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The running of the top quark mass is experimentally investigated for the first time. The mass of the top 
quark in the modified minimal subtraction (MS) renormalization scheme is extracted from a comparison 
of the differential top quark-antiquark (tt̄) cross section as a function of the invariant mass of the tt̄
system to next-to-leading-order theoretical predictions. The differential cross section is determined at 
the parton level by means of a maximum-likelihood fit to distributions of final-state observables. The 
analysis is performed using tt̄ candidate events in the e±μ∓ channel in proton-proton collision data at a 
centre-of-mass energy of 13 TeV recorded by the CMS detector at the CERN LHC in 2016, corresponding 
to an integrated luminosity of 35.9 fb−1. The extracted running is found to be compatible with the scale 
dependence predicted by the corresponding renormalization group equation. In this analysis, the running 
is probed up to a scale of the order of 1 TeV.

© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Beyond leading order in perturbation theory, the fundamental 
parameters of the quantum chromodynamics (QCD) Lagrangian, i.e.
the strong coupling constant αS and the quark masses, are subject 
to renormalization. As a result, these parameters depend on the 
scale at which they are evaluated. The evolution of αS and of the 
quark masses as a function of the scale, commonly referred to as 
“running”, is described by renormalization group equations (RGEs). 
The running of αS was experimentally verified on a wide range 
of scales using jet production in electron-proton, positron-proton, 
electron-positron, proton-antiproton, and proton-proton (pp) colli-
sions, as summarized, e.g. in Refs. [1,2]. To determine the running, 
the value of αS evaluated at an arbitrary reference scale is ex-
tracted in bins of a physical energy scale Q and then converted to 
αS(Q ) using the corresponding RGE [2]. The validity of this pro-
cedure lies in the fact that, in a calculation, the renormalization 
scale is normally identified with the physical energy scale of the 
process. The same procedure can be used to determine the run-
ning of the mass of a quark. In the modified minimal subtraction 
(MS) renormalization scheme, the dependence of a quark mass m
on the scale μ is described by the RGE

� E-mail address: cms -publication -committee -chair @cern .ch.

μ2 dm(μ)

dμ2
= −γ (αS(μ)) m(μ), (1)

where γ (αS (μ)) is the mass anomalous dimension, which is 
known up to five-loop order in perturbative QCD [3,4]. The solu-
tion of Eq. (1) can be used to obtain the quark mass at any scale 
μ from the mass evaluated at an initial scale μ0. The running 
of the b quark mass was demonstrated [5] using data from vari-
ous experiments at the CERN LEP [6–9], SLAC SLC [10], and DESY 
HERA [11] colliders. Measurements of charm quark pair produc-
tion in deep inelastic scattering at the DESY HERA were used to 
determine the running of the charm quark mass [12]. These mea-
surements represent a powerful test of the validity of perturbative 
QCD. Furthermore, RGEs can be modified by contributions from 
physics beyond the standard model, e.g. in the context of super-
symmetric theories [13].

This Letter describes the first experimental investigation of the 
running of the top quark mass, mt, as defined in the MS scheme. 
The running of mt is extracted from a measurement of the differ-
ential top quark-antiquark pair production cross section, σtt̄ , as a 
function of the invariant mass of the tt̄ system, mtt̄ . The differen-
tial cross section, dσtt̄/dmtt̄ , is determined at the parton level by 
means of a maximum-likelihood fit to distributions of final-state 
observables using tt̄ candidate events in the e±μ∓ final state, ex-
tending the method described in Ref. [14] to the case of a differen-
tial measurement. This method allows the differential cross section 
to be constrained simultaneously with the systematic uncertain-
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ties. In this analysis, the parton level is defined before radiation 
from the parton shower, which allows for a direct comparison with 
fixed-order theoretical predictions. The measurement is performed 
using pp collision data at 

√
s = 13 TeV recorded by the CMS de-

tector at the CERN LHC in 2016, corresponding to an integrated 
luminosity of 35.9 fb−1. The running mass, mt(μ), is extracted at 
next-to-leading order (NLO) in QCD as a function of mtt̄ by com-
paring fixed-order theoretical predictions at NLO to the measured 
dσtt̄/dmtt̄ . The running of mt is probed up to a scale of the order 
of 1 TeV.

