. Let ν < ξβ. By lemma 2.11, ν = j0β(f)(κγ0 , . . . , κγn−1) for some γ0, . . . , γn−1 <

β and some f : κn0 → ξ0 that is in M . Since ξ0 is a successor cardinal in M0, it is reg-
ular in M0, so there is ρ < ξ0 such that f(α0, . . . , αn−1) < ρ for all (α0, . . . , αn−1) ∈ κn0 .
Hence, the elementarity of j0β implies that every value of j0β(f) is smaller than j0β(ρ).
Thus, ν < j0β(ρ), so ξβ = sup j′′0β(ξ0) and cfM(ξβ) ≤ cfM(ξ0) = η. If cfM(ξβ) < η, then
ξβ = sup j′′0β(ξ0) implies that cfM(ξ0) < η, which is a contradiction. Hence, cfM(ξβ) = η.
� Claim 1.

Claim 2 : For every β, cfM(κβ+1) = η.
Proof. SinceMβ � GCH, we have κβ+1 = jβ,β+1(κβ) < (κ++

β )Mβ , whence cfMβ(κβ+1) ≤
(κ+

β )Mβ = ξβ. SinceMβ+1 is the ultrapower ofMβ by the ultrafilter Uβ ∈Mβ,Mβ+1 closed
under κβ-sequences. Thus, if cfMβ(κβ+1) < ξβ, then there is a sequence
〈αγ : γ < cfMβ(κβ+1) ≤ κβ〉 in Mβ+1 cofinal in κβ+1, so κβ+1 is not regular in Mβ+1, which
is a contradiction. Thus, cfMβ(κβ+1) = ξβ.

Now if cfM(κβ+1) < η, then cfM(κβ+1) ≤ κ and there is again a sequence
〈αγ : γ < cfM(κβ+1)〉 ∈ Mβ+1 that is cofinal in κβ+1, whence κβ+1 is singular in Mβ+1,
which is a contradiction. Thus, cfM(κβ+1) ≥ η. On the other hand, since cfMβ(κβ+1) = ξβ,
there is in Mβ a sequence 〈αγ : γ < ξβ〉 cofinal in κβ+1. As M is a model of ZFC and Mβ

5Claim 2 in the proof of Lemma 5.6 of KMV.
6Theorem 5.14 of KMV.
7Lemma 5.15 of KMV.
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is an iterated ultrapower of M by an M -ultrafilter on κ that is in M , we have M ⊃ Mβ.
Hence 〈αγ : γ < ξβ〉 is in M , and as cfM(ξβ) = η, we have cfM(κβ+1) ≤ η. Hence,
cfM(κβ+1) = η. � Claim 2.

Now consider the δ in the formulation of the lemma. Let δ′ = cfMβ(δ). SinceMβ ⊂M ,
we can show that cfM(δ′) = cfM(δ). There is inM a sequence 〈ai < δ : i < cfM(δ)〉 cofinal
in δ. Since Mβ ⊂ M , there is in M also a sequence 〈bj < δ : j < δ′〉 cofinal in δ. Define
for all i < cfM(δ), ci =

⋃
{j : bj < ai}. Now the sequence 〈ci : i < cfM(δ)〉 is in M and is

cofinal in δ′. Thus, cfM(δ′) ≤ cfM(δ). On the other hand, because the sequence 〈bj〉 is in
M , we have cfM(δ) ≤ cfM(δ′). Hence, cfM(δ′) = cfM(δ).

We prove the lemma in several cases. Since δ′ is regular in Mβ and cfM(δ′) = cfM(δ),
we can assume that δ is regular in Mβ in the following cases:

(i) δ ≤ κ
In this case the iterated ultrapowers do not change the cofinality of δ. Hence,
cfM(δ) = cfMβ(δ).

(ii) κ < δ′ ≤ κβ
Since Mβ � GCH for all β, the argument of Claim 2 in the proof of Theorem 6.2
shows that either cfM(δ) = η or there is γ ≤ β such that δ = κγ. The first case
cannot occur since cfM(δ) < κ < η. In the second case, if γ is 0 or successor, we get
by Claim 2 that cfM(δ) ≥ κ, which is a contradiction. If γ is limit, the claim of the
lemma holds.

(iii) κβ < δ
Again by lemma 2.11 every ordinal in Mβ is of the form j0β(f)(κγ0 , . . . , κγk−1

) for
some k ∈ ω, γ0, . . . , γk−1 < β and f ∈ M some ordinal valued function defined on
κk. Since cfM(δ) < κ, there is in M an ordinal µ < κ and a sequence 〈αν : ν < µ〉
that is cofinal in δ. For each αν there is a function fν ∈ M defined on κkν such
that αν ∈ j0β(f)”j(κ)kν . Now 〈fν : ν < µ〉 ∈ M and the union of the ranges⋃
ν<µ

(
ran(j0β(fν)) ∩ δ

)
is cofinal in δ. But on the other hand 〈j0β(fν) : ν < µ〉

= j0β(〈fν : ν < µ〉) ∈ Mβ so the union of the ranges
⋃
ν<µ

(
ran(j0β(fν)) ∩ δ

)
is a

union of µ sets of size at most j0β(κ) = κβ. Since δ is regular in Mβ and κβ < δ,
the union is bounded in δ, which is a contradiction.

