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Abstract 

The Scientific Advisory Board (SAB) of the Organisation for the Prohibition of Chemical 

Weapons (OPCW) has provided advice on the long-term storage and stability of samples 

collected in the context of chemical weapons investigations. The information they compiled 

and reviewed is beneficial to all laboratories that carry out analysis of samples related to 

chemical warfare agents and is described herein. The preparation of this report was undertaken 

on request from the OPCW Director-General. The main degradation products for chemicals on 

the Schedules in the Annex on Chemicals of the Chemical Weapons Convention are tabulated. 

The expertise of the 25 scientists comprising the SAB, a review of the scientific literature on 

environmental and biomedical sample analysis, and answers to a questionnaire from chemists 

of nine OPCW Designated Laboratories, were drawn upon to provide the advice. Ten 

recommendations to ensure the long-term storage and stability of samples collected in relation 

to the potential use of chemical weapons were provided and are repeated here for the 

consideration of all laboratories worldwide. 
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1. Introduction 

The Chemical Weapons Convention (hereinafter “the Convention”) is an international 

disarmament treaty that prohibits the development, production, stockpiling, acquisition and use 

of chemical weapons and requires the nations (the “States Parties”) subject to the treaty to 

destroy any chemical weapons and related production facilities they may possess [1]. The 

Convention entered into force in 1997 and as of January 2018 has 192 States Parties, leaving 

only four States outside its obligations (these are the Democratic People’s Republic of Korea, 

Egypt, Israel, and South Sudan). Implementation of the Convention includes a verification 

regime that allows on-site inspections and data monitoring of relevant chemical-related 

activities within the States Parties. This regime functions to verify that these activities are 

consistent with the objectives of the Convention. The Organisation for the Prohibition of 

Chemical Weapons (OPCW), an international organisation based in The Hague, The 

Netherlands, functions as the implementing body of the Convention. The OPCW was awarded 

the Nobel Peace Prize in 2013 for its ‘extensive efforts to eliminate chemical weapons’ [2] and 

continues to work to free the world permanently of chemical weapons. 

Inspections are critical to the implementation of the Convention. OPCW inspectors are 

responsible for conducting three types of inspections: (a) routine inspections of chemical 

weapons-related facilities and chemical industry facilities that use certain ‘dual-use’ chemicals 

(i.e. chemicals that can be used for both peaceful and prohibited purposes); (b) short-notice 

challenge inspections, which can be conducted at any location on the territory of any State 

Party about which another State Party has concerns regarding possible non-compliance; and (c) 

investigations of alleged use (IAUs) of chemical weapons. Inspectors, who are selected from 

experts in their respective technical fields (chemistry, chemical engineering, munitions, health 

and safety, and a number of other relevant areas), are recruited from across the States Parties of 

the Convention and specially trained to conduct inspections in accordance with the intent and 

purpose of the Convention.  

The only way to unambiguously confirm the presence of chemicals relevant to the Convention 

during inspections is to use analytical chemistry [3]. Analysis can be quantitative, for example 
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to ensure that chemical agent concentrations fall below a permitted threshold when subjected to 

neutralization processes during destruction, or qualitative to confirm if a relevant chemical is 

present. Inspections of industrial facilities can also be conducted with sampling and analysis 

using a mobile laboratory. Mission instruments used in these on-site inspections are maintained 

and certified under an International Organisation for Standardization (ISO) 17025 accredited 

quality system, by the OPCW Laboratory. 

The Convention (within its Verification Annex) also contains provisions to analyse samples 

off-site. This is particularly important for politically-sensitive missions, such as challenge 

inspections or IAUs. For off-site analysis the OPCW depends on an international network of 

OPCW-designated partner laboratories [4]. To maintain designation, the laboratories must have 

an accredited quality system and participate successfully in Proficiency Tests organised by the 

OPCW Laboratory (accredited under ISO 17043) at least once a year [3,4]. 

This system has created a robust network of laboratories that act as a deterrent to non-

compliance by adding high levels of confidence to the verification regime. The scientific rigour 

of proficiency testing, following criteria in the ISO 17025 quality system, and OPCW quality 

management system [5-8], ensures this high level of confidence. The laboratories must receive 

grades of AAA or AAB in their last three tests (an A grade is awarded to laboratories that 

identified all spiking chemicals in a test and have no reporting errors, while a B grade indicates 

a missed spiking chemical or a reporting error). Laboratories receiving more than one B grade 

or lower grades are suspended and cannot receive authentic samples for analysis. The test 

scheme has zero tolerance for false positives. A laboratory reporting a false positive in a 

Proficiency Test fails the test and loses its designation status. 

The Convention contains within it an Annex on Chemicals consisting of three schedules of 

chemicals that are of high relevance to chemical disarmament and security, due to their 

historical and known uses as chemical warfare agents and precursors to such agents. 

Proficiency testing focuses on chemicals from these schedules. Reviewing the schedules (see 

the Appendix to this paper) reveals that the number of possible reportable chemicals is 

extensive (e.g. Schedule 2.B.04, which includes chemicals containing a phosphorus atom to 

which is bonded one methyl, ethyl or propyl group, but no further carbon atoms, includes an 

indeterminate number of possible phosphorus (III) and (V) compounds). Furthermore, some of 

the spiking chemicals in Proficiency Tests may not be present in any available spectral 

databases. These facts, together with the strict performance requirements already outlined, 
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ensure that proficient laboratories must maintain the highest level of analysis capabilities to 

keep their designation. In the early years of the Proficiency Tests, gas chromatography-mass 

spectrometry (GC-MS; electron impact and chemical ionisation) was the analytical technique 

of choice. Today, additional methodologies are used in a complementary way, and these 

include: GC with a flame photometric detector (used to detect sulfur and phosphorus) or 

thermionic specific detector (used to detect nitrogen and phosphorus) or atomic emission 

detector (multi-element detector), GC-MS/MS, GC-high resolution MS, liquid chromatography 

(LC)-MS, LC-MS/MS, LC-high resolution MS, nuclear magnetic resonance (NMR) 

spectroscopy (most often 
1
H and 

13
C, and 

19
F and 

31
P when applicable), and Fourier transform 

infrared (IR) spectroscopy [9-12].  

OPCW Designated Laboratories require a chemical synthesis capability to make authentic 

standards for analytical data-matching, particularly when spectra are unavailable in databases. 

In addition to commercial databases of analytical information, the OPCW maintains a database 

of chemicals scheduled under the Convention. This is the OPCW Central Analytical Database 

(OCAD) [10] and is available to all States Parties of the Convention. The OCAD features over 

6000 mass spectra, 5200 retention indices, 1400 NMR spectra and 1000 IR spectra. In October 

2017, the OPCW Executive Council approved the first set of non-scheduled chemicals for 

inclusion in the OCAD [13].  

Analysis of environmental samples can be used to identify the presence of chemical agents 

(and/or their degradation products and/or impurities carried over from production). To provide 

evidence of whether a suspected human casualty has been exposed to a chemical agent requires 

the analysis of biomedical samples, preferably blood and/or urine as they are easily collected 

[14,15]. Procedures for proving people have been exposed to chemical warfare agents (CWAs) 

through biomedical sample analysis have advanced significantly over the last decade. Besides 

the analysis of free agents and their metabolites, adducts of CWAs with biomolecules such as 

DNA and proteins are of prime importance, as they permit retrospective identification of 

exposure over longer time periods due to their persistence in the body. Forensic verification of 

a fatal poisoning in the Syrian Arab Republic in 2013 by the organophosphorus nerve agent 

sarin has been recently reported by two OPCW Designated Laboratories and illustrates this 

persistency [16]. Low concentrations of relevant chemicals in biomedical samples can require 

trace analysis in the sub-parts-per-billion range and the search for new relevant biomarkers is a 

continuing enterprise.  
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The OPCW conducts Proficiency Tests on environmental and biomedical samples, and 

designates laboratories for analysis of one or both types of sample. The designated laboratory 

network as of 31 August 2017 is shown in Figure 1; there are 24 laboratories located across 17 

States Parties. The OPCW Laboratory, in close cooperation with its partner laboratories, has 

developed the proficiency testing scheme over the past 24 years, including making updates to 

its implementation over time. It is essential to constantly review whether the testing scheme is 

still meeting its requirements, follows developments in analytical chemistry, and is relevant 

with respect to real-world samples that the OPCW has been receiving since the United Nations 

(UN) led mission that investigated the 2013 Ghouta sarin attack in the Syrian Arab Republic 

[15,16].  