2. The CMS detector and Monte Carlo simulation

The central feature of the CMS apparatus is a superconduct-
ing solenoid of 6 m internal diameter, providing a magnetic field 
of 3.8 T. Within the solenoid volume are a silicon pixel and strip 
tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), 
and a brass and scintillator hadron calorimeter, each composed of 
a barrel and two endcap sections. Forward calorimeters extend the 
pseudorapidity (η) coverage provided by the barrel and endcap 
detectors. Muons are detected in gas-ionization chambers embed-
ded in the steel flux-return yoke outside the solenoid. A two-level 
trigger system selects events of interest for analysis [15]. A more 
detailed description of the CMS detector, together with a definition 
of the coordinate system used and the relevant kinematic variables, 
can be found in Ref. [16].

The particle-flow (PF) algorithm [17] aims to reconstruct and 
identify electrons, muons, photons, charged and neutral hadrons 
in an event, with an optimized combination of information from 
the various elements of the CMS detector. The energy of electrons 
is determined from a combination of the electron momentum at 
the primary interaction vertex as determined by the tracker, the 
energy of the corresponding ECAL cluster, and the energy sum of 
all bremsstrahlung photons spatially compatible with originating 
from the electron track [18]. The momentum of muons is ob-
tained from the curvature of the corresponding track [19]. Jets 
are reconstructed from the PF candidates using the anti-kT clus-
tering algorithm with a distance parameter of 0.4 [20,21], and the 
jet momentum is determined as the vectorial sum of all particle 
momenta in the jet. The missing transverse momentum vector is 
computed as the negative vector sum of the transverse momenta 
(pT) of all the PF candidates in an event. Jets originating from the 
hadronization of b quarks (b jets) are identified (b tagged) using 
the combined secondary vertex [22] algorithm, using a working 
point that corresponds to an average b tagging efficiency of 41% for 
simulated tt̄ events, and an average misidentification probability of 
0.1% and 2.2% for light-flavour jets and c jets, respectively [22].

In this analysis, the same Monte Carlo (MC) simulations as in 
Ref. [14] are used. In particular, tt̄, tW, and Drell–Yan (DY) events 
are simulated using the powheg v2 [23–28] NLO MC generator 
interfaced to pythia 8.202 [29] for the modelling of the parton 
shower and using the CUETP8M2T4 underlying event tune [30,31]. 
In the simulation, the proton structure is described by means 
of the NNPDF3.0 [32] parton distribution function (PDF) set. The 
largest background contributions are represented by tW and DY 
production. Other background processes include W+jets produc-
tion and diboson events, while the contribution from QCD mul-
tijet production is found to be negligible. Contributions from all 
background processes are estimated from simulation and are nor-
malized to their predicted cross section. Further details on the MC 
simulation of the backgrounds can be found in Ref. [14].

3. Event selection and systematic uncertainties

Events are collected using a combination of triggers which re-
quire either one electron with pT > 12 GeV and one muon with 

pT > 23 GeV, or one electron with pT > 23 GeV and one muon with 
pT > 8 GeV, or one electron with pT > 27 GeV, or one muon with 
pT > 24 GeV. In the analysis, tight isolation requirements are ap-
plied to electrons and muons based on the ratio of the scalar sum 
of the pT of neighbouring PF candidates to the pT of the lepton 
candidate. Events are then required to contain at least one elec-
tron and one muon of opposite electric charge with pT > 25 GeV
for the leading and pT > 20 GeV for the subleading lepton, and 
|η| < 2.4. This kinematic selection defines the visible phase space. 
In events with more than two leptons, the two leptons of opposite 
charge with the highest pT are used. Jets with pT > 30 GeV and 
|η| < 2.4 are considered, but no requirement on the number of re-
constructed jets or b-tagged jets is imposed. Further details on the 
event selection can be found in Ref. [14].

