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Abstract—Fuzzy cognitive maps are studied from the quanti-
tative human-scientific standpoint. The concepts and weights of 
these maps are thus examined as statistical random variables 
based on probability distributions in order to make more feasible 
interpretations on these entities. First, the available fuzzy cogni-
tive maps are considered. Second, our statistical approach is intro-
duced which assumes that the concepts and weights are uniformly 
or normally distributed random variables. Third, the dynamics 
and application possibilities of these fuzzy cognitive maps are 
studied.   

Keywords— fuzzy cognitive maps, statistical random variables, 
statistical analysis, human sciences 

 

I. INTRODUCTION 
Fuzzy cognitive maps (FCM) seem to be an applicable 

method in complex system modeling. Given a set of concepts 
and their interrelationships, we may study how these concepts 
will vary in a given time interval. Both numeric and linguistic 
FCMs are available, and below we focus on the former type of 
models [1,3,7,10,11].  

However, the numerical FCMs encounter certain well-
known problems due to their mathematical properties [3]. For 
example, they only allow monotonic relationships between the 
concepts. Also, they still seem to have quite much methodolog-
ical commitments to neural networks, and thus the interpreta-
tions of their concept values and relationships may be ambigu-
ous or only base on user’s ad hoc meanings. The Author has 
studied FCMs from the statistical standpoint for providing a 
more feasible and consistent basis on FCM interpretation, and 
this approach is also central in the quantitative human sciences, 
in particular in the social and behavioral sciences as well as in 
economics. For example, the Author has applied linear, logistic 
and multinomial logistic regression analyses because these 
methods seem analogous to the FCM modeling [6,15,16].  

Below we continue this examination and assume that FCM’s 
entities are not any arbitrary factors but rather statistical random 
variables, and then we study how this approach may enrich and 
clarify our model construction. We also emphasize the human-
scientific aspect.  

We will focus on the initial stage of FCM model construction 
which is still a quite novel territory, whereas the subsequent 
stages are already much analyzed in the FCM literature 
[3,5,6,8,9,17-22].   

Section 2 presents basic theory on the FCMs. Section 3 ex-
amines the role of the random variables in the context of the 
FCMs and also provides some application examples. Section 4 
concludes our study.  

II. FUZZY COGNITIVE MAPS 
If the prevailing methods are used in the numeric FCM 

model construction, the concept (node) values, C, range from 0 
to 1 and their weights, or their intensities of interrelationship, W, 
range from -1 to 1 [3,10]. Hence, the weight of a relationship 
indicates how a concept affects another concept. These weights 
are presented in the N×N connection matrix, M, when N is the 
number of concepts in an FCM model. These matrices are 
constructed according to our expertise or the given historic data 
[3]. In the latter case we may apply various optimization tech-
niques for finding the appropriate weights [3,4,8,17-21]. Hence, 
in the typical FCM computer simulations in a given time inter-
val, t=1,2,…,n, we may basically apply the matrix product, *,  

Vt+1 = f(Vt*M), t = 1,2,…,n   (2.1) 

in which the state vector, Vt=(C1,…,CN), contains the driver 
concept values at time=t, f is the transformation function and the 
target vector, Vt+1, contains the obtained concept values at 
time=t+1 [3]. Thus, at each iteration, t>1, we will update our 
concept values.  

 The transformation function, f, is usually the logistic 
function with the parameter 𝛌>0	(lambda)	and	the exponential 
function, exp [3,10], 

0 < f(x) = 1 / (1+exp(-𝛌∙x)) < 1,   (2.2) 

or the hyperbolic tangent function 

 -1< f(x) = (exp(𝛌∙x)-exp(-𝛌∙x)) / (exp(𝛌∙x)+exp(-𝛌∙x)) < 1. 
       (2.3) 

Hence, this function transforms the initial target concept values 
at time=t+1 into the desired interval. Below we only use (2.2), 
and then lambda is quite often having the values of 1 or 5 (Fig. 
2.1).  



A simple example is the well-known public city-health 
model in which we may apply the connection matrix in Table 
2.1 and the drivers and targets are its row and column concepts, 
respectively [12].   

 

 
Fig. 2.1. Transformation functions (2.2) with two values of lambda, 1 and 5. 

Given now, for example, the driver concept values Migra-
tion=0.7 and Nr_diseases=0.2 at time=t, the target concept 
value for Nr_people at time=t+1 will be 
 

Nr_people = f(0.7⋅0.5+0.2⋅(-0.3)) = 0.57  
 
when lambda=1. The same procedure may also be applied to 
the other target concepts. In the conventional statistics we have 
studied this type of problem-setting with correlations and such 
structural equation models as LisrelTM, AmosTM or MplusTM, 
but they are more complicated in simulations. 
 

