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1 Introduction: QCD at high den-

sity

The emergence of quantum chromodynamics (QCD) followed the success of

the field theoretic description of particle physics that was breaking ground

in the mid 20th century. The accuracy of predictions made in quantum elec-

trodynamics led others to try the same approach with strong interactions.

Through the invention of the quark model and the probing of nuclei in deep

inelastic scattering experiments in the 60s and early 70s, a gauge theory

of strongly interacting quarks and gluons stabilized its position as a funda-

mental theory of Nature [1]. Up to this day, the QCD framework has been

applied to numerous situations from scattering experiments to studying the

origins of the Universe.

The aim of this thesis is to study the effects of strong interactions on

the relations of thermodynamic variables, described as the equation of state

(EoS), of quark matter in a setting of high density and low temperature.

Such a scenario could correspond to e.g. a compact neutron star with a

quark core or a star composed purely of stable quark matter [2].

1.1 Characteristics of QCD

QCD is a non-Abelian gauge theory with a corresponding symmetry group

SU(3), the group generators of which are related to the eight massless gluon

fields. The gauge symmetry is often labelled as color symmetry which under-

lines the nature of strong interactions, as the conserved quantity, analogous

to electric charge in QED, is defined as ”color”. However, the dynamics of
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QCD interactions is slightly more intricate since the color charges come in

a variety of three.

QCD is a non-Abelian gauge theory and it is asymptotically free, which

means that the QCD beta function is negative: the coupling decreases at

high energy scale [3]. Along with the confinement of quarks, the asymptotic

freedom is one of the two defining characteristics of strong interactions.

At relatively long distances (low energy scale) the QCD coupling grows

too large to be treated perturbatively and quarks are strongly confined to

form hadrons, and cannot be isolated as free particles. Vice versa, at short

distances (high energy scale) the coupling goes effectively to zero leaving

quarks to behave as free ”point particles” void of interactions.

In its simplest form the Lagrangian describing QCD interactions can be

written as [4]

LQCD = −1

4
F aµνF

µν
a + ψ̄( /Dµ −m)ψ, (1.1)

where ψ is a color triplet under SU(3), Dµ = i∂µ − gAaµGa is the covariant

derivative in the fundamental representation, Aaµ are the gauge fields, and

the mass matrix m is diagonal in flavour space. The gluon field strength

tensor is defined as

F aµν = ∂µAaν − ∂νAaµ − gfabcAbµAcν . (1.2)

The SU(3) generators Ga = λa

2 and the structure constants fabc satisfy com-

mutation relations [λa2 ,
λb

2 ] = ifabc λc2 , and trace identities of the generators

read as Tr[λa2
λb

2 ] = δab

2 . The λa are the famous Gell-Mann matrices, with

a = 1, . . . ,N2 − 1 (for SU(3) the number of generators is naturally eight).

The Lagrangian is invariant under the transformations [5]

Aaµ → Aaµ + ∂µθa + gfabcAbµθc +O(θ2), (1.3)

ψ → ψ + igθaGaψ +O(θ2). (1.4)

The transformations are generated by a local operator U = exp(igθa(x)Ga),
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under which the gauge fields transform in the adjoint and the quark fields

in the fundamental representation.

The above equations define the theory of QCD interactions completely

[6], but as will be shown later, quantization of the theory will apply modi-

fications, such as unphysical ghost particles and a gauge fixing term, to the

Lagrangian, as well as introducing a chemical potential as a bridge from the

vacuum to finite density QCD.

1.2 Finite density via chemical potential

In classical statistical mechanics, chemical potential is defined as a conjugate

variable to the particle number N . It gives the change of free energy with

respect to N , by the well known equation dF = −V dP − SdT + µdN , where

V , P , S, T and µ are volume, pressure, entropy, temperature and chemical

potential, respectively, and serves the purpose of a Lagrange multiplier in

particle number conservation [7]. The (quantum) statistical properties of

any thermodynamic system can be embedded in an object called a partition

function which is defined as

Z(T,µ) = Tr[e−β(Ĥ−µN̂)], (1.5)

where the trace is taken over the Fock space, with Ĥ being the Hamiltonian

and N̂ the number operator.

When studying systems with finite density, one is interested in finite

chemical potential. It is associated to particles with non-zero charge, but

aside from its usefulness in calculations, physical properties are better un-

derstood by the conjugate variable, number density of the conserved charge

[5]. Hence, the connection between chemical potential and finite density

becomes apparent.

When studying QCD at finite density, chemical potential connects to the

Lagrangian by the conserved Noether current of a global symmetry where
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ψ → e−iαψ,

Jµ = ψ̄γµψ. (1.6)

The vector current then gives rise to an effective Hamiltonian, similar to the

partition function of equation (1.5), Ĥ − µQ̂, where the charge is the usual

zero component of the current density

Q = ∫
x
ψ̄γ0ψ. (1.7)

Thus the Lagrangian gets a following contribution [5]

LQCD +∆L = −1

4
F aµνF

µν
a + ψ̄( /Dµ −m − µγ0)ψ. (1.8)

Flavour being a conserved global symmetry of QCD, the quark chemical

potential separates into a sum of potentials of different quark flavours. The

system in question sets constraints to the way chemical potentials are ac-

counted for, e.g. in the limit of massless quarks one can consider a situation

of equal chemical potentials for different flavours [8].

1.3 Deconfinement of quarks

The asymptotic freedom of QCD sets the stage for interesting phenomena

occurring at high energy scales. At an energy density of around 1 GeV/fm3,

ordinary hadronic matter undergoes what is referred to as a deconfinement

phase transition [4], during which the hadronic degrees of freedom break

into the degrees of freedom of quarks and gluons [9]. This can happen when

either the density or the temperature of the system increases vastly and goes

past a critical point. The former case corresponds (at zero temperature) to

a setting of cold quark matter which will be discussed more in the next

section, and the latter to a system known as quark-gluon plasma (QGP).

The phase structure of the QGP has been under scrutiny for over two

decades and understanding the elusive nature of deconfinement has been a

rather tedious task [10]. Nevertheless, many successful studies in different
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ranges of temperature and chemical potential have been made over the years.

The initial point of the different approaches and approximations has been the

same: solving and matching the equations of state of different phases. For

deconfinement, phase transition means that the baryon number density must

have a discontinuity at some critical chemical potential (cold quark matter)

or temperature (QGP), which is used as a matching point for the hadronic

and deconfined phase EoSs. The matching procedure is then constrained

by various physical requirements, one of which being that the pressures of

the two phases must meet at the matching point [2]. While sizable non-

zero chemical potentials prevent the use of Monte Carlo simulations of the

EoS, lattice QCD models have been able to shed light to physics around

the critical deconfinement temperature at µ = 0 [11]. Also, the asymptotic

freedom of QCD at energy densities way over the deconfinement line of the

phase diagram allows the use of perturbation theory in regimes of arbitrary

µ and T , due to the smallness of the QCD coupling constant. Perturbative

approaches have yielded results for the pressure of the QGP to high orders in

coupling constant for different values of the ratio µ/T , and for high density

and low temperature limit converges relatively well with the previous results

of T = 0 [10].

Aside from the inherent theoretical interest of the subject, the decon-

fined phase plays a central role in some applications. One of these is related

to the early stages of the Universe in a time scale of a few microseconds. As

is understood by the standard big bang theory, primordial QGP underwent

a crossover phase transition from the deconfined to the confined hadron

phase [12]. In a crossover transition, thermodynamic variables and their

derivatives transition smoothly (no discontinuities) from the deconfined to

the confined phase. It was suggested that there could be a first order tran-

sition that would lead to baryon inhomogeneity which in turn would affect

nucleosynthesis [13]. However, the nature of the crossover transition does
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Figure 1.1: The phase diagram of QCD with respect to temperature and

quark chemical potential. The CFL area describes a color-flavour-locked

phase at extremely high densities, where the quark color and flavour prop-

erties are in direct correspondence. [14]

not accommodate such a mechanism and therefore cannot be a source of

said inhomogeneity. Still, the QCD phase transition remains an important

feature in the evolution of the Universe. A more relevant application in the

framework of this thesis, relates to high density and cold quark matter.

1.4 Cold quark matter

At low temperatures the deconfinement of hadronic matter requires a high

baryon chemical potential in order to occur. At such a high densities strange

quarks may be produced through simultaneous weak interactions between
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the hadron constituents and in right conditions achieve chemical equilibrium

leading to a constraint to the quark chemical potentials [4]

µs = µd = µu + µe, (1.9)

where the subscripts refer to the corresponding quark and electron. The

existence of stable quark matter would render nucleons metastable (with

a lifetime of billions of years) and form a ground state for nuclear mat-

ter. The equation of state for (strange) quark matter has been studied in

thermal perturbation theory in a setting of high density and zero temper-

ature, obtaining convergent results but little certainty of stability. While

the theoretical results for a strange ground state remain inconclusive [2],

the possibility of quark matter inside compact stellar cores is an intriguing

prospect, as it does not require quark matter in vacuum to be absolutely

stable.

Even though perturbative QCD is only applicable in the region of very

high energy density, it is still useful in determining the properties of compact

and dense neutron stars. The densities realized in the cores of neutron stars

fall in a range between perturbation theory and nuclear-theory computa-

tions, and can be estimated by an ensemble of thermodynamically consistent

polytropic EoSs suitable in this region. Recent gravitational wave data from

a neutron star merger have given sound constraints to the neutron star EoS

and boosted the precision of the EoS ensemble approach [15]. Figure 3.6 in

chapter 3 illustrates well the matching of pressure as a function of energy

density, obtained from nuclear-theory and pQCD, to the EoS ensemble.

As previously stated, the scope of this thesis is to study the perturbative

expansion of the equation of state of quark matter (low T and high µ),

namely the grand potential Ω = −T lnZ = −PV . First, the needed machinery

from thermal perturbation theory is introduced to evaluate the partition

function in the weak coupling limit, by the courtesy of asymptotic freedom.

Then, a closer look is given to the state-of-the-art pressure of quark matter,
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collecting some of the latest results of the topic, after which first lowest order

non-analytic contributions to the pressure are calculated, originating from

the diagram corresponding to the so called hard-thermal-loop (HTL) ring

sum.
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2 Basics of perturbative thermal field

theory

In this chapter main elements of extending perturbation theory to a system

in thermal equilibrium are introduced. The effects of finite temperature and

chemical potential bring adjustments to perturbative QCD and the observ-

ables one is interested in are extracted from the functional integral emerging

from the path integral quantization of the quantum statistical partition func-

tion. The bulk thermodynamic properties of the thermal medium are best

described in Euclidean space which is introduced from imaginary-time (IT)

formulation of the theory. The general definitions in this chapter can be

found from textbooks, mainly [4] and [5], focusing on the IT formalism of

thermal perturbation theory.