In events with at least two jets, the invariant mass of the tt̄
system is estimated by means of the kinematic reconstruction al-
gorithm described in Ref. [33]. The reconstructed invariant mass is 
indicated with mreco

tt̄
. The kinematic reconstruction algorithm ex-

amines all possible combinations of reconstructed jets and leptons 
and solves a system of equations under the assumptions that the 
invariant mass of the reconstructed W boson is 80.4 GeV and that 
the missing transverse momentum originates solely from the two 
neutrinos coming from the leptonic decays of the W bosons. In 
addition, the kinematic reconstruction algorithm requires an as-
sumption on the value of the top quark mass, mkin

t . Any possible 
bias due to the choice of this value is avoided by incorporating 
the dependence on mkin

t in the fit described in Section 4. To esti-
mate this dependence, the kinematic reconstruction and the event 
selection are repeated with three different choices of mkin

t , corre-
sponding to 169.5, 172.5, and 175.5 GeV, and the top quark mass 
used in the MC simulation, mMC

t , is varied accordingly. The param-
eter mkin

t = mMC
t is then treated as a free parameter of the fit.

The sources of systematic uncertainties are classified as exper-
imental and modelling uncertainties. Experimental uncertainties 
are related to the corrections applied to the MC simulation. These 
include uncertainties associated with trigger and lepton identifica-
tion efficiencies, jet energy scale [34] and resolution [35], lepton 
energy scales, b tagging efficiencies [22], and the uncertainty in 
the integrated luminosity [36]. Modelling uncertainties are related 
to the simulation of the tt̄ signal, and include matrix-element scale 
variations in the powheg simulation [37,38], scale variations in the 
parton shower [31], variations in the matching scale between the 
matrix element and the parton shower [30], uncertainties in the 
underlying event tune [30], the PDFs [39], the B hadron branch-
ing fraction and fragmentation function [40,41], and uncertainties 
related to the choice of the colour reconnection model [42,43]. 
Furthermore, as in previous CMS analyses, e.g. [14,44,45], an uncer-
tainty that accounts for the observed difference in the shape of the 
top quark pT distribution between data and simulation [33,46,47]
is applied. The dependence on the top quark width has been in-
vestigated and was found to be negligible. Other sources of un-
certainty include the modelling of the additional pp interactions 
within the same or nearby bunch crossings and the normalization 
of background processes. For the latter, an uncertainty of 30% is 
assigned to the normalization of each background process. Further 
details on the sources of systematic uncertainties and the consid-
ered variations can be found in Ref. [14].

The simulated tt̄ sample is split into four subsamples corre-
sponding to bins of mtt̄ at the parton level. Each subsample is 
treated as an independent signal process, representing the tt̄ pro-
duction at the scale μk , which is chosen to be the centre-of-gravity 
of bin k, defined as the mean value of mtt̄ in that bin. The subsam-
ple corresponding to the bin k is denoted with “Signal (μk)”. The 
mtt̄ bin boundaries, the corresponding fraction of simulated events 
in each bin, and the representative scales μk are summarized in 
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Table 1
The mtt̄ bin boundaries, the corresponding fraction of 
events in the powheg simulation, and the representative 
scale μk .

Bin mtt̄ [GeV] Fraction [%] μk [GeV]

1 <420 30 384
2 420–550 39 476
3 550–810 24 644
4 >810 7 1024

Fig. 1. Distribution of mreco
tt̄

after the fit to the data, with the same binning as used 
in the fit. The hatched band corresponds to the total uncertainty in the predicted 
yields, including the contribution from mMC

t (�mMC
t ) and all correlations. The tt̄

MC sample is split into four subsamples, denoted with “Signal (μk)”, corresponding 
to bins of mtt̄ at the parton level. The first and last bins contain all events with 
mreco

tt̄
< 420 GeV and mreco

tt̄
> 810 GeV, respectively.

Table 1, where the values are estimated from the nominal powheg

simulation. The width of each bin, �mk
tt̄

, is chosen taking into ac-
count the resolution in mreco

tt̄
. Fig. 1 shows the distribution of mreco

tt̄
after the fit to the data, which is described in the next section.