In the way described, the OPCW, together with its partner laboratories, has been able to create 

a mechanism for the analysis of relevant authentic samples that is robust, and operates at an 

extremely high scientific standard, to implement effectively the “trust but verify” principle 

embodied in the Convention and its Verification Annex. The proficiency test participants have 

analysed samples in different matrices, identified spiking chemicals that cannot be found in 

analytical databases, and avoided ‘pitfalls’ set by the Sample Preparation Laboratories within 

the designated laboratory network. These measures have allowed the OPCW to have high 

confidence in the chemical analysis conducted by the designated laboratories [17]. 

Recommended Operating Procedures (ROPs) for analysis in the verification of chemical 

disarmament have been produced through international collaboration with expert laboratories 

working in the field of Convention-related analytical chemistry; these ROPs are available in 

the VERIFIN “Blue-Book” which was most recently updated in December 2017 [18]. When 

the designated laboratories are called upon to perform an off-site analysis, the samples will be 

split between two laboratories (in two States Parties) where the laboratories will carry out the 

analysis blindly to one another. In order for a result of the detection of a specific chemical to be 

accepted, both laboratories must confirm the presence of the specific chemical identified within 

the sample. 
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The advice outlined in this report was provided to the OPCW Director-General in 2016 

(Figures 2 and 3). Since that time an OPCW Fact-Finding Mission (FFM) [19], has reported on 

new incidents, in particular in Ltamenah, Hama Governorate (March 2017) [20] and Khan 

Shaykhun, in the Syrian Arab Republic (April 2017) [21,22], where the use of sarin (or a sarin-

like nerve agent that degrades to form methylphosphonic acid) was confirmed. Attribution of 

the use of chemical agents is outside the mandate of the FFM and the previous UN led Mission 

in 2013 that included OPCW inspectors in the inspection team. The information collected 

through the FFM was provided to an OPCW-UN Joint Investigative Mechanism (JIM) for 

further review [23]. In its final Seventh Report, the JIM stated that it was confident that a non-

State actor (Daesh) was responsible for the use of sulfur mustard in Umm Hawsh in the Syrian 

Arab Republic on 15 and 16 September 2016, and that Syrian Arab Army forces were 

responsible for the release of sarin at Khan Shaykhun on 4 April 2017 [24]. The latter 

conclusion however, has been contested by some States Parties at both the United Nations 

Security Council (UNSC) and the OPCW; the mandate for the JIM was also discontinued by 

the UNSC in November 2017. It should also be noted that the JIM report does not represent 

findings from a court of law. Just prior to the Khan Shaykhun incident, a murder in Malaysia 

was reported to have involved the organophosphorus nerve agent VX [25], underscoring 

further the importance of chemical analysis in relation to the investigation of CWAs, and the 

timeliness of the advice on sample storage and stability described herein. Note that the SAB 

provides independent scientific advice to the OPCW Director-General and is not involved in 

specific incidents or investigations. 

 

2. Advice from the SAB 

Before presenting the SAB’s advice on sample storage and stability, the role and constitution 

of the SAB itself warrants a brief explanation. The SAB is a subsidiary body of the OPCW, 

enabling the Director-General to render specialised advice in science and technology to OPCW 

policy-making bodies and States Parties. The SAB reports to the Director-General, who then 

makes the Board’s reports available, alongside his own response, to the States Parties and the 

public. The SAB consists of 25 members, each of whom is an expert in one or more technical 

fields relevant to the Convention. SAB members serve in their individual capacity as 

independent experts. The SAB members are nominated by their respective States Parties, and 

the Director-General appoints members from the candidates put forth, keeping in mind the 
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candidates expertise and the need for geographical balance. Members are appointed for a three 

year term and are eligible to serve for two consecutive terms. Members are drawn from 

universities, industry, defence organisations and other institutions. Only citizens of the 

Convention’s States Parties are eligible for SAB membership. Every year the SAB elects a 

Chair and Vice-Chair from its members. Further information on the SAB and its activities is 

available from the OPCW [26-28].  

Returning to the topic of this paper, to be fully prepared to analyse any chemical potentially 

present in a wide range of types of samples in support of operational missions, the OPCW must 

be able to store samples over several years and analyse them with high accuracy at any point in 

time. The diversity of sample types containing Convention-relevant chemicals - such as nerve 

and blister agents, and immediate precursors and degradation products - is potentially vast [29], 

and could include: 

(a) Relatively pure samples; 

(b) Liquid (including extracts) and solid samples containing either relatively high levels or 

trace levels of the chemicals of interest; 

(c) Highly heterogeneous unprocessed samples – such as soil, metal fragments, paint chips, 

fragments of highly absorbent material, or wipes – containing relatively high levels or trace 

levels of the chemicals of interest; and 

(d) Biomedical samples, such as blood, plasma, urine, and tissue. 

In November 2015, the OPCW Director-General requested the SAB to address three 

overarching questions (Supplementary Material, Appendix A): 

(a) Given the current storage conditions in the OPCW Laboratory, how quickly and through 

what process could the aforementioned types of samples degrade to a point where analysis of 

the samples would likely no longer return credible results? 

(b) What are the best-practice conditions for long-term storage of the aforementioned types of 

samples? 

(c) Given these best-practice storage conditions, how quickly and through what process could 

the aforementioned types of samples degrade to a point where analysis of the samples would 

likely no longer return credible results? 
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Before answering these questions, it was necessary for the SAB to comment on the OPCW off-

site verification mechanism in light of ‘credible results’ referred to in questions (a) and (c) 

above. The SAB noted that the analytical findings of the Designated Laboratories from analysis 

of samples collected in OPCW investigations will always be scientifically accurate because of 

the stringent checks and balances in place within the operating procedures [30]: the findings 

will always return ‘credible results’ (‘credible’ is defined in the Oxford English Dictionary as 

‘able to be believed; convincing’). The results of the analyses will always be convincing and 

withstand scrutiny both scientifically and legally, especially if presented as evidence in court. 

The integrity of the procedures established in OPCW Designated Laboratories provides 

necessary safeguards and thus protects the off-site analysis process from any suggestion of 

tampering. It was with these important points in mind that the Director-General’s questions 

could be answered in turn: 

(a) Given the current storage conditions in the OPCW Laboratory, how quickly and through 

what process could the aforementioned types of samples degrade to a point where analysis of 

the samples would likely no longer return credible results? 

Any chemical stored for a sufficiently long time, no matter what the storage conditions, can 

degrade to one or more products. If the chemical degrades entirely and is no longer observable 

in the sample, scientists can often reconstruct the identity of the original chemical from 

analysis of its degradation products. These products in a sense constitute a ‘memory’ of the 

original chemical. The situation for CWAs and related chemicals, such as precursors, is no 

different: their concentration may reduce upon storage, although their degradation products 

will increase in concentration. This change, allowing the identity of the degraded chemical to 

be pieced together from the molecules constituting the degradation products, makes chemical 

analysis a powerful tool for retrieving evidence of chemical weapons use. Samples may also 

contain by-products of the synthetic route used to produce the CWA, as well as unreacted 

starting materials, which will further enhance their analytical value. To visualise how 

molecular degradation products can be used to reconstruct the identity of the original CWA, 

the non-scientist may wish to think about reconstructing a broken object, such as a vase, from 

its fragments. Similarly, in chemical forensics, the identity of a CWA or precursor can be 

reconstructed from the types of degradation products and impurities observed through sample 

analysis. It must be noted however, if the agent or precursor is initially present only at trace 

levels, prolonged storage may result in adsorption of the original chemical and/or its 

degradation product(s) to the container walls, for example. In such cases re-analysis could 
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result in the original chemical and/or its degradation product(s) not being detected, due to their 

presence in extremely low concentration(s), at levels below the detection limits of the 

analytical method employed. 

Also, for chemical samples generally, the degradation products themselves can sometimes be 

unstable and degrade to simpler compounds that are more distant in structure than the initial 

component of the sample. The nature of a sample can also change if a compound or its 

degradation products are volatile and escape from a poorly sealed container. It is also possible 

that samples or their degradation products could be reactive and rather than degrade, could 

form new compounds by combining with other components or impurities in the sample. 