2.1 Path integral of the partition function

Thermal and finite density effects can be described in a field theoretic set-

ting by applying the well known relations of quantum statistical mechanics.

For relativistic systems, such as the ones considered in this thesis, the nat-

ural thermodynamic framework is the grand canonical ensemble where the

presence of particle number fluctuations is taken into account. To study the

pressure of quark matter, one statistical equation becomes most important:

the grand potential −Ω/V = P and its relation to the partition function. The
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usual constraints of grand canonical ensemble apply also in field theory:

⟨1⟩ = 1 (2.1)

⟨Ĥ⟩ = E (2.2)

⟨N̂⟩ = N. (2.3)

Grand potential is linked to the grand canonical partition function by Ω =

−T lnZ. The partition function is a most important quantity as it contains

all the information of the theory and system in question and thus can be

used to obtain many interesting observables by known statistical relations.

Quantizing QCD for fermions and gauge fields with the partition function

Z = Tr[e−β(Ĥ−µQ̂)], where Q̂ is the aforementioned conserved flavour charge

operator, leads to a following path integral representation:

Z = C ∫
periodic

DAa0DAak ∫
periodic

Dc̄aDca∫
anti-periodic

Dψ̄iDψi×

× exp( − ∫
β

0
∫
x

1

4
F aµνF

a
µν +

1

2ρ
∂µA

a
µ∂νA

a
ν + ∂µc̄a∂µca+

+ gfabc∂µc̄aAbµcc + ψ̄i(γµDµ +mi − γ0µi)ψi), (2.4)

where covariant gauges for the ghost field and gauge-fixing terms are applied.

The derivation of this form is not of any particular interest in this thesis,

but a few remarks should be made. An interesting note is that the path

integral form resembles very much the time-evolution operator in vacuum

QFT which is defined in a path integral representation as [exp(−iĤ∆t)]lk =

∫
φ(t1)=φk
φ(t0)=φl

Dφ exp[iS(φ)], with the distinction that in the partition function

∆t is replaced by the imaginary quantity −iβ for the Hamiltonian. The

integration measures originate from removing discretization of the original

trace in the partition function by splitting the operators to N infinitesimal

pieces and after some algebra taking a limit N →∞. The integration regions,

”periodic” and ”anti-periodic”, also originate from the traces and reflect

bosonic and fermionic statistics, i.e. bosonic fields are equal at lower and
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upper bound 0 and β while fermionic fields evaluate to ψ(β) = −ψ(0) (same

for ψ̄). The ghost fields c̄a and ca, although being Grassmann in nature, must

be periodic since they are needed to remove unphysical bosonic degrees of

freedom from physical quantities. The appearance of the gauge-fixing term

(with ρ the gauge parameter) is required for making a non-singular matrix to

define gluon propagators. The subscript i in the quark fields imply summing

over all quark flavours. The C in front of the integrals is a constant which

vanishes in most cases and can be ignored.

As can be seen, the exponent of equation (2.9) contains the QCD ac-

tion, but it is Euclidean in nature (implied also by keeping all the Lorentz

indices lowered). The origins of this dramatic change of metric lie in the

quantization of the theory in thermal equilibrium: the density operator

defining the equilibrium is invariant under time translations which ensures

the freedom to define the initial time in the functional integrals over the

fields. Fields that are locally dependent on time disappear when initial and

final time arguments are set equal leaving only the Euclidean part, hence

the use of the Euclidean Lagrangian. Also, the integration limit β appears

due to the quantization process. The original partition function couples

the Hamiltonian and β as ∼ e−βH and as the discretization is removed (in

quantization) by introducing continuous functions of the parameter τ , the

(anti-)periodicity mentioned above requires the upper boundary to be equal

to β.

To extract observables form the partition function it is convenient to split

the action in it into free and interaction parts Z = ∫ . . . e−S0−SI . Separating

the free part and the interaction part to expand the exponential results in

the following form for the grand potential:

Ω/V = −T /V ln [Z0 ⟨1 − ∑
n>0

1

n!
SnI ⟩] (2.5)
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and the logarithm can be further expanded to give a useful expression:

Ω/V = Ω0/V − T /V ⟨∑
n>0

1

n!
SnI ⟩

0,connected

. (2.6)

The expectation value is taken with respect to the free partition function

(hence the subscript 0) and the label ”connected” means that only fully

connected diagrams are taken into account. This ensures that when using

Wick’s theorem to organize expectation values to combinations of two point

correlation functions the disconnected parts cancel and evaluation of quan-

tities such as the grand potential give meaningful results. The expectation

values that arise from the evaluation of grand potential can be calculated

with Feynman rules for thermal QCD in a similar way as in vacuum field

theory.

2.2 Imaginary-time formalism

The Euclidean nature following from the path integral quantization induces

a convenient way to handle bulk thermodynamics known as imaginary-time

formalism. The fields, whose time dependence is now shifted to be purely

imaginary (τ = −it), are discretized in Fourier representation, while enforc-

ing the earlier periodicity conditions, known as a Matsubara sum, which

is convenient to do first with scalar fields (and staying at zero density) for

clarity, by

φ(τ,x) = T∑
n

φ(ωn,x)eiωnτ .

Here, the sum over ωn is taken over even or odd n depending on whether

the field follows bosonic or fermionic statistics, with ωn = 2πTn and ωn =

πT (2n + 1) respectively, and the appearance of T in front of the sum is a

convention. The spatial part of the above Matsubara sum of φ(τ,x) can be

taken to continuum in the usual way by imposing a limit of infinite volume.

The same does not apply to the Matsubara modes unless the system is at zero
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temperature, reducing the sum to an integral over the temporal component

of the momentum. This implies the following form of bosonic and fermionic

thermal sum-integrals:

φ(τ,x) = ⨋
P /{P}

φ(ωn,p)e−i(ωnτ−p⋅x).

A few definitions appear to be in order. P is the Euclidean four-momentum

(pn, pi), where pn contains the Matsubara frequencies. Despite of Euclidean

metric, the product of position (X = (τ,x)) and momentum four-vectors

appearing in propagators and correlation functions remains the same X ⋅P =

τpn −x ⋅p. The sum-integral combines the discrete Matsubara sum and the

spatial continuum integral as

⨋
P /{P}

≡ T∑
n
∫

ddp

(2π)d . (2.7)

Here the subscripts P and {P} tell the nature of the summation, curly

brackets implying that the sum is taken over anti-periodic frequencies; the

sums are referred to as bosonic and fermionic thermal sums.

For a generic meromorphic function f(p) the bosonic thermal sum can

be evaluated as a complex integral with the help of the Bose distribution

function. The distribution function (multiplied by i)

inb(ip) =
i

eipβ − 1
(2.8)

has poles at pβ = 2πn giving p precisely as the bosonic Matsubara frequencies

ωn = 2πnT , with a degenerate residue of T at each pole. This allows the

thermal sum for f(p) to be converted to a contour integral

T∑
2n

f(ωn) = ∮ f(p)inb(ip). (2.9)

Fermionic thermal sums are connected to the bosonic ones by a simple rule

σf ≡ T ∑
2n+1

f(ωn) = 2σb(T /2) − σb(T ), (2.10)

where σb represents the bosonic sum.
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IT-formalism can be implemented to the Minkowski Lagrangian directly

reflecting the quantization process. When the temporal field components

are shifted, a shift must also occur in the (covariant) derivatives ∂t → i∂τ

(Dt → iDτ ) and the temporal gauge field Aa0 → iAa0. Euclidean Lagrangian

is defined then through LE = −LM(t = −iτ). With these modifications the

Euclidean QCD Lagrangian reads

LE = 1

4
F aµνF

a
µν + ψ̄( /Dµ +m − γ0µ), (2.11)

where the use of Euclidean metric is again implied by keeping the Lorentz

indices lowered when summed over. Obviously, the Euclidean Lagrangian

implies Euclidean propagators as well.

Inverting the matrices in the free action of eq. (2.9) gives the following

momentum-space free propagators for gluons, ghosts and fermions:

⟨Ã(P )aµÃ(Q)bν⟩0 = δabδ̄(P +Q)
⎡⎢⎢⎢⎢⎣

δµν − PµPν
P 2

P 2
+

ρPµPν
P 2

P 2

⎤⎥⎥⎥⎥⎦
(2.12)

⟨c̃(P )a˜̄c(Q)b⟩0 = δabδ̄(P −Q) 1

P 2
(2.13)

⟨ψ̃(P )A ˜̄ψ(Q)B⟩0 = δAB δ̄(P −Q)−i
/P +m

P 2 +m2
. (2.14)

The δ̄(P ±Q) can be treated as an ordinary d+1 dimensional delta function

when e.g. integrated over, and is defined as δpn±qn,0δ
(d)(p ± q). Also the

gauge-fixing parameter (ρ) dependence of the gluon free propagator appears

as expected. The capital letters A and B in the quark fields contain both

color and flavour indices. The most important part of these equations man-

ifests itself in the right hand side of eq. (2.14) when /P and P 2 are opened

explicitly as
−i /P +m
P 2 +m2

= −i(γ0pn + γ0iµ + γipi) +m
(pn + iµ)2 + p2 +m2

. (2.15)

This is how finite density i.e. the chemical potential appears in observables

through diagrams: it corresponds to a shift pn → pn + iµ in Matsubara

frequencies of fermionic lines in Feynman diagrams. Three- and four-gluon,
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fermion interaction and ghost interaction vertex functions are defined from

the interaction part SI , but it is not necessary to write them out explicitly,

since they offer little insight apart from computational details. Momentum

space Feynman rules can be found from textbooks, e.g. [5].

Alas, the naive perturbative expansion of the grand potential in the

imaginary-time set-up is not itself sufficient to provide the physical quanti-

ties one is usually after. As in vacuum QFT, loop diagrams diverge in the

ultraviolet region (P → ∞) and the divergence is of course transported to

observables. To counter this undesirable effect also thermal field theories

have to be renormalized. Another issue is that when taking the opposite

limit (P → 0), i.e. going to the infrared region, massless propagators di-

verge, which is the case for e.g. gluons. This is also seen in, for example,

free energy when one uses only the naive expansion, but can be corrected

with proper handling of the IR divergences, known as resummation.