4. Fit procedure and cross section results

The differential tt̄ cross section at the parton level is measured 
by means of a maximum-likelihood fit to distributions of final-
state observables where the systematic uncertainties are treated 
as nuisance parameters. In the likelihood, the number of events in 
each bin of any distribution of final-state observables is assumed to 
follow a Poisson distribution. With σ (μk)

tt̄
= (dσtt̄/dmtt̄)�mk

tt̄
being 

the total tt̄ cross section in the bin k of mtt̄ , the expected number 
of events in the bin i of any of the considered final-state distribu-
tions, denoted with νi , can be written as

νi =
4∑

k=1

sk
i (σ

(μk)

tt̄
,mMC

t , �λ) +
∑

j

b j
i (m

MC
t , �λ). (2)

Here, sk
i indicates the expected number of tt̄ events in the bin k

of mtt̄ and depends on σ (μk)

tt̄
, mMC

t , and the nuisance parameters �λ. 
Similarly, b j

i represents the expected number of background events 
from a source j and depends on mMC

t and the nuisance param-
eters �λ. The dependence of the background processes on mMC

t is 
introduced not only by the contribution of tW and semileptonic tt̄
events, but also by the choice of mkin

t in the kinematic reconstruc-

tion. Equation (2), which relates the various σ
(μk)

tt̄
(and hence the 

parton-level differential cross section) to distributions of final-state 
observables, embeds the detector response and its parametrized 

dependence on the systematic uncertainties. Therefore, the maxi-
mization of the likelihood function provides results for σ (μk)

tt̄
that 

are automatically unfolded to the parton level. This method (de-
scribed, e.g. in Ref. [48]) is also referred to as maximum-likelihood 
unfolding and, unlike other unfolding techniques, allows the nui-
sance parameters to be constrained simultaneously with the dif-
ferential cross section. The unfolding problem was found to be 
well-conditioned, and therefore no regularization is needed. The 
expected signal and background distributions contributing to the 
fit are modelled with templates constructed using simulated sam-
ples.

Selected events are categorized according to the number of b-
tagged jets, as events with 1 b-tagged jet, 2 b-tagged jets, or a 
different number of b-tagged jets (zero or more than two). The 
effect of the systematic uncertainties on the normalization of the 
different signals in each of these categories is parametrized using 
multinomial probabilities. In particular, based on the tt̄ topology, 
the number of events with one (Sk

1b), two (Sk
2b), or a different 

number of b-tagged jets (Sk
other) in each bin of mtt̄ is expressed 

as:

Sk
1b = Lσ

(μk)

tt̄
Ak

selε
k
sel2εk

b(1 − Ck
bε

k
b), (3)

Sk
2b = Lσ

(μk)

tt̄
Ak

selε
k
selC

k
b(ε

k
b)2, (4)

Sk
other = Lσ

(μk)

tt̄
Ak

selε
k
sel

[
1 − 2εk

b(1 − Ck
bε

k
b) − Ck

b(ε
k
b)2

]
. (5)

Here, L is the integrated luminosity, Ak
sel is the acceptance of 

the event selection in the mtt̄ bin k, and εk
sel represents the ef-

ficiency for an event in the visible phase space to pass the full 
event selection. The acceptance Ak

sel is defined as the fraction of 
tt̄ events in the bin k that, at the generator (particle) level, enter 
the visible phase space described in Section 3, while εk

sel includes 
experimental selection criteria, e.g. isolation and trigger require-
ments. Furthermore, εk

b represents the b tagging probability and 
the parameter Ck

b accounts for any residual correlation between 
the tagging of two b jets in a tt̄ event. The quantities Ak

sel, ε
k
sel, ε

k
b , 

and Ck
b are determined from the signal simulation and, although 

they are not free parameters of the fit, they vary according to 
the parameters �λ and mMC

t . In each category, the remaining effects 
of the systematic uncertainties on signal processes are treated as 
shape uncertainties. The quantities sk

i in Eq. (2) are then derived 
from the signal shape and normalization in the corresponding cat-
egory. In this way, a precise parametrization of the dependence of 
signal normalizations on the nuisance parameters and mMC

t is ob-
tained. In fact, the parameters in Eqs. (3)–(5) are less subject to 
statistical fluctuations than the sk

i .