TABLE 2.1. CONNECTION MATRIX FOR PUBLIC CITY-HEALTH MODEL 
 Concept 

Con-
cept 

Nr_pe
ople 

Mi-
gra-
tion 

Mod-
erni-

zation 

Gar-
bage 

Sani-
tation 

Nr_di
seases 

Bac-
teria 

Nr_pe
ople 

0 0 0.6 0.9 0 0 0 

Mi-
gra-
tion 

0.5 0 0 0 0 0 0 

Mod-
erni-
zation 

0 0.6 0 0 0.8 0 0 

Gar-
bage 

0 0 0 0 0 0 0.9 

Sani-
tation 

0 0 0 0 0 -0.8 -0.9 

Nr_di
seases 

-0.3 0 0 0 0 0 0 

Bac-
teria 

0 0 0 0 0 0.8 0 

 
 However, in the quantitative human sciences we expect that 
we may unambiguously and consistently interpret these weight 
and concept values and this aspect is not necessarily taken into 
account in the prevailing FCM models. In particular, in [10] the 
positive and negative weight values mean causal increase or de-
crease, respectively, but this quite general definition has led to 
quite incoherent and ambiguous interpretations in applications.  
 Another problem is that the goodness of an FCM model in 
practice is preferred to its thorough interpretation of the weights, 
and this due to the neural network origin of the FCMs in the 

engineering sciences. Hence, in fact, the FCMs may even be 
black or at least grey boxes for their users [8,10,17,20]. For the 
sake of comparison, the corresponding statistical correlation ma-
trix would provide us with deeper and more consistent infor-
mation. 
 Hence, below we will suggest a statistical interpretation 
when we study these models within the quantitative human sci-
ences because then we may better make unique, consistent and 
empirically justified interpretations to our FCM entities. 
 

III. STATISTICAL APPROACH TO FUZZY COGNITIVE MAPS 
 In the quantitative human sciences, we operate with statisti-
cal distributions when we study our variables in model construc-
tion. Hence, within the human-scientific FCMs we might also 
apply statistical theories. Thanks for this approach, we may have 
a firm and plausible empirical basis for our examinations. We 
may also make consistent interpretations on our model entities 
and even study their significances with statistical tests. Below 
we consider how this approach may provide additional infor-
mation on FCM construction and we used MatlabTM in our com-
puter simulations. We will focus on the individual target con-
cepts, whereas examples on the entire FCM simulations are al-
ready found quite much in the FCM literature, e.g., in 
[4,6,8,9,17-22]. 

 

A. Statistical Random Variables and FCMs 
Due to the lack of space, we will only study below two 

widely-used distributions, the uniform and normal distribution. 
Consider first, that the FCM concept values, C, are uniformly 
distributed from 0 to 1, C∼Uni(0,1), which seems to be usual in 
engineering applications.  

Consider also, that the connection weights, W, obey the uni-
form distribution, W∼Uni(-1,1), because this seems to be the 
usual assumption to all models. Thus, we will study their prod-
ucts, C⋅W, in the FCMs (Figs. 3.1-3.3). Since according to (2.1), 
each initial target concept value is the sum of these products, 
∑C⋅W, (Figs. 3.5 and 3.7), the elementary statistical theory in-
dicates that their expected values are E(C)=0.5 and E(W)=0. 
Their variances are var(C) = 1/12⋅1=1/12 and var(W) = 1/12⋅22 

=1/3 [2,13,14]. Hence, in statistics their product distribution will 
have the expected value 

E(C⋅W) = E(C)⋅E(W) = 0.5⋅0 = 0,   (3.1) 

and the variance 

var(C⋅W) = var(C)⋅var(W)+var(C)⋅E(W)2+var(W)⋅E(C)2 = 
1/36+0+1/12 = 1/9 = 0.11   (3.2) 

As regards the corresponding standard deviation, std(C⋅W) 
=0.33, and this statistic is preferred to variance below. Hence, 
the sum of N product distributions, which is the initial value of 
a target concept with its N drivers in each FCM iteration,  

∑iCi⋅Wi, i = 1,2,…,N 

will yield the expected value   

 N⋅E(C⋅W) = N⋅0 = 0     (3.3) 
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and the standard deviation 

 sqrt(N)⋅std(C⋅W) = sqrt(N)⋅0.33.   (3.4) 

Naturally, these initial target values always range from -N to N.  

 In the human sciences we are often more interested in the 
normally distributed FCM concepts because many real-world 
phenomena seem to obey this distribution. We assumed that 
each driver concept is normally distributed with parameters 
C∼N(0.5,0.17), i.e., with the expected value of 0.5 and 
std=1/6=0.17, because then approximately 99 % of the possible 
driver concept values belong to the interval [0.5-3⋅std,0.5+3⋅std] 
= [0,1]. The rest of the possible concept values were excluded in 
our random variables which is quite usual procedure in empirical 
studies (Fig. 3.2) [13,14]. We notice in Fig. 3.2 that, for exam-
ple, the concept value of 0.5 is more frequent within the normal 
than the uniform distributions.  