2.3 Renormalization, thermal mass and resumma-

tion

Renormalization of QCD at finite densities and temperatures is not different

from that of vacuum QCD. The unphysical ultraviolet divergences appearing

in integrals at short distances disappear through zero-temperature renormal-

ization [5] of the bare coupling and fermion mass parameters. Hence, the

renormalized quark mass and coupling can be evaluated without any thermal
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or finite density treatment up to g4 as [16]

g2b = g2rZg = g2r[1 − αs
4π

(11

3
CA −

4

3

Nf

2
)1

ε
] (2.16)

m2
b =m2

rZm =m2
r[1 − αs

4π
(3CF )

1

ε
+

+ (αs
4π

)
2

CF ((
11

2
CA −Nf +

9

2
CF )

1

ε2
− (97

12
CA −

5

6
Nf +

3

4
CF )

1

ε
)],

(2.17)

with αs the running strong coupling, Nf the flavour number and the group

theoretic factors defined as CF = N2
c −1
2Nc

and CA = Nc, Nc being the number

of colors in SU(Nc). ε originates from dimensional regulation, where loop

integrals that diverge at four dimensions are evaluated in d = 4−ε dimensions

instead. The divergences are thus captured in the ε parameter.

Working in the infrared sector on the other hand is significantly different

in a thermal and finite density environment. Gluons being massless suffer

divergences in long wavelengths while fermions even in massless limit are

safe in the infrared region. This comes from the effect of the Matsubara

frequencies in the denominators of sum-integrals, when finite temperatures

are considered. For fermions, there exists no zero mode, meaning that the

denominators are always weighted by some order of (πT )2 even in long

wavelengths k2 → 0 making thermal corrections that appear at order (gT )2

or (gµ)2 subleading in the weak coupling expansion. Gluons however must

be corrected with something called thermal (or effective) mass since bosonic

statistics have a n = 0 part in the thermal sums and the corrections thus

give a significant contribution. Physically this means that propagation in a

thermal medium comes at a cost of screening of the temporal gauge field;

to leading order the thermal mass originates from the longitudinal part of

the gluon polarization tensor, because transverse structure vanishes in the

infrared region, giving [17]

m2
eff = Π00(k0 = 0, k = −m2

eff) = g2
⎛
⎝
(Nc

3
+ Nf

6
)T 2 + 1

2π2
∑
f

µ2f
⎞
⎠
. (2.18)

18



Thermal mass for ghosts has no physical meaning as it rather corresponds

to a wave function normalization than a ”mass correction”.

The divergences manifesting in the infrared limit of gluonic momenta

pose a serious problem in the naive loop expansion of the equation of state.

A remedy for this obstacle is a method called resummation. General idea

behind it is to identify and sum over all divergent terms which then together

construct IR convergent quantities. The zero modes get corrected by the

thermal mass mentioned above yielding a finite result where the divergent

terms cancel order by order. Calculating every order in the loop expansion

becomes increasingly cumbersome as one proceeds to higher orders, so using

the perturbative approach is somewhat limited. Other methods labelled as

effective theories have been harnessed to treat the troublesome resummation

of the infrared sector revealing ever higher contributions. Next, a closer look

is given to two of such effective theories: dimensional reduction (DR) and

hard-thermal-loop effective theory.

2.4 Dimensional reduction

To capture the infrared effects causing trouble in perturbative QCD, in the

case of high temperatures, it is sufficient to reduce the theory into an effec-

tive description and analyse only the problematic static sector plagued with

the infrared divergences, i.e. soft contributions related to the Matsubara

zero modes k0 = 0. This formalism is called dimensional reduction, originat-

ing from the fact that when the soft contributions are considered, they do

not depend on the imaginary time argument τ , reducing the appearing inte-

grals to 3−2ε spatial dimensions (in dimensional regularization) [5]. At tree

level, this suggests a decoupling of the temporal gauge field (treated now as a

scalar field in adjoint representation) from the spatial gauge fields which ap-

pear now as a three dimensional Yang-Mills potential of the reduced theory

[18]. This reduction produces an effective theory called Electrostatic QCD
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(EQCD). The details of dimensional reduction are not described explicitly

here, because they are not needed in the calculations presented later, but

are useful to understand in relation to some of the results of quark matter

pressure.

Every thermal system possesses something referred to as a scale hierar-

chy. As an example, the temporal gauge field obtains the effective mass term

by propagating in the thermal medium, resulting in exponential (Debye)

screening, and effectively does not appear at long distances. This screen-

ing which produces the scales in thermal QCD consisting of bosonic and

fermionic fields can be found by studying the (corrected) poles in the prop-

agators. For fermions, at one-loop level, as there is no need for a mass

correction the leading contribution comes from the discrete sum and is πT ,

giving a scale referred to as a hard scale. For the static modes, the scale was

given earlier in terms of the effective mass, which was of order meff ∼ gT

which is known as the soft scale. The final scale would correspond to the

screening of zero-mode spatial gauge fields yielding the supersoft scale of

g2T . Thus the hierarchy can be stated as g2T ≪ gT ≪ πT . The supersoft

scale does not appear at one-loop level and in the present case is not neces-

sary anyway since only the EQCD sector is of interest here. If one wishes to

reduce the theory even further to study the g2T scale, it would correspond to

a pure three dimensional Yang-Mills theory, Magnetostatic QCD (MQCD).

To summarise the procedure, which can be applied to reduce 4D-QCD to

EQCD, more generally [19], [5]: first the ”unnecessary” degrees of freedom

corresponding to the hard scale are integrated out to form the effective

theory respecting all relevant symmetries (e.g. gauge, 3-dimensional rotation

and required discrete symmetries); then, Green’s functions determined from

the effective theory are matched (and subtracted from) to the ones calculated

with the full theory to obtain effective coupling and mass parameters, with

which the infrared infested parts should cancel; in the final step, having
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to deal with an infinite number of operators of increasing dimension, the

operators in the effective Lagrangian need to be truncated at the desired

order, producing an error to be evaluated by comparing the effect of the

first operator left out with the truncated theory. If after this operation the

IR divergences disappear and the truncation error is small relative to the

order of the observables in question, the effective theory can be deemed

successful.

As the main interest in this thesis is to study the pressure of quark

matter, it should be pointed out how it is defined in these effective theories.

To produce the full QCD pressure it is split into three parts that correspond

to the momentum scales defined above as [10]:

pQCD = p4d,naive + pEQCD + pMQCD. (2.19)

The first term on the right hand side is the pressure obtained from un-

resummed naive loop expansion of the full four dimensional theory. Next

in line is the full (also unresummed) EQCD effective theory result that is

calculated in the weak-coupling expansion, while the last term gives con-

tributions from the MQCD sector that appear only at higher orders and

need to be calculated via lattice field simulations. Together the combined

pressure yields an IR finite result.

As stated afore, this procedure requires high enough temperature to be

applicable. Nevertheless it is also useful concerning low-temperature quark

matter. The qluonic medium modifications appearing with the polarization

tensor are proportional to the thermal mass (2.18), so if the temperature of

quark matter satisfies T ≫meff being still relatively low, using dimensional

reduction is justified. This indeed is the case for phenomena emerging in neu-

tron star mergers where low-temperature nuclear matter, usually described

with zero-temperature approximations, heats up enough to be evaluated

with an effective theory [20]. In such a case, choosing the right tools can

save a lot of work. For example, the infrared sensitive soft sector can be split
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in two: static and non-static. The static sector can be efficiently treated in

EQCD and the non-static sector which would be MQCD, can actually be

evaluated more easily in the HTL framework.

2.5 Hard-Thermal-Loop effective theory

Hard thermal loops describe an infrared phenomenon where higher order

contributions in perturbative expansion actually give something propor-

tional to tree level amplitude, e.g. a loop correction of order g2 yielding

a result of order 1. Physically they originate from emissions and absorp-

tions of particles in the thermal medium appearing as fluctuations due to

high temperatures. A method called HTL power counting gives a tool to

conceptualise the issue. At one-loop level for the gluon two-point function

a general diagram imports a factor of g2 with external legs contributing an

external momentum dependency of 1/P 2. When integrating over the loop

momenta, the HTL contribution is obtained from the region where the in-

ternal momenta are said to be hard i.e. of order T , then calculating the

loop integral gives a factor proportional to T 2. Combining these together

one acquires a factor of g2T 2/P 2 times a tree level amplitude corresponding

to the same process [21]. The problem presents itself in the infrared region:

if the external momentum is soft (infrared sensitive), then P is of order gT

and the expansion parameter increases to be of O(1) implying a breakdown

of the perturbation series when a loop in fact yields a term proportional to

a tree level amplitude.

To overcome the apparent infrared problem, the HTL effective theory

needs resummation as well. To carry out the resummation, instead of bare

propagators and vertices, effective ones are used in a similar manner as

in regular perturbation theory. This concerns only situations where every

external leg in a vertex carries soft momentum. For propagators this means

that the effective propagator consists of the bare propagator plus all parts of
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the self energy tensor that contain a hard therman loop. In the same way, the

bare three- and four-gluon and quark-gluon vertices obtain HTL corrections

from one-loop insertions of hard thermal loops. To carry out the effective

contributions in a compact way, they can be gathered inside an effecive

action from which the effective propagators and vertices can be determined

like always. This is the HTL effective theory. One can go even further

and reorganize the QCD Lagrangian to include a HTL improvement term

and use it alongside the perturbative expansion to build HTL petrurbation

theory (in Minkowski space time for the time being) as [22]

L = LQCD + LHTL +∆LHTL, (2.20)

with

LHTL = −3

2
m2(1 − δ)Tr

⎡⎢⎢⎢⎢⎣
Gµα ⟨ yαyβ

(y ⋅D)2 ⟩
y

Gµβ

⎤⎥⎥⎥⎥⎦
. (2.21)

Here, D is the usual covariant derivative, the mass parameter m is the ther-

mal mass, δ plays the role of an expansion parameter taken to one (i.e. the

free limit when the improvement term vanishes from the original Lagrangian)

only after determining the observables, and y = (1, ŷ) is a light-like vector

with the angle brackets signalling an average over all directions of ŷ. This

improvement term is for gluon contributions only, a similar term must be

added if one is interested in quarks as well. Even though hard thermal loops

themselves are ultraviolet finite due to their origin from thermal (not quan-

tum) fluctuations [21], the HTL perturbation theory brings with it new UV

divergences [22] which must be accounted for with a counter-term ∆LHTL
which is a function of g and m2(1 − δ).