In order to constrain each individual σ (μk)

tt̄
, events with at least 

two jets are further divided into subcategories of mreco
tt̄

, using the 
same binning as for mtt̄ (Table 1). The choice of the input distribu-
tions to the fit in the different event categories is summarized in 
Table 2. The total number of events is chosen as input to the fit for 
all subcategories with zero or more than two b-tagged jets, where 
the contribution of the background processes is the largest, in or-
der to mitigate the sensitivity of the measurement to the shape 
of the distributions of background processes. The same choice is 
made for the subcategories corresponding to the last bin in mreco

tt̄
, 

where the statistical uncertainty in both data and simulation is 
large, and for events with less than two jets, where the kinematic 
reconstruction cannot be performed. In the remaining subcate-
gories with one b-tagged jet, the minimum invariant mass found 
when combining the reconstructed b jet and a lepton, referred to 
as the mmin

�b distribution, is fitted. This distribution provides the 
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Table 2
Input distributions to the fit in the different event cate-
gories. The number of jets, the number of b-tagged jets, 
the number of events, and the pT of the softest jet are 
denoted with Njets , Nb , Nevents , and “jet pmin

T ”, respec-
tively, while the category corresponding to the bin k in 
mreco

tt̄
is indicated with “mreco

tt̄
k”.

Nb = 1 Nb = 2 Other Nb

Njets < 2 Nevents n.a. Nevents

mreco
tt̄

1 mmin
�b jet pmin

T Nevents

mreco
tt̄

2 mmin
�b jet pmin

T Nevents

mreco
tt̄

3 mmin
�b jet pmin

T Nevents

mreco
tt̄

4 Nevents Nevents Nevents

sensitivity to constrain mMC
t [49]. In the remaining subcategories 

with two b-tagged jets, the pT spectrum of the softest selected 
jet in the event is used to constrain jet energy scale uncertain-
ties at small values of pT, the kinematic range where systematic 
uncertainties are the largest. The distributions used in the fit are 
compared to the data after the fit in the supplemental material.

The efficiencies of the kinematic reconstruction in data and 
simulation have been investigated in Ref. [33] and they were found 
to differ by 0.2%. Therefore, the efficiency in the simulation is cor-
rected to match the one in data. An uncertainty of 0.2% is assigned 
to each bin of mtt̄ independently. The same uncertainty is also as-
signed to tt̄ events with one or two b-tagged jets, independently. 
For tt̄ events with zero or more than two b-tagged jets, where 
the combinatorial background is larger, an uncertainty of 0.5% is 
conservatively assigned. These uncertainties are treated as uncorre-
lated to account for possible differences between the different mtt̄
bins and categories of b-tagged jet multiplicity. Similarly, an addi-
tional uncertainty of 1% is assigned to the sum of the background 
processes, independently for each bin of mreco

tt̄
, in order to reduce 

the correlation between the signal and the background templates. 
The impact of these uncertainties on the final results is found to 
be small compared to the total uncertainty.

The dependence of the signal shapes, of the parameters Ak
sel, 

εk
sel, εk

b , and Ck
b , and of the background contributions on mMC

t

and on the nuisance parameters �λ is modelled using second-order 
polynomials [14]. In the fit, Gaussian priors are assumed for all 
the nuisance parameters. The negative log-likelihood is then mini-
mized, using the Minuit program [50], with respect to σ (μk)

tt̄
, mMC

t , 
and �λ. Finally, the fit uncertainties in the various σ (μk)

tt̄
are de-

termined using Minos [50]. Additional extrapolation uncertainties, 
which reflect the impact of modelling uncertainties on Ak

sel, are 
estimated without taking into account the constraints obtained in 
the visible phase space [14]. Moreover, an additional uncertainty 
arising from the limited statistical precision of the simulation is 
estimated using MC pseudo-experiments [14], where templates are 
varied within their statistical uncertainties taking into account the 
correlations between the nominal templates and the templates cor-
responding to the systematic variations. The template dependen-
cies are then rederived and the fit to the data is repeated more 
than ten thousand times. For each parameter of interest, the root-
mean-square of the best fit values obtained with this procedure is 
taken as an additional uncertainty and added in quadrature to the 
total uncertainty from the fit.