Corollary 6.5. 8 If V � GCH and κ is measurable, then an ordinal has cofinality ω in
V iff its cofinality in Mω2 is either ω or of the form κγ for some limit γ ≤ ω2.

8Corollary on p. 34 of KMV.
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Proof. If α has cofinality ω in V , then cfV (α) < κ and by the above lemma either
cfMω2 (α) = ω or there is a limit γ ≤ ω2 such that α = κγ. On the other hand, by
lemma 2.9, for all limit γ ≤ ω2, κγ = sup{κβ : β < γ}, so cfV (κγ) = ω. Since each κγ,
γ ≤ ω2, is regular in Mω2 , we have proved the corollary.

Proof of the Main Theorem9

Let µ′ = j0ω2(µ) be the image of µ. By lemma 4.7, E is a Prikry generic sequence
over Mω2 with respect to µ′. By the properties of Prikry forcing, all the cardinals have
the same cofinality in Mω2 [E] as in Mω2 except κω2 which has cofinality ω in Mω2 [E]. So
an ordinal has cofinality ω in V if its cofinality in Mω2 [E] is in {ω}∪E. By the properties
of forcing, Mω2 already knows if the cofinality of an ordinal in Mω2 [E] is in {ω} ∪ E.
Hence, C∗ = L[Onω] ⊂Mω2 [E].

Now we prove the other direction, i.e., that Mω2 [E] ⊂ C∗. By theorem 6.2, the Dodd-
Jensen core model K of V is the same as the Dodd-Jensen core model of C∗. IF η < κω2

is regular in K, then by Lemma 5.89 it is regular in Mω2 . Thus, by lemma 6.3, if η is
regular in K and κ < η < κω2 , then either cfV (η) = κ+ or η = κγ for some γ < ω2. By
Claim 1 in the proof of lemma 6.4, for successor γ the ordinal κγ has cofinality κ+ in
V . Thus, we have showed that E is exactly the set of ordinals η which are regular in K,
κ ≤ η ≤ κω2 and cf(η) = ω. This shows that E ∈ C∗.

By lemma 3.9, if F is the filter generated by the end segments of E, thenMω2 = Lµ
′
=

L[F ]. Therefore Mω2 ⊂ C∗, and since E ∈ C∗, we have Mω2 [E] ⊂ C∗.

9Follows the proof on p. 34 of KMV.

81



Bibliography

[1] Keith Devlin. Aspects of Constructibility, volume 354 of Lecture Notes in Mathemat-
ics. Springer, Berlin, 1973.

[2] Keith Devlin. Constructibility. Perspectives in mathematical logic. Springer, Berlin,
1984.

[3] Keith Devlin and Ronald Jensen. Marginalia to a theorem of silver. In Proceedings
of ISILC Kiel 1974, volume 499 of Lecture Notes in Mathematics. Springer, Berlin,
1975.

[4] Anthony Dodd. The core model, volume 61 of London Mathematical Society Lecture
Note Series. Cambridge University Press, Cambridge-New York, 1982.

[5] Anthony Dodd and Ronald Jensen. The core model. Ann. Math. Logic, 20(1):43–75,
1981.

[6] Haim Gaifman. Measurable cardinals and constructible sets. Notices Amer. Math.
Soc., 11:771, 1964. Abstract.

[7] Haim Gaifman. Elementary embeddings of models of set-theory and certain subthe-
ories. In Axiomatic set theory (Proc. Sympos. Pure Math., Vol. XIII, Part II, Univ.
California, Los Angeles, Calif., 1967), pages 33–101, 1974.

[8] Kurt Gödel. The consistency of the axiom of choice and of the generalized continuum-
hypothesis. Proc. Natl. Acad. Sci. USA, 24:556–557, 1938.

[9] Thomas Jech. Set theory. Springer Monographs in Mathematics. Springer-Verlag,
Berlin, 2003. The third millennium edition, revised and expanded.

[10] Ronald Jensen. The fine structure of the constructible hierarchy. Ann. Math. Logic,
4:229–308; erratum, ibid. 4 (1972), 443, 1972.

82



[11] Akihiro Kanamori. The higher infinite. Springer Monographs in Mathematics.
Springer-Verlag, Berlin, second edition, 2003. Large cardinals in set theory from
their beginnings.

[12] Juliette Kennedy, Menachem Magidor, and Jouko Väänänen. Inner models from
extended logics: Part 1. Journal of Mathematical Logic. To appear.

[13] Kenneth Kunen. Some applications of iterated ultrapowers in set theory. Ann. Math.
Logic, 1:179–227, 1970.

[14] Azriel Lévy. A generalization of gödel’s notion of constructibility. The Journal of
Symbolic Logic, 25(2):147–155, 1960.

[15] Adrian Mathias. On sequences generic in the sense of Prikry. J. Austral. Math. Soc.,
15:409–414, 1973.

[16] Karel Prikry. Changing measurable into accessible cardinals. Diss. Math., 68, 1970.

[17] Dana Scott. Measurable cardinals and constructible sets. Bull. Acad. Polon. Sci.
Sér. Sci. Math. Astronom. Phys., 9:521–524, 1961.

[18] Saharon Shelah. Generalized quantifiers and compact logic. Transactions of the
American Mathematical Society, 204:342–364, 1975.

83