The HTL improvement term defines a self energy tensor for gluons, and

when resummed to the propagator, corrects the bare propagator into an
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effective HTL propagator as follows [23]:

Πµν(p) =m2 [ T µν(p,−p) − nµnν ] (2.22)

T µν(p,−p) = ⟨ yµyν p ⋅ n
p ⋅ y ⟩

y

(2.23)

with the tensor T µν(p,−p) defined for momenta satisfying p+q = 0. The self

energy tensor can then be separated into transverse and longitudinal parts

Πµν(p) = −ΠT (p)(gµν −
pµpν

p2
−
nµpn

ν
p

n2p
) −ΠL(p)

nµpn
ν
p

(n2p)2
, (2.24)

ΠT (p) =
1

d − 1
(δij − p̂ip̂j)Πij(p), (2.25)

ΠL(p) = −Π00(p). (2.26)

nµ = (1,0) represents the rest frame of the heath bath appearing from the

breaking of d + 1 dimensional symmetry to d dimensional rotational sym-

metry [5], and the vector nµp is defined as nµp = nµ − n⋅p
p2
pµ. With these

definitions the effective HTL gluon propagator in a general covariant gauge

has the form

∆µν(p) = − 1

p2 −ΠT (p)
(gµν − p

µpν

p2
−
nµpn

ν
p

n2p
)

+ 1

−n2pp2 +ΠL(p)
nµpn

ν
p − ρ

pµpν

(p2)2 . (2.27)

The vertex functions and the quark sector are left out of the discussion, but

they can be worked out in the same manner from the improvement term in

the Lagrangian, which for quarks must be extended to include a term with

the spinor fields. To describe imaginary time quantities one must make the

necessary conversions discussed previously, e.g. using the discrete Matsub-

ara frequencies, changing the metric to Euclidean and paying attention to

the temporal components as they were defined with a −i factor.

Using the HTL framework offers valuable insight to the quark matter

equation of state by capturing the problems of infrared sensitive areas into

a subtle implementation of perturbation theory and providing more accurate
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information about lower order contributions that are subject to said sensi-

tivities. Even though everything was presented in non-zero temperature,

hard thermal loops offer a valid effective theory also in the zero temperature

limit, where the hard momentum scales correspond to the chemical poten-

tial µ instead of T . In contrast to the dimensionally reduced approach, the

Matsubara zero-modes (ωn = 0) are not singled out in the gauge fields to

treat the infrared issues. All in all HTL effective theory and DR are very

different but together they complement the naive loop expansion rather well,

and lay a good groundwork to study the properties of quark matter in low

temperatures and high densities.
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3 State-of-the-art pressure of quark

matter

This chapter is dedicated to the review of state-of-the-art results for the cold

and cool quark matter pressure through the evaluation of the equations of

state implementing the tools provided in the previous chapter. The primary

objective is to introduce results for zero and low but finite temperatures in

the limit of all quark masses being zero. Also, the case of non-zero strange

quark mass is briefly discussed in the T = 0 sector. To demonstrate the value

of this highly theoretical investigation, the usage of quark matter EoSs is

presented in relation to astrophysical applications concerning properties of

neutron stars.

3.1 Pressure at zero temperature

This section consists of the T = 0 equation of state first for massless quarks

to O(g4), with an addition of one NNNLO (next-to-next-to-next-to-leading

order) term afterwards, and lastly visiting the work around non-zero strange

quark mass.

3.1.1 Leading order, NLO and NNLO contributions to cold

quark matter pressure

The cornerstone of the T = 0 EoS can be traced back to the result obtained

by Freedman and McLerran in their article [24] back in 1977. They applied

their work on the thermodynamic potential of relativistic electron gas to

strongly interacting matter of massless quarks up to and including O(g4)
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contributions. The connection between electron gas and quark matter serves

as a curiosity and a good starting point for the T = 0 EoS. At leading order,

transferring from electrons to quarks is fairly trivial since the corrections

differ only by summing over chemical potentials for all quark flavours, the

coupling constant and counting the colors as

Ωel(e0) = − 1

3π2
1

4
µ4el →

Ωq(g0) = − 1

3π2
1

4
∑
f

µ4fNc (3.1)

and (with e2 replaced with g2Tr[τατα], where τα are the SU(Nc) generators)

Ωel(e2) = 1

3π2
1

4
µ4el

α

π

3

2
→

Ωq(g2) = 1

π2
1

4
∑
f

µ4f
αs
π

(N2
c − 1), (3.2)

with α = e2/4π and αs = g2/4π.

Proceeding to higher orders in perturbation theory lacks the simplicity

of the leading order terms and in [24] some of the more complicated coef-

ficients required numerical evaluation. However, the full O(g4) result was

calculated analytically in [10], with comparisons to results for finite temper-

atures, which is the main part of this section.

To begin with, the evaluation of the EoS is performed using modified

minimal subtraction scheme (MS) and the scale parameter is introduced by

defining

∫
p
≡ ∫

ddp

(2π)d = Λ−2ε (e
γΛ̄2

4π
)
ε

∫
ddp

(2π)d , (3.3)

where Λ̄ is the MS scale, Λ the MS scale, γ the Euler-Mascheroni constant

and ε is the usual dimensional regularization parameter. Also the following

shorthand for the chemical potential sum is used:

∑
f

µ2 ≡ µ2. (3.4)

The finite temperature QGP pressure will not be discussed in great detail

here as it falls out of the area of interest of this section, but the conver-
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gence of low-temperature results will be shown as a difference of the finite

temperature and the T = 0 results. In the limit of large T /µ, where µ is

some configuration of chemical potentials (e.g. equal for all flavours), the

pressure is obtained through dimensional reduction as was shown in the pre-

vious chapter by splitting the pressure as in eq. (2.19), and evaluating it

using the full and effective theories respectively.

In the case of zero temperature, the calculation needs to be divided into

IR safe and IR divergent parts. The former corresponds to the free (O(g0))

potential of eq. (3.1) and a sum of two- and three-loop fermionic graphs

(giving also (3.2) at O(g2))

p1 ≡ −Ωfree + (Ia + Ib + Ic + Id + If + Ig + Ih)∣T=0. (3.5)

The I’s are related to the diagrams given in Fig. 1 of [10]. The calculations

are fully presented in appendices A-D in [10] and only a summary is given

below.

Complicated multi-loop diagrams can be simplified by expressing them

as combinations of known scalar integrals. This method is explained thor-

oughly in [25] where it is used for two- and three-loop gluonic vacuum di-

agrams (with µf = 0) by shifts of integration momenta and dividing com-

plicated integrands into several pieces to express them in terms of ”basic”

scalar integrals with known solutions. The procedure works for fermionic

diagrams as well, but one must be careful with the momentum shifts as the

temporal fermionic momenta already contain the chemical potential shift.

The I loop integrals of (3.5) are presented as products of master integrals

(see A.1-A.6 of [10]). The simplest of these are the bosonic and fermionic

one-loop integrals Inm and Ĩnm, which are defined as

Inm ≡ ⨋
P

(p0)n
(P 2)m (3.6)

Ĩnm ≡ ⨋
{P}

(p0)n
(P 2)m . (3.7)
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Working in zero temperature the sum-integrals transform into contour inte-

grals over the temporal components as was pointed out in chapter two. The

first diagram Ia is in fact rather straightforward as it is a combination of

the two integrals above

Ia = −(1 − ε)(N2
c − 1)∑

f

[Ĩ01 (Ĩ01 − 2I01)] , (3.8)

and yields in T = 0 the term (3.2) corresponding to g2.

From here onwards the diagrams and sum-integrals become increasingly

complex and their evaluation here is not of great importance. Generally,

one proceeds to separate the diverging part of the integrals and perform the

rest straight up in three dimensions while the ultraviolet behaviour needs

to be treated with dimensional regularization. The complete result for p1

comes as follows:

p1 =
1

4π2
∑
f

µ4f[
Nc

3
− dA (g(Λ̄)

4π
)
2

− dA(
2Nf

3ε
+ 2

3
(11Nc + 4Nf)ln

Λ̄

µf

+ 17

4

1

Nc
+ 1

36
(415 − 264ln2)Nc +

2

3
(5 − 4ln2)Nf)(g(Λ̄)

4π
)
4

]. (3.9)

Here dA = N2
c −1 and the scale dependency of the running coupling through

the renormalization group equation has been presented explicitly. The IR

divergent contributions originate from ring diagrams with an overall gluonic

loop momentum dressed with insertions of multiple fermion loops (shown

in Fig. 1e of [10]). A trick to simplify the ring diagrams is to divide the

fermion loop in the gluon self energy diagram to a vacuum (T = µf = 0) part

and a matter part (the vacuum part subtracted from the original loop).

Summing over all the IR divergent parts produces finite terms and at O(g4)

they present themselves from two cases: a gluon loop with one insertion

of vacuum and one of matter self energies, and a summation of all ring

diagrams with at least three insertions of the matter self energy part. These

diagrams are illustrated in Figure 4 of [10].
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The loop diagram corresponding to one vacuum and fermionic matter in-

sertion dubbed, I ′e, can be computed using a convenient form of the fermionic

part of the self energy tensor in Feynman gauge

(Πf
µν)ab(P ) = −2g2TF δ

ab(2Ĩ01δµν + (PµPν − P 2δµν)⨋
{P}

1

Q2(P +Q)2

− ⨋
{Q}

(2Q − P )µ(2Q − P )ν
Q2(Q − P )2 , (3.10)

where TF = Nf /2. From here one can extract the vacuum term by taking T

and µf to zero and the matter part by subtraction.

After this the computation ”dials down” to solving one integral in the

T = 0 limit for which, similar treatment as in the case of finite temperature

can be used. This yields the second part of the pressure:

p2 =
dANf

4π
∑
f

µ4f [
2

3ε
+ 4ln

Λ̄

µf
+ 52

9
− 4ln2](g(Λ̄)

4π
)
4

. (3.11)

The evaluation of the diagrams with multiple matter insertions, known as

the plasmon sum, is more complicated and rather enduring. The computa-

tion starts from dividing the vacuum subtracted polarization tensor to two

parts with corresponding orthonormal projection operators, and through

several auxiliary functions, integral formulas, residues and new variables

one is able to present the whole plasmon sum. To spare the reader (and the

writer), only the final result and a few explanations are given below.

The plasmon sum gives the following contribution:

p3 = −
dA
4π2

(µ2)2 (g(Λ̄)
4π

)
4

[4ln(g(Λ̄)
4π

)
2

− 22

3
+ 16

3
ln2(1 − ln2)

+ δ + 2π2

3
+ 16

3
ln2∑

f

µ4f

(µ2)2 +
F (µ)
(µ2)2 ], (3.12)

where a new function F (µ) is defined as

F (µ) = −2µ2∑
f

µ2f ln
µ2f

µ2
+ 2

3
∑
f>g

[(µf − µg)2ln
∣µ2f − µ2g ∣
µfµg

+ 4µfµg(µ2f + µ2g)ln
(µf + µg)2

µfµg
− (µ4f − µ4g)ln

µf

µg
]. (3.13)
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As can be seen, the function F (µ) depends on two different flavour

sums f and g of the chemical potentials which may seem peculiar at first.