The measured σ
(μk)

tt̄
are shown in Fig. 2 and compared to 

fixed-order theoretical predictions in the MS scheme at NLO [51]
implemented for the purpose of this analysis in the mcfm v6.8 
program [52,53]. In the calculation, the renormalization scale, μr , 
and factorization scale, μf , are both set to mt. The MS mass of the 
top quark evaluated at the scale μ = mt is denoted with mt(mt). 

Fig. 2. Measured values of σ (μk)

tt̄
(markers) and their uncertainties (vertical error 

bars) compared to NLO predictions in the MS scheme obtained with different values 
of mt(mt) (horizontal lines of different styles). The values of σ (μk)

tt̄
are shown at the 

representative scale of the process μk , defined as the centre-of-gravity of bin k in 
mtt̄ . The first and last bins contain all events with mtt̄ < 420 GeV and mtt̄ > 810 GeV, 
respectively.

The calculation is interfaced with the ABMP16_5_nlo PDF set [54], 
which is the only available PDF set where mt is treated in the MS
scheme and where the correlations between the gluon PDF, αS , 
and mt are taken into account. In the calculation, the value of 
αS at the Z boson mass, αS (mZ ), is set to the value determined 
in the ABMP16_5_nlo fit, which in the central PDF corresponds 
to 0.1191 [54]. In order to demonstrate the sensitivity to the top 
quark mass, predictions for dσtt̄/dmtt̄ obtained with different val-
ues of mt(mt) are shown. Furthermore, it is worth noting that this 
method provides a cross section result with significantly improved 
precision compared to measurements that perform unfolding as a 
separate step, e.g. as the one described in Ref. [33].

The dominant uncertainties in the measured σ (μk)

tt̄
are associ-

ated with the integrated luminosity, the lepton identification effi-
ciencies, the jet energy scales and, at large mtt̄ , the modelling of 
the top quark pT. The two latter uncertainties are marginally con-
strained in the fit, while the first two are not constrained. Further-
more, the post-fit values of all nuisance parameters are found to be 
compatible with their pre-fit value, within one standard deviation. 
The numerical values of the measured σ (μk)

tt̄
, their correlations, the 

impact of the various sources of uncertainty, and the pulls and 
constraints of the nuisance parameters related to the modelling 
uncertainties can be found in the supplemental material.

5. Extraction of the running of the top quark mass

The measured differential cross section is used to extract the 
running of the top quark MS mass at NLO as a function of the 
scale μ = mtt̄ . The procedure is similar to the one used to ex-
tract the running of the charm quark mass [12]. The value of 
mt(mt) is determined independently in each bin of mtt̄ from a 
χ2 fit of fixed-order theoretical predictions at NLO to the mea-

sured σ (μk)

tt̄
. The theoretical predictions are obtained as described 

in Section 4 for Fig. 2. The χ2 definition follows the one de-
scribed in Ref. [55], which accounts for asymmetries in the input 
uncertainties. The extracted mt(mt) are then converted to mt(μk)

using the CRunDec v3.0 program [56], where μk is the repre-
sentative scale of the process in a given bin of mtt̄ , as described 
in Section 3. As relevant in a NLO calculation, the conversion is 
performed with one-loop precision, assuming five active flavours 
(n f = 5) and αS (mZ ) = 0.1191 consistently with the used PDF set. 
This procedure is equivalent to extracting directly mt(μk) in each 
bin. Furthermore, the result does not depend on the exact choice of 
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μk , provided that it is representative of the physical energy scale of 
the process. In fact, a change in μk would correspond to a change 
in mt(μk) according to the RGE. The extracted values of mt(μk)

and their uncertainties can be found in the supplemental material.
In order to benefit from the cancellation of correlated uncer-

tainties in the measured σ (μk)

tt̄
, the ratios of the various mt(μk)

to mt(μ2) are considered. In particular, the quantities r12 =
mt(μ1)/mt(μ2), r32 = mt(μ3)/mt(μ2), and r42 = mt(μ4)/mt(μ2)

are extracted. With this approach the running of mt, i.e. the 
quantity predicted by the RGE (Eq. (1)), is accessed directly. The 
measurement at the scale μ2 is chosen as a reference in order to 
minimize the correlation between the extracted ratios.