Finally, samples or their degradation products can polymerize to give products that are 

insoluble in solvents, and therefore not easily analysed by the usual techniques. Note that 

disassembly of organic compounds occurs in ways that are sometimes less obvious that one 

might predict. 

The storage conditions used by the OPCW Laboratory will inevitably and naturally lead to loss 

of intact original chemicals by degradation in many cases (this phenomenon is a natural 

process and occurs in every laboratory in the world). It is impossible to put a precise time on 

how long any chemical will take to degrade, as shelf-life or degradation rate depends on the 

chemical structure, matrix, presence of further chemicals (e.g. stabilisers) and storage 

conditions, as well as the initial concentration of the chemical. It is only possible to estimate, 

with considerable uncertainty, a likely storage time, and impossible to state accurately when 

the various sample types will degrade to a point where analysis would not identify the intact 

original chemical(s). 

However, it is possible to state that the intact original chemical(s) in the sample types stored in 

the OPCW Laboratory might degrade naturally in, at worst, weeks to months, and at best, 

months to years. In some cases, degradation is so slow that the intact agent is present for many 

decades. The analysis of samples in which the chemicals of interest have degraded will return 

credible analytical results, but with less specific information. The characteristic degradation 

compounds will still contain the molecular evidence for proving CWA use, or in the case of 

other investigations, the presence of a Convention-related chemical. 

The main degradation of CWAs, and other Convention-related chemicals, in environmental 

samples occurs through reaction with water (hydrolysis) or oxygen in air (oxidation). To 

reduce the potential for degradation in the samples, as little time as possible should elapse from 
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the time of collection of any sample to the time of analysis; lengthy delays of weeks to years 

may diminish the concentration of the intact original chemicals in the samples, but does not 

diminish their usefulness as evidence in IAUs or other Convention-related investigations. 

Recommendation 1.  

Samples should be analysed as soon after collection as possible and the need for storage 

eliminated or, less favourably, the storage time minimised. Prompt analysis should be viewed 

as urgent, as the intact original chemicals will provide the strongest basis for confirming the 

use of chemicals prohibited by the Convention. (This is because the sample stability, and 

potential impacts of any matrix or environmental factors on the stability of any Convention-

relevant chemicals in the sample, will not be known prior to analysis.) 

Recommendation 2.  

Further work on the storage of samples just after sampling and during transport to the OPCW 

Laboratory, sample handling during splitting, handling and storage of samples at the OPCW 

Laboratory, should be pursued. 

(b) What are the best-practice conditions for long-term storage of the different types of 

samples? 

The SAB reviewed the scientific literature, and the answers to a SAB questionnaire returned by 

nine OPCW Designated Laboratories, on the best-practice conditions for the sample types 

described. Based on the findings, to optimise the conditions for reduced degradation of the 

Convention-relevant chemicals in the samples, the SAB makes the following 

recommendations: 

Recommendation 3. 

 Commercial chemical samples should be stored in certified clean glass containers with Teflon-

lined caps in the dark: those in 

(i) Schedules 1.A.01, 1.A.02, 1.A.03, 1.A.06, 1.B.09, 1.B.10, 1.B.11 and 1.B.12 at -18 °C 

under argon (to enable stability for 5-10 years). 

(ii) Schedules 1.A.04 and 1.A.05 at room temperature (for stability > 10 years). 
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(iii) Schedule 1.A.08 (ricin) as a precipitate in 6 M ammonium sulfate at 4 °C (for stability > 

10 years). 

Recommendation 4.  

Extracts of chemicals should be made in dichloromethane and stored in certified clean glass 

containers at 4 °C with Teflon-lined caps in the dark, to ensure stability of the intact original 

chemical for up to one year (swabs or wipes should be analysed within one month of collection 

or otherwise disposed of due to likely storage instability; wherever possible they should be 

extracted as soon as possible into dichloromethane and the extracts stored instead). 

Recommendation 5.  

Highly heterogeneous unprocessed samples – such as soil, metal fragments, paint chips, or 

fragments of highly absorbent material – containing relatively high levels or trace levels of the 

chemicals of interest, should be stored in sealed glass or high-density polyethylene containers 

at -18 °C under an inert gas (e.g. argon or nitrogen), to guarantee the stability of the samples 

for up to 6 months. For samples containing any moisture (e.g. soil), -80 °C could be better than 

-18 °C.  

Recommendation 6. 

 Biomedical samples – for example, urine or plasma – should be stored in polypropylene or 

polyethylene terephthalate containers in a freezer at -80 °C (except for whole blood, which 

should be refrigerated at 4 °C) to ensure the integrity of the samples for as long as possible (up 

to several years). 

Recommendation 7.  

Larger volumes of chemicals/samples should be split into subsamples and the subsamples used 

for repeated analytical manipulations. This will reduce the number of warming-cooling cycles 

the samples have to encounter. This is important, especially for materials stored in a freezer or 

deep freeze (-80 °C). It will also help to minimise degradation of the chemical(s) in the unused 

portions of samples. 

Recommendation 8.  

Samples of neat Scheduled chemicals required for long-term banking within the OPCW 

Laboratory should be flame-sealed in glass ampoules under an inert gas (e.g. argon or 
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nitrogen); the use of the flame-sealed ampoule technique appears to offer some storage and 

shipping advantages for which there is evidence [31]. 

(c) Given these best-practice storage conditions, how quickly and through what type of process 

could the different types of samples degrade to a point where analysis of the samples would 

likely no longer return credible results? 

The previous comments in this section on the uncertainties of prediction of shelf-lives of 

chemicals should be noted. Based on the review herein of processes by which Convention-

relevant chemicals degrade, the SAB assesses that it is difficult, given the incomplete 

knowledge worldwide of the fate of CWAs and other CWC-relevant chemicals in different 

matrices, to specify precisely when the analysis of a sample would likely no longer identify the 

intact original chemicals. Degradation could be catalysed by minor impurities and rates of 

decomposition could vary significantly. The best-practice storage conditions provided in 

answer to the previous question will extend the time the original chemical in the sample will 

persist. Although some loss of this chemical may occur even under these conditions, the 

analysis of the samples will return credible analytical results, but with less specific 

information. The characteristic degradation products and other chemical residues (such as 

synthesis by-products and unreacted starting materials) will still provide the molecular 

evidence necessary to recognise CWA production, confirm the use of chemical weapons, or 

inform other Convention-related compliance testing. 

Further information on the provenance of the chemicals in a sample might be accessible 

through chemical forensics methodologies. In this respect, the SAB recognises that attribution 

of CWA use will become easier as the science of chemical forensics advances. These 

observations led the SAB to propose two additional recommendations relevant to addressing 

the OPCW Director-General’s questions: 

Recommendation 9.  

The OPCW should monitor advances in sampling and analysis, and with the SAB, any new 

innovations relevant to chemical forensics. (The SAB started to consider this topic in 2016 and 

held an international workshop on the subject in Helsinki that summer; see Section 4 for 

further information.) 

Recommendation 10.  
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A reference sample collection at the OPCW Laboratory should be kept to provide a range of 

chemical forensic options for current and future samples suspected of containing Convention-

relevant chemicals [32-38].  

 

2. Findings 

2.1. Processes by which relevant chemicals degrade 

The scientific literature describes processes by which CWAs and other Convention-relevant 

chemicals degrade. While the information is incomplete, compilations of data do exist [39-48]. 

These suggest that many CWAs and other Convention-relevant chemicals, if pure, and stored 

in the absence of water, can last for years without appreciable deterioration. This high stability 

has enabled them to be stockpiled historically. In some cases, ‘stabilisers’ (chemical additives) 

have been added to preserve them from degradation. Processes that affect chemical storage are 

physical (evaporation and absorption) and/or chemical (mainly hydrolysis, oxidation, and 

polymerisation). Degradation is a complex phenomenon that is still not fully understood. 

CWAs generally react with water and often other nucleophilic chemicals. Nerve agents (tabun, 

sarin, soman, and VX) and vesicants (sulfur mustard, nitrogen mustards, and Lewisites) 

hydrolyse at a rate dependent on their aqueous solubility and susceptibility to attack by water 

molecules [49-51]. Sulfur and nitrogen mustards have low solubility in water and this protects 

them to an extent from hydrolytic degradation. This is demonstrated by the current hazards 

posed by sea-dumped chemical munitions containing sulfur mustard, despite the fact that 

disposal occurred decades ago [52,53]. This is largely due to the formation of a protective 

coating caused by reaction of the sulfur mustard with its hydrolysis products, to give an 

insoluble polymer comprised of long-chain sulfonium compounds. 

