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Abstract

Objectives: The objective of this thesis is to illustrate the advantages of Bayesian
hierarchical models in housing price modeling.

Methods: Five Bayesian regression models are estimated for the housing prices.
The models use a robust Student’s t-distribution likelihood and are estimated
with Hamiltonian Monte Carlo. Four of the models are hierarchical such that the
apartments’ neighborhoods are used as a grouping. Model stacking is also used
to produce an ensemble model. Model checks are conducted using the posterior
predictive distributions. The predictive distributions are also evaluated in terms
of calibration and sharpness and using the logarithmic score with leave-one-out
cross validation. The logarithmic scores are calculated using Pareto smoothed
importance sampling. The R2-statistics from the point predictions averaged
from the predictive distributions are also presented.

Results: The results from the models are broadly reasonable as, for the most
part, the coefficients of the explanatory variables and the predictive distributions
behave as expected. The results are also consistent with the existence of a
submarket in central Helsinki where the price mechanism differs markedly from
the rest of the Helsinki-Espoo-Vantaa region. However, model checks indicate
that none of the models is well-calibrated. Additionally, the models tend to
underpredict the prices of expensive apartments.

Keywords: housing prices, Bayesian modeling, hierarchical model, model stack-
ing



Contents

1 Introduction 5

2 Hedonic pricing theory and its application to housing prices 7
2.1 Hedonic pricing theory . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Theoretical foundations . . . . . . . . . . . . . . . . . . . 7
2.1.2 Application to housing prices . . . . . . . . . . . . . . . . 8
2.1.3 Hedonic pricing theory for housing prices in the Finnish

context . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Relation to previous work . . . . . . . . . . . . . . . . . . . . . . 10

3 Methods 11
3.1 Foundations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Markov chain Monte Carlo . . . . . . . . . . . . . . . . . . . . . 12
3.3 Hamiltonian Monte Carlo . . . . . . . . . . . . . . . . . . . . . . 14
3.4 Model comparison metrics . . . . . . . . . . . . . . . . . . . . . . 16

3.4.1 Calibration and sharpness . . . . . . . . . . . . . . . . . . 16
3.4.2 Scoring rules . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.4.3 Leave-one-out cross validation and PSIS-LOO . . . . . . . 18
3.4.4 Point predictions . . . . . . . . . . . . . . . . . . . . . . . 21

3.5 Model stacking . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4 Data 23
4.1 Housing sales data . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2 Geographical data . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5 Overall modeling approach 28
5.1 Distributional choices . . . . . . . . . . . . . . . . . . . . . . . . 28
5.2 Modeling work flow . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.3 Model checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6 Models 32
6.1 Model 1 - Simple regression . . . . . . . . . . . . . . . . . . . . . 32

6.1.1 Model specification . . . . . . . . . . . . . . . . . . . . . . 32
6.1.2 Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6.2 Model 2 - Varying intercepts model . . . . . . . . . . . . . . . . . 34
6.2.1 Model specification . . . . . . . . . . . . . . . . . . . . . . 34
6.2.2 Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6.3 Model 3 - Varying intercepts model with distance measures . . . 36

1



6.3.1 Model specification . . . . . . . . . . . . . . . . . . . . . . 36
6.3.2 Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6.4 Model 4 - Gaussian process model . . . . . . . . . . . . . . . . . 39
6.4.1 Model specification . . . . . . . . . . . . . . . . . . . . . . 39
6.4.2 Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.5 Model 5 - Varying intercepts and slopes model . . . . . . . . . . 41
6.5.1 Model specification . . . . . . . . . . . . . . . . . . . . . . 41
6.5.2 Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

7 Model comparison and model stacking 45
7.1 Model comparison . . . . . . . . . . . . . . . . . . . . . . . . . . 45

7.1.1 Model checks . . . . . . . . . . . . . . . . . . . . . . . . . 45
7.1.2 Predictive performance . . . . . . . . . . . . . . . . . . . 46

7.2 Model stacking . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

8 Discussion 49
8.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

8.1.1 Overall results . . . . . . . . . . . . . . . . . . . . . . . . 49
8.1.2 Poor performance of model 4 . . . . . . . . . . . . . . . . 50
8.1.3 Lack of predictive improvements from model stacking . . 50
8.1.4 Results in terms of existing literature . . . . . . . . . . . 50

8.2 Further model development . . . . . . . . . . . . . . . . . . . . . 51
8.2.1 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
8.2.2 Model structure . . . . . . . . . . . . . . . . . . . . . . . 51
8.2.3 Spatial aspects . . . . . . . . . . . . . . . . . . . . . . . . 52

8.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

A Descriptive statistics for data 54

B Posterior distributions for the neighborhood-specific terms for
models 2, 3, 4 and 5 59

C Model comparison figures 66

D Figures for the stacking model 77

2



List of Figures

4.1 Neighborhood map . . . . . . . . . . . . . . . . . . . . . . . . . . 27

B.1 Posterior box plots for the intercepts, model 2 . . . . . . . . . . . 60
B.2 Posterior box plots for the intercepts, model 3 . . . . . . . . . . . 61
B.3 Posterior box plots for the intercepts, model 4 . . . . . . . . . . . 62
B.4 Posterior box plots for the intercepts, model 5 . . . . . . . . . . . 63
B.5 Posterior box plots for the size coefficient, model 5 . . . . . . . . 64
B.6 Posterior box plots for the interaction term, model 5 . . . . . . . 65

C.1 Replicated mean histograms, estimation set . . . . . . . . . . . . 67
C.2 Replicated median histograms, estimation set . . . . . . . . . . . 68
C.3 Distributions of replicated mean prices per neighborhood, Helsinki,

estimation set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
C.4 Distributions of replicated mean prices per neighborhood, Espoo,

estimation set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
C.5 Distributions of replicated mean prices per neighborhood, Van-

taa, estimation set . . . . . . . . . . . . . . . . . . . . . . . . . . 71
C.6 PIT histograms, estimation set . . . . . . . . . . . . . . . . . . . 72
C.7 Sharpness histograms, estimation set . . . . . . . . . . . . . . . . 73
C.8 Estimation set scatter plots . . . . . . . . . . . . . . . . . . . . . 74
C.9 Test set scatter plots . . . . . . . . . . . . . . . . . . . . . . . . . 75
C.10 Predictive distributions for chosen observations . . . . . . . . . . 76

D.1 Replicated mean prices histogram, estimation set, stacking model 78
D.2 Replicated median prices histogram, estimation set, stacking model 78
D.3 Distributions of replicated mean prices per neighborhood for Helsinki,

estimation set, stacking model . . . . . . . . . . . . . . . . . . . . 79
D.4 Distributions of replicated mean prices per neighborhood for Es-

poo, estimation set, stacking model . . . . . . . . . . . . . . . . . 79
D.5 Distributions of replicated mean prices per neighborhood for Van-

taa, estimation set, stacking model . . . . . . . . . . . . . . . . . 80
D.6 PIT histogram, estimation set, stacking model . . . . . . . . . . 80
D.7 Sharpness histogram, estimation set, stacking model . . . . . . . 81
D.8 Estimation set scatter plots, stacking model . . . . . . . . . . . . 81
D.9 Test set scatter plots, stacking model . . . . . . . . . . . . . . . . 82
D.10 Predictive distributions for chosen observations, stacking model . 82

3



List of Tables

4.1 Continuous variables, descriptive statistics (Kalajärvi excluded) . 25

6.1 Parameter estimates - model 1 . . . . . . . . . . . . . . . . . . . 34
6.2 Parameter estimates - model 2 . . . . . . . . . . . . . . . . . . . 36
6.3 Parameter estimates - model 3 . . . . . . . . . . . . . . . . . . . 38
6.4 Parameter estimates - model 4 . . . . . . . . . . . . . . . . . . . 41
6.5 Parameter estimates - model 5 . . . . . . . . . . . . . . . . . . . 44

7.1 Estimates for the expected log pointwise predictive density values
and effective number of parameters . . . . . . . . . . . . . . . . 47

7.2 Stacking weights . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

A.1 Frequencies for the neighborhoods . . . . . . . . . . . . . . . . . 55
A.2 Frequencies for the number of rooms . . . . . . . . . . . . . . . . 56
A.3 Frequencies for the existence of a sauna in the apartment . . . . 56
A.4 Own floor, frequencies . . . . . . . . . . . . . . . . . . . . . . . . 56
A.5 Frequencies for the building types . . . . . . . . . . . . . . . . . . 56
A.6 Frequencies for the years when the building was built . . . . . . . 57
A.7 Frequencies for the existence of an elevator in the building . . . . 58
A.8 Reported conditions, frequencies . . . . . . . . . . . . . . . . . . 58
A.9 Energy classifications, classes, frequencies . . . . . . . . . . . . . 58
A.10 Continuous variables, descriptive statistics . . . . . . . . . . . . . 58
A.11 Distances, descriptive statistics . . . . . . . . . . . . . . . . . . . 58

4



Chapter 1

Introduction

In 2016, Statistics Finland reported1 that apartments formed approximately half

of the wealth of households, so it seems likely that housing price predictions are

of interest to households when buying or selling an apartment, for example.

Similarly, price predictions are presumably useful for construction companies

for revenue calculations and for banks for the purposes of assessing collateral

value. It is therefore clear that housing price modeling has practical importance.

On the methodological side, housing price data provides a good way to show-

case Bayesian methods, specifically Bayesian hierarchical models. The data

provides many natural groupings such as the location of the apartment (the

neighborhood, the city and the region) and the type of the apartment (flat,

row house etc.), so hierarchical models provide a natural way to utilize this

information. Additionally, if the exact locations of the sold apartments is avail-

able, Gaussian process models can be used to utilize the spatial information

comprehensively.

This thesis is an attempt to illustrate the advantages of Bayesian methods

for modeling housing prices because good predictions are of practical importance

and because the available data provides good opportunities to do this. The spe-

cific data utilized in this thesis has been compiled from housing sales in Helsinki,

Espoo and Vantaa. The housing prices are modeled through so-called hedonic

pricing theory which assumes that the price of an apartment is determined by

the apartment’s properties. To the author’s knowledge, this thesis is the first

time that Bayesian methods have been applied to housing price modeling with

Finnish data.

The thesis is structured as follows: Chapter 2 gives an introduction to he-

donic pricing theory and its application to housing prices. Additionally, recent

research on housing prices in the Finnish context is also noted. Chapter 3

1https://tilastokeskus.fi/til/vtutk/2016/vtutk 2016 2018-06-05 tie 001 fi.html
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presents the methods used in this thesis. Chapter 4 describes both the data

used in this thesis and the way it was preprocessed. Chapter 5 describes the

general modeling process. Chapter 6 describes the structure and estimates for

the individual models and chapter 7 the model comparisons and model stacking

results. Chapter 8 discusses the results and concludes the work.
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Chapter 2

Hedonic pricing theory and

its application to housing

prices

This chapter serves as an introduction to hedonic pricing theory and its appli-

cation to housing price modeling.

2.1 Hedonic pricing theory

2.1.1 Theoretical foundations

Hedonic pricing theory is a theory of product differentiation where goods are

represented as indivisible bundles of ’utility-bearing’ characteristics. The foun-

dations for the theory are presented concisely in Rosen (1974). The theory

assumes that market participants, i.e. consumers and producers, are rational

and seek to maximize their respective utility or profit functions. Together with

additional necessary assumptions on the market structure, the formulation of

goods as bundles and the rationality of market participants imply the existence

of an equilibrium price function which is defined over the set of characteristics.

Rosen (1974) also sketches an outline for the empirical study of the theory.

The outline includes the first step of regressing the observed prices over the

characteristics. These estimates can then be used for the analysis of other

parameters of interest such as the parameters that define the utility function

of consumers. This thesis is essentially concerned how this first step regression

could be done using Bayesian methods.
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2.1.2 Application to housing prices

Housing serves as a natural example of a differentiated good where the utility-

bearing characteristics of hedonic pricing theory correspond to the character-

istics of the apartment. Sheppard (1999) provides a general overview on how

hedonic pricing theory has been applied to housing prices. The article notes the

special characteristics of the housing market, e.g. the effects of location, the

search costs and the possibility of resale. The article also includes a general dis-

cussion on the appropriate econometric tools for estimating the hedonic prices.

In this discussion it is noted that the land value plays a central part in urban

economic theory and that the price of land would typically be expected to vary

with location (Sheppard (1999, p. 1616)).

Early empirical articles on hedonic price estimation for housing include Du-

bin (1988), Dubin (1992) and Can (1992). These articles describe different

approaches of how the spatial aspects of the housing data can be utilized in

models.

In Dubin (1988), housing prices are modeled with a regression model with

spatial autocorrelation in the error terms. The spatial autocorrelation is pa-

rameterized in the correlation matrix using a negative exponential function that

utilizes distances between the observations. Dubin (1992) extends the work in

Dubin (1988) by describing a method for kriging housing prices for locations

that were not in the estimation data.