Four different types of systematic uncertainty are considered 
for the ratios: the uncertainty in the various σ (μk)

tt̄
in the visi-

ble phase space (referred to as fit uncertainty), the extrapolation 
uncertainties, the uncertainties in the proton PDFs, and the uncer-
tainty in the value of αS (mZ ). The fit uncertainty includes exper-
imental and modelling uncertainties described in Section 3. Scale 
variations in the mcfm predictions are not performed, since the 
scale dependence of mt is being investigated at a fixed order in 
perturbation theory. In fact, scale variations in the hard scattering 
cross section are conventionally performed as a means of estimat-
ing the effect of missing higher order corrections and are therefore 
not applicable in this context.

Uncertainties in the proton PDFs affect the mcfm prediction 
and therefore the extracted values of the various mt(μk). In or-
der to estimate their impact, the calculation is repeated for each 
eigenvector of the PDF set and the differences in the extracted ra-
tios are added in quadrature to yield the total PDF uncertainties. 
In the ABMP16_5_nlo PDF set, αS (mZ ) is determined simultane-
ously with the PDFs, therefore its uncertainty is incorporated in 
that of the PDFs. However, the uncertainty in αS (mZ ) also affects 
the CRunDec conversion from mt(mt) to mt(μk). This effect is es-
timated independently and is found to be negligible.

The impact of extrapolation uncertainties is estimated by vary-
ing the measured σ (μk)

tt̄
within their extrapolation uncertainty, sep-

arately for each source and simultaneously in the different bins 
in mtt̄ , taking the correlations into account. The various contri-
butions are added in quadrature to yield the total extrapolation 
uncertainty.

The correlations between the extracted masses arising from the 
fit uncertainty are estimated using MC pseudo-experiments, tak-
ing the correlations between the measured σ (μk)

tt̄
as inputs. The 

uncertainties are then propagated to the ratios using linear uncer-
tainty propagation, taking the estimated correlations into account. 
The numerical values of the ratios are determined to be:

r12 = 1.030 ± 0.018 (fit) +0.003
−0.006 (PDF+αS)

+0.003
−0.002 (extr),

r32 = 0.982 ± 0.025 (fit) +0.006
−0.005 (PDF+αS) ± 0.004 (extr),

r42 = 0.904 ± 0.050 (fit) +0.019
−0.017 (PDF+αS)

+0.017
−0.013 (extr).

Here, the fit uncertainty (fit), the combination of PDF and αS un-
certainty (PDF+αS ), and the extrapolation uncertainty (extr) are 
given. The most relevant sources of experimental uncertainty are 
the integrated luminosity, the lepton identification efficiencies, and 
the jet energy scale and resolution. Among modelling uncertain-
ties related to the powheg+pythia 8 simulation of the tt̄ signal, 
the largest contributions originate from the scale variations in the 
parton shower, the uncertainty in the shape of the pT spectrum of 
the top quark, and the matching scale between the matrix element 
and the parton shower. The statistical uncertainties are found to 
be negligible. The correlations between the ratios arising from the 
fit uncertainty are investigated using a pseudo-experiment proce-
dure which consists in repeating the extraction of the ratios using 

Fig. 3. Extracted running of the top quark mass mt(μ)/mt(μref) compared to 
the RGE prediction at one-loop precision, with n f = 5, evolved from the ini-
tial scale μ0 = μref = 476 GeV (upper). The result is compared to the value of 
mincl

t (mt)/mt(μref), where mincl
t (mt) is the value of mt(mt) extracted from the in-

clusive cross section measured in Ref. [14], which is based on the same data set. 
The uncertainty in mincl

t (mt) is evolved from the initial scale μ0 = mincl
t (mt), which 

corresponds to about 163 GeV, using the same RGE prediction (lower).

pseudo-measurements of σ (μk)

tt̄
, generated according to the corre-

sponding fitted values, uncertainties, and correlations. With ρik be-
ing the correlation between ri2 and rk2, the results are ρ13 = 13%, 
ρ14 = −45%, and ρ34 = 11%.