It is the hydrolysis of nerve and blister agents during storage, in the environment or human 

body, which usually results in their degradation (by one or multiple pathways depending on 

their chemical structure) and detoxification [45,46]. The rate of hydrolysis depends on 

temperature and pH for environmental samples and for biomedical samples (37 °C, pH 7.4) on 

the presence of additional substances that may catalyse hydrolysis (e.g. enzymes such as 

carboxylesterase present in plasma [54]). Some chemicals of interest can further undergo 

oxidation by oxygen in the air, or during metabolism [41-48], as shown in Figure 4 for the 
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nerve agent O-ethyl S-2-diisopropylaminoethyl methylphosphonothiolate (VX) and bis(2-

chloroethyl)sulfide (sulfur mustard or HD).  

 

               

Figure 4. Degradation of VX (top) or HD (bottom) occurs through hydrolysis then oxidation. 

 

Hydrolysis of VX is complex and pH dependent and can produce EA2192, which, like VX, is a 

potent anticholinesterase of high toxicity. The thiol produced by one of the VX hydrolysis 

pathways is oxidised by oxygen in the air to a disulfide. Thiodiglycol from HD hydrolysis 

oxidises to thiodiglycol sulfoxide and thiodiglycol sulfone.  

Oxidation has also been employed for the destruction [55-58] and decontamination [59,60] of 

Convention-relevant chemicals. Oxidation is only possible when the affected atom is not in its 

maximum oxidation state. The resilient P-C bond remains intact throughout environmental 

hydrolysis of nerve agents such as O-isopropyl methylphosphonofluoridate (sarin) [42,51], 

while the P-F bond, then more slowly the i-PrO-P bond, is cleaved by water. The P-CH3 motif 

in the hydrolysis products isopropyl methylphosphonic acid (iPMPA) and methylphosphonic 

acid (MPA) indicates the prior presence of sarin [61,62], especially when found together with 

the production impurity diisopropyl methylphosphonate (DIMP) (Figure 5). Atoms in low 
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oxidation states, such as sulfur in thiols RSH or sulfides RSR can oxidise to give disulfides 

RSSR, sulfoxides RS(O)R or sulfones RSO2R, respectively. In addition to the formation of 

disulfides, thiols can also form sulfenic, sulfinic, and sulfonic acids (in order of increasing 

oxidation state), particularly when disulfide formation is disfavoured in dilute solution. 

 

       

Figure 5. Sarin reacts with environmental moisture to provide iPMPA. This reacts slowly with 

water with the loss of isopropanol to provide MPA. The discovery of sarin, iPMPA, MPA and 

DIMP by the United Nations investigating team, from analysis of soil samples collected after 

the 21 August 2013 attack in Ghouta in the Syrian Arab Republic, confirmed that sarin-filled 

rockets had been deployed [63,64].  

 

Sulfur and nitrogen mustards degrade along several pathways: (a) to give vinyl species, e.g. 

HOCH2CH2SCH=CH2 from elimination of hydrogen chloride from the initial product of 

hydrolysis of HD; (b) through cyclisation, for example of HD, during hydrolysis, e.g. to give 

1,4-thioxane; (c) sulfonium or quaternary nitrogen salt formation from intermolecular reaction 

of hydrolysis products of sulfur and nitrogen mustards, respectively, and (d) the oxidation of 

HD to form the sulfoxide and sulfone. This complexity of degradation is typical for mustard-

type vesicants bearing at least one 2-chloroethyl group (ClCH2CH2-). The arsenical agent 

Lewisite 1 contains a trivalent arsenic(III) atom and hydrolyzes rapidly with loss of hydrogen 

chloride to 2-chlorovinylarsenous oxide (Lewisite oxide, CVAO). This then oxidises to 2-

chlorovinylarsonic acid (CVAA) where the arsenic atom has the +5 oxidation state (Figure 6) 

[45,50]. This is another example of a hydrolysis and oxidation process of CWA degradation. 

Note that this process can occur in environmental samples containing vesicant agents on 

storage, or decontamination, and will be time dependent. Fortunately, the hydrolysis and 

oxidation products contain much of the structural information of the CWA itself and are 

indirect proof of the prior presence of the CWA [42]. 
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Figure 6. Lewisite 1 hydrolysis to CVAO, which retains the vesicant and toxic properties of 

Lewisite 1 [65]. CVAO oxidises to CVAA which is not appreciably vesicant, but some toxicity 

remains because of the presence of the arsenic atom.  

CWAs and other Convention-relevant chemicals also react with certain solvents and care 

should be taken to choose an appropriate solvent for short-term storage. HD and some nerve 

agents react readily with low molecular-weight alcohols. Nucleophilic solvents, such as these, 

should be regarded as unsuitable. In one Designated Laboratory, organophosphorus nerve 

agents are regarded as stable in isopropanol, and HD is stored in hexane. Care is required in the 

choice of other solvents for CWAs and other Convention-relevant chemicals. Care must also be 

taken to select appropriate grades of solvent for extraction and storage of CWAs and other 

Convention-relevant chemicals. Drying solvents wherever possible is likely to minimise 

unwanted degradation via hydrolysis. Some commercial solvents contain more water than 

others: acetonitrile is an example of one which could have a relatively high water content; all 

commercial solvents, including those sold for chromatographic applications, could contain 

significant quantities of water (up to 500 parts per million). Some sample solutions containing 

reactive chemicals, such as sulfur mustard sulfone, prepared in dimethyl sulfoxide (DMSO) 

should be stored in a vacuum desiccator rather than a refrigerator due to the strong hygroscopic 

nature of this solvent. Gas chromatographic performance during sample analysis can also be a 

storage consideration; the preferred solvents for chromatography include hexane, 

dichloromethane, and ethyl acetate.  

Technical difficulties associated with assessing CWA purity are considerable and to some 

extent have confounded definitive data on the subject. No single analytical technique is suited 

to measuring all components of mixtures simultaneously. For example, the acidic hydrolysis 

products of nerve agents cannot directly be analysed by GC and data based solely on this 

technique could give an artificially high impression of purity. Likewise, low thermal stability 

of some impurities can lead to a false impression of agent purity. The most suitable technique 

for assessing CWA purity is NMR spectroscopy. Even using this technique, more than one 

measurement is required to account for the possibility of the presence of non-phosphorus 

containing degradation products or stabilising chemicals; and detailed work is required to 



19 
 

characterise the range of possible degradation products in mixtures [39-48]. Sensitivity 

limitations can also prevent the characterisation of lower concentration impurities by NMR 

spectroscopy. However, it remains the technique of choice for routine purity assessments of 

CWAs and Convention-related chemicals, noting that trace impurities in samples - such as 

unreacted starting materials, synthetic by-products, and stabilisers - can provide valuable 

information on the history and perhaps provenance of the chemicals.  

Stability studies on neat chemical agents are normally based on the storage of material for use 

as reference or surety material to support research for protective purposes, as permitted by the 

Convention. In general, high purity (>95%) chemical agents are required for such work. In 

some cases, the storage of neat chemical agents so that they remain at this purity specification 

requires careful control of storage and use conditions. The storage of small quantities of CWA 

is likely to result in large headspaces above the agent. These smaller quantities of CWAs may 

be less stable than larger quantities of CWA stored in vessels with a reduced headspace. 

Frequency of use is also important: one Designated Laboratory has shown that solutions (~1 

mg·mL
-1

) of CWAs degrade faster when opened weekly compared to those that remain 

unopened for a longer time period [66,67].  

The stability of low concentration solutions of CWAs for quantitative purposes has been 

studied in one Designated Laboratory by gas chromatography with flame photometric detection 

(GC-FPD) and by GC-MS [66,67]. It was difficult to control instrument response over 

sufficient time (months) to be certain that the differences in quantitation resulted from 

degradation rather than changes in instrument response. This resulted in low concentration 

solutions of CWAs for quantitative work being stored for no more than one month (because of 

absence of reliable evidence to support longer-term storage). Note, however, the difference in 

requirements for a CWA needed for quantitative analysis and that required for a Convention-

related investigation where confirmation of “presence” is a key criterion.  