Can (1992) presents four models where the influence of location is modeled

through so-called neighborhood effects and adjacency effects. The neighborhood

effects encode the available neighborhood-specific information, e.g. census data

on unemployment rates per neighborhood. The adjacency effects incorporate

spatial spill-over effects, i.e. how the prices of adjacent housing might influence

the price of a given apartment. The four models are formulated as combinations

of alternative ways to handle the neighborhood and adjacency effects: For the

neighborhood effects, the effects were modeled either directly as explanatory

variables or indirectly as interaction terms. For the adjacency effects, the ef-

fects were modeled through the inclusion or exclusion of an autoregressive term

defined with an a priori weight matrix based on the inter-observation distances.

Dubin (1998) compares methods for modeling spatial autocorrelation either

through the use of a distance-based weight matrix, as in Can (1992), or through

explicit parameterization, as in Dubin (1988) and Dubin (1992). The article

suggests that it is probably better to model the spatial autocorrelation through

parameterization rather than through the use of a weight matrix.

A slightly later discussion on the theoretical foundations and the appropriate

econometric tools for hedonic pricing theory for housing can be found in Bowen
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et al. (2001). In the discussion on the theoretical foundations, the article consid-

ers the concepts of spatial heterogeneity, which refers to the systematic variation

of housing prices depending on location, and spatial dependency, which refers

to the interdependence of the observations’ prices that depends on the relative

locations of the observations and that is not explicitly included in the model

structure. The article notes that spatial patterns in housing data are likely

due to both spatial heterogeneity and spatial dependence, so statistical proce-

dures that can handle both properties should be used when constructing hedonic

housing price models.

Goodman and Thibodeau (1998) describes a modeling procedure that allows

for spatial heterogeneity by iteratively testing for the existence of submarkets,

i.e. geographic areas with differing prices per housing characteristic. The pro-

cedure consists pairwise comparisons where a hierarchical linear model is fitted

using a data set which comprises of sales located in adjacent geographic areas.

If a designated group-dependent coefficient is not statistically significant, the

areas are deemed to be in the same submarket and are thus combined for fur-

ther comparison. Otherwise, the areas are deemed to be in separate submarkets.

This process is continued until all areas are assigned to some submarkets. The

article notes that the results from the procedure depend on the initial condi-

tions, i.e. what were the areas that were compared first, and in what order the

comparisons were made.

In more recent years, research on housing prices using newer estimators has

started to appear. In Gelfand et al. (2003), Gaussian process models with spa-

tially varying coefficients are introduced and the models are illustrated with an

example using housing price data. In Hui et al. (2010), a Bayesian hierarchical

model for housing prices is developed. The model of Hui et al. (2010) outper-

forms other available valuation methods whilst still being relative simple. In Yu

et al. (2007), four regression models are constructed including a geographically

weighted regression model (described in Fotheringham et al. (1998)) in which

the regression coefficients are allowed to vary spatially. Examples of articles

where machine learning algorithms are applied to housing prices include Se-

lim (2009), where a neural net is developed, and Antipov and Pokryshevskaya

(2012), where a random forest model is compared with multiple other predictive

methods. Antipov and Pokryshevskaya (2012) also includes a discussion on how

the data could be segmented for submodel construction.
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2.1.3 Hedonic pricing theory for housing prices in the

Finnish context

Hedonic pricing has been utilized for housing in the Finnish context in, at

least, Kyllönen and Räty (2000), Kortelainen and Saarimaa (2015), Eerola

and Lyytikäinen (2015), Eerola and Saarimaa (2018) and Harjunen (2018). In

Kyllönen and Räty (2000), a semi-parametric model with splines is estimated

for housing prices in Joensuu. Eerola and Lyytikäinen (2015) studies the im-

pact on prices and sales times after new information channels are provided to

market participants. Kortelainen and Saarimaa (2015) studies whether owner-

occupied housing generates positive externalities which would capitalize into

housing prices. Eerola and Saarimaa (2018) uses hedonic pricing as a tool to

measure implicit rent subsidies for public housing. The doctoral thesis Harjunen

(2018) consists of three articles which use hedonic pricing theory to study the

price effects of school quality, heating technology choices and an announcement

of a new metro line in the Helsinki metropolitan area.

The hedonic pricing theory for housing in a Finnish housing market con-

text has also been a popular subject for postgraduate studies. Recent master’s

theses on the subject include, at least, Brotherus (2011), Koivuniemi (2014),

Takala (2016), Luhta (2017), Jantunen (2017), Hakala (2018), Valaja (2018)

and Vuorela (2019). The focus of the theses has ranged from simply estimating

the price mechanism to analyzing price effects of a specific phenomenon, e.g.

opening of a new tram line or urban infill. Each listed thesis has utilized OLS

estimators.

2.2 Relation to previous work

The models estimated in this thesis are simple Bayesian hierarchical models

with a focus on prediction. To this end, model stacking is also presented. In

relation to the listed master’s theses, this thesis contributes to this body of work

by utilizing Bayesian methods instead of OLS estimators. In relation to the

existing literature, this thesis can be seen as an application of well-established

model structures to a novel data set. The thesis’ models are closest structure-

wise to the model in Hui et al. (2010) or, e.g., the models described in chapters

12 and 13 of McElreath (2016) and Gelman and Hill (2006). Additionally, an

attempt is made to estimate a Gaussian process model by assigning locations to

observations based on the observations’ neighborhoods following an example in

section 13.4 of McElreath (2016). Similar Gaussian process models are described

in, e.g., Gelfand et al. (2003) or chapter 6 of Banerjee et al. (2015).
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Chapter 3

Methods

This chapter provides an overview of the methods used in this thesis.

3.1 Foundations

The models in this thesis are estimated with Bayesian methods where the focus is

on determining the posterior distribution p(θ|y) of parameters θ given the data

y, likelihood distribution p(y|θ) and prior distribution p(θ). Bayes’ theorem

provides the connection between these terms such that

p(θ|y) =
p(y|θ)p(θ)
p(y)

where p(y) is the marginal distribution for data y, i.e. p(y) =
∫
p(y|θ)p(θ)dθ.

The marginal distribution p(y) can be intractable, so methods have been devel-

oped for determining the posterior without explicitly determining the marginal

distribution p(y).

In practical applications, the objective of statistical modeling is usually pre-

diction. Bayesian methods allow formulating prediction through the posterior

predictive distribution. For new data ỹ, the posterior p(θ|y) determines the

posterior predictive distribution p(ỹ|y) such that

p(ỹ|y) =

∫
p(ỹ|θ)p(θ|y)dθ. (3.1)

The models in this thesis are regression models, so for data y = (y1, . . . , yn),

each observation yi is divided into two parts such that yi = (vi, xi) where the

term vi is the response variable and the term xi = (x1i, . . . , xki) is a set of

explanatory variables for observation i. The purpose of the models is to predict

the value of the response variable vi, in this case the price of an apartment,

11



given the values for the explanatory variables xi which in this case encode the

measurable properties of the apartment. The relationship between the response

variable vi and the explanatory variables xi is assumed to be linear in the

expected value such that

E(vi|β, xi) = β1x1i + . . .+ βkxki

where the term β = (β1, . . . , βk) denotes the coefficients for the explanatory

variables. The model parameter θ then includes the coefficients β along with

the other necessary terms related to variance and to possible group-level effects.

This explicit notation is suppressed for the discussion on the methods for the

rest of this chapter.

3.2 Markov chain Monte Carlo

Perhaps the most popular current general method for determining the posterior

distribution is the Markov chain Monte Carlo (MCMC) method. In MCMC, a

sample is produced by iteratively drawing values from a Markov chain that has

been constructed such that its stationary distribution is the desired posterior

distribution. A sufficiently large sample drawn from this Markov chain then

provides a description of the posterior distribution. The material of this section

has been adopted from chapter 11 of Gelman et al. (2014).

The MCMC samples have two properties that need to be considered for sta-

tistical inference, namely within-sequence correlation and the requirement for

convergence. First, sampling from a Markov chain induces within-sequence cor-

relation in the resulting sample, so inference using a MCMC sample is generally

less precise than inference from an independent sample of the same length. Sec-

ond, in order for the draws to describe the posterior, the Markov chain needs to

have converged to its stationary distribution. The early draws from the Markov

chain are influenced by the chain’s starting point which is normally randomly

initialized, so they are not typically representative of the stationary distribution.

The early draws are therefore discarded from any analysis. To check conver-

gence, it is typical to run the Markov chain multiple times and compare the

resulting draws. When convergence has occurred, the draws from any of the

chains are similar to draws from any other chain.

Convergence can be studied using so-called trace plots where the draws from

separate Markov chains are plotted with respect to their iteration sequences. If

the chains have converged, the draws from each chain are mixed, indicated in

the trace plots by draws being located at the same specific region of values, and

stationary, indicated in the trace plots by the lack of any trends with respect to
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the iteration.

Convergence can also be analyzed with the R̂-statistic and the effective sam-

ple size n̂eff-statistic which check whether the individual sequences from the

Markov chains mix well with each other. The metrics do not guarantee that the

Markov chains have really converged to the posterior since well-mixed chains

are only a necessary condition for convergence.

The R̂-statistic measures the potential scale reduction for the distribution

of an estimand ψ that could be achieved if the number of iterations of the

Markov chain was increased. The R̂-statistic is calculated using multiple Markov

chain sequences that have been split into two at the middle index. Let ψij , i =

1, . . . , n, j = 1, . . . ,m denote the ith draw in the jth half-sequence for estimand

ψ. Using the half-sequences, the between-sequence variance B and the within-

sequence variance W are defined as

B =
n

m− 1

m∑
j=1

(ψ̄.j − ψ̄..)2, where ψ̄.j =
1

n

n∑
i=1

ψij , ψ̄.. =
1

m

m∑
j=1

ψ̄.j

and

W =
1

m

m∑
j=1

s2
j , where s2

j =
1

n− 1

n∑
i=1

(ψij − ψ̄.j)2. (3.2)

Then, the marginal posterior variance of estimand ψ is estimated with

v̂ar+(ψ|y) =
n− 1

n
W +

1

n
B. (3.3)

The estimator (3.3) for the marginal posterior variance and the within-sequence

variance (3.2) can then be used to define the R̂-statistic as

R̂ =

√
v̂ar+(ψ|y)

W
.

Gelman et al. (2014, p. 287) gives a general maximum ’acceptable’ threshold

of at most 1.1 for the R̂-statistic. McElreath (2016, p. 258) gives a stricter

threshold of 1.01 and suggests that the estimates with R̂-statistic greater than

1.00 should be regarded with suspicion.

The n̂eff-statistic for the effective sample size is based on considerations of

the statistical efficiency of the average of draws ψ̄.. as an estimate of the posterior

mean E(ψ|y). The construction of the statistic utilizes the asymptotic formula

of the variance of the average of a correlated sequence,
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lim
n→∞

mnvar(ψ̄..) =

(
1 + 2

∞∑
t=1

ρt

)
var(ψ|y),

where the term ρt is the autocorrelation of the sequences for estimand ψ at lag

t. The effective sample size neff can then be defined as

neff =
mn

1 + 2
∑∞
t=1 ρt

. (3.4)

To use the definition in practical applications, the sum of the correlations in

equation (3.4) has to be estimated. Therefore, define first the variogram Vt for

lag t as

Vt =
1

m(n− t)

m∑
j=1

n∑
i=t+1

(ψi,j − ψi−t,j)2.

Then by inverting the formula E(ψi−ψi−t)2 = 2(1−ρt)var(ψ), an estimator

for correlation ρt can be defined as

ρ̂t = 1− Vt

2v̂ar+ (3.5)

where the term v̂ar+ is the estimate given by equation (3.3).

For large values of t, the estimates (3.5) for the correlation are too noisy.

To account for the noise, the sum in equation (3.4) is replaced by a partial sum

starting from lag 0 and continuing until the sum of autocorrelation estimates for

two successive lags ρ̂2t′ + ρ̂2t′+1 is negative. Thus the estimator for the effective

number of samples becomes

n̂eff =
mn

1 + 2
∑T
t=1 ρ̂t

, (3.6)

where the estimated autocorrelations ρ̂t are computed using formula (3.5) and

T is the first odd positive integer for which ρ̂T+1 + ρ̂T+2 is negative.

In general, the effective number of samples n̂eff should be at least 10 for

all estimands of interest. Whether or not this is sufficient for any particular

application depends on the application itself.

3.3 Hamiltonian Monte Carlo

There is a multitude of different methods for constructing Markov chains with

the desired properties. The specific MCMC method used in this thesis is Hamil-

tonian Monte Carlo (HMC), first introduced in a statistics context in Neal (1993)

and later reviewed in, e.g., Neal (2011). The material in this section has been
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adopted from chapter 12 of Gelman et al. (2014).

HMC emulates a physical system driven by Hamiltonian dynamics to im-

prove the efficiency of a Metropolis-Hastings styled sampling algorithm with

better transition proposals. For each component θj of the model parameter

θ = (θ1, . . . , θp), HMC adds a momentum variable φj . The parameter pair

(θ, φ) are then updated together using a Metropolis algorithm with a specific

way for generating transition proposals. The momentum variable φ is usually

given a multivariate normal distribution with mean 0 and the covariance matrix

M set to a prespecified ’mass matrix’, which can be chosen to be a diagonal

matrix to simplify the algorithm implementation. Other parameters required

by the algorithm are the number of leapfrog steps L and a scaling factor param-

eter ε. Depending on how the method has been implemented, these parameters

can be tuned during the execution to improve the efficiency of the method. In

addition to these parameters, HMC requires the calculation of the gradient of

the log-posterior density ∇ log p(θ|y).