This is an artefact of one part of the computation where logarithms that

contain flavour sums are expanded in terms of the coupling to O(g4) and

integrated over to produce terms that couple separate flavour sums together.

After this, when performing a leftover contour integration one must consider

two different ratios µ2f /µ2g > 1 and µ2f /µ2g < 1 which result in closing the

contour differently, and produce the above function [24]. The lone δ in the

p3 result contains a complicated integral that has proven to be very difficult

to evaluate in closed form [10] but has a numerical value of approximately

−0.8563832. Physically the most interesting thing in the plasmon sum is

that there is a term corresponding to g4lng2 which is absent in p1 and p2.

Per the discussion in the previous chapter, this term originates from the

resummation of individually IR divergent graphs that was needed to obtain

a finite result for the pressure, which could not have been done in the naive

loop expansion alone.

When combined together, the three parts produce the complete O(g4)

result for cold and dense quark matter with massless quarks. It can be

observed clearly that the UV divergences appearing as 1/ε in p1 and p2

cancel as is expected for a physical observable.

In figure 3.1 below, results for QGP pressure obtained with dimensional

reduction are plotted alongside the above cold quark matter pressure. The

figure was plotted for two massless quarks and three colors with the renor-

malization scale defined as Λ̄ = 2π
√
T 2 + µ2/2π2, and the critical tempera-

ture with respect to the MS renormalization point ΛMS is defined for two

quark flavours as Tc/ΛMS = 0.487 ± 0.023, with the error sourcing from the

definition of ΛMS and the extrapolation from measurements made in [26].

It is evident that the difference of low-temperature lines approaches the one

of zero-temperature (P − PF-McL → 0) suggesting that the results describe
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Figure 3.1: The difference of finite and zero-temperature pressures (F-McL

for T = 0) as a function of the chemical potential configuration µ normalized

with the critical deconfinement temperature Tc [10].

well the deconfined phase at higher chemical potential, but as the author

pointed out, one should be careful when assessing applicability, due to the

fact that dimensional reduction is not very reliable in low temperatures,

as can be seen from the gap at lower temperatures from logarithmic di-

vergences, and that the results were analysed only with one configuration

of chemical potentials. Nevertheless, the main point of this section was to

study the zero-temperature pressure and for that matter the subtleties of

the effective theory are not of great concern. Still the comparison has proved

somewhat enlightening and serves a purpose to underlay the subject of cool

quark matter pressure, a topic to be discussed later.
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3.1.2 Leading logarithm in NNNLO pressure at T=0

For a long time equations (3.9), (3.12) and (3.13) contained the only pertur-

bative orders describing cold quark matter pressure. This changed recently

after the coefficient for the leading logarithmic contribution of order g6ln2g2

was calculated in [8] using the methodology of HTL-resummation. The co-

efficient was calculated in a similar T = 0 setting of massless quarks with the

exception of simplifying the procedure by assuming the individual chemical

potentials to be equal (µu = µd = µs = µB/3) with the subscript B referring

to baryon chemical potential, which is a sufficient approximation for mass-

less quarks. To study other chemical potential configurations the result can

be generalized to include flavour sums without much effort. The pressure

for three colors and flavours up to and including O(g6) contributions can

be presented with numerical coefficients as a sum of the result from the

previous subsection and NNNLO terms as

p ≃ 3(µB/3)4
4π2

[1 − 0.636620αs − 0.303964α2
s lnαs − (0.874355

+ 0.911891 ln
Λ̄

µB/3)α2
s] + c3,2α3

s ln2 αs + c3,1α3
s lnαs + c3,0α3

s, (3.14)

where instead of g2/4π, αs was used. The last three terms contain the

new coefficients c3,i, and the new coefficient that was computed in [8] is

c3,2. Pictorially the HTL-resummed loops can be represented as in figure

3.2 below. The double gluonic lines imply the resummed propagators and

vertices; remembering the discussion in chapter two, ghost vertices do not

require resummation as the (semi-)soft momenta occupy only the gluonic

lines. Also, one should note the absence of fermion loop diagrams, which

follows from the fact that (at least at T = 0) fermionic lines contribute to

the analytic expansion in αs.

As was shown previously, the logarithmic contributions arise in the soft

IR sensitive regions, which is also the case with the new higher order terms.

In fact, logarithms containing αs appear when a diagram has integrals where
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+ +

Figure 3.2: Two-loop HTL contribution to the T = 0 equation of state [8].

In the first two diagrams the momenta are assigned to the propagators as

P +Q, P and Q, while in the last there are only P and Q.

the loop momentum is said to be semisoft. The semisoft scale is defined at

zero temperature to be α
1/2
s µB ≪ P ≪ µB, which brings with it a useful

tool. Being much smaller than the hard scale µB it allows the use of HTL

resummed diagrams, but also being larger than the soft scale α
1/2
s µB one

can use an expansion of self-energy insertions that appear in the said re-

summed diagrams. Another simplification for finding the desired logarithm

comes from power counting. Introducing a new loop with soft momentum

to the diagram (already containing one αs) brings a contribution of order

αs, meaning that when the term that one is after contributes with α3
s ln2 α,

one needs only to consider a case of two separate momenta. Using the ar-

gument made about the semisoft scale, the resummed IR sensitive part of

the pressure can be cut to four pieces corresponding to the different regions

of the momenta. When both momenta are in the hard region, the pressure

can be computed from loop expansion; when both are in the soft region,

only the HTL-resummed diagrams need to be treated; and in between lies

the mixed region, where one momentum is soft and the other is hard, where

both need to be treated in either the loop expansion or the HTL approach.

This way, the pressure can be defined for two momenta P and Q with the

corresponding semisoft scales ΛP,Q as
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presIR, 2 = p
loop,P; loop,Q
IR, 2 ({ΛP ,∞},{ΛQ,∞})

+ pres,P; loop,QIR, 2 ({0,ΛP },{ΛQ,∞})

+ ploop,P; res,QIR, 2 ({ΛP ,∞},{0,ΛQ})

+ pres,P; res,QIR, 2 ({0,ΛP },{0,ΛQ}). (3.15)

In [8] the leading NNNLO logarithm was calculated from the final part where

one can fully apply the HTL resummation.

To proceed with the computation, the diagrams can be worked out in the

usual way, with the exception of using HTL-propagators (given in (2.27))

and -vertices. The next step is to reduce the expressions into scalar integrals

by working out the Lorentz contractions, which for HTL-propagators and -

vertex-functions includes working with the HTL-correction tensors for three

and four gluons (in analogy of (2.23)) using Ward identities generalized for

the HTL effective theory [27]. After the reduction to scalar sum-integrals

(and in zero temperature the sums are taken to continuum), one may employ

an expansion of the self-energy insertions due to the semisoft scales of the

loops to obtain a series in the asymptotic HTL-mass parameter m2
∞. The

asymptotic mass is related to the effective Debye screening mass given in

(2.18) by m2
∞ = m2

eff /2 (in three spatial dimensions, generally 2 → d − 1),

and it originates from the transverse gluon dispersion relation ω2 = k2 +

ΠT (ω2, k2), when the polarization tensor is evaluated in the limit of hard

momentum [28].

The term corresponding to the leading logarithmic contribution is of

O(m4
∞). Using separate cutoffs α

1/2
s µB ≪ ΛQ,P1 ≪ ΛQ,P2 ≪ µB for the two

loop-integrals and expanding the integrand around P /Q = 0 and Q/P = 0

separately, the double logarithm surfaces when the constant terms of the

expansions are averaged and ΛQ,Pi are given in terms of the soft and hard

scales respectively. The full computational details are presented in [27] (for
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finite temperatures) and in the appendix of [8]. The coefficient for the

α3
s ln2 αs term turns out to be

c3,2 = −
11

48

Ncda
(2π)3 (µ

2
BNf

9π
)
2

, (3.16)

where the latter part in brackets comes from m4
∞, and for three-color three-

flavour case takes a numerical value of

c3,2 =
3(µB/3)4

4π2
[−0.266075], (3.17)

using the leading order free pressure as a coefficient as in equation (3.14).

Looking at figure 3.3, where the above result is compared with the pre-

vious NLO and NNLO T = 0 results using renormalization scale Λ̄ = 2µB/3

and a MS renormalization point ΛMS = 0.378 from the definition of the run-

ning coupling αs [2], it is evident that the partial NNNLO result does not

differ greatly from the NNLO pressure. This convergence suggests that the

error of the previous perturbative results is indeed small and thus, as will

be inspected later, the use of the perturbation theory EoS becomes more

valid in the area of study focusing on neutron stars, as the smallness of the

error in the EoS reduces its uncertainties and thus increases the accuracy of

matching cold quark matter and neutron star matter EoSs [15].

3.1.3 A brief discussion of non-zero strange quark mass in

the cold quark matter EoS

All the previous results were obtained in the limit of all quark masses being

zero, for Nf = 3. The deconfinement energy, i.e. the energy density required

to start the confinement-deconfinement phase transition, is around 1 GeV,

and for three quark flavours in a cold and dense system it is distributed

equally among u, d and s quark chemical potentials, giving the prospect of

strange quark production and chemical equilibrium through weak interaction

processes since the strange quark mass falls below the third of the total

36



 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  3  4  5  6

p
/p

L
O

µB [GeV]

Cold Dense QCD Pressure from pQCD

NLO

NNLO

partial N
3
LO

Figure 3.3: A comparison of NLO, NNLO and the double logarithm term

in the NNNLO pressures, normalized to the leading order free pressure. [8]

chemical potential assigned to it [4]. From this follows that it is sensible to

study cold quark matter also in a setting of one massive and two massless

(the u and d quark masses are negligible with respect to ms) quarks. To

strengthen the claim, it has been shown that even at one-loop order in the

weak coupling expansion the addition of a non-zero strange quark mass

decreases the grand potential by approximately 15% for a fixed mass of

0.1 GeV and a further 8% when using a running mass parameter from the

renormalization group equations [29]. This estimation was done for µ = 0.6

GeV and for one massive quark flavour, so the setup does not correspond

to cold quark matter, but illustrates the importance of adding a massive

quark. The sizeable contribution from non-zero ms is not limited only to

better accuracy in the EoS, but also sets a possibility of stable strange quark

ground state. This prospect was studied in [2], but no conclusive evidence

could be provided for or against.

Computationally, the strange quark mass brings its own complexities

too. To start with, the determination of the grand potential has to be

modified to include the new mass parameter, but luckily one does not have
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to perform the whole calculation from the beginning. Up to order α2
s the

grand potential can be split into eight parts Ω = Ωm=0+Ωm+Ωx
VM+Ωring [2].