The US Environmental Protection Agency compared the stability of dilute solutions of CWAs 

in dichloromethane and hexane in screw-capped vials and flame-sealed ampoules [68]. The 

analytical measurements contained some uncertainty, but in general flame-sealed ampoules 

resulted in greater stability than screw-capped vials. In most cases, degradation, where 

observed, was confirmed by complementary techniques (observation of products by GC-MS). 

Of the CWAs in this study, sarin and VX were most susceptible to degradation during storage; 

up to a maximum of 80% degradation of VX occurred over 1 year. Solutions of CWAs in 
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dichloromethane were more stable than those in hexane. The study highlighted that CWA 

impurities can affect storage stability; VX degraded faster in the presence of sarin.  

Insufficient information is available to ascertain if CWA degradation in solution is 

concentration dependent. It is often assumed that low concentration solutions will be less stable 

because of a higher water-to-analyte ratio or because of the possible adsorption to the container 

walls, but this requires further study.   

The rate of degradation of CWAs in the environment depends on many factors: the precise 

nature of the chemical agent and contaminated surface, and the temperature. For example, 

snow contaminated with sarin, soman, tabun, VX, and HD was analysed after exposure for 1, 

4, 7, 15, and 30 days under Norwegian winter conditions [69]. After 15 days, the nerve agents 

tested were present in concentrations sufficient to allow positive verification and quantitative 

analysis by GC-MS. After 30 days, the concentration of sarin, tabun and HD had fallen below 

the limits of detection; the analysis could only identify soman and VX. HD freezes on contact 

with snow and does not penetrate it as easily as the other agents. This illustrates the difficulty 

of predicting CWA fate as physical and chemical factors affect the persistence of each agent 

differently, making their stability in environmental matrices difficult to forecast accurately. 

The examples provided illustrate the general principle that most CWAs are unstable in the 

presence of moisture and hydrolyse at different rates to give characteristic products. These 

products can transform further - in the environment or body - via oxidation to provide non-

toxic, often stable products [70]. Detection of the starting agent, hydrolysis and/or oxidation 

products, has been reported from analysis of samples collected days to weeks after a chemical 

attack [42,70].  

Identification of CWAs in biomedical samples – e.g. blood, plasma, urine, or tissue – is also 

possible, but CWAs do not remain intact in the body for long. The products of 

hydrolysis/oxidation are much more likely to be detected. Sometimes a CWA enters the body 

and reacts with a specific amino acid of a protein present in the bloodstream (e.g. albumin, 

haemoglobin, acetylcholinesterase, or butyrylcholinesterase) to give an addition product 

(adduct). DNA-adducts are also reported, mainly with HD. The adduct retains some of the 

structural information of the CWA and provides information on the CWA used. Unambiguous 

identification of adducts and/or urinary metabolites, using mass spectrometry, can provide 

evidence of CWA exposure. Such an approach has been applied successfully to the 

retrospective identification of poisoning by HD [71-106], nitrogen mustards [107-110], 
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Lewisite [111-116], organophosphorus nerve agents [71,117-173], the incapacitant BZ [174], 

phosgene [175] and hydrogen cyanide [176].  

Approaches to the analysis of biomedical samples to assess exposure to nerve agents [177] and 

chemical forensics relevant to the Convention [178] have been reviewed by the OPCW 

Laboratory. An edition of the peer-reviewed journal “Analytical and Bioanalytical Chemistry” 

on Analysis of Chemicals Relevant to the Chemical Weapons Convention, guest-edited by 

scientists from the OPCW Laboratory [3], also contains pertinent information.  

How long after human exposure to CWAs can biomarkers be detected is not easily predicted, 

especially given the paucity of confirmed human exposures, and difficulty of extrapolating data 

from animal experiments. The problem extends to estimating how long samples containing 

such biomarkers can be stored without loss of information critical as evidence to an IAU or 

other CWC-related investigation. In environmental samples, hydrolysis/oxidation products are 

likely to remain retrievable by solvent extraction sometime after the CWA was disseminated. 

In this case, there may be an opportunity to visit the samples at a later date, maintaining the 

possibility of finding evidence of CWA use.  

Biodegradation of CWAs by microorganisms might affect the storage of CWA samples. 

Biodegradation of organophosphorus compounds has been studied as a possible means of nerve 

agent destruction [179]. Only a few microorganisms screened to date and isolated have the 

capacity to degrade CWAs, and this capacity is limited at present. Data on the microbial 

degradation of CWAs in samples, and CWA-containing sample matrices, are largely lacking. 

Characteristic degradation products for chemicals in Schedules 1, 2 and 3 in the Annex on 

Chemicals to the Convention [1] are summarised in the Appendix [180-222]. These products 

are not exhaustive, but cover many of those of anticipated relevance to IAUs or other 

Convention-related investigations. Mass spectra of many of the products are already in the 

OCAD.  

Based on this review of processes by which Convention-relevant chemicals degrade, it is 

assessed that it is difficult, given the incomplete knowledge worldwide of the fate of CWAs in 

different matrices, to specify precisely when analysis of a sample ‘would likely no longer 

identify the intact original chemicals’. Analytical results, produced under stringent quality 

control in OPCW Designated Laboratories, are always ‘credible’. The main conundrum is how 

long after sample collection and storage will key markers of CWA use, or other Convention-
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prohibited activity, remain detectable? The passage of time will certainly lower the probability 

of identifying the original intact chemical(s), but the degradation products will remain 

detectable, and will be important in proving CWA use. 

Only estimates can be provided to answer the question of the time window to ensure the 

integrity of the intact original chemicals in stored samples. To provide these estimates a 

questionnaire was composed (Supplementary Material, Appendix B) for the OPCW Designated 

Laboratories. Nine laboratories responded and their views on sample storage are collated and 

analysed in the next sub-section. 

 

2.2. Responses from the OPCW Designated Laboratories 

Best-practice sample storage conditions provided by OPCW Designated Laboratories in 

response to the SAB’s questionnaire are discussed hereafter in order of sample type in the 

Director General’s question, namely: 

(a) Relatively pure samples (commercial, own-made, and solutions of chemicals). 

(b) Samples containing chemicals of interest; including heterogeneous samples. 

(c) Biomedical samples: including blood, plasma, urine, and tissue. 

 

2.2.1. Relatively pure samples 

Relatively pure samples have been subdivided into commercial chemicals, own-made 

chemicals, and solutions of chemicals, because of their different storage requirements, and are 

now discussed in turn: 

Commercial chemicals: These should be stored in their original packaging in the dark at a 

temperature recommended by the manufacturer (room temperature, 4 °C, or -18 °C). Maximum 

storage times are chemical-dependent; the supplier expiration date should be used as an 

indication of shelf-life. Commercial chemicals can be used for the manufacturer’s 

recommended storage time or stored until no longer required; purity checks before use are 

advised.  
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One Designated Laboratory noted that the ISO 17025 quality system required commercial 

chemicals to be purity checked at least every 2 years. (ISO 17025 is the main ISO standard 

used by testing and calibration laboratories. In many countries, it is the accreditation standard 

most laboratories must hold to be deemed technically competent. OPCW Designated 

Laboratories require this to be permitted to analyse environmental samples.) Another replied 

that to prolong storage life pure chemicals can be diluted with an inert solvent, such as 

acetonitrile or dichloromethane. A third Designated Laboratory estimated maximum storage 

times of 1, 3 and 5 year(s) for pure chemicals kept at -20 °C, 2-10 °C, and 25 °C respectively 

(Table 1). Importantly, these comments refer to analytical standards and not analytical samples.  

 

Table 1. Designated Laboratory responses: commercial chemicals.  
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Commercial, 

pure 
General 

room temperature             
refrigerator             
freezer (-18 °C)             
original container          
manufacturer recommendation            

Room temperature : usually 25 °C. 

 

Own-made chemicals: These should be stored in glass, high-density polyethylene (HDPE) or 

Teflon containers, and resealed between uses. Those not accessed regularly, especially 

chemicals in Schedule 1, can be stored in sealed glass ampoules under an inert gas atmosphere 

(e.g. argon). The recommended storage temperature varies according to the chemical but -18 

°C is preferred by most Designated Laboratories (Table 2) that responded to the questionnaire. 