A HMC iteration consists of the following steps:

1. Update φ with a draw φ ∼ Multivariate-Normal(0,M).

2. Repeat the following leapfrog steps a total of L times:

(a) Use the gradient of the log-posterior density of θ to make a half-step

of φ:

φ← φ+
1

2
ε∇ log p(θ|y)

(b) Use the momentum vector φ to update the position vector θ:

θ ← θ + εM−1φ

(c) Use the gradient of the log-posterior density of θ to make a half-step

of φ:

φ← φ+
1

2
ε∇ log p(θ|y)

3. Label θt−1, φt−1 as the values of the parameter and momentum vectors

at the start of the leapfrog process and θ∗, φ∗ as the values after the L

leapfrog steps. Calculate the accept-reject probability r as

r =
p(θ∗|y)p(φ∗)

p(θt−1|y)p(φt−1)
.

4. Set

θt =

{
θ∗ with probability min(r, 1),

θt−1 otherwise.
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The models in this thesis were estimated using the Stan1 software package.

Stan provides a free, ready-made, refined HMC sampler for a broad range of

Bayesian models. Using Stan allows the user to avoid explicitly tuning the

parameters L and ε and determining the gradient of the log-posterior density.

In Stan, the user first provides a program which specifies the distributional

assumptions. Stan then translates the user-provided program to C++, compiles

the C++ and runs resulting program to provide the user with a posterior sample

of the model parameter using HMC. Stan also provides the user with the R̂-

and n̂eff-statistics.

3.4 Model comparison metrics

Model comparison in this thesis is done on the basis of predictive performance.

Since the models are Bayesian, the predictions take the form of posterior pre-

dictive distributions (3.1). Naturally desirable properties of the predictive dis-

tributions include the lack of consistent over- or underprediction (’calibration’)

and the small dispersion of the predictive distribution (’sharpness’). The anal-

ysis of these properties can be formalized using scoring rules which evaluate

a model’s predictive performance based on the predictive distribution and the

realized value of the response (Gneiting et al. (2007)). When a scoring rule is

properly chosen, ’good’ predictions, in the sense that the majority of the mass of

the predictive distributions is located near the realized values, are given higher

scores than ’worse’ predictions, where the mass of the predictive distributions

is either more dispersed or located farther away. Finally, the predictive distri-

butions can also be transformed into point predictions which allows the use of

frequentist tools for evaluating predictive performance.

3.4.1 Calibration and sharpness

Gneiting et al. (2007) presents how the calibration of a model’s predictive dis-

tributions can be analyzed with probability integral transforms (PIT). For ob-

servation i, PIT pi is defined as pi = F (yi) where the term F denotes the

cumulative distribution function of the predictive distribution and the term yi

denotes the realized value of the response variable.

LetG denote the cumulative distribution function of the true data generating

process for the response variable. If the model matched the true data generating

process, i.e. the equation F = G would hold, the distribution of the PITs

pi would be uniform. Unfortunately, the uniformity of the PITs pi is only a

necessary condition as it is possible to give counterexamples where the equation

1https://mc-stan.org

16



F = G does not hold but the PITs pi still have a uniform distribution (see e.g.

Gneiting et al. (2007)). Nevertheless, the empirical PITs can be graphed as

a histogram and any clear deviations from uniformity in the histogram should

be taken as evidence for mismatch between the predictions and the true data

generating process.

Given two models that are well-calibrated in the sense that their empirical

PIT histograms are (roughly) uniform, they can be compared on the basis of how

dispersed their predictive distributions are. One model could be called ’better’

than the other if its predictive distributions are ’sharper’, i.e. concentrated

into smaller intervals, than the predictive distribution from the other model.

This sharpness can be measured, for example, by tabulating the widths of the

central 90 % credible intervals. These widths can be analyzed by calculating

their descriptive statistics or graphing their distribution. Gneiting et al. (2007)

notes that in real world applications conditional heteroscedasticity often leads to

considerable variability in the widths and therefore suggests representing them

using box plots.

3.4.2 Scoring rules

Scoring rules are summary measures that evaluate probabilistic predictions by

assigning a numerical score based on the realized values and the reported pre-

dictive distributions (see e.g. Gneiting and Raftery (2007) or O’Hagan (1994,

p. 56-59)). To formalize scoring rules, suppose the performance of a predictive

distribution P for a random variable X is being evaluated. Suppose that after

the predictive distribution P has been fixed, realized value of the random vari-

able X is x. A scoring rule S is then a function S = S(P, x) which describes

the reward for prediction P given the realized value x. Let S(P,Q) denote the

expected value of reward S(P, x) when x is drawn from the distribution Q.

A scoring rule S is a proper scoring rule if the inequality

S(Q,Q) ≥ S(P,Q) (3.7)

holds for all predictions P and data generating processes Q. If the inequality

(3.7) holds with equality only when the predictions match the data generating

process (i.e. the equation P = Q holds), the scoring rule S is a strictly proper

scoring rule. Assuming that the distribution Q would now represent the total

knowledge of a forecaster and P the outwardly expressed prediction, under a

strictly proper scoring rule the forecaster is always encouraged to state the true

beliefs Q outwardly, i.e. to state P = Q. Gneiting and Raftery (2007) notes that

utility functions, which form a part of the standard formulation of inference as

a statistical decision problem, give rise to proper scoring rules. Finally, scoring
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rule S = S(P, x) is a local scoring rule if, given prediction P , the score depends

solely on the realized value x.

An attractive choice for a scoring rule is the logarithmic score LogS(P, x),

defined as

LogS(P, x) = log p(x) (3.8)

where p(x) denotes the density for result x given by distribution P . Bernardo

and Smith (1994, p. 153) shows that all smooth (i.e. continuously differentiable),

proper local scoring rules have the form S(P, x) = A log p(x)+B(x), whereA > 0

is an arbitrary constant and B is an arbitrary, subject to the existence of the

expected score, function of x. The logarithmic score (3.8) is the obvious special

case. Additionally, Gelman et al. (2014, p. 167) notes that the logarithmic score

has attractive information theoretic properties in the model comparison context:

With sufficiently large sample sizes, the model with the highest logarithmic

score has the lowest Kullback-Leibler information and thus the highest posterior

probability out of the considered models. The logarithmic score is therefore

adopted for assessing the predictions in this thesis for these reasons.

3.4.3 Leave-one-out cross validation and PSIS-LOO

This section presents how the logarithmic score is used in this thesis in a more

exact manner. Suppose data y = (y1, . . . , yn) is independent given parameter θ.

The likelihood for the model p(y|θ) then decomposes as p(y|θ) =
∏n
i=1 p(yi|θ). If

the true data generating process pt was known, it would be possible to evaluate

the model’s performance on some new data ỹ = (ỹ1, . . . , ỹn′) with the expected

log pointwise predictive density, i.e. the expected logarithmic score, calculated

as

elpd =

n′∑
i=1

∫
pt(ỹi) log p(ỹi|y)dỹi (3.9)

where the predictive distribution p(ỹi|y) is determined by the equation (3.1).

As the true data generating process pt is typically not known, it has to be

approximated. Moreover, a separate data set ỹ is not typically available in

practical settings, so the model evaluation has to be done using the data y

which was used for model estimation.

The true data generating process pt can be approximated through leave-

one-out cross validation (LOO-CV) where the model is first estimated using

data from which a single observation has been excluded and then the model

performance is evaluated for the left-out observation. With the logarithmic
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score, this means evaluating the expected log pointwise predictive density as

elpdloo =

n∑
i=1

log p(yi|y−i) =

n∑
i=1

log

(∫
p(yi|θ)p(θ|y−i)dθ

)
(3.10)

where the term y−i denotes the data from which observation i has been excluded.

The obvious drawback of the estimate (3.10) is that it requires estimating the

model for each observation separately thereby incurring large computational

costs. This makes exact LOO-CV impractical for large data sets.

Fortunately, it is possible to avoid model re-estimations with importance

sampling methods that utilize the posterior samples from MCMC. Vehtari et al.

(2017) presents a recent method where re-estimations are avoided by using im-

portance sampling weights which are smoothed with a generalized Pareto distri-

bution. To present the method, let θs, s = 1, . . . , S denote sampling draws from

the posterior p(θ|y). Using draw θs and observation i, define the raw importance

weight rsi as

rsi =
1

p(yi|θs)
(3.11)

which can be used to define the importance sampling predictive distribution

approximate as

p(yi|y−i) ≈
∑S
s=1 r

s
i p(yi|θs)∑S
s=1 r

s
i

=
1

1
S

∑S
s=1

1
p(yi|θs)

. (3.12)

The distribution of the raw importance weights (3.11) may have a long right-

tail and thereby high variance. Estimates based on the direct use of the impor-

tance weights are therefore sensitive to the largest values, so the direct use of the

approximate (3.12) would suffer from instability. To overcome this issue, a gen-

eralized Pareto distribution is fitted on a fixed share of the largest importance

weights and then used for smoothing the large values. For a single observation

i, the Pareto smoothed importance sampling method of Vehtari et al. (2017)

consists of the following steps:

1. A generalized Pareto distribution is fitted using 20 % of the largest im-

portance weights rsi defined in equation (3.11).

2. The importance weights are stabilized by replacing the M largest weights

with the expected values of the order statistics of the fitted Pareto distri-

bution, e.g.
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F−1

(
z − 1

2

M

)
, z = 1, . . . ,M

where the term M is the number of sampling draws used to fit the gen-

eralized Pareto distribution, i.e. M = 0.2S and the term F−1 is the

inverse cumulative distribution function of the generalized Pareto distri-

bution. The new smoothed weights are labeled as w̃si where s indexes the

sampling draw.

3. Weights wsi for observation i are generated by truncating the smoothed

importance weights such that

wsi = min(w̃si , S
3/4w̄i)

where w̄i = 1
S

∑S
s=1 w̃

s
i is the average of the smoothed weights.

Using the weights wsi , s = 1, . . . , S generated separately for each observation

i, an estimate êlpdpsis-loo can be calculated for the expected logarithmic score

(3.10) such that

êlpdpsis-loo =

n∑
i=1

log

(∑S
s=1 w

s
i p(yi|θs)∑S

s=1 w
s
i

)
. (3.13)

The k-parameter of the generalized Pareto distribution provides a diagnostic

tool for the reliability of the weights wsi . Vehtari et al. (2017) gives the threshold

for adequate performance at k̂ < 0.7. For observation i with k̂i > 0.7, the

contribution log(
∑S
s=1 w

s
i p(yi|θs)/

∑S
s=1 w

s
i ) should be replaced with the exact

LOO estimate log p(yi|y−i). This replacement is referred to as the PSIS-LOO+-

approach.

Following Gelman et al. (2014, p. 176) and using the formula (3.13), it is

also possible to define a measure of model complexity, the effective number of

parameters ploo, as

ploo =

n∑
i=1

log

(
1

S

S∑
s=1

p(yi|θs)

)
− êlpdpsis-loo.

In this thesis, the calculations of the êlpdpsis-loo- and ploo-estimates are done

using the loo-package2.

2https://cran.r-project.org/web/packages/loo/
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3.4.4 Point predictions

A probabilistic prediction pi for observation i can be transformed into a point

prediction ŷi by, e.g., the expected value ŷi = Epiyi which can be estimated

by taking the average from a sample from the predictive distribution. With

the point prediction ŷi, the goodness of the predictions can then be measured

through classical frequentist measures, e.g. the mean squared error MSE =
1
n

∑n
i=1(yi − ŷi)2 or the R2-statistic,

R2 = 1−
∑n
i=1(yi − ŷi)2∑n
i=1(yi − ȳ)2

,

where the term ȳ denotes the average of the response variables y, i.e. ȳ =
1
n

∑n
i=1 yi.

These measures provide points of comparison with respect to models that

produce only point predictions. The downside of transforming probabilistic pre-

dictions to point predictions is that the overall characterization of uncertainty,

described by the predictive distribution, is lost.

3.5 Model stacking

The metrics described in the previous section can be used for comparing the

relative predictive performance of different models. However, if the main aim of

the modeling exercise is to predict well, choosing a single model with the best

performance metrics may be wasteful. Rather than choosing a single model,

the individual models can be combined for predictive purposes with so-called

model stacking described in Yao et al. (2018). This model combination method

is described next.

Given true data generating process pt, a set of models M = {M1, . . . ,MK},
data y = (y1, . . . , yn), a scoring rule S = S(p, q) over distributions p and q,

model stacking is formulated as an optimization problem for model weights

w = (w1, . . . , wK) of the form

max
w

S

(
K∑
k=1

wkp(·|y,Mk), pt(·|y)

)
s.t. 0 ≤ wk ≤ 1,

K∑
k=1

wk = 1. (3.14)

Since the true data generating process pt is again not known in practical

applications, it needs to be approximated by the leave-one-out approach de-

scribed in the previous section. Likewise, to finalize the operationalization of

the optimization problem (3.14), the scoring rule S has to be chosen. Yao et al.