The extracted ratios mt(μk)/mt(μ2) are shown in Fig. 3 (upper) 
together with the RGE prediction (Eq. (1)) at one-loop precision. In 
the figure, the reference scale μ2 is indicated with μref, and the 
RGE evolution is calculated from the initial scale μ0 = μref. Good 
agreement between the extracted running and the RGE prediction 
is observed.

For comparison, the MS mass of the top quark is also ex-
tracted from the inclusive cross section measured in Ref. [14], 
using Hathor 2.0 [57] predictions at NLO interfaced with the 
ABMP16_5_nlo PDF set, and is denoted with mincl

t (mt). Fig. 3
(lower) compares the extracted ratios mt(μk)/mt(μ2) to the value 
of mincl

t (mt)/mt(μ2). The uncertainty in mincl
t (mt) includes fit, ex-

trapolation, and PDF uncertainties, and is evolved to higher scales, 
while the value of mt(μ2) in the ratio mincl

t (mt)/mt(μ2) is taken 
without uncertainty. Here, the RGE evolution is calculated from the 
initial scale μ0 = mincl

t (mt), which corresponds to about 163 GeV. 
The extracted value of mincl

t (mt) and its uncertainty can be found 
in the supplemental material.

Finally, the extracted running is parametrized with the function

f (x,μ) = x [r(μ) − 1] + 1, (6)

where r(μ) = mt(μ)/mt(μ2) corresponds to the RGE prediction 
shown in Fig. 3 (upper). In particular, f (x, μ) corresponds to 
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r(μ)for x = 1 and to 1, i.e. no running, for x = 0. The best fit value 
for x, denoted with x̂, is determined via a χ2 fit to the extracted 
ratios taking the correlations ρik into account, and is found to be

x̂ = 2.05 ± 0.61 (fit) +0.31
−0.55 (PDF + αS)

+0.24
−0.49 (extr).

The result shows agreement between the extracted running and 
the RGE prediction at one-loop precision within 1.1 standard devi-
ations in the Gaussian approximation and excludes the no-running 
hypothesis at above 95% confidence level (2.1 standard deviations) 
in the same approximation.

6. Summary

In this Letter, the first experimental investigation of the running 
of the top quark mass, mt , is presented. The running is extracted 
from a measurement of the differential top quark-antiquark (tt̄) 
cross section as a function of the invariant mass of the tt̄ sys-
tem, mtt̄ . The differential tt̄ cross section, dσtt̄/dmtt̄ , is determined 
at the parton level using a maximum-likelihood fit to distribu-
tions of final-state observables, using tt̄ candidate events in the 
e±μ∓ channel. This technique allows the nuisance parameters to 
be constrained simultaneously with the differential cross section in 
the visible phase space and therefore provides results with signifi-
cantly improved precision compared to conventional procedures in 
which the unfolding is performed as a separate step. The analysis 
is performed using proton-proton collision data at a centre-of-mass 
energy of 13 TeV recorded by the CMS detector at the CERN LHC in 
2016, corresponding to an integrated luminosity of 35.9 fb−1.

The running mass mt(μ), as defined in the modified minimal 
subtraction (MS) renormalization scheme, is extracted at one-loop 
precision as a function of mtt̄ by comparing fixed-order theoreti-
cal predictions at next-to-leading order to the measured dσtt̄/dmtt̄ . 
The extracted running of mt is found to be in agreement with 
the prediction of the corresponding renormalization group equa-
tion, within 1.1 standard deviations, and the no-running hypothesis 
is excluded at above 95% confidence level. The running of mt is 
probed up to a scale of the order of 1 TeV.
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