Here the first term corresponds to a sum of a single quark loop, two- and

three-loop two-gluon irreducible vacuum diagrams and a gluon loop with

one insertion of vacuum polarization diagram and one insertion of vacuum

subtracted matter polarization diagram with zero quark masses and the

zero-mass limit of the polarization tensor. The second term is identical, but

has to be calculated with a non-zero strange quark mass. The third part

corresponds to the previous vacuum-matter gluon loop, but containing a

matter polarization tensor in the massless limit and a cross term of massive

and massless vacuum quark loop; this part exists only to make a division

of the full ΩVM to massless and massive parts. Finally, the last bit is the

ring sum, also defined previously, of a gluon loop with at least two matter

polarization diagram insertions, to be computed with a massive quark. The

reason for this separation is that the massless part can be taken directly

from the previous results of section 3.1.1, leaving the remaining terms to be

computed.

Another detail that must be taken into account, is the determination

of thermodynamic quantities such as pressure and quark number densities.

It should be noted that even though one can extract the pressure from the

grand potential as P = −Ω/V , when considering physical systems such as

compact stars the full structure of the EoS requires stricter thermodynamic

consistency set by the conditions of chemical equilibrium and local charge

neutrality. These physical conditions imply that the equation ndµ = V dP

does not hold because the full number density n contains higher order terms

of αs, appearing from derivatives e.g. ∂/∂µ(α2
s), than the pressure when it

is defined through the equation above. This is not just a massive quark issue

as it emerges in the massless case too, but the constraints that arise from

charge neutrality and chemical equilibrium for one massive quark, make the
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determination of the number density and hence the pressure, as it is defined

by integration from the number density, even more complicated. Neverthe-

less, inspecting the EoS without dwelling on the computational details any

further reveals a smooth convergence between full number densities for one

massive and two massless and the cases two and three massless quarks, as

shown in figure 3.4.

What is evident in the figure is that at higher chemical potentials the

strange quark mass becomes more and more irrelevant as the uncertainty

band overlaps for the one of three massless quarks. Also, in the lower chem-

ical potential region one sees an overlap with the massless two-flavour quark

case signalling the lack of energy to produce strange quarks altogether.

What should be noted about chemical potential below 1 GeV is that it cor-

responds to the area of the confined phase where weak coupling expansions
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loses its predictive power and also does not describe the phase structure of

deconfinement accurately.

3.2 Pressure at low but finite temperatures

An attempt to replicate the previous calculations to include non-vanishing

temperatures provides a greater challenge as one has to consider thermal

sum-integrals without the simplifying zero-temperature limit. In an earlier

work [30], deconfined QCD matter pressure was evaluated at arbitrary µ and

T in a weak coupling expansion by performing the necessary resummations

using full theory self energies without any effective theory simplifications.

This produced quite heavy calculations and numerical results after a lot

of work, but also resulted in smooth interpolation between different limits

for µ ant T acquired from effective theories. A somewhat more effortless

method to study the finite-temperature sector relies on the notion that only

soft contributions to the pressure require resummation. This was presented

later in [20] and its results are collected in this section.

The starting point for the evaluation lies on a seemingly trivial relation

that despite of its outlook simplifies the task considerably. To separate the

soft contributions one can add and subtract from the full resummed (res)

QCD pressure presQCD the soft part, and end up with a difference presQCD − pressoft

which contains inherently only hard contributions. The appearance of only

hard momenta means that both of these terms can be evaluated directly in

the naive loop expansion, leaving the full pressure in the following form:

presQCD = pnaiveQCD − pnaivesoft + pressoft. (3.18)

Furthermore, as one is always inclined to do as little work as possible, the soft

sector can be split up between the static (Matsubara zero-mode) and non-

static sectors. This division brings out the two effective theories that were

discussed in the previous chapter; the static sector is treated in dimensional
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reduction while the non-static sector with momenta k being of order meff is

handled in the HTL-framework. This yields the pressure in the simple form

of

pQCD = pnaiveQCD + presDR − pnaiveDR + presHTL − pnaiveHTL , (3.19)

where the two differences labelled as pcorr.DR and pcorr.HTL (implying the correc-

tions to DR and HTL pressures) are UV finite and can be evaluated using

previously attained results and techniques.

The naive loop expansion pressure and the resummed dimensional re-

duction term can be acquired straight away from [10] similarly as the T = 0

result was, but now the matching coefficients are evaluated in finite temper-

ature. The naive pressure up to O(α4
s) reads

pnaiveQCD(T,µ)/T = T 3 [αE1 + g2αE2 +
g4

(4π)2αE3] , (3.20)

with the first two matching coefficients being (αE3 is left to be read from

eq. (3.16) of [10] as it is rather space consuming)

αE1 =
π2

45Nf
∑
f

[dA + (7

4
+ 30µ̄2 + 60µ̄4)dF ] (3.21)

αE2 = −
dA

144Nf
∑
f

[CA +
TF
2

(1 + 12µ̄2)(5 + 12µ̄2)] . (3.22)

Here a new dimensionless variable µ̄ ≡ µ/(2πT ) was utilised, and a new

group theoretic factor dF is defined by dF ≡ δii = NcNf .

The UV finiteness of the function pcorr.DR implies the cancellation of 1/ε

poles of the two terms it contains. As it happens, the naive DR pressure

vanishes in dimensional regularization, with the exception of the UV and IR

poles, because it only contains integrals with no scales. With the cancellation

of the UV poles, the only pole in the pressure is an IR pole, which is also

regulated by 1/ε (and is equal to the UV poles with an opposite sign). This

leaves the resummed DR term to represent the DR pressure correction by
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itself. The DR pressure correction then reads

pcorr.DR /T = presDR/T = dA
12π

m3
eff

+ dACA(4π)2 g
2
Em

2
eff [−

1

4ε
− 1

3
− ln

Λ̄

2meff
]

+ dAC
2
A

(4π)3 g
4
Emeff [−

89

24
− π

2

6
+ 11

6
ln 2] . (3.23)

The effective mass is the one introduced earlier and the effective coupling

comes from the aforementioned EQCD with the form g2E = g2T +O(g4).

The term presHTL is obtainable from a ring diagram dressed with self energy

insertions as before, but now the resummation is performed in the HTL

framework outlined earlier, implying the use of specific HTL self energy

tensors. This results in a sum-integral over the non-static Matsubara modes

containing logarithms of the self energy that need to be evaluated directly,

rather than expanding the logarithms as can be done when evaluating the

naive HTL counterpart. Only the result will be presented below, as the

calculation of pcorr.HTL will be carried out in detail in chapter four. The HTL

pressure sums up to be

pcorr.HTL =
dAm

4
eff

256π2
fHTL(T /meff). (3.24)

The function fHTL(T /meff) has well defined limits for T → 0 and T → ∞

that can be applied in the appropriate cases.

When studying the full pQCD result in the limits of high and low tem-

peratures, a couple things stand out. First, in the high temperature limit

T ≫ meff , the fHTL function behaves as O(m2
eff /T 2) and dies out very

rapidly with respect to the naive and DR pressures, and the pressure pro-

duces a known high temperature limit of [10]. Second, the low temperature

limit T → 0 converges smoothly to the previous T = 0 result as the DR pres-

sure approaches zero faster and the corresponding limit of fHTL contains

a logarithm of T that together with the coefficient (m2
eff)2 cancels simi-

lar logarithmic terms from the zero-temperature limit of the αE3 matching
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Figure 3.5: Pressure of cool quark matter as a function of baryon chemi-

cal potential, with the uncertainty band produced by variation of Λ̄. The

previous zero-temperature result is illustrated as the dashed blue line. [20]

coefficient. This behaviour serves as a good pointer that the combined effec-

tive theory approach is sufficient to describe the low-temperature and high

density quark matter equation of state.

In Fig. 3.5 we present the cool quark matter EoS at different tempera-

tures ranging from 50 to 200 MeV as a function of baryon chemical potential

normalized to the T = 0 free pressure (SB indicating the Stefan-Boltzmann

pressure which is taken at T → 0 limit). The difficulty of choosing the

renormalization scale was resolved in [20] by using a root mean square of

the scales corresponding to the zero-temperature and zero chemical poten-

tial scales, giving Λ̄ =
√

(0.723 × 4πT )2 + (2µB/3)2, with a two-loop running

coupling αs(Λ̄) and the QCD renormalization point ΛQCD = 378 MeV. It is

evident from the graph that smaller temperatures start overlapping with the

T = 0 result, as is the range of applicability of the weak coupling expansion

seen as the blow-up of the uncertainty band when advancing towards the

deconfinement chemical potential near µB = 1 GeV.
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3.3 The role of the quark matter EoS in neutron

stars

Before continuing to the HTL calculation of the next chapter, it is useful to

take a quick look at the uses of the previously presented EoS results in real

applications. To find systems with as high densities as assumed in the above

computations one needs to look no further than space. While other compact

systems such as stable strange quark stars that can be described with quark

matter EoS may exist, the only direct astrophysical data to compare the

EoS with corresponds presumably to neutron stars (could also be quark

stars), obtained most recently from gravitational waves emitted by a binary

neutron star (BNS) inspiral, detected by the LIGO-Virgo collaboration in

2017 [31]. The first indirect detection of gravitational waves from a BNS

system dates back to 1982, when the energy loss of a BNS orbit was observed

suggesting GW emission [32].

As stated previously, the perturbative QCD EoS can be applied only

at high densities (at zero or low temperature), meaning that the earlier

results cannot be applied directly to describe the full neutron star EoS. The

other end of the density scale is also well determined by an effective theory

called chiral effective theory (CET). CET is a low energy effective theory

for very low densities where the degrees of freedom are pions and nucleons,

in a setting where the chiral symmetry is spontaneously broken, yielding

the framework of chiral perturbation theory with an expansion parameter

mπ/pF , where mπ is the pion mass and pF the Fermi momentum [33]. The

CET approach has been successfully used to achieve NNNLO results of low

density nuclear matter energy [34]. Between the two extremes of nuclear

and quark matter lies the elusive region of neutron star matter. The reason

one is interested in the two boundaries is that using the known results for

the two EoSs, one can interpolate between them to constrain the realistic

44



neutron star EoS by matching.

The neutron star matter EoS is typically approximated by a polytropic

relation between pressure and number density, using small density intervals,

assuming that [15]

pi(n) = κinγi , (3.25)

where κi are constants, n is the baryon density (number of baryons per

volume) and γi are polytropic indices. The subscript i denotes dividing the

EoS into intervals in the baryon chemical potential µi < µB < µi+1, with

the requirement that pressure and energy density are continuous when the

intervals are matched. Uniformly varying the parameters γi and µi produce

an ensemble of EoSs depending on the choice of the constraints and limits

employed.