(2018) states a preference for the logarithmic score S(p, q) = log(p(q)) since it is
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equivalent to every other proper local scoring rule, as discussed in section 3.4.2.

With the logarithmic score and the leave-one-out approach, the optimization

problem becomes

max
w

1

n

n∑
i=1

log

K∑
k=1

wkp(yi|y−i,Mk) s.t. 0 ≤ wk ≤ 1,

K∑
k=1

wk = 1. (3.15)

The optimization problem (3.15) is solved in this thesis using the ready-made

functionality provided by the loo-package.

The solution ŵ = (ŵ1, . . . , ŵK) for optimization problem (3.15) is referred to

as the stacking model in this thesis. The weights ŵ define the stacked estimate

for the predictive distribution as

p̂(ỹ|y) =
K∑
k=1

ŵkp(ỹ|y,Mk). (3.16)

The predictive distribution (3.16) can be evaluated in the same way as the

predictive distributions from any single model.
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Chapter 4

Data

The data used in this thesis consists of two parts, housing sales data and the

geographical data related to the neighborhoods of Helsinki, Espoo and Vantaa.

This chapter describes these data sets.

4.1 Housing sales data

The housing sales data has been compiled from the Asuntojen.hintatiedot.fi -

service of the Finnish Ministery of the Environment and the Housing Finance

and Development Centre of Finland for the cities of Helsinki, Espoo and Vantaa.

The service compiles sales records provided by a set1 of real estate agencies or

related organizations. It is unclear whether the housing sales from just these

sources are representative for ’normal housing sales’ in Helsinki, Espoo and

Vantaa.

The service stores each record of a housing sale for a total of 12 months

starting from the date when the sale was registered to the service. Due to

normal processing times at the real estate agencies, the exact sale dates for the

entries have occurred typically one to two months before the sale is registered

to the service. The housing sales data was retrieved on 23.12.2018 via web

scraping.

For a single recorded sale, the service provides information on

• the neighborhood name (a free text field),

• the type of the apartment (a free text field),

• the type of the building,

1List of the real estate agencies and organizations, retrieved on 8/2019: KVKL - Ki-
inteistönvälitysalan Keskusliitto Ry, Kiinteistömaailma Oy, OP-Kiinteistökeskus, Huoneis-
tokeskus Oy, SKV Kiinteistönvälitys Oy, Aktia Kiinteistönvälitys Oy, RE/MAX Suomi
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• the size of the apartment (measured in square meters),

• the price,

• the price per square meters,

• the year the building was built,

• the floor where the apartment is located (a free text field),

• whether the building has a elevator,

• the reported condition of the apartment

and

• the energy classification of the building.

Appendix A contains tables for the descriptive statistics for the available

information after the data was preprocessed. Due to a map error, the sales in

the Kalajärvi neighborhood (a total of 3 recorded sales) in Espoo were excluded

from the data. It was felt that the omission of this neighborhood would not

influence any estimates materially. Data preprocessing is described next.

To facilitate the construction of hierarchical models on the basis of neighbor-

hoods, the neighborhood names needed to be uniformized by formatting. The

formatting was done manually to match the recorded names to official neigh-

borhood names. For example, if the raw recorded neighborhood was ’Alppila’,

it was transformed to ’Alppiharju’.

The type of the apartment is a free text field with values such as ’1 h, kk,

kph’, ’1h, kt, lasitet...’ and ’1h+tk+s’. In the data preprocessing, this field was

uniformized by removing the white spaces, transforming everything to lower case

and replacing the ’,’-characters with ’+’-characters. Two variables were created

from the uniformized field. First, a dummy describing whether the apartment

had a sauna was created by checking whether the character string ’+s’ was

present in the uniformized field. Next, an integer describing the number of

rooms in the apartment was constructed by retrieving the integer next to the

’h’-character. For example, apartment with unprocessed type ’1-2 h, kk, p’ is

recorded to have a total of two rooms.

The information regarding the floor of the apartment is recorded in a free

text field with values such as ’5/12’ and ’-1/6’. Based on this field, the floor of

the apartment is read from the digits before the ’/’-character. However, when

the free text field has the ’-1’-substring, the floor of the apartment is read from

the digits after the ’/’-character. This treatment was adopted on the assumption

that the use of the ’-1’-substring is related mostly to sales of either a town house
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or a row house - these apartments can have multiple floors, so the floor variable

would now describe the highest floor of the apartment.

Table 4.1 gives the descriptive statistics for the sizes, prices and prices per

square meters for the recorded sales. The minimum values for the variables were

regarded as indications of data entry errors in the raw data. Checking the data

on an observation-by-observation basis revealed that there was a single aberrant

observation which had both the suspiciously low price and the suspiciously small

size. There are also other indications of possible data entry errors, e.g. there are

recorded sales with apartments in buildings with a total of 9 floors but which

do not have an elevator. Additional errors may have been introduced by how

the data was preprocessed: There are observations where the building type is a

high-rise building and the raw floor variable has the ’-1’-substring, so the chosen

treatment for the floor variable might have lead to further data errors.

Variable Min. 1st Qu. Median Mean 3rd Qu. Max.

Square meters 12.50 45.00 60.50 67.28 82.00 320.00

Price 865 175000 240000 280734 330000 2500000

Price per square meters 69 3014 4174 4465 5636 14214

Table 4.1: Continuous variables, descriptive statistics (Kalajärvi excluded)

The number of rooms and the reported condition of the apartment were

transformed further for model estimation. First, the number of rooms was

transformed into a set of dummy variables that were used as explanatory vari-

ables as such. Next, an interaction variable was generated using the size of the

apartment and a dummy variable encoding whether reported condition of the

apartment is good.

The variables are referenced in the model specifications with the following

terms. For observation i, term

• Sqmi is the size of the apartment measured in square meters,

• GoodConditionSqmi is the interaction term2 of the size of the apartment

and the reported condition of the apartment,

• Agei is the age of the apartment’s building measured as the difference

between the year the building was built and 2018 (i.e. Agei = 2018−Yeari

where the term Yeari is the building year),

• TwoRoomsDummyi is a dummy variable describing whether the apart-

ment had 2 rooms,

2The interaction term GoodConditionSqmi gets the same value as variable Sqmi if the
reported condition of the apartment i was good and 0 otherwise.
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• ThreeRoomsDummyi is a dummy variable describing whether the apart-

ment had 3 rooms,

• FourRoomsOrModeDummyi is a dummy variable describing whether the

apartment had 4 rooms or more,

• OwnFloori is the floor variable processed from the raw floor text field,

• SaunaDummyi is a dummy variable describing whether the apartment had

a sauna

and finally

• Pricei is the observed price.

4.2 Geographical data

It seems natural that the price of an apartment would increase as the desir-

ability of the apartment’s neighborhood increases. While the desirability of

a neighborhood most likely depends on multiple factors, it seems natural to

assume that these factors include the distance from the neighborhood to the

center of the metropolitan area (assumed effect is ’the closer the better’) and

the distance to the ocean (assumed effect is ’the closer the better’). To model

these types of effects along with the possible interdependence of the desirability

of neighborhoods, geographical data was compiled.

The geographical data was derived from a map3, seen in figure 4.1, that

was constructed using open geographical data with QGIS4. The neighborhood

polygons were retrieved from the open geographical services of Helsinki, Espoo

and Vantaa. As can be seen from the figure, the Kalajärvi neighborhood in

Espoo is missing. The centroids of the neighborhood polygons are denoted

with red dots in the figure. The road network graph was retrieved from open

data provided by the National Land Survey of Finland. The ocean polygon

was provided by OpenStreetMap. A single point was manually added roughly

next to the central railway station of Helsinki to represent the ’center of the

metropolitan area’. This center point is denoted with the orange star in the

figure.

Three different distances were measured using the compiled map. First, the

inter-centroid distance Dij measures the direct distance between the centroids

of neighborhoods i and j. Second, the distance OceanDistancei measures the

direct distance from centroid of neighborhood i to the ocean polygon. Third,

3https://github.com/villemakinen/housingprices/tree/master/map
4https://qgis.org
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Figure 4.1: Neighborhood map

the distance RoadDistancei measures the distance along the road network from

centroid of neighborhood i to the point representing the ’center of the metropoli-

tan area’. The distances OceanDistancei and RoadDistancei were recorded in

meters and the distances Dij in kilometers. Table A.11 gives the descriptive

statistics for the measured distances.
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Chapter 5

Overall modeling approach

This chapter discusses the necessary distributional choices, the modeling work

flow and model checking.

5.1 Distributional choices

Since there are indications of data errors (see e.g. the minimum price in table

4.1), it was felt that a robust model should be used, so Student’s t-distribution

was chosen as the likelihood. The distribution’s heavier tails allow the models

to better accommodate the unusual observations (Gelman et al. (2014, p. 437)).

Moreover, O’Hagan (1979) shows that Student’s t-distribution is outlier-prone of

degree 1 meaning that the effect on the posterior of a total of m outliers becomes

negligible as long as there is at least a total of 2m observations altogether.

The use of Student’s t-distribution as a robust likelihood is well-established

in Bayesian statistics. Seminal articles where the Student’s t-distribution has

been used for Bayesian linear regression include West (1984), which discusses

the construction of heavy-tailed distributions through mixtures of normal dis-

tributions and their use both as likelihoods and priors, and Geweke (1993),

which describes a Gibbs sampler for a linear regression model with a Student’s

t-distribution likelihood. In the context of Gaussian process models, Student’s

t-distribution has been used in, at least, Vanhatalo et al. (2009), Jylänki et al.

(2011) and Hartman and Vanhatalo (2019).

The prior distribution choices for the model parameters are essentially con-

ventional and follow examples found in McElreath (2016) where possible. The

normal distribution was used for the regression coefficients since this was seen

as the simplest choice. The half-Cauchy distribution was used for the variance

terms since this choice follows both McElreath (2016) and the recommendations

of Gelman (2006) regarding the variance terms for the group-level effects. The
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half-Cauchy distribution was used also for the covariance parameters in model

4. For the degrees of freedom parameter ν of the Student’s t likelihood, the

Gamma distribution was used on the basis of recommendations1 from the Stan

community. Lastly, the LKJ distribution was used for the correlation matrix in

model 5.

To allow for easy interpretation of the models, the explanatory variables

were not scaled or centered. No ’standard’ choices were therefore available for

the hyperparameters for regression coefficients. Similarly, no clear hyperparam-

eter choices were available for the rest of the parameters. The values of the

hyperparameters for the prior were therefore chosen emulating the generative

approach presented in Gelman et al. (2017) and Gabry et al. (2019). First,

expectations were formed for the direction of influence of each explanatory vari-

able. For example, it was expected that the price would tend to increase as the

size of the apartment increases. Next, the hyperparameter values for the whole

prior were chosen through multiple rounds of simulating data using a given set

of hyperparameter values. When the results from the multiple data simulation

rounds were deemed to be broadly reasonable, the hyperparameter values were

accepted. Otherwise, the hyperparameter values were tuned and the simulation

rounds continued.

A single round of simulations had three steps (for a fixed set of hyperparam-

eter values):

1. Simulated data for the explanatory variables was drawn from a set of

independent one-dimensional distributions. For example, the values for

the sizes of the apartments were drawn from a Gamma distribution for

which the shape and rate parameters were chosen such that the expected

value matched the observed mean size from the true data.

2. The values for the model parameters were drawn from the prior with the

fixed set of hyperparameter values.

3. The simulated prices were drawn from the likelihood using the explanatory

variable data simulated in step 1 and the model parameters simulated in

step 2. These prices were used to draw a histogram and the histogram

was checked for obvious inconsistencies, e.g. a large number of negative

or abnormally large prices.

A prior distribution can be called weakly informative when it is proper but

it has been set up in such a way that the information it provides is intentionally

weaker than the actual available prior knowledge (Gelman et al. (2014, p. 55)).

1https://github.com/stan-dev/stan/wiki/Prior-Choice-Recommendations
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Arguably the prior distribution resulting from the described procedure is weakly

informative as the resulting hyperparameter values could be deemed to be ac-

ceptable even when the simulated data included some negative prices, which

are not seen in real life. Alternatively, if ’intentional weakening’ of the prior is

defined through artificially inflated2 dispersion, then calling the resulting prior

weakly informative might be difficult as it was not possible to formulate prior

beliefs in terms of explicit distributions.

5.2 Modeling work flow

Before starting to build the models, the housing sales data was split into separate

estimation and test sets with 7-3-split using simple random sampling. The

model estimation was done using the estimation set and the test set was left to

represent a hypothetical future data for testing the predictive performance of

the models. The same estimation and test sets were used for each of the models.

The modeling work flow consisted of the following steps:

1. Calibrate hyperparameters choices for the prior distribution as described

in the previous section.