The glass or plastic containers should be housed in containers made of metal (e.g. stainless 

steel) and these should contain active charcoal to absorb any accidental spillage of the 

chemicals. A Designated Laboratory commented that rare or difficult-to-obtain chemicals 
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should be stored indefinitely, noting that even impure samples could assist analysis at some 

point in future.  

One Designated Laboratory with long-term experience provided guidelines for the best-

practice storage of Schedule 1 chemicals, grouping them into classes according to storage 

requirements (Tables 2 and 3). In general, the purer the CWAs, the longer they stayed pure 

(although >95% purity at the start of the storage period was advised).  

Table 2. Designated Laboratory responses: own-made chemicals. 
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Synthesized, 

pure  

General 

refrigerator             
freezer (-18 °C)          
glass container          
HDPE container             
Teflon lined caps             
argon atmosphere             
sealed ampoules             

Schedule 1 (general) 
freezer (-18 °C)             
glass container             

Nerve agents 

freezer (-18 °C)            
glass container             
Teflon lined caps             
argon atmosphere             

Vesicants freezer (-18 °C)             

Sulfur mustard 

room temperature            
glass container             
glass stopper             
Teflon lined caps             
sealed with wax             
argon atmosphere             

Lewisite 

room temperature             
glass container             
Teflon lined caps             
argon atmosphere             

Room temperature: usually 25 °C. HDPE: High-density polyethylene.  
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Table 3. Designated Laboratory responses: Schedule 1 chemicals and precursors. 
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Synthesized, 

pure 

Nitrogen mustard 

hydrochloride salts 

freezer (-18 °C)             
glass container             
Teflon lined caps             
argon atmosphere             

Ricin 

precipitate in 6 M NH4SO4              
glass container             
Teflon lined caps             

Schedule 1 precursors 

freezer (-18 °C)             
glass container             
Teflon lined caps             
argon atmosphere             

Methylphosphonic 

difluoride (DF) 

freezer (-18 °C)             
Teflon container             
argon atmosphere             

P-Cl precursors 

freezer (-18 °C)             
glass container             
Teflon lined caps             
argon atmosphere             

Room temperature: usually 25 °C.  

 

Additional information on best-practice storage conditions for Schedule 1 chemicals from this 

same Designated Laboratory are provided here, with additional data in square brackets from 

another Designated Laboratory: 

 

 Schedule 1.A.01: O-Alkyl alkylphosphonofluoridates (e.g. sarin, soman) 

 Schedule 1.A.02: O-Alkyl N,N-dialkylphosphoramidocyanidates (e.g. tabun) 

 Schedule 1.A.03: O-Alkyl S-2-dialkylaminoethyl alkylphosphonothiolates (e.g. 

VX) 

 Schedule 1.A.06: Nitrogen mustards (i.e. HN-1, HN-2, HN-3) 
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 Schedule 1.B.10: O-Alkyl O-2-dialkylaminoethyl alkylphosphonites (e.g. QL) 

 Schedule 1.B.11: O-Isopropyl methylphosphonochloridate (i.e. chlorosarin) 

 Schedule 1.B.12: O-Pinacolyl methylphosphonochloridate (i.e. chlorosoman) 

Stored at -18 °C in glass containers with Teflon-lined caps in the dark under argon, 

degradation is slow: 5-10% over 5-10 years (except Schedule 1.B.10 chemicals which 

show 20-40% degradation over 5 years, as they are generally highly reactive).  

[Pure samples (>95%) of sarin or soman store at room temperature - and cyclosarin, 

tabun, and V-agents store at -18 °C - for over a year. The storage stability of pure 

samples of V-agents is structure dependent and declines, in the absence of any added 

stabilisers, in the order: O-isobutyl S-2-diethylaminoethyl methylphosphonothiolate > 

O-ethyl S-2-diethylaminoethyl methylphosphonothiolate (VM) > n-butyl S-2-

diethylaminoethyl methylphosphonothiolate > O-ethyl S-2-diisopropylaminoethyl 

methylphosphonothiolate (VX).] 

[Tris(2-chloroethyl)amine (HN-3) stores for a month at -18 °C before visible 

degradation (discoloration and precipitation), but analysis shows the supernatant to be 

pure despite this time-related change.] 

 Schedule 1.A.04: Sulfur mustards 

 Schedule 1.A.05: Lewisite 1, Lewisite 2, Lewisite 3 

Stored at room temperature in the dark under argon in glass containers with Teflon-

lined caps, they are stable for over 10 years.  

[Sulfur mustard stores at room temperature for decades. Lewisites 1, 2 and 3 store 

unchanged for over a year at room temperature.] 

 Schedule 1.A.08: Ricin 

Stored as a precipitate in 6 M ammonium sulfate at 4 °C in the dark in glass containers 

with Teflon-lined caps (insoluble if freeze-dried), the ricin is stable for over 10 years. 

 Schedule 1.B.09: Alkylphosphonic difluorides 

These moisture-sensitive liquids are stored at -18 °C in the dark under argon in Teflon 

containers. Under these conditions they degrade slowly (5-10% over 5-10 years). 
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[Perfluoroalkoxyalkane plastic is suitable for storing methylphosphonic difluoride (DF) 

or an equimolar mixture of methylphosphonic dichloride and DF (the so-called “di-di 

mixture”). Both DF and the “di-di mixture” will degrade slowly over a year when 

stored at room temperature in these containers and are easily purified without 

appreciable loss.] 

 Degradation products and others 

These are stored at -18 °C in the dark under argon in Teflon containers. They are 

generally more stable than CWAs and their precursor chemicals.  

[Solutions of V-agent precursors RO(Me)P(O)S
-
Na

+
 in water (from their syntheses) 

store without appreciable decomposition; an aqueous solution (R = Et) declined in 

concentration from 1.4 to 1.2 mol/l over 13 years.] 

 

One Designated Laboratory checks purities of stored Schedule 1 nerve and vesicant agents on a 

monthly basis because of uncertainties related to the stabilities of solutions upon storage. 

Reference standards are checked for purity before use. The ISO 17025 quality system requires 

purity checking of nominally stable chemicals, such as CWA degradation products, at least 

every two years.  

2.2.2. Solutions of chemicals 

Solutions of commercial chemicals used for laboratory standards are stored in clean glass 

containers (e.g. vials or volumetric flasks) under conditions specified in safety data sheets or 

the scientific literature. Dilute solutions of Scheduled chemicals in dichloromethane (10 ppm) 

are stable at ~4 °C in sealed ampoules/vials for 6 months (qualitative standards) or 12 months 

(qualitative standards) (Table 4). If the chemical or its container show signs of degradation, 

they should be disposed of safely.  

 

Table 4. Designated Laboratory responses: solutions of chemicals.  
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Chemical Type Storage Condition U
n
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l 
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n
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p

le
te

d
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n
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o
m

m
en
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a
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n
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n
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l 
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f 
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d
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n
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 w
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k
s 
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2
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k

s 

U
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o
 1

 m
o
n
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a
l 

m
o
n

th
s 
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o
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 m
o
n
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s 
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p

 t
o
 6

 m
o
n
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s 
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p

 t
o
 1

 y
ea

r 

S
ev

er
a
l 

y
ea

r
s 

U
p

 t
o
 3

 y
ea

rs
 

U
p

 t
o
 5

 y
ea

rs
 

M
o
r
e 

th
a
n

 1
0
 y

ea
r
s 

Commercial or 

synthesized, 

solution 

General 

refrigerator            
freezer (-18 °C)              
glass container           
Teflon lined caps              

Commercial or 

synthesized, 

solution 

Scheduled 

in dichloromethane              
refrigerator              
sealed              

 

Solutions of CWAs and degradation products used as standards are generally not stored for 

longer than 1 month in screw-capped vials in cases where sub-sampling of these solutions is a 

regular event. Nerve agents can be stored short-term in isopropanol and sulfur mustard in 

hexane. CWAs are stable in dichloromethane for a month, but their stability in this solvent has 

not been studied in detail.  

The results of analysis suggest that CWAs absorbed onto painted surfaces [71] could be 

extracted and detected many years after dissemination, and studies have reported stability of 

CWAs on sorbent tubes for up to 1 month sufficient to permit identification [180].  