One way to utilise the gravitational wave data is by calculating con-

straints for neutron stars through a dimensionless constant called tidal de-

formability λ. In the inspiral phase of a BNS system, both stars experience

the effect of tidal forces where they exert a quadrupolar tidal field Eij to the

other, which in turn induces a quadrupole moment Qij on the star. Tidal

deformability is defined as a constant between these two tidal effects as [35]

Eij = −λQij . (3.26)

The coefficient λ on the other hand, is related to the radii of the stars via

[15]

λi =
2

3
k
(i)
2 [c

2

G

Ri
Mi

]
5

, (3.27)

where k
(i)
2 is a constant called Love number (of the second kind) and Ri and

Mi are the radii and masses of the stars (G is of course the gravitational

constant and c the speed of light). The original analysis of the LIGO-Virgo

data reports an upper bound for λ to be 800 with 90% confidence, which

serves as an upper bound for the mass-radius curves and conveniently drops

EoSs that would support stars that go over the boundary. This limit was
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later dropped to 580 with the same confidence [36], but this section follows

the analysis with the looser constraint of 800.

Neutron star masses vary typically from one to two solar masses (M⊙)

[37]. The mass distribution data gives another constraint for the EoS en-

semble, namely the maximum mass limit of neutron stars. A good estimate

from an earlier study for the lower limit for Mmax comes from observa-

tions of a binary system of a radio pulsar NS with a mass of 1.90 − 2.18M⊙

(with 99.73% confidence) [38] and a white dwarf, giving a boundary of

Mmax > 2M⊙ [15]. Later analyses of the recent LIGO-Virgo GW data,

combined with data from gamma ray bursts of the same merger and the

lower limit from the radio pulsar observations, produced an estimate of

2.01+0.04−0.04 < MTOV/M⊙ < 2.16+0.17−0.15. MTOV is the Tolman-Oppenheimer-

Volkoff limit for non-rotating cold NSs related to the maximum mass of

uniformly rotating NSs by Mmax = 1.20+0.02−0.05MTOV [39]. Using these mass

limits helps to remove EoSs that cannot support stars with high enough

masses from the ensemble.

With these observational constraints cutting out unphysical EoSs, the

matching process (outlined in [15] and [40]) can be performed with increased

accuracy. Starting from the low density EoS from CET up to a number

density of n = 1.1n0 where n0 denotes the nuclear saturation density, one

can use either a soft or stiff EoS (the NNNLO result from [34]), meaning a

lower or an upper limit of the pressure at that fixed number density. This

EoS is known with ±24% accuracy, which suggests using a cold quark matter

EoS with the same uncertainty as an end point. This is achieved when the

baryon chemical potential is around 2.6 GeV, and the polytropic pressure

is then interpolated between these limits. From the point of view of this

thesis, the most interesting part of the matching process is the end point

of the interpolation. The studies mentioned above used the EoS from [2],

where the strange quark mass was also taken into account, in the form of
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a fitting function depending on chemical potential and the renormalization

scale with numerical coefficients. The renormalization scale is implemented

as a dimensionless parameter defined as X = 3Λ̄/µB and it is varied in a scale

of [1,4]. This shows the power of employing a high density quark matter

limit, since one can discard all EoSs that cannot be matched to any value

of X at µB = 2.6 GeV. After all the possible EoSs are interpolated, a final

physical constraint is used; all the EoSs in the ensemble must satisfy c2s < 1

as the speed of sound cannot exceed the speed of light, i.e. all superluminal

EoSs can be kicked out of the family.

The results of this process are depicted in Figure 3.6 as a plot of pressure

with respect to energy density using quadrutropic and tritropic (smaller

picture) pressure. Here, the tidal deformability and mass constraints are

implemented in the color coding as follows: the cyan region corresponds

to EoSs that cannot support stars over 2M⊙, the green region is for tidal

deformabilities (calculated with M = 1.4M⊙) λ < 400, the violet region for

400 < λ < 800 and the red region for λ > 800. The red region can be excluded

with 90% credence as was stated before. The black dashed lines enforce the

further mass limit of Mmax < 2.16M⊙. The blue and orange areas correspond

to the CET and cold quark matter EoSs respectively. Now that the EoSs

are under control, the astrophysical quantities of interest, namely the mass-

radius curves of neutron stars, can be obtained from TOV equations in

general relativity [2]

dM(r) = 4πr2ε(r)dr,

dP (r) = −G(P (r) + ε(r)(M(r) + 4πr3P (r))
r(r − 2GM(r)) . (3.28)

For neutron stars one can use the allowed EoS ensemble determined above

which is inserted through energy density ε(r), and the pressure is determined

by choosing a central value P at the centre of the star and integrating from

r = 0 to the surface where the pressure tends to zero. The mass-radius clouds
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Figure 3.6: Quadru- and tritropic pressure ensembles with respect to energy

density. Explanations are offered in the main text. [15]

for the polytropic EoS ensemble can be found in Fig. 1 of [15].
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4 First non-analytic terms at low

T: HTL ring sum

Non-analytic contributions, in terms of the coupling constant, start appear-

ing in the pressure when the resummation of infrared contributions is taken

into account. A glimpse of this was seen in the zero-temperature plasmon

sum of section 3.1 which produced a logarithmic contribution of g4 ln(g).

At low temperatures, the first non-analytic terms can be extracted from the

effective HTL treatment of the non-static Matsubara modes, following the

procedure of section 3.2. The leading order non-analytic contribution can be

expressed as an HTL ring sum, where the correction to the gluon propaga-

tor is derived from the HTL improvement term in the Lagrangian, given in

section 2.5. Taking only the non-static terms and simplifying the calculation

a bit by subtracting the pressure of a free massless boson Ω0 = ⨋K log[K2]

as a counter-term, the starting point of the calculation is the following [20]

presHTL = −(d − 1)dA
2

⨋
′

K
log [1 + ΠT

K2
]

− dA
2
⨋

′

K
log [1 + ΠL

K2
] . (4.1)

The transverse and longitudinal self energy functions follow from the cor-

rected inverse propagator after the HTL self energy has been separated into

the corresponding parts by imposing rotational symmetry and Ward identity

[22]. The functions are defined in three spatial dimensions by

ΠT

K2
= 1

2

m2

ω2
n + k2

− m2

2k2
(1 − iωn

2k
log [ iωn + k

iωn − k
]) (4.2)

ΠL

K2
= m

2

k2
(1 − iωn

2k
log [ iωn + k

iωn − k
]) , (4.3)
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where m is the asymptotic HTL mass related to the effective mass meff .

The primes introduced in the sum-integrals imply that the zero-mode is left

out, which enables one to write them as

⨋
′

K
log [1 + ΠT

K2
] = ⨋

K
log [1 + ΠT

K2
] − T ∫

k
log [1 + ΠT (ωn = 0)

K2
]

= ⨋
K

log [1 + ΠT

K2
] − 0,

⨋
′

K
log [1 + ΠL

K2
] = ⨋

K
log [1 + ΠL

K2
] − T ∫

k
log [1 + ΠL(ωn = 0)

K2
]

= ⨋
K

log [1 + ΠL

K2
] − T ∫

k
log [1 + m

2

k2
] .

Starting from the transverse term, the sum-integral can be transformed into

a contour integral with the help of the Bose distribution function nB(ωn) =

(eiβωn−1)−1, and taking ω to the real axis by a change of variables ωn → −iω.

This yields,

⨋
K

log [1 + ΠT

K2
] = 1

2πi
∫
k
∮
C
dωlog [1 + ΠT (−iω)

K2
]nB(−iω). (4.4)

The contour C encloses the poles ωn = 2πnT of nB on the imaginary axis.

The logarithm has branch cuts following from the quasiparticle dispersion

relation −ω2 + k2 + ΠT (ω) = 0 when ω = ±ωT , due to ω2
T − k2 = ΠT (ωT ),

with the self energy taking the role of quasiparticle mass, and at w = ±k

which are related to Landau damping, which means that when spacelike

gauge fields propagate in the plasma they lose energy when scattering with

hard particles. At this point, the subtraction of Ω0 pays off because the

logarithm approaches zero when ω is taken to infinity. This is convenient

because now the contour that wraps the poles of nB can be deformed to

enclose the branch cuts on the real axis ranging from ωT → −k → k → ωT ,

instead of three separate regions from −ωT → −∞, −k → k and ωT →∞. As

a result the contour consists of eight pieces (integrating clockwise):

∮
C
→ ∫

−k+iε

−ωT+iε
+∫

k+iε

−k+iε
+∫

ωT+iε

k+iε
+∫

γ1
+∫

k−iε

ωT−iε
+∫

−k−iε

k−iε
+∫

−ωT−iε

−k−iε
+∫

γ2
.
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The γ contours represent integrating a half circle with a radius of ε which

both tend to zero when the limit ε → 0 is taken; by the ML inequality,

which states that ∣ ∫γ f(z)dz∣ ≤ Ml(γ) where l is the arc length of γ and

M = max∣f(z)∣z∈γ , the upper limit of the contour integral behaves as ε times

contributions from the integrand. The quasiparticle and Landau damping

parts can be studied separately, but first a few notions about the integrand.

The function inside the logarithm is now

f(ω) = 1 + ΠT (−iω)
K2

= 1 − 1

2

m2

ω2 − k2 −
m2

2k2
(1 − ω

2k
log [ω + k

ω − k ]) .

This function is symmetric in ω → −ω as the latter part with the logarithm

transforms as

−(−ω)
2k

log [−ω + k−ω − k ] = −
ω

2k
log [−1

−1

ω − k
ω + k ]

−1

= − ω
2k

log [ω + k
ω − k ] .

In the quasiparticle region (ωT > ∣ω∣ > k) f(ω) is negative and thus the

logarithm has a discontinuity which allows it to be forced to the principal

branch (−π < arg(f(ω)) ≤ π) with the imaginary part approaching ±iπ when

the limit ±iε→ 0 is taken. In the Landau damping part, on the other hand,

where ∣ω∣ < k and

f(ω) = 1 + 1

2

m2

k2 − ω2
− m2

2k2
(1 − ω

2k
log [ω + k

ω − k ]) ,

such a luxury is out of the question. Another useful identity should also be

pointed out:

nB(−ω) = 1

e−βω − 1
= eβω

1 − eβω = e
βω − 1 + 1

1 − eβω = −1 − nB(ω).