2. Generate an additional simulated data set.

3. Write the Stan program for the model.

4. Check correctness of the Stan program by fitting the model on simulated

data.

5. Fit the model using the estimation set.

6. Perform model checking using the estimation set.

7. Evaluate the predictive performance on the estimation and test sets.

The correctness of the Stan program was checked by fitting the model on

the additional simulated data and analyzing the resulting posterior distribution.

The Stan program was deemed to be correct when the posterior distributions

of the model parameters were located around the parameter values that were

used for generating the data.

2For example, the prior distribution for coefficient β is intentionally chosen as β ∼
N(µ,Kσ2),K > 1 when the distribution β ∼ N(µ, σ2) describes the actual prior belief over
the coefficient.
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5.3 Model checking

Model checking was done using draws from the predictive distributions following

the general approach presented in chapter 6 of Gelman et al. (2014). Given a

set of test quantities which serve as summaries for the important aspects of the

data, the predictive distribution draws were used to derive distributions for the

test quantities. If a test quantity calculated from the true data is located in

a high-mass region in the distribution derived from the predictive distribution

draws, it can be concluded that the model is believable at least in the aspect

measured by this test quantity.

In more exact terms, the model checking proceeded as follows: For each

posterior sample θs = (νs, σs, βs) and observation i, a replicated price vrep,s
i

was drawn from the likelihood for which the explanatory variables xi and the

coefficients βs set the expected value µsi , i.e.

vrep,s
i ∼ tνs(µsi , σ

s).

The individual replicated price vrep,s
i are then used to compile a replicated data

set vrep,s such that vrep,s = (vrep,s
1 , . . . , vrep,s

n ). A sample of test quantity values

T (vrep,s) can then be generated for a chosen test quantity T using the replicated

data sets vrep,s. The resulting sample can be used for graphing a histogram, for

example. Then, a ’true’ value T (v) for the test quantity can be calculated from

the true data. Assuming that the model fits the data, the value T (v) should be

located within a high-mass region of the T (vrep,s)-histogram.

The choice of an appropriate test quantity T depends on what is being mod-

eled. The choices for this thesis were as follows: First, using the whole data, the

the mean and median prices were calculated. Then, separately for each neigh-

borhood, the neighborhood-specific mean prices were calculated. These test

quantities were chosen due to their simplicity and their ease of interpretation.

Other possible test quantities include, for example, the maximum and the

minimum prices calculated for the whole data or for each neighborhood sepa-

rately. The minimum and maximum prices were not used in this thesis since

the heavy tails of the likelihood means that the replicated data sets will likely

include artificially small or large values.
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Chapter 6

Models

This chapter presents the structure and estimates for the individual models.

Models 2-5 include terms that vary across neighborhoods, so the following

notation is adopted for the group-level effects: For observation i, let j[i] de-

note the index of the neighborhood where the apartment is located. The term

βIntercept,j[i] then refers to the intercept for the apartment’s neighborhood, for

example.

The group-level effects for models 2-5 were written using non-centered pa-

rameterization (see e.g. Gelman et al. (2014, p. 394) or McElreath (2016,

p. 408)) as this approach was more efficient for sampling with HMC. To illus-

trate the approach, let βj denote a group varying coefficient which is assumed to

have a normal distribution with hyperparameters µ0 and σ2
0 . The distribution

for βj was written in Stan as βj = µ0 + σ0z, z ∼ N(0, 1) instead of the simpler

βj ∼ N(µ0, σ
2
0).

The Stan programs used for estimating the models presented in this thesis,

along with the supplementary R scripts, are provided in a separate GitHub

repository1.

6.1 Model 1 - Simple regression

Model 1 is a simple regression model. The model does not utilize any information

about the neighborhoods where the apartments are located, so it serves as a

benchmark for more realistic models.

6.1.1 Model specification

List (6.1) gives the prior distribution choices for model 1:

1https://github.com/villemakinen/housingprices

32



βIntercept ∼ N(70000, 500002)

βSqm ∼ N(4500, 10002)

βGoodConditionSqm ∼ N(1000, 10002)

βAge ∼ N(−1500, 20002)

βTwoRoomsDummy ∼ N(5000, 100002)

βThreeRoomsDummy ∼ N(7500, 100002)

βFourRoomsOrMoreDummy ∼ N(7500, 100002)

βOwnFloor ∼ N(7000, 10002)

βSaunaDummy ∼ N(5000, 25002)

σ ∼ Half-Cauchy(0, 15000)

ν ∼ Gamma(2, 0.1) (6.1)

The likelihood is Pricei ∼ tν(µi, σ) where the expected value µi is determined

by the sum

µi = βIntercept +

βSqm Sqmi +

βGoodConditionSqm GoodConditionSqmi +

βAge Agei +

βTwoRoomsDummy TwoRoomsDummyi +

βThreeRoomsDummy ThreeRoomsDummyi +

βFourRoomsOrMoreDummy FourRoomsOrModeDummyi +

βOwnFloor OwnFloori +

βSaunaDummy SaunaDummyi.

6.1.2 Estimates

Table 6.1 gives the descriptive statistics for the posterior distribution for the

model parameters.

Surprisingly the estimates in table 6.1 indicate that the effect of the age

of the apartment is reversed when going from the prior to the posterior: The

majority of the mass of the posterior is located on positive numbers for the

βAge-coefficient, so under the posterior the price would be expected to increase

as the age of the apartment increases.
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Parameter mean sd 2.5% q. 50% q. 97.5% q. n̂eff R̂

βIntercept 35595.91 5241.74 25302.66 35580.94 45898.14 4534.08 1.00

βSqm 1683.59 81.86 1528.36 1683.20 1842.71 4610.05 1.00

βGoodConditionSqm 953.66 46.96 860.53 953.82 1044.05 7487.12 1.00

βAge 808.02 52.53 703.63 808.58 909.19 5673.59 1.00

βTwoRoomsDummy 5286.38 3290.30 -1127.12 5252.59 11605.64 5929.39 1.00

βThreeRoomsDummy 7362.02 4455.38 -1267.17 7369.99 15902.57 5141.55 1.00

βFourRoomsOrMoreDummy 15244.42 6254.10 3225.91 15231.68 27297.77 4663.38 1.00

βOwnFloor 9847.57 614.24 8637.13 9851.00 11025.51 7204.09 1.00

βSaunaDummy 6225.31 2035.01 2238.49 6222.88 10137.16 7749.65 1.00

σ 65017.19 1465.32 62197.65 65016.24 67933.27 6012.19 1.00

ν 2.57 0.13 2.32 2.56 2.83 6148.65 1.00

Table 6.1: Parameter estimates - model 1

6.2 Model 2 - Varying intercepts model

Model 2 is a simple varying intercepts model where the intercept is allowed to

vary across the neighborhoods. The model structure was chosen to mimic the

examples in chapter 12 of McElreath (2016).

6.2.1 Model specification

The neighborhood-specific intercepts βIntercept,j are drawn from a normal dis-

tribution representing the ’population’ of neighborhoods. List (6.2) describes

the structure for the group-level effects:

µIntercept ∼ N(50000, 500002)

σIntercept ∼ Half-Cauchy(0, 11000)

zj ∼ N(0, 1)

βIntercept,j = µIntercept + σInterceptzj (6.2)

List (6.3) gives the rest of the prior choices for model 2:
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βSqm ∼ N(4000, 10002)

βGoodConditionSqm ∼ N(1000, 10002)

βAge ∼ N(0, 20002)

βTwoRoomsDummy ∼ N(5000, 100002)

βThreeRoomsDummy ∼ N(7500, 100002)

βFourRoomsOrMoreDummy ∼ N(7500, 100002)

βOwnFloor ∼ N(1000, 10002)

βSaunaDummy ∼ N(5000, 25002)

σ ∼ Half-Cauchy(0, 15000)

ν ∼ Gamma(2, 0.1) (6.3)

The likelihood is Pricei ∼ tν(µi, σ) where the expected value µi is determined

by the sum

µi = βIntercept,j[i] +

βSqm Sqmi +

βGoodConditionSqm GoodConditionSqmi +

βAge Agei +

βTwoRoomsDummy TwoRoomsDummyi +

βThreeRoomsDummy ThreeRoomsDummyi +

βFourRoomsOrMoreDummy FourRoomsOrModeDummyi +

βOwnFloor OwnFloori +

βSaunaDummy SaunaDummyi.

6.2.2 Estimates

Table 6.2 gives the descriptive statistics for the posterior distribution of the

model parameters. Figure B.1 in appendix B describes the posterior distribu-

tions for the neighborhood-specific intercepts βIntercept,j for model 2.

Comparing these estimates with those of model 1, it can be seen that the

effect of age on the price now works in the expected direction, i.e. the price of

the apartment decreases as the apartment ages. The average effect of the floor

variable has also more than doubled compared to the prior distribution choices.

However, the R̂-statistic for the group-level mean µIntercept is greater than the
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Parameter mean sd 2.5% q. 50% q. 97.5% q. n̂eff R̂

βSqm 2027.24 73.00 1890.33 2026.20 2171.99 4104.02 1.00

βGoodConditionSqm 555.33 27.11 502.58 555.26 608.21 8066.64 1.00

βAge -1132.39 50.77 -1234.57 -1132.57 -1032.10 6546.75 1.00

βTwoRoomsDummy 10095.72 2249.52 5725.86 10084.09 14419.52 4688.93 1.00

βThreeRoomsDummy 12121.05 3281.41 5726.30 12143.39 18447.92 3815.76 1.00

βFourRoomsOrMoreDummy 21667.82 4924.33 11810.41 21797.96 31205.34 3659.20 1.00

βOwnFloor 2433.37 412.00 1630.01 2434.16 3236.64 8511.35 1.00

βSaunaDummy 10332.65 1590.03 7161.58 10329.42 13437.81 9168.64 1.00

σ 33195.75 836.64 31582.90 33187.38 34884.66 6114.17 1.00

ν 1.99 0.09 1.82 1.99 2.17 6279.33 1.00

µIntercept 104144.63 9031.64 86836.82 104090.54 122017.77 343.05 1.02

σIntercept 90700.10 6161.38 79783.23 90370.51 103848.28 477.55 1.01

Table 6.2: Parameter estimates - model 2

1.01 threshold given in McElreath (2016), so more samples should have been

drawn from the posterior.

6.3 Model 3 - Varying intercepts model with

distance measures

Model 3 is the obvious extension of model 2 where the group-level intercepts

are influenced by the road and ocean distances discussed in section 4.2. Similar

extensions are presented in Gelman and Hill (2006, p. 241).

The attractive property of model 3 is that it shows how group-level informa-

tion can be utilized for predictions at the observation-level. Models of this type

could be used to study whether investment on neighborhood infrastructure is

reflected in apartment prices, for example. Moreover, the models of this type

should be better at extrapolating price predictions in neighborhoods for which

the necessary distance data exists but no observations have been recorded in

the estimation set.

6.3.1 Model specification

For model 3, the intercepts are now determined through a group-level linear

regression model where the road and ocean distances are used as explanatory

variables. The intercept for neighborhood j = 1, . . . , 1722 is determined by the

group-level model described by list (6.4):

2The indexes run up to 172 since they now include also the neighborhoods where no housing
sales were recorded.
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αIntercept ∼ N(150000, 500002)

αOceanDistance ∼ N(−5, 32)

αRoadDistance ∼ N(−5, 32)

σIntercept ∼ Half-Cauchy(0, 20000)

zj ∼ N(0, 1)

βIntercept,j = αIntercept +

αOceanDistance OceanDistancej +

αRoadDistance RoadDistancej +

σInterceptzj (6.4)

List (6.5) gives the rest of the prior distribution choices for model 3:

βSqm ∼ N(5000, 10002)

βGoodConditionSqm ∼ N(2000, 10002)

βAge ∼ N(−1000, 10002)

βTwoRoomsDummy ∼ N(5000, 100002)

βThreeRoomsDummy ∼ N(7500, 100002)

βFourRoomsOrMoreDummy ∼ N(7500, 100002)

βOwnFloor ∼ N(1000, 10002)

βSaunaDummy ∼ N(5000, 25002)

σ ∼ Half-Cauchy(0, 15000)

ν ∼ Gamma(2, 0.1) (6.5)

The likelihood is Pricei ∼ tν(µi, σ) where the expected value µi is determined

by the sum
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µi = βIntercept,j[i] +

βSqm Sqmi +

βGoodConditionSqm GoodConditionSqmi +

βAge Agei +

βTwoRoomsDummy TwoRoomsDummyi +

βThreeRoomsDummy ThreeRoomsDummyi +

βFourRoomsOrMoreDummy FourRoomsOrModeDummyi +

βOwnFloor OwnFloori +

βSaunaDummy SaunaDummyi.

6.3.2 Estimates

Table 6.3 gives the descriptive statistics for the posterior distribution of the

model parameters. Figure B.2 in appendix B describes the posterior distribu-

tions for the neighborhood-specific intercepts for model 3.