 
Fig. 3.1. The possible product values, C⋅W, for an FCM concept. 

 When applying (3.1) and (3.2) to the normally distributed 
concepts, E(C⋅W)=0 and std(C⋅W)=0.30, and for N concepts we 
may again use (3.3) and (3.4) (Figs. 3.4, 3.6 and 3.8).  

 

Fig. 3.2. Relative statistical distributions of the concept values when they 
are uniformly (top) or normally distributed (middle). Relative distribution 

of uniformly distributed weight values (bottom). 

 We thus notice in Figs. 3.3-3.8 that the shapes of the uni-
formly distributed initial target values differ from their normally 
distributed counterparts, and obviously the type of distribution 
also affects the corresponding transformed values. Naturally, the 
lambda values are also essential these calculations.  

 We also notice, for example, that by only using ten driver 
concepts for a target concept, the probability of obtaining trans-
formed target concept values around 0.5 is clearly less than 5 % 
with our random distributions and lambda values.  On the other 
hand, the proportions of the extreme values among the trans-
formed target values will increase when N increases, even ex-
ceeding 80 %, and these outcomes seem counterintuitive in ap-
plications (Figs. 3.5-3.8). 

 Hence, thanks for our statistical approach, we may better an-
ticipate the dynamics of the FCMs and also specify plausible 
statistical distributions according to the concepts’ background 
theories and empirical results. If this information is unavailable, 
the uniform distribution, for example, seems appropriate. This 
approach also enables us to make more feasible interpretations 
on our FCM entities, and this issue will be considered next.  

 
Fig. 3.3. Relative statistical distributions of the initial (top) and transformed 
target concept values with one million uniformly distributed random values 

when lambda=1, Ctarget=C⋅W, C∼Uni(0,1) and W∼Uni(-1,1). 
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Fig. 3.4. Relative statistical distributions of the initial (top) and trans-
formed target concept values with one million random values when 

lambda=1, Ctarget=C⋅W, C∼N(0.5,0.17) and W∼Uni(-1,1). 

 
Fig. 3.5. Relative statistical distributions of the initial (top) and trans-
formed target concept values with one million random values when 

lambda=1, Ctarget=∑iCi⋅Wi, i=1,2,…,10, C∼Uni(0,1) and W∼Uni(-1,1). 

  

 
Fig. 3.6. Relative statistical distributions of the initial (top) and trans-
formed target concept values with one million random values when 

lambda=1, Ctarget=∑iCi⋅Wi, i=1,2,…,10, C∼N(.5,0.17)  
and W∼Uni(-1,1). 

 

 

Fig. 3.7. Relative statistical distributions of the initial (top) and trans-
formed target concept values with one million random values when 

lambda=5, Ctarget=∑iCi⋅Wi, i=1,2,…,10, C∼Uni(0,1) and W∼Uni(-1,1). 

 
Fig. 3.8. Relative statistical distributions of the initial (top) and trans-
formed target concept values with one million random values when 

lambda=5, Ctarget=∑iCi⋅Wi, i=1,2,…,10, C∼N(.5,0.17)  
and W∼Uni(-1,1). 

B. Problems with Target Concept Values 
 As stated above, one crucial problem with the numeric 
FCMs is that the more we have driver concepts for a target con-
cept, the larger is the standard deviation of their sum, 
std(∑iCi⋅Wi), because this initial value is always N⋅std(C⋅W). 
This, in turn, means that in transformations (2.2) large N values 
will yield much extreme values, and these outcomes often seem 
counterintuitive in practice (Figs. 3.9-3.10). As Fig. 3.9 shows, 
if N>8 and lambda=1, the proportion of the extreme transformed 
values will clearly increase. This situation is even worse with 
the higher lambda values. We should also notice that, in fact, we 
will never obtain the exact values of 0 or 1 in the foregoing trans-
formations. 

 For resolving this problem, we should apply alternative 
transformations. One simple resolution is to use distinct lambda 
values for each target concept [4-6,8]. Another method is to ap-
ply such alternative aggregation operators which are used in 
fuzzy decision making.  

 In the human sciences we may often use the standard scores, 
Z, of the variables in this context, 

 Z = (X-mean(X)) / std(X)   (3.5) 

in which X is the original variable. The means and standard de-
viations of the standard scores are 0 and 1, respectively. Then, 
we may operate with similar scales of measurement [13,14]. 
Their values virtually range from -3 to 3 when their original var-
iables are normally distributed. This transformation is applied to 
regression analysis, cluster analysis, principal component anal-
ysis and factor analysis, among others [2,13,14]. Within the 
FCMs, (3.5) seems useful with such additional modification as 

 (Z+3) / 6 ∈	[0,1]    (3.6) 

when we transform our original concepts with various scales of 
measurement into the appropriate FCM concept values 
[2,13,14]. Due to the lack of space, this examination is precluded 
here. 
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Fig. 3.9. The extreme values of the initial target concept values, Y=∑iCi⋅Wi , 
with various number of driver concepts, N, (lines), and the image intervals, 

0<Y<1, of the transformed values when lambda=1 (grey) and lambda=5 
(dark grey). 