 

2.2.3. Liquid (including extracts) and solid samples containing either relatively high levels 

or trace levels of the chemicals of interest and highly heterogeneous unprocessed samples 

– such as soil, metal fragments, paint chips, fragments of highly absorbent material, or 

wipes – containing either relatively high levels or trace levels of the chemicals of interest 

Responses from the Designated Laboratories are summarised in Table 5. There is no evidence 

for long-term storage of solutions of CWAs used as standards beyond 6 months. However, 

anecdotal information suggests these types of samples can be stored for longer (years) at -18 

°C. There is limited evidence that supports the storage of dilute (10 ng ml
-1

) and concentrated 

(1 mg ml
-1

) solutions of standards for at least 6 months [66,67].  
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Table 5. Designated Laboratory responses: samples in organic and aqueous solutions, 

solid/heterogeneous samples, and air samples.  

Chemical Type Storage Condition U
n

ti
l 

a
ss

ig
n

m
en

t 
co

m
p

le
te

d
 

M
a
n

u
fa
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u

re
r
 r

ec
o
m

m
en

d
a
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n

 

U
n
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l 
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n
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f 
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d
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o
n
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 t
o
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 w
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k
s 

2
 w
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k

s 

U
p

 t
o
 1
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o
n
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S
ev
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a
l 

m
o
n

th
s 

U
p

 t
o
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 m
o
n

th
s 

 

U
p

 t
o
 6

 m
o
n
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s 

U
p

 t
o
 1

 y
ea

r 

S
ev

er
a
l 

y
ea

r
s 

U
p

 t
o
 3

 y
ea

rs
 

U
p

 t
o
 5

 y
ea

rs
 

M
o
r
e 

th
a
n

 1
0
 y

ea
r
s 

Sample, organic 

solutions 
General 

refrigerator             
freezer (-18 °C)            
glass container            
original container              
sealed              

Sample, aqueous 

solutions 
General 

refrigerator            
glass container            
original container              
PP container              
sealed              

Sample, 

solid/heterogeneous 
General 

freezer (-18 °C)              
refrigerator            
glass container             
HDPE container              
original container              
sealed              

Sample, air General 
refrigerator              
freezer (-18 °C)              

Room temperature: usually 25 °C. PP : polypropylene. HDPE : High-density polyethylene.  
 

GC-based techniques may lack long-term stability for repeat quantitative measurements for 

CWA solutions of concentration of 1 ng ml
-1

 and lower [66,67]. Solvent choice (quality, 

including water content) is likely to be of great importance as well as specific storage 

conditions, including how often solutions are used. 

 

2.2.4. Biomedical samples: blood, plasma, urine, tissue 

Designated Laboratories generally store these sample types at +4, -18 or -80 °C in glass, 

polypropylene or polyteraphthalate containers (Table 6). Estimates of maximum storage times 
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are matrix, analyte and concentration dependent; they range from months to years depending 

on storage conditions. 

Little is known about the ageing of nerve agent blood adducts following long term storage. 

Sulfur mustard blood adducts, and urinary metabolites of sulfur mustard and nerve agents, have 

been re-analysed following several years of storage.  

 

 

Table 6. Designated Laboratory responses: biomedical samples.  

Chemical Type Storage Condition U
n
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l 
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t 
co
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n
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o
m
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o
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n
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S
ev

er
a
l 
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n
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s 
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 t
o
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U
p

 t
o
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n
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 t
o
 1

 y
ea

r 
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l 
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s 

U
p

 t
o
 3

 y
ea

rs
 

U
p

 t
o
 5

 y
ea

rs
 

M
o
r
e 

th
a
n

 1
0
 y

ea
r
s 

Biomedical 

samples 

General 

refrigerator            
freezer (-18 °C)             
freezer (-80 °C)             
glass container            
original container              
sealed             

Hair exposed to sarin room temperature              

Protein frozen 
freezer (-18 °C)             
freezer (-80 °C)             

Protein lyophilized 
freezer (-18 °C)             
refrigerator             

Protein in solution refrigerator             

Protein in solution with 50% 

glycerol 
freezer (-18 °C)             

Blood 

freezer (-18 °C)             
PET container             
PP container             

Room temperature : usually 25°C. PET : polyethylene terephthalate. PP : polypropylene. 
 

Detailed guidelines for storing and handling of protein-containing samples from one 

Designated Laboratory are provided in Supplementary Material, Appendix C [181].  
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2.2.5. Other technologies that could be used to store/package samples 

Flame-sealed ampoules can be used to extend the storage stability of in-house reference 

chemicals. Certan
®

 capillary bottles (LGC Group), available from Sigma-Aldrich Ltd., can be 

used to store highly-volatile samples. Solid phase microextraction fibres might be used to store 

nerve agent urinary metabolites for extended periods of time. Blood spot papers [223] and 

related technologies seem promising for long-term storage of blood and other biological 

matrices. Much of the perceived benefit is in the sampling aspects (less invasive, low volume) 

but there is also a range of direct mass spectrometric analysis technologies appearing on the 

market (for example, paper spray analysis [224]) that might prove valuable.   

 

4. Conclusions 

In the context of the OPCW’s investigations, numerous samples have been received since 

2013, which were, at the time this advice was given, stored in the OPCW Laboratory at room 

temperature or refrigerated at 4 °C. The SAB noted that these conditions may naturally lead to 

loss of the intact original chemicals by degradation, in, at worst, weeks to months, and at best, 

months to many years. The analysis of these samples thereafter may give results with less 

specific information, but still containing the molecular evidence, in the form of characteristic 

degradation compounds and other residues, for proving CWA use or making other compliance-

related judgements. The main degradation of CWAs or other Convention-relevant chemicals in 

environmental samples occurs through hydrolysis and/or oxidation.   

To minimise degradation of chemicals in the samples, as little time as possible should elapse 

from the time of collection of any sample to the time of analysis; lengthy delays of weeks to 

years will diminish the concentration of the intact original chemicals in the samples. 

Identification of the presence of the intact original chemical(s) is desirable, but not essential, 

for providing evidence of use of chemicals relevant to the Convention. Best-practice conditions 

for various samples summarised in Tables 1-6 have been used to make the recommendations 

provided in Section 2. 

The OPCW should monitor advances in sampling and analysis, and with the SAB, innovations 

relevant to chemical forensics. Knowledge of storage conditions for CWAs and other 

Convention-relevant samples remains vital to the work of the OPCW in non-proliferation and 

the prevention of re-emergence of chemical weapons [3,4].  
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4. Afterword 

Comments in this section were not part of the original SAB advice, but have been added in 

writing this review: As long as there is a possibility of the use, or threat of use, of chemical 

weapons, there will be a need to maintain and continually enhance the analytical capabilities of 

the OPCW. Such enhanced capabilities exert an important deterrent effect [4] and will help 

prevent the re-emergence of chemical weapons after completion of destruction of the declared 

stockpiles by the States Parties (at the beginning of 2018, this stood at more than 96% of the 

over 70,000 metric tonnes declared by States Parties having been verifiably destroyed [225]). 

Such re-emergence could manifest itself through the acquisition and/or use of chemical 

weapons, including by non-State actors [226]. It is essential that the OPCW has available state-

of-the-art methods and technologies for sampling and analysis at its disposal, ensures that staff 

are kept abreast of and trained in these, and actively develops capabilities in chemical 

forensics, incorporating advice from the SAB and in consultation with the network of 

Designated Laboratories, including for the analysis of toxins as well as biomedical and other 

samples [226]. 

To assist in these efforts, the Finnish Institute for Verification of the Chemical Weapons 

Convention (VERIFIN) hosted a SAB Workshop on Chemical Forensics in Helsinki in June 

2016 [227]. As an outcome of this workshop, the OPCW Director-General requested the SAB 

to form a Temporary Working Group (TWG) on Investigative Science and Technology [228] 

which held its first meeting in February 2018 [229]. An objective of this TWG is ‘to review the 

science and technology relevant to investigative work, especially for the validation and 

provenancing (determining the chronology of ownership, custody and/or location) of evidence, 

and the integration of multiple and diverse inputs to reconstruct a past event’ [228-230]. This 

TWG will influence the next stage of the development of analytical and forensic capabilities of 

the OPCW and its partner laboratories [231,232]. A newly established Chemical Forensics 

International Technical Working Group [233] will also support such work.  