Parameter mean sd 2.5% q. 50% q. 97.5% q. n̂eff R̂

βSqm 2061.53 70.83 1925.64 2060.37 2202.35 6038.30 1.00

βGoodConditionSqm 556.21 26.53 503.98 555.70 609.36 13749.18 1.00

βAge -1137.56 49.04 -1236.56 -1137.38 -1042.66 10172.75 1.00

βTwoRoomsDummy 9727.64 2269.99 5349.39 9736.52 14260.48 6646.34 1.00

βThreeRoomsDummy 11009.79 3197.04 4797.43 11012.36 17255.47 5351.71 1.00

βFourRoomsOrMoreDummy 20098.59 4875.50 10435.47 20140.87 29571.48 5380.90 1.00

βOwnFloor 2379.42 426.56 1525.02 2378.46 3222.84 15302.33 1.00

βSaunaDummy 10478.75 1582.91 7419.20 10484.28 13545.04 15726.36 1.00

σ 33222.39 823.16 31663.19 33209.31 34870.29 9665.80 1.00

ν 1.99 0.09 1.83 1.99 2.17 10537.20 1.00

αIntercept 245452.50 10406.41 224501.57 245546.45 265798.18 1102.08 1.00

αOceanDistance -1.00 1.56 -4.06 -0.97 1.95 1482.89 1.00

αRoadDistance -10.78 0.97 -12.66 -10.77 -8.86 1417.34 1.00

σIntercept 45989.01 3438.07 39892.54 45803.56 53119.29 1647.43 1.00

Table 6.3: Parameter estimates - model 3

Comparing table 6.3 to table 6.2, it can be seen that the non-group-level co-

efficient estimates are essentially the same for both models. Nevertheless, model

3 gives clear indications that there exists an relationship between a neighbor-

hood’s desirability, as measured by the intercepts, and the road distance from

the neighborhood centroids to the center of the metropolitan area.

38



6.4 Model 4 - Gaussian process model

Model 4 is a Gaussian process model where the neighborhood intercepts are

assumed to be simultaneously drawn from a specific group-level multivariate

normal distribution. The covariance structure of the multivariate normal dis-

tribution depends on the distances between the neighborhood centroids - the

smaller the distance is, the higher the covariance between the intercept terms of

these neighborhoods is. This in turn means that the intercepts of nearby neigh-

borhoods tend to be similar ceteris paribus. The model structure was chosen to

mimic the example in section 13.4 of McElreath (2016).

6.4.1 Model specification

For model 4, the construction of the group-level model starts with the construc-

tion of its covariance matrix K. The elements Kij of the covariance matrix K

are determined by the inter-centroid distances as

Kij = η2 exp(−ρ2D2
ij) + 0.01 δij (6.6)

where the term Dij is the inter-centroid distance of neighborhoods i and j and

the term δij is the Kronecker delta. This covariance structure is a special case

of the isotropic Gaussian covariance function (Banerjee et al. (2015, p. 28)).

Parameters η2 and ρ2 have the prior distributions

ρ2 ∼ Half-Cauchy(0, 1)

and

η2 ∼ Half-Cauchy(0, 300).

To speed up sampling, the model definition utilizes the Cholesky decompo-

sition of the covariance matrix K. Let L denote the Cholesky decomposition of

the covariance matrix K, i.e. matrix K decomposes as K = LL′. The unscaled

intercepts α are then given by the following multivariate normal distribution,

written with non-centered parameterization,

z ∼ Multivariate-Normal([0, . . . , 0]′, I128)

α = [70, . . . , 70]′ + Lz

where the term I128 denotes a 128×128 identity matrix and the vectors [0, . . . , 0]′

and [70, . . . , 70]′ have a total of 128 elements. The constant vector [70, . . . , 70]′
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serves as the expected value vector of the multivariate normal distribution.

To complete the group-level model, the neighborhood-specific intercepts

βIntercept are determined by scaling the α-parameter such that

βIntercept = 1000α.

This scaling was adopted to ease the tuning of the hyperparameter values for

the ρ2 and η2 parameters.

List (6.7) gives the rest of the prior distribution choices for model 4:

βSqm ∼ N(6000, 30002)

βGoodConditionSqm ∼ N(1000, 15002)

βAge ∼ N(−2000, 25002)

βTwoRoomsDummy ∼ N(5000, 100002)

βThreeRoomsDummy ∼ N(7500, 100002)

βFourRoomsOrMoreDummy ∼ N(7500, 100002)

βOwnFloor ∼ N(1000, 10002)

βSaunaDummy ∼ N(5000, 25002)

σ ∼ Half-Cauchy(0, 15000)

ν ∼ Gamma(2, 0.1) (6.7)

The likelihood is Pricei ∼ tν(µi, σ) where the expected value µi is determined

by the sum

µi = βIntercept,j[i] +

βSqm Sqmi +

βGoodConditionSqm GoodConditionSqmi +

βAge Agei +

βTwoRoomsDummy TwoRoomsDummyi +

βThreeRoomsDummy ThreeRoomsDummyi +

βFourRoomsOrMoreDummy FourRoomsOrModeDummyi +

βOwnFloor OwnFloori +

βSaunaDummy SaunaDummyi.
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6.4.2 Estimates

Table 6.4 gives the descriptive statistics for the posterior distributions of the

model parameters. Figure B.3 in appendix B describes the posterior distribu-

tions for the neighborhood-specific intercepts for model 4.

Parameter mean sd 2.5% q. 50% q. 97.5% q. n̂eff R̂

βSqm 1882.29 72.93 1742.47 1881.13 2028.74 3035.68 1.00

βGoodConditionSqm 5.70 0.29 5.12 5.70 6.27 12564.26 1.00

βAge -1185.34 47.66 -1280.07 -1184.41 -1092.50 6472.40 1.00

βTwoRoomsDummy 14494.17 2255.40 10053.33 14468.57 19017.86 6895.47 1.00

βThreeRoomsDummy 17529.81 3250.47 11104.17 17515.61 24031.83 5182.00 1.00

βFourRoomsOrMoreDummy 23245.79 4839.45 13878.61 23198.25 32871.56 4653.42 1.00

βOwnFloor 2484.09 423.91 1669.79 2488.23 3310.76 9157.43 1.00

βSaunaDummy 11214.31 1572.23 8108.09 11223.76 14271.47 14528.64 1.00

σ 33548.49 839.82 31901.58 33547.23 35227.89 8316.70 1.00

ν 1.97 0.09 1.81 1.97 2.15 9098.78 1.00

η2 4478.22 681.87 3315.68 4419.83 5956.42 1412.54 1.00

ρ2 0.27 0.03 0.21 0.26 0.34 1389.58 1.00

Table 6.4: Parameter estimates - model 4

Comparing the estimates in table 6.4 to estimates of the previous models, it

can be seen that the effects of the interaction term βGoodConditionSqm is suspi-

ciously decreased 100-fold. The estimates of the effects for the number of rooms

have also noticeably shifted upwards compared to the previous models.

6.5 Model 5 - Varying intercepts and slopes model

Model 5 is a varying intercepts and slopes model where the intercepts along with

the coefficients of the size variables Sqm and GoodConditionSqm are allowed

to vary across the neighborhoods. The model is similar in spirit to models

presented in Gelfand et al. (2003) with the difference that in the presented

model, the coefficient vary over a discrete set of neighborhoods, whereas in the

article, the coefficients are modeled with Gaussian process models which allow

them to vary over a spatial surface. The model structure was chosen to mimic

examples in sections 13.1-13.3 of McElreath (2016).

6.5.1 Model specification

For model 5, the coefficients βIntercept, βSqm and βGoodConditionSqm are deter-

mined through a group-level three dimensional multivariate normal distribution.

The structure of this distribution is described next.
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First, let µ∗ = [µIntercept, µSqm, µGoodConditionSqm]′ denote the expected value

vector of the group-level model. The priors for the expected values µIntercept,

µSqm and µGoodConditionSqm were chosen component-wise as

µIntercept ∼ N(50000, 500002),

µSqm ∼ N(4000, 10002),

and

µGoodConditionSqm ∼ N(1000, 10002).

The covariance matrix Σ of the group-level model is parameterized using the

covariance decomposition

Σ = Diag(σ∗) R Diag(σ∗)

where the term σ∗ = [σIntercept, σSqm, σGoodConditionSqm]′ is a vector for the

standard deviations and the term R is a correlation matrix. The priors for the

standard deviation terms σIntercept, σSqm and σGoodConditionSqm were chosen as

σIntercept ∼ Half-Cauchy(0, 7000),

σSqm ∼ Half-Cauchy(0, 1500),

and

σGoodConditionSqm ∼ Half-Cauchy(0, 350).

The prior for the correlation matrix R was chosen as

R ∼ LKJcorr(2).

The coefficient vector β∗ = [βIntercept, βSqm, βGoodConditionSqm]′ is then writ-

ten with non-centered parameterization as

β∗ = µ∗ + Diag(σ∗)Lz

where the term L denotes the Cholesky decomposition of the correlation ma-

trix R (i.e. R = LL′) and z is an offset term drawn from the standard three

dimensional normal distribution, i.e.
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z ∼ Multivariate-Normal([0, 0, 0]′, I3).

List (6.8) gives the prior distribution choices for the rest of the parameters

for model 5:

βAge ∼ N(−2000, 15002)

βTwoRoomsDummy ∼ N(5000, 50002)

βThreeRoomsDummy ∼ N(7500, 50002)

βFourRoomsOrMoreDummy ∼ N(7500, 50002)

βOwnFloor ∼ N(1000, 10002)

βSaunaDummy ∼ N(5000, 25002)

σ ∼ Half-Cauchy(0, 15000)

ν ∼ Gamma(2, 0.1) (6.8)

The likelihood is Pricei ∼ tν(µi, σ) where the expected value µi is determined

by the sum

µi = βIntercept,j[i] +

βSqm,j[i] Sqmi +

βSqmGoodCondition,j[i] GoodConditionSqmi +

βAge Agei +

βTwoRoomsDummy TwoRoomsDummyi +

βThreeRoomsDummy ThreeRoomsDummyi +

βFourRoomsOrMoreDummy FourRoomsOrModeDummyi +

βOwnFloor OwnFloori +

βSaunaDummy SaunaDummyi.

6.5.2 Estimates

Table 6.5 gives the descriptive statistics for the posterior distributions of the

neighborhood-invariant model parameters. Figures B.4, B.5 and B.6 in ap-

pendix B describe the posterior distributions for the neighborhood-specific in-

tercepts and coefficients.

From table 6.5 it can be seen that the effects of having two rooms or three

rooms have greatly diminished in model 5 compared with the previous models.
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Parameter mean sd 2.5% q. 50% q. 97.5% q. n̂eff R̂

βAge -917.45 44.14 -1005.98 -917.33 -832.79 10010.80 1.00

βTwoRoomsDummy -669.12 1630.51 -3820.42 -674.10 2478.98 10010.99 1.00

βThreeRoomsDummy 3783.15 2277.29 -847.33 3816.87 8225.26 10511.94 1.00

βFourRoomsOrMoreDummy 20887.59 3271.09 14479.89 20867.76 27407.43 11760.38 1.00

βSaunaDummy 14498.95 1505.08 11575.91 14509.64 17420.81 14590.59 1.00

βOwnFloor 1380.66 358.92 672.40 1381.02 2080.88 16706.39 1.00

σ 27683.58 713.55 26312.06 27676.23 29088.38 7188.24 1.00

ν 2.27 0.11 2.05 2.26 2.50 11485.67 1.00

R1,2 0.34 0.11 0.11 0.34 0.54 1221.70 1.00

R1,3 -0.15 0.17 -0.48 -0.15 0.20 4551.53 1.00

R2,3 0.23 0.15 -0.06 0.23 0.51 7092.46 1.00

σIntercept 32720.56 3544.95 26228.32 32578.52 40168.12 3557.89 1.00

σSqm 1323.92 91.21 1157.94 1318.70 1515.82 3645.68 1.00

σGoodConditionSqm 229.97 38.69 156.17 229.01 308.10 3247.46 1.00

µIntercept 110668.17 4586.20 101638.97 110607.81 119864.77 4628.50 1.00

µSqm 2112.79 128.01 1866.58 2113.57 2358.70 2782.98 1.00

µGoodConditionSqm 564.67 34.41 496.73 564.73 631.31 7966.70 1.00

Table 6.5: Parameter estimates - model 5

The effect of having four or more rooms has remained in the same order of

magnitude as in the previous models. It would seem plausible that the ’four or

more rooms?’-dummy could now encode the effects of the building type rather

than the number of rooms as row houses or town houses typically have more

than three rooms. The estimates also indicate that some correlation seems to

exist between the intercepts and effects of the apartment size.

44



Chapter 7

Model comparison and

model stacking

This chapter presents the model checks and the comparative predictive perfor-

mance of the individual models. The model stacking results are also presented.

Appendix C includes the model comparison figures for the individual models

and appendix D the corresponding figures for the stacking model.

7.1 Model comparison

7.1.1 Model checks

Using the whole estimation set, it can be seen that the replicated mean prices

are generally too small and the replicated median prices too high with models

4 and 5 standing out. For model 4, both the replicated mean and median

prices are smaller than the observed mean and median prices. For model 5, the

replicated mean and median prices are generally better than those of the other

models even though model 5 still underpredicts the mean price and overpredicts

the median price. See figures C.1 and C.2 for the distributions.