 

 
Fig. 3.10. The proportions of the target concept’s extreme transformed val-
ues, approximately 0 or 1, according to the number of its driver concepts 

and two lambda values. 

We thus notice that in addition to the FCM concept distribu-
tions, the transformations also affect significantly their dynam-
ics when the simulations are carried out. These factors will in 
turn affect the subsequent simulations. The simulation aspect is 
briefly considered in the next Section. 

 

C. Prospects for Applications with Random Variables 
When we study our FCM concepts as statistical random var-

iables, we may utilize various statistical tests and analyses, in 
particular when historic data is involved. Below we sketch some 
application ideas. 

First, if we apply the idea of the level of significance in sta-
tistics, we may estimate how usual our concept values are 
[2,13,14]. For example, if we have ten uniformly distributed 
driver concepts and lambda=1 for a given target concept, then 
3.1 % of the obtained initial values and 35.8 % of their trans-
formed values are at least 7 or 0.7, respectively. Hence, at the 5 
% level of significance, the former case is quite rare for the tar-
get value from the statistical standpoint. We may also apply Kol-
mogorov-Smirnov and Shapiro-Wilk tests when we analyze the 
normality of our distributions.  

Second, we may draw similarity comparisons between our 
concept values [2,13,14]. For example, we may study the Pear-
son correlations between the uniformly and normally distributed 
concepts (Fig. 3.11). 

 

Fig. 3.11. Scatterplot of transformed concept values C1⋅W and C2⋅W 
with lambda=1 when C1 and W are uniformly and C2 normally distrib-

uted. 

 Third, since the calculation of the initial target values is anal-
ogous to linear regression analysis, we may utilize these tech-
niques and thus gain certain added outcomes to FCM construc-
tion. Hence, the drivers will be the independent variables and 
their target is the dependent variable. In particular, we may ap-
ply this idea when we examine how our connection matrix yields 
various target values [15,16]. The regression coefficients are 
now identical to our weight values (the constant is excluded) and 
their corresponding standardized beta coefficients and t-test sta-
tistics reveal to us the significance of each driver, and thus they 
may also help us to remove insignificant drivers. The collinear-
ity diagnostics also helps us for reducing the number of drivers 
and thus yielding simpler FCM models.    

 Fourth, we may even apply logistic and multinomial logistic 
regression analyses which enable us to calculate the odds ratios 
and the probabilities of obtaining desired target concept values 
(Fig. 3.12) [15,16]. In fact, this logistic modeling, which applies 
iterative maximum likelihood method, is analogous to the cal-
culation in (2.1) when lambda=1 [13-16].  

 The foregoing methods will enable us to make well-justified, 
consistent and less ambiguous interpretations on our FCM enti-
ties. They also reveal to us well the real nature and dynamics of 
our FCMs, and thus we may construct simpler models and per-
form plausible predictions on their values more fluently and ac-
curately. 

 

IV. CONCLUSIONS 
Fuzzy cognitive maps have been considered from the statis-

tical standpoint. Their concepts and weights were examined as 
statistical random variables because this approach is usual in 
particular in the quantitative human sciences. Only uniformly 
and normally distributed variables were examined but other ran-
dom distributions may also be used. We noticed that, by apply-
ing statistical theories on random distributions to the driver con-
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cepts, the distinct random variables yielded distinct FCM out-
puts. In addition, if the target concepts were the sums of many 
driver concepts, their transformed outputs tend to approach the 
extreme values, and this feature seems problematic in practical 
applications. We suggested one resolution to this problem with 
the standard scores. 

We also sketched certain ideas for applying statistical anal-
yses for the iterated FCMs even though this problem area is al-
ready more examined in the literature. 

In general, thanks for our statistical approach, we may better 
make unambiguous and consistent interpretations to our con-
cepts and weights by utilizing the prevailing statistical tools. We 
may also better examine, anticipate and predict the dynamics or 
behavior of our FCMs, and statistical theories will support us in 
this task.  

Our study focused on the first stage in the FCM simulation  
and only on two usual random variables because this issue is still 
more or less new territory and thus more examinations are still 
expected in this problem area. 

 

 

 

Fig. 3.12. Relative histograms of target values for Nr_people in Public 
City-Health model after the first (top), second (middle) and third iteration 
(bottom) when lambda=1 and 10 000 uniformly distributed random ini-

tial driver vectors are used. 
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