With these definitions in mind, one is well equipped to tackle the quasipar-

ticle contour, which when added up gives:

∫
−k+iε

−ωT+iε
log[f(ω)]nB(ω) + ∫

ωT+iε

k+iε
log[f(ω)]nB(ω)

+ ∫
k−iε

ωT−iε
log[f(ω)]nB(ω) + ∫

−ωT−iε

−k−iε
log[f(ω)]nB(ω).
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Then, taking ω to the negative real axis in the first and last terms and

swapping the limits in first and third gives

∫
ωT−iε

k−iε
log[f(ω)](−1 − nB(ω)) + ∫

ωT+iε

k+iε
log[f(ω)]nB(ω)

−∫
ωT−iε

k−iε
log[f(ω)]nB(ω) − ∫

ωT+iε

k+iε
log[f(ω)](−1 − nB(ω)),

after which the terms with ±iε can be combined and ε taken to zero to

produce:

− ∫
ωT−iε

k−iε
log[f(ω)](1 + 2nB(ω)) + ∫

ωT+iε

k+iε
log[f(ω)](1 + 2nB(ω))

= −∫
ωT

k
[(log ∣f(ω)∣ − iπ) + (log ∣f(ω)∣ + iπ)](1 + 2nB(ω))

= 2πi∫
ωT

k
dω(1 + 2nB(ω)) = 4πi [T log

1 − e−βωT
1 − e−βk + 1

2
(ωT − k)] . (4.5)

For the Landau damping contribution, one has the two terms:

∫
k+iε

−k+iε
log[f(ω)]nB(ω) + ∫

−k−iε

k−iε
log[f(ω)]nB(ω)

= ∫
k+iε

−k+iε
log[f(ω)]nB(ω) − ∫

k+iε

−k+iε
log[f(ω)](−1 − nB(ω))

= ∫
k+iε

−k+iε
log[f(ω)](1 + 2nB(ω))

= ∫
0

−k+iε
log[f(ω)](1 + 2nB(ω)) + ∫

k+iε

0
log[f(ω)](1 + 2nB(ω))

= ∫
k−iε

0
log[f(ω)](1 − 2(1 + nB(ω))) + ∫

k+iε

0
log[f(ω)](1 + 2nB(ω))

= −∫
k

0
(Re log[f(ω)] − iIm log[f(ω)]) (1 + 2nB(ω))

+ ∫
k

0
(Re log[f(ω)] + iIm log[f(ω)]) (1 + 2nB(ω)).

With the cancellation of the real parts of the logarithm, the result can be

written into a more compact form:

−2i∫
k

0
dωφT (1 + 2nB(ω)), (4.6)

with the angle φT = −Im log[f(ω)].
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Combining the two results (4.5) and (4.6) the contour integral defined

in (4.4) takes the form:

⨋
K

log [1 + ΠT

K2
] = 1

2πi
∫
k
∮
C
dωlog [1 + ΠT (−iω)

K2
]nB(−iω)

= 2∫
k
[T log

1 − e−βωT
1 − e−βk + 1

2
(ωT − k)] −

1

π
∫
k
∫

k

0
dωφT (1 + 2nB(ω)). (4.7)

The procedure for the longitudinal part is similar, with the exception of the

zero-mode subtraction term, and yields:

⨋
K

log [1 + ΠL

K2
] =2∫

k
[T log

1 − e−βωL
1 − e−βk + 1

2
(ωL − k) −

T

2
log(1 + m

2

k2
)]

− 1

π
∫
k
∫

k

0
dωφL(1 + 2nB(ω)), (4.8)

with φL defined the same way as its transverse counterpart.

Having obtained the resummed HTL pressure, the next step is to make

the integrals ultraviolet finite. As was explained in the previous chapter,

this can be achieved by subtracting the naive HTL pressure to correct order

from the resummed result. The naive pressure can be acquired by expanding

the grand potential logarithms in terms of the self energy functions as [20]:

pnaiveHTL = −dA⨋
′

K
[d − 1

2

ΠT

K2
+ 1

2

ΠL

K2
− 1

2
(d − 1

2

Π2
T

(K2)2 +
1

2

Π2
L

(K2)2)] +O(g6).

(4.9)

The evaluation of equations (4.7)-(4.9) put together needs to be performed

numerically using e.g. Mathematica, which will be left out here as it provides

no further physical or calculational insights. The result after numerical

evaluation is the one cited earlier, equation (3.24):

pcorr.HTL = pres.HTL − pnaiveHTL =
dAm

4
eff

256π2
fHTL(T /m).
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The function fHTL has the following low- and high-temperature limits [20]:

fHTL∣T→0 → 4 ln
T

m
+ 11 − 4γ − 2π2

3
+ 14 ln 2

3
+ 16 ln2 2

3
+ 4 lnπ − δ − 64π

3

T

m

− 32π2

9
( T
m

)
2

(ln
T

m
− ln

4

π
− γ + ζ

′(2)
ζ(2) ) +O((T /m)8/3),

(4.10)

fHTL∣T→∞ →− 0.006178(1)
(T /m)2 +O((m/T )3). (4.11)

Here, γ is the Euler-Mascheroni constant, δ is the previously introduced

constant from equation 3.12 and ζ is the Riemann zeta function.

From the T → 0 limit, one can see the first non-analytic terms of the

pressure. The effective mass squared is proportional to the coupling g2, so

the logarithmic terms in the low temperature limit behave as g4 ln g and

g6 ln g, which should not seem peculiar by now since resumming the infrared

sensitive sector contributes through logarithmic terms as was established in

chapter 3.
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5 Conclusions

As must be evident by now, introducing non-zero temperature and density

to quantum field theory brings along new intricate concepts and subtleties,

and is in no fashion a trivial matter. Two important subjects that have been

discussed are effective theories and the integration of classical, quantum and

observational physics.

One thing both laypersons and experts have in common is the recogni-

tion that quantum field theory is extremely complicated, even without the

complications of a thermal medium. Studying observables in thermal per-

turbation theory in QCD leads to an increasing number of coupled fermionic

and bosonic fields with divergences of infrared and ultraviolet nature. While

vacuum renormalization solves the ultraviolet behaviour, the accounting of

infrared divergences by resummation in the perturbative expansion is cum-

bersome and enduring. The admirable goal of preserving one’s sanity pro-

vided the driving force to create effective approaches to simplify the com-

plexities regarding the infrared troubles.

One approach concentrates on the separation of different scales arising

from the addition of thermal and finite density effects. The infrared issues

relating to the Matsubara zero modes of bosonic fields can in high tempera-

tures be captured by integrating out the fermionic hard scale πT or πµ, and

studying exclusively the zero-mode contribution. As a result, the imaginary-

time argument vanishes from the integrals leaving only spatial dimensions to

be dealt with, hence providing an effective theory of dimensional reduction.

Dimensional reduction is a well defined theory, even if it relies on the error

that appears from series truncation to be small in order to be sustainable.
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The effective theory has brought much ease to the analytical evaluation of

high-temperature observables in QGP and also provides tools for somewhat

lower temperatures in cool quark matter.

What also was observed was that above tree level, when the external

bosonic momenta are restricted to a soft scale of gT or gµ and the loop

momentum integration is restricted to the hard scale of T or µ, one-loop di-

agrams that behave as g2T 2/P 2×(corresponding tree-lvl amplitude) would

produce a tree level result thus breaking the perturbative expansion. This

produced the branch of hard-thermal-loop physics which solves infrared is-

sues by a resummation of soft propagators and vertices. The resummation

procedure produces additional momentum dependent terms, which when

calculated unearth a specific HTL self energy function. When computing the

wanted soft observables, the addition of the self energy function shields the

perturbation expansion by preserving the correct loop order. HTL resumma-

tion can be compiled to an effective Lagrangian containing a so-called HTL

improvement term for bosonic (and if needs be also fermionic) fields, but

some issues have been found regarding the renormalizability of the theory at

higher orders. Overlooking the problem of renormalization, HTL effective

theory provides a valuable tool for power counting to simplify complicated

situations by singling out problematic areas or separating calculations to dif-

ferent momentum sectors and treating them according to their momentum

scale. The strength of HTL effective theory was shown e.g. in section 3.1.2

when the leading NNNLO logarithm was extracted by the separation of soft

and semi-soft scales, or in chapter four when the non-analytic contributions

of infrared resummation needed to be accounted for.

It is evident that effective theories complement the perturbation series

very well. To verify their robustness, one can always check if different limits

e.g. of low and high temperature converge to known full theory results, as

was the case with dimensional reduction in 3.1.1 or as can be seen from

56



the cool quark matter result, where previously known limits could be re-

produced. It is well known that Nature is indeed a complicated entity to

study, and using well crafted tools to simplify gauging its secrets should

be encouraged. Approximations and justification by error estimation have

always been present in physics and often cannot be escaped when chasing

results even with the most rigorous analytical calculations.

The cold QCD pressure is now partly known to next-to-next-to-next-to-

leading-order, with the highest known term being of order g6 ln2 g2. The

leading NNNLO logarithm term was shown to almost overlap with the

NNLO result. It is a useful thing to be able to verify that the higher order

corrections do not wander far off from the previous results as this informs

that the weak coupling series is on the correct course. However, this also

poses the question of how meaningful it is to continue exploring even higher

corrections with smaller contributions to the observables. This kind of con-

vergence is of course not always granted, and thanks to effective theories

extracting the complicated coefficients has become a bit easier. But still, as

one could go on to ever higher order corrections, one should also ask how

long is it reasonable to carry on.

The present state of thermal field theory is a good indicator of the pro-

gression and integration of physics. Not does it only employ the modern

quantum field theory quantized from classical, it also utilises the work of

thermodynamics and classical statistical mechanics gathered and tweaked

into a form that accommodates the needs of quantum mechanics. If putting

together two branches of quantum physics with a long history starting form

classical theories was not enough, the current observations from a neutron

star merger adds general relativity and astrophysics to the mix. The Rela-

tivistic Heavy Ion Collider where temperatures around the critical temper-

ature of the deconfined phase were obtained might still be the only direct

source into thermal QCD, but the LIGO-Virgo data is a milestone between
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highly theoretical and observational physics. The gravitational waves might

not have carried direct information about cold or cool quark matter, but as

was presented, the value of cold and dense QCD equation of state manifested

in constraining the neutron star EoS from above with respect to density. It

is reasonable to expect that the relationship of theory and observation in

strongly interacting dense matter will only tighten and converge to the point

where some day the questions of stable quark matter, whether it will be a

strange star or a quark core inside a neutron star, can be studied not only

in theory but with data as well. One must stand in awe, of Nature and

the achievements of science, when an event that must be so mundane in the

universe entwines decades of research in fundamental theories together.
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