For Helsinki, the replicated neighborhood mean prices tend to be unsur-

prisingly wrong for model 1 where the neighborhood information is not uti-

lized. When the neighborhood information is utilized, as in models 2 and 3,

the replicated mean prices are roughly correct for majority of the neighbor-

hoods. The Gaussian process approach of model 4 produces worse replicated

mean prices than those of models 2 and 3. There are also neighborhoods, e.g.

Kaartinkaupunki, Eira and Kruunuhaka, where the replicated mean prices are

wrong even when the intercepts are allowed to vary across the neighborhoods.

With the varying intercepts and slopes approach of model 5, the replicated mean
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prices for these neighborhoods tend to be correct. There are also neighborhoods,

e.g. Katajanokka and Länsisatama, where model 5 is also insufficient. See figure

C.3 for the distributions.

For Espoo and Vantaa, the replicated mean prices for neighborhoods behave

similarly to the majority of Helsinki’s neighborhoods. When the neighborhood

information is not utilized, the replicated mean prices tend to be wrong. Once

the neighborhood information is included into the intercept, as in models 2 and

3, the replicated mean prices are largely correct. In Vantaa there does not

seem to exist neighborhoods where the replicated mean prices would benefit

significantly from model 5’s varying slopes and intercepts. This also holds largely

for Espoo with the arguable exception of the Kaupunginkallio neighborhood

where the varying slopes of model 5 are needed. Again, the Gaussian process

approach of model 4 produces worse replicated mean prices as models 2, 3 and

5 for both Espoo and Vantaa. See figures C.4 and C.5 for the distributions.

7.1.2 Predictive performance

Predictive performance is analyzed in terms of the calibration and sharpness

of the predictive distributions and in terms of the PSIS-LOO scores and R2-

statistics of the point predictions.

None of the models can be said to be well-calibrated as the empirical PIT

histograms differ markedly from the uniform distribution for all models. For

model 4, the discrepancy is especially clear as there is much mass at high PIT

values indicating that the model tends to underpredict. In terms of sharpness of

the predictive distributions, the models fall into three categories: First, model

1 produces the most widely-dispersed predictive distributions, models 2, 3, and

4 produce similarly sharp distributions and model 5 the sharpest distributions

compared to the other models. The average width of the central 90 % credible

interval is approximately 330 000 for model 1, 200 000 for models 2-4 and 150

000 for model 5. See figure C.6 for the PIT histograms and figure C.7 for the

histograms of the central 90 % credible interval widths.

Table 7.1 gives the model-specific estimates for the expected log pointwise

predictive density values êlpdpsis-loo and the effective number of parameters ploo.

For model 5, there were 9 observations with k̂-parameter estimates greater than

0.7. To account for these observations, the values presented in table 7.1 for

model 5 were calculated using the PSIS-LOO+-approach of Vehtari et al. (2017)

where exact LOO calculations are conducted for the problematic observations.

Larger values of the êlpdpsis-loo-statistic indicate better predictive perfor-

mance, so model 5 has the best value in table 7.1. The complexity of model 5,

as measured by the ploo-statistic, is also markedly larger than the other models.
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Model 1 Model 2 Model 3 Model 4 Model 5

êlpdpsis-loo -48249.87 -46294.43 -46285.67 -46334.23 -45451.76

ploo 11.23 162.92 146.88 134.30 333.11

Table 7.1: Estimates for the expected log pointwise predictive density values
and effective number of parameters

The table also suggests that the distance information is useful for determining

the neighborhood specific intercepts. Comparing models 2 and 3, it can be seen

that when distance information is utilized, the predictive performance improves

and, surprisingly, the effective of number of parameters decreases. A similar

decrease in the effective number of parameters can be seen between models 2

and 4, although the predictive performance of model 4 is slightly worse than

that of model 2.

For observations in the estimation set, the point predictions averaged from

the predictive distributions tend to be too small. For example, none of the point

predictions of models 1-4 exceeds 900 000 euros whereas the highest observed

price is approximately 2 500 000 euros. The point predictions from model

5 perform better but visual inspection still suggests underprediction also for

model 5. The classical R2-statistic for the estimation set point predictions is

approximately 0.42 for model 1, 0.71 for models 2 and 3, 0.63 for model 4 and

0.85 for model 5. See figure C.8 for the scatter plots for the estimation set.

Point predictions in the test set behave in a similar fashion as in the esti-

mation set. Models 1-4 again never produce point predictions that exceed 900

000 euros while the highest observed price in the test set is exactly 2 500 000

euros. Model 5 also underpredicts but the underpredictions are smaller than in

the other models. The classical R2-measure for the test set point predictions is

approximately 0.42 for model 1, 0.70 for models 2 and 3, 0.61 for model 4 and

0.87 for model 5. See figure C.9 for the test set scatter plots.

In summary, the model checks indicate problems with the current model

specifications with model 5 standing out as the least problematic model. De-

spite the problems, the models produce fairly reasonable predictions for a large

proportion of the observations. It is clear that the neighborhood information is

fundamentally important for the price predictions.

7.2 Model stacking

The stacking model built with models 1-5 and the associated results are pre-

sented next. Table 7.2 gives the weights ŵ solved from problem (3.15). The

weights were calculated after applying the PSIS-LOO+-adjustment to model 5.
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Surprisingly model 4 contributes a non-negligible weight to the stacking model

despite the model’s problems discussed in the previous section.

Model 1 Model 2 Model 3 Model 4 Model 5

ŵ 0.000 0.000 0.008 0.072 0.920

Table 7.2: Stacking weights

The same model checks were applied to the stacking model as to the individ-

ual models. For the replicated mean prices, the stacking model distribution is

slightly sharper than that of model 5 and a bit further away from the observed

mean price. For the replicated median prices, the stacking model distribution

is better than that of any other single model, although the distribution’s mass

is still not centered on the observed median price. See figures D.1 and D.2 for

the distributions.

For the neighborhood-specific mean prices, the distributions of the stacking

model are roughly equal to those from model 5, as would be expected from

the stacking weights. The influence of the weights of models 3 and 4 shifts the

mean price distributions slightly downwards. See figures D.3, D.4 and D.5 for

the distributions.

As with the component models, the stacking model is not well-calibrated

in the sense that its empirical PIT histogram is dissimilar to a uniform distri-

bution. In terms of sharpness, the stacking model produces somewhat wider

predictive distributions than model 5. The average width of the central 90 %

credible intervals for the predictive distributions from the stacking model is ap-

proximately 168 000. See figure D.6 for the PIT histogram and figure D.7 for

the sharpness histogram.

The point predictions averaged from the stacking model’s predictive distri-

butions are roughly equal to those from model 5’s predictive distributions. The

classical R2-statistic for the point predictions is approximately 0.85 for the esti-

mation set and 0.86 for the test set. See figures D.8 and D.9 for the estimation

and test set scatter plots.

It was expected ex ante that the stacking model would clearly outperform any

single model in terms of prediction but, surprisingly, the stacking model does not

outperform model 5. The model check results and the predictive performance

of the stacking model in the estimation and test sets are very similar to those

of model 5.
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Chapter 8

Discussion

This chapter discusses the results and possible extensions of the presented mod-

els.

8.1 Results

8.1.1 Overall results

Overall, the results of the models seem reasonable. The coefficients behave in a

plausible manner for each explanatory variable. Given the general impressions

of the housing markets in the Helsinki-Espoo-Vantaa region, the neighborhood-

specific estimates are seemingly acceptable as, for example, neighborhoods ’with

expensive reputations’ in the center of Helsinki get larger estimates for the

intercepts. The estimates also represent the expected uncertainty coherently:

When there is only a limited number of observations for a given neighborhood,

the posterior distributions for the neighborhood-specific estimands tend to be

more widely dispersed representing the larger degree of uncertainty related to

the estimand.

Model checks indicate that the models fail to capture some aspects of the

underlying phenomenon. For example, there were neighborhoods in Helsinki

where the observed mean prices were not located in high mass regions of the

replicated mean price distributions of any of the models. Additionally, none of

the models was well-calibrated in terms of uniform probability inverse trans-

forms. Finally, the point predictions, especially for models 1-4, tend to be too

low for expensive apartments.
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8.1.2 Poor performance of model 4

Checks on the posterior of model 4 suggest that model is misspecified. The

estimate for the coefficient of interaction term is suspiciously small and the

empirical PIT histogram of the model indicates that the model’s calibration

is especially bad. In hindsight, the covariance structure (6.6) could be poorly

chosen. Banerjee et al. (2015, p. 28) suggests including an additional variance

term for the neighborhood-specific intercept, i.e. choosing Kij such that

Kij = η2 exp(−ρ2D2
ij) + τ2 δij

where the new τ2-parameter allows the model more leeway for setting the

neighborhood-specific intercepts. Other covariance functions listed in Baner-

jee et al. (2015, p. 28) could also be tried. Additionally, the choice of constant

value of 70 over all neighborhoods for the expected value does not reflect the

prior knowledge of the relative desirability of the neighborhoods. All in all,

more work is needed to successfully utilize Gaussian process models.

8.1.3 Lack of predictive improvements from model stack-

ing

The results indicate that model stacking does not lead to clear improvements in

predictive performance. Barring the possibility of programming errors, the lack

of improvement from the stacking model is speculated to be due to the limited

set of models. For housing price modeling, it would seem natural to adopt the

M-open view (see e.g. Bernardo and Smith (1994, p. 385) or Yao et al. (2018))

where it is accepted that the true data generating process will not be among the

specified models and that including it is not feasible due to the complexity of the

phenomenon. For example, possible modeling choices include which explana-

tory variables should be included, whether to model for possible nonlinearities

in the relationship between the response and some explanatory variables, and

how to model for the spatial effects. A comprehensive model set, covering all

reasonable combinations of the modeling choices, would seem necessary to be

able to approximate the true data generating process. The models presented in

this thesis are clearly just the first step towards the comprehensive model set.

8.1.4 Results in terms of existing literature

Following the definition of spatial heterogeneity in Bowen et al. (2001) as sys-

tematic differences in prices in terms of location, suppose that submarkets are

defined as geographical areas where the behavior of some of the explanatory

variables differ markedly compared to some other well-defined geographical
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area. Then estimates for model 5, seen e.g. in figure B.5, can be interpreted

as evidence that there exists a separate submarket around central southern

Helsinki where the relationship between the price and the size of the apartment

is markedly different from other regions.

8.2 Further model development

As discussed in section 8.1.3, there are many possibilities for model development

in terms of the choice of explanatory variables, the model structures and how

the spatial information is used.

8.2.1 Variables

There are explanatory variables that can be constructed from the current data

but which have not been utilized in the models. For example, dummy variables

could be constructed to describe the building type (table A.5, also discussed

in section 6.5), the existence of an elevator (table A.7) or the energy classi-

fications (table A.9). The age of the building could also be used to generate

variables which describe the possible need for expensive near-future renovations.

For example, suppose that the lifetime of a typical plumbing system is approx-

imately 50 years. Then, an interesting ’time to plumbing renovations’ variable

for apartment i could be constructed as

TimeToPlumbingRenovi = 50− (Agei mod 50)

so that the models would be able to represent possible cyclical effects on price

due to necessary renovations. Such variables could be constructed also for other

subsystems of a building, e.g. the facade and heating system.

Other variables of interest include at least information on whether the hous-

ing company owns the lot, the size of the lot and whether the apartment has

a garage. Similarly, additional group-level variables could be also compiled to

measure, for example, the average educational level of the neighborhood’s in-

habitants. These variables were not unfortunately available in the current data.

8.2.2 Model structure

The model structure could be further explored with respect to the utilized group-

ings and how the continuous variables are handled.

In addition to the neighborhood grouping, other reasonable groupings in-

clude the city where the observations are located and the building type. The

city grouping could now reflect, for example, whether the differences in local
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tax rates are actually included in the housing prices. Likewise, it might be rea-

sonable to model the effects of size based on the building type, so the building

type could be utilized as a grouping. Lastly, if further data sets were gathered

at different points of time, a temporal grouping could be included to model

possible time-variant trends in the housing market.

The models in this thesis assume that the relationships between the price

and the continuous explanatory variables are linear. This assumption could be

relaxed by using, for example, splines to allow the models to find possible non-

linear relationships. For instance, it would seem natural that the price increase

would be steeper ceteris paribus for a size increase from 21 m2 to 22 m2 com-

pared to an increase from 121 m2 to 122 m2, so the size variable seems a natural

candidate for applying a spline transformation. Other possibilities include the

addition of quadratic terms or the use of logarithmic transformations.

Lastly, additional variables could be included to the varying slopes as in

model 5. For example, the effect of age could be allowed to vary across the neigh-

borhoods as the housing stock within a neighborhood is usually built roughly

in the same time period.