 

Acknowledgements 

The SAB wishes to thank His Excellency Ambassador Ahmet Üzümcü, Director-General of 

the OPCW, for his support to the Board and for making its output available to States Parties to 

the Convention to guide their decision-making. The SAB extends its gratitude to Dr. James 



33 
 

Riches, Mr. Robert Read, and Mr. Mark Sandford of the Defence Science and Technology 

Laboratory (Dstl), Porton Down, UK, for information relating to the analysis and storage of 

CWAs, and to Mr. Zaid Meherali of Dstl, for helping prepare the questionnaire that was sent to 

the OPCW Designated Laboratories. The SAB is grateful to the personnel of those laboratories 

that completed the questionnaires and shared their expert opinion, and also to Ms. Marlene 

Payva for her skilful assistance to the Board.  

Declarations of interest 

None. 

 

Appendix. Scheduled chemicals and major degradation products identified from the 

scientific literature. 

SCHEDULE STRUCTURE MAIN DEGRADATION PRODUCTS REF/S 

Schedule 1.A.01 

O-Alkyl 

alkylphosphonofl

uoridates 

(e.g. sarin, 

soman) 

            

42,51,7

1, 

182,18

3 

Schedule 1.A.02 

O-Alkyl N,N-

dialkyl 

phosphoramidocy

anidates 

(e.g. tabun) 

                 

 

42,51,1

84 

Schedule 1.A.03 

O-Alkyl S-2-

dialkylaminoethyl 

alkylphosphonoth

iolates (e.g. VX) 

         

        

     

42,51,1

84- 

193 

Schedule 1.A.04 

Sulfur mustards 

   

2-

Chloroethylchloro
       

184 
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methyl-sulfide 

 
   

Bis(2-

chloroethyl)sulfid

e 

(mustard gas, 

HD) 

 

 

        

             

                 

      

       

40,194-

197 

Bis(2-

chloroethylthio)al

kanes 

(“Heavy 

mustards”, n = 1 

to 5) 

 

   

  

   

195 

Schedule 1.A.05 

Lewisites 

   

2-

Chlorovinyldichlor

oarsine      

(Lewisite 1) 

 

 
                 

 

198-

205 

Bis(2-

chlorovinyl)chloro

arsine  (Lewisite 

2) 

 

 

   

198-

205 
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Tris(2-

chlorovinyl)arsine          

(Lewisite 3) 

 
 

 

198-

205 

Schedule 1.A.06 

Nitrogen 

mustards 

   

Bis(2-

chloroethyl)ethyla

mine     (HN-1) 

 

        

 

49,50,2

06 

Bis(2-

chloroethyl)methy

lamine  (HN-2) 

 

        

 

49,50 

Tris(2-

chloroethyl)amine            

(HN-3) 
 

        

 

49,50,2

06 

Schedule 1.A.7 

Saxitoxin 

 

 

207 

Schedule 1.A.8 

Ricin 
 

 

208-

210 

Schedule 1.B 

Precursors 

   

Schedule 1.B.09 

Alkylphosphonic 
              

51 
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difluorides 

(e.g. DF) 

Schedule 1.B.10 

O-Alkyl O-2-

dialkylaminoethyl 

alkylphosphonites 

(e.g. QL) 

            

51 

Schedule 1.B.11 

O-Isopropyl 

methylphosphono

- chloridate 

(chlorosarin) 

           

51 

Schedule 1.B.11 

O-Pinacolyl 

methylphosphono

- chloridate 

(chlorosoman) 

          

51 

Schedule 2 

A. Toxic 

chemicals 

   

Schedule 2.A.01 

O,O-Diethyl S-[2-

(diethylamino)eth

yl] 

phosphorothiolat

e (Amiton) 

               

 

51 

Schedule 2.A.02 

1,1,3,3,3-

Pentafluoro-2-

(trifluoromethyl)-

1-propene (PFIB) 

        

184,21

1-213 

Schedule 2.A.03 

3-Quinuclidinyl 

benzilate (BZ) 

             

     

214 

Schedule 2.B.04    
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Chemicals, 

except those 

listed in Schedule 

1 containing a 

phosphorus atom 

to which is 

bonded one 

methyl, ethyl or 

propyl (n or iso) 

group but no 

further carbon 

atoms 

For example, 

methyl-

phosphonic 

dichloride (DC) 

 

 

 

 

          

51,211,

215 

Schedule 2.B.05 

N,N-

Dialkylphosphora

midic dihalides 

            

51 

Schedule 2.B.06 

Dialkyl N,N-

dialkylphosphora

midates 

                 

 

51 

Schedule 2.B.07 

Arsenic trichloride 
           

49,50 

Schedule 2.B.08 

2,2-Diphenyl-2-

hydroxyacetic 

acid 

  

184,21

4 

Schedule 2.B.09 

Quinuclidin-3-ol 

 

           

184,21

4 

Schedule 2.B.10 

N,N-

Dialkylaminoethyl

-2-chlorides 

 

         

216 

Schedule 2.B.11 

N,N-

Dialkylaminoetha

ne-2-ols 

 

     

216 
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Schedule 2.B.12 

N,N-

Dialkylaminoetha

ne-2-thiols 

      
186 

Schedule 2.B.13 

Bis(2-

hydroxyethyl)sulfi

de (thiodiglycol) 

 

 

71,184, 

194-

197 

Schedule 2.B.14 

3,3-

Dimethylbutan-2-

ol 

(pinacolyl 

alcohol) 

 
 

217 

Schedule 3 

A. Toxic 

chemicals 

   

Schedule 3.A.01 

Carbonyl 

dichloride 

(phosgene) 

  

212,21

8 

Schedule 3.A.02 

Cyanogen 

chloride 

 

 

49,50 

Schedule 3.A.03 

Hydrogen 

cyanide 

 

 

219,22

0 

Schedule 3.A.04 

Trichloronitromet

hane 

(chloropicrin) 

  
49,50 

B. Precursors    

Schedule 3.B.05 

Phosphorus 

oxychloride 
    

51 

Schedule 3.B.06 

Phosphorus 

trichloride 
        

51 
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Schedule 3.B.07 

Phosphorus 

pentachloride  
   

51 

Schedule 3.B.08 

Trimethyl 

phosphite 
        

51 

Schedule 3.B.09 

Triethyl phosphite 
          

51 

Schedule 3.B.10 

Dimethyl 

phosphite 
      

51 

Schedule 3.B.11 

Diethyl phosphite  
        

51 

Schedule 3.B.12 

Sulfur 

monochloride 

      
222 

Schedule 3.B.13 

Sulfur dichloride 
      

- 

Schedule 3.B.14 

Thionyl chloride 
 

       
- 

Schedule 3.B.15 

Ethyldiethanolami

ne 
 

 

222 

Schedule 3.B.16 

Methyldiethanola

mine 

 
 

222 

Schedule 3.B.17 

Triethanolamine 

 
 

222 
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Figure 1. OPCW Designated Laboratory network in January 2018 showing labs designated for 

environmental (E) and/or biomedical (B) sample analysis. 

 

 

 

Figure 2. SAB Vice-Chair Mr. Cheng Tang (left) and SAB Chair Dr. Christopher Timperley 

(middle) briefing the OPCW Director-General, His Excellency Ahmet Üzümcü (right), on the 

sample storage and stability advice given herein, at the OPCW Headquarters in The Hague in 

2016.  
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Figure 3. OPCW SAB with the Director-General at the Twenty-Third Session of the Board on 

22 April 2016. The SAB endorsed the report containing the advice on CWA sample storage 

and stability during this session. 
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Highlights 

 The Scientific Advisory Board (SAB) of the Organisation for the Prohibition of Chemical 

Weapons (OPCW) considered the long-term storage and stability of samples collected in the 

context of chemical weapons investigations. 

 The resulting advice, useful for all laboratories that conduct analysis on samples containing 

chemical warfare agents, their precursors and/or degradation products, is described. 



73 
 

 The scientific literature on environmental and biomedical sample analysis, and the main 

degradation products for chemicals on the Schedules in the Annex on Chemicals of the 

Chemical Weapons Convention, is reviewed. 

 Ten recommendations to ensure the long-term storage and stability of samples collected in 

relation to the potential use of chemical weapons are provided. 

 