8.2.3 Spatial aspects

The available spatial information might be insufficient for capturing the under-

lying spatial effects since the official neighborhoods can include disparate regions

within a given neighborhood. For example, in Helsinki’s Vuosaari neighborhood

there exists the Aurinkolahti subregion which seemingly differs noticeably from

the rest of Vuosaari: Observed prices in Aurinkolahti tend to larger compared

to the rest of the Vuosaari, so the models tend to underpredict the prices for

apartments in Aurinkolahti. Obviously, information on the exact locations of

the apartments would allow the proper use of point-reference models presented,

e.g., in Banerjee et al. (2015) or Gelfand et al. (2003) which should help with

these types of problems. Moreover, exact locations would be necessary to study

the existence of spatial dependency discussed in Bowen et al. (2001).

8.3 Conclusions

Despite the problems with the models, it seems reasonable to conclude that the

results serve as further evidence of the importance of location for housing price

modeling. Despite fairly stripped-down data, the predictions from the models

are broadly reasonable. The results also indicate that the price mechanism

differs by location in the Helsinki-Espoo-Vantaa region.

Bayesian hierarchical models are clearly a powerful tool for the modeling of

52



housing prices. With these types of models, it is fairly straightforward to utilize

geographical information either as a grouping or explicitly through Gaussian

process models. Likewise, it is simple to estimate robust models by choosing

a robust likelihood distribution. When the focus is simply on predicting well,

model stacking can be used as a straightforward method for aggregating predic-

tions from multiple models.

The models also have apparent practical uses as they indicate which neigh-

borhoods have the highest premiums for apartments in good condition. Consider

an investment strategy of buying apartments in poor condition, renovating them

and then selling them. This investment strategy could then utilize the models in

the choice of which apartments to buy: For example, given two otherwise iden-

tical apartments, one being located in Koivukylä and the other in Martinlaakso,

model 5 suggests1 that the former should probably produce better returns.

1See figure B.6.
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Appendix A

Descriptive statistics for

data

Tables in this appendix dealing with the housing sales have been compiled with-

out the recorded sales from Kalajärvi.

Table A.1 describes how the data is distributed over the different neighbor-

hoods after the neighborhood names have been formatted. Derived from the

free text field describing the type of the apartment, table A.2 describes the dis-

tribution of the number of rooms and table A.3 the distribution of the dummy

variable describing whether the apartment has a sauna. Table A.4 describes

the distribution of the floor variable. Table A.5 describes the distribution of

the building types. Table A.6 describes the year when the buildings were built.

Table A.7 describes the distribution of the dummy variable describing whether

the building has an elevator. Table A.8 describes the distribution of the re-

ported conditions of the apartments. Table A.9 describes the distribution of

the energy classifications of the apartments. For energy classfications, the year

information has been dropped in the table, e.g. the raw energy classifcation

’G2013’ has been recorded as class G when compiling the table. Table A.10

gives the descriptive statistics for the continuous price and size variables. Table

A.11 gives the descriptive statistics for the distance measures.
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Name Frequency Name Frequency Name Frequency

Alppiharju 82 Koskela 13 Pasila 57

Askisto 2 Kruununhaka 59 Perusmäki 10

Asola 88 Kulosaari 16 Piispankylä 7

Eira 9 Kumpula 11 Pitäjänmäki 47

Espoon keskus 80 Kuninkaala 2 Pohjois-Tapiola 15

Espoonlahti 58 Kuninkaanmäki 3 Pukinmäki 34

Etu-Töölö 116 Kuurinniitty 4 Punavuori 87

Haaga 207 Laajalahti 11 Rajakylä 17

Hakunila 26 Laajasalo 64 Rekola 9

Hämeenkylä 37 Laakso 2 Ruskeasanta 14

Hämevaara 2 Laaksolahti 49 Ruskeasuo 21

Haukilahti 12 Lahnus 1 Saunalahti 14

Havukoski 40 Länsimäki 12 Sepänkylä 15

Henttaa 21 Länsisatama 88 Simonkylä 30

Hermanni 32 Latokaski 5 Sörnäinen 55

Herttoniemi 149 Lauttasaari 163 Soukka 31

Hiekkaharju 60 Leppäkorpi 6 Suurmetsä 81

Ilola 12 Leppävaara 90 Suutarila 46

Itä-Hakkila 9 Lintuvaara 32 Taka-Töölö 85

Järvenperä 12 Lippajärvi 21 Tammisalo 10

Jokiniemi 21 Malmi 117 Tammisto 16

Kaarela 136 Mankkaa 8 Tapaninkylä 87

Kaartinkaupunki 8 Martinlaakso 94 Tapiola 93

Kaitaa 18 Matari 10 Tikkurila 73

Kaivoksela 28 Matinkylä 88 Toukola 20

Kallio 194 Meilahti 46 Tuomarinkylä 41

Kamppi 84 Mellunkylä 181 Ullanlinna 72

Käpylä 42 Metsola 10 Vaarala 13

Karakallio 20 Mikkola 11 Vallila 65

Karhusuo 6 Munkkiniemi 156 Vanhakaupunki 8

Karvasmäki 2 Muurala 5 Vantaanlaakso 4

Katajanokka 63 Myyrmäki 91 Vanttila 5

Kauklahti 26 Niipperi 6 Vapaala 13

Kaupunginkallio 3 Niittykumpu 30 Varisto 3

Keimola 3 Nikinmäki 5 Vartiokylä 143

Kilo 20 Nöykkiö 15 Viertola 25

Kivistö 91 Nupuri 1 Vierumäki 1

Kluuvi 4 Olari 83 Viherlaakso 23

Koivuhaka 5 Otaniemi 1 Viikki 43

Koivukylä 24 Oulunkylä 120 Vuosaari 159

Kolmperä 1 Päiväkumpu 6 Westend 2

Konala 34 Pakila 39 Ylästö 20

Korso 31 Pakkala 27

Table A.1: Frequencies for the neighborhoods
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Number of rooms Frequency

1 885

2 1880

3 1379

4 795

5 309

6 68

7 15

8 3

Table A.2: Frequencies for the number of rooms

Sauna existence Frequency

does not have a sauna 3738

has a sauna 1596

Table A.3: Frequencies for the existence of a sauna in the apartment

Floor Frequency

1 1447

2 1342

3 1018

4 650

5 417

6 254

7 128

8 53

9 11

10 3

11 2

12 4

13 2

15 1

16 1

17 1

Table A.4: Own floor, frequencies

Building type Frequency

high-rise building apartment (’kt’) 4334

town house apartment (’ok’) 187

row house apartment (’rt’) 813

Table A.5: Frequencies for the building types
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Year Frequency Year Frequency Year Frequency

1850 1 1933 6 1978 56

1874 1 1934 8 1979 58

1883 1 1935 6 1980 72

1885 1 1936 36 1981 74

1886 2 1937 41 1982 61

1888 1 1938 67 1983 61

1889 1 1939 50 1984 78

1890 2 1940 29 1985 102

1891 4 1941 15 1986 66

1892 2 1942 1 1987 65

1895 1 1943 1 1988 57

1896 3 1944 4 1989 79

1897 1 1945 12 1990 66

1898 1 1946 16 1991 29

1899 1 1947 6 1992 20

1900 3 1948 12 1993 21

1902 10 1949 5 1994 20

1903 6 1950 25 1995 25

1904 11 1951 21 1996 19

1905 4 1952 37 1997 14

1906 23 1953 19 1998 17

1907 12 1954 59 1999 19

1908 15 1955 40 2000 46

1909 7 1956 62 2001 50

1910 6 1957 78 2002 25

1911 16 1958 54 2003 40

1912 30 1959 69 2004 52

1913 19 1960 63 2005 69

1914 9 1961 107 2006 42

1915 5 1962 119 2007 66

1918 1 1963 101 2008 50

1919 1 1964 98 2009 27

1920 6 1965 95 2010 20

1921 1 1966 55 2011 38

1922 4 1967 61 2012 53

1923 9 1968 59 2013 59

1924 17 1969 53 2014 82

1925 22 1970 76 2015 78

1926 35 1971 81 2016 37

1927 46 1972 109 2017 105

1928 86 1973 99 2018 226

1929 39 1974 114 2019 335

1930 12 1975 81 2020 5

1931 7 1976 51

1932 12 1977 52

Table A.6: Frequencies for the years when the building was built
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Elevator existence Frequency

no elevator exists 2640

elevator exists 2694

Table A.7: Frequencies for the existence of an elevator in the building

Condition Frequency

not recorded 42

bad 149

good 3477

adequate 1666

Table A.8: Reported conditions, frequencies

Class Frequencies

not recorded 1307

A 63

B 166

C 698

D 864

E 1048

F 867

G 321

Table A.9: Energy classifications, classes, frequencies

Variable Min. 1st Qu. Median Mean 3rd Qu. Max.

Square meters 12.50 45.00 60.50 67.28 82.00 320.00

Price 865 175000 240000 280734 330000 2500000

Price per square meters 69 3014 4174 4465 5636 14214

Table A.10: Continuous variables, descriptive statistics

Distance measure Min. 1st Qu. Median Mean 3rd Qu. Max.

Direct distance to ocean 2.00 867.81 4868.30 5496.62 8833.72 18704.17

Road distance to center of Helsinki 652.11 10133.17 15478.40 14890.31 20205.15 29525.70

Inter-centroid distance (Dii excluded) 0.41 9.00 14.01 14.56 19.42 38.03

Table A.11: Distances, descriptive statistics
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Appendix B

Posterior distributions for

the neighborhood-specific

terms for models 2, 3, 4 and

5

This appendix includes the box plots figures of the posterior distributions for

the neighborhood-specific terms for models 2-5.
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Figure B.1: Posterior box plots for the intercepts, model 2
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Figure B.2: Posterior box plots for the intercepts, model 3
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Figure B.3: Posterior box plots for the intercepts, model 4
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Figure B.4: Posterior box plots for the intercepts, model 5
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Figure B.5: Posterior box plots for the size coefficient, model 5
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Figure B.6: Posterior box plots for the interaction term, model 5
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Appendix C

Model comparison figures

Figures C.1 and C.2 include the distributions for the replicated mean and me-

dian prices under each model from the estimation set. The observed mean and

median prices are indicated by the red vertical broken lines.

Figures C.3, C.4 and C.5 include the distributions for the replicated mean

prices per neighborhood from the estimation set for each model. The figures

include only those neighborhoods with at least one observation. The observed

mean prices are denoted with the red markers.

Figure C.6 gives the histograms for the probability inverse transforms for

each model. Figure C.7 describes the sharpness of the predictive distributions

from each model.

Figure C.8 gives the scatter plots of each models point predictions, averaged

from the predictive distributions, and the realized price in the estimation set.

The red broken line in the figures is the y = x-line: The points should lie on

this line for an ideal predictor. Figure C.9 includes the scatter plot of the point

predictions and the realized prices of each model for the test set.

Four observations (identifiers 2748, 3084, 3089 and 2753 in figure C.9) were

chosen to illustrate the underlying predictive distributions. Figure C.10 de-

scribes the predictive distributions of each model for these observations. The

realized prices are denoted with the vertical red broken line.
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Figure C.1: Replicated mean histograms, estimation set
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Figure C.2: Replicated median histograms, estimation set
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Figure C.3: Distributions of replicated mean prices per neighborhood, Helsinki,
estimation set
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Figure C.4: Distributions of replicated mean prices per neighborhood, Espoo,
estimation set
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Figure C.5: Distributions of replicated mean prices per neighborhood, Vantaa,
estimation set
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Figure C.6: PIT histograms, estimation set
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Figure C.7: Sharpness histograms, estimation set
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Figure C.8: Estimation set scatter plots
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Figure C.9: Test set scatter plots
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Figure C.10: Predictive distributions for chosen observations
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Appendix D

Figures for the stacking

model

Figures D.1 and D.2 give the distributions of the replicated mean and median

prices of the estimation set from the stacking model. Figures D.3, D.4 and

D.5 describe the replicated mean prices per neighborhood for the estimation set

using the stacking model. Figure D.6 gives the PIT histogram for the stacking

model. Figure D.7 gives the sharpness histogram for the stacking model. Figure

D.8 is the scatter plot of the observed prices of the estimation set and the point

predictions, averaged from the predictive distributions of the stacking model.

Figure D.9 gives the scatter plot of the test set. The red broken line in the

figures is the y = x-line: The points should lie on this line for an ideal predictor.

Figure D.10 gives the predictive distributions for observations 2748, 3084, 3089

and 2753.
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Figure D.1: Replicated mean prices histogram, estimation set, stacking model

Figure D.2: Replicated median prices histogram, estimation set, stacking model
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Figure D.3: Distributions of replicated mean prices per neighborhood for
Helsinki, estimation set, stacking model

Figure D.4: Distributions of replicated mean prices per neighborhood for Espoo,
estimation set, stacking model
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Figure D.5: Distributions of replicated mean prices per neighborhood for Van-
taa, estimation set, stacking model

Figure D.6: PIT histogram, estimation set, stacking model
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Figure D.7: Sharpness histogram, estimation set, stacking model

Figure D.8: Estimation set scatter plots, stacking model
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Figure D.9: Test set scatter plots, stacking model

Figure D.10: Predictive distributions for chosen observations, stacking model
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