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A B S T R A C T

Advanced technical systems are typically composed of multiple critical components whose failure cause a system
failure. Often, it is not technically or economically possible to install sensors dedicated to each component,
which means that the exact condition of each component cannot be monitored, but a system level failure or
defect can be observed. The service provider then needs to implement a condition based maintenance policy that
is based on partial information on the systems condition. Furthermore, when the service provider decides to
service the system, (s)he also needs to decide which spare part(s) to bring along in order to avoid emergency
shipments and part returns. We model this problem as an infinite horizon partially observable Markov decision
process. In a set of numerical experiments, we first compare the optimal policy with preventive and corrective
maintenance policies: The optimal policy leads on average to a 28% and 15% cost decrease, respectively.
Second, we investigate the value of having full information, i.e., sensors dedicated to each component: This leads
on average to a 13% cost decrease compared to the case with partial information. Interestingly, having full
information is more valuable for cheaper, less reliable components than for more expensive, more reliable
components.

1. Introduction

Many operations in industrial and public organizations heavily de-
pend on the functioning of expensive and technically complex capital
goods that have a long life time and are used in the primary processes of
their users. Examples include lithography equipment in the semi-
conductor industry, medical imaging machines in hospitals, and radar
systems on vessels. Unexpected downtime of capital goods can lead to a
significant loss of revenue and it can negatively affect health, safety,
and the environment. Therefore, capital goods typically require a lot of
maintenance to ensure high availability and reliability, which accounts
for a significant part of the overall life cycle costs.

Condition based maintenance (CBM) is a maintenance policy that
determines the optimal maintenance moment based on condition
monitoring information such as vibration, temperature or power con-
sumption. Applying CBM should help to reduce costs, increase systems’
reliability and maximize components’ useful life. In some cases, CBM
achieves savings of more than 50% on the maintenance costs [45]. Due
to its promises, CBM has attracted attention in most industries and it
has led to growing attention by researchers from diverse disciplines.
Examples include the studies addressing CBM optimization problems in

the context of power generation systems [6,37] and heavy vehicles
[10]. Recent reviews on CBM are [2,21,22,35]. We review the relevant
literature for our problem in Section 2.

In most of the literature, it is assumed that an installed sensor gives
information on the condition of one component. However, in practice it
may not always be technically or economically possible to install sen-
sors dedicated to each component, which means that the exact condi-
tion of each component cannot be monitored, but a system level failure
or defect can be observed. In this case, it is difficult to decide when to
perform a maintenance intervention. Furthermore, it is difficult to de-
cide which spare parts to bring in case systems are dispersed in the
field. This holds, for example, for industrial printers or manufacturing
equipment that is serviced by the original equipment manufacturer. For
instance, Océ-Technologies B.V., one of the global leaders in industrial
printing, faces this problem. Océ has equiped its VarioPrint i300
(VPi300) printers with sensors that allow Océ to collect and analyze
data from the printer remotely [13]. Some of this data is related to the
condition of components, such as the temperature level in the main-
tenance box, clogging levels in the filter and ink-heads. Observing a
high temperature level in the maintenance box implies a defect in the
system, which is caused by either a chiller, a roller, or a safety valve
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(see 9 for more details). After observing a defect, i.e., a high tempera-
ture level, the time-to-failure depends on the component(s) that is (are)
defective. As a service provider, Océ needs to predict the exact state of
the system from the current observation and the past data, in order to
decide when to intervene for maintenance and which spare parts to
bring to the machine.

A similar problem can be observed in water purifying systems being
used in public water utility companies [44]. For water purifying sys-
tems, recirculating gravel filters (RGFs) are identified as the key com-
ponent. Typically, the condition of this component is not directly ob-
servable but can be revealed through an inspection. The level of
turbidity is recorded at key stages of the water treatment process to
guarantee high water quality, as well as to track the condition of the
RGF in use. When the ratio of outgoing to incoming water turbidity is
close to zero, the RGF is likely to be in good condition. However, when
the ratio is close to one, the RGF is likely to be in a poor condition [44].
The poor condition might appear due to a lack of chemicals used in the
RGF, filter clogging, or a mechanical problem in the RGF itself. The
actual condition of the RGF should be inferred from the observed tur-
bidity level, and when maintenance is performed it should be decided
which equipment to bring to maintain the RGF.

Since the service provider takes the spare part selection decision
without knowing the exact deterioration level of each component, there
is always a risk of bringing the wrong spare parts to the customer. When
the service provider needs a component that has not been brought to
the customer, this component can be delivered via an emergency
shipment, against a high cost. If the service provider brought a com-
ponent that was not required, it is returned afterwards. It may seem that
no costs are incurred in that case, but the more parts are being carried
around, the more parts need to be on stock, which does incur costs. The
spare parts selection decision is thus a crucial decision, next to the
maintenance timing decision.

Although in practice there exists a need for CBM strategies ad-
dressing an integrated maintenance and spare part selection decision
for partially observable multi-component systems, we are not aware of
any literature on this topic. Our aim is to fill this gap and our main
contribution is thus as follows. We propose a partially observable
Markov decision process (POMDP) formulation to solve the joint pro-
blem of maintenance timing and spare parts selection. The objective is
to minimize the expected total discounted cost over an infinite planning
horizon. We employ a grid-based solution method [27] to derive the
optimal policy. We then perform a numerical experiment in which we
compare our policy with two maintenance policies that are often used
in practice: a corrective (upon failure) or preventive (upon defect)
policy. We show that using the optimal policy instead of the corrective
and preventive policies leads to average cost decreases of 15% and
28%, respectively. We observe that the corrective policy is very costly
when the corrective maintenance cost is high and/or the deterioration
characteristics of the components in the system are significantly dif-
ferent from each other. The preventive policy leads to significant ad-
ditional cost when the emergency order cost and/or the replacement
costs are high. We next consider the case that we are able to observe
each component’s deterioration level exactly. Through a numerical
experiment, we compare the optimal policy of this full information
model with the optimal policy of our original model. The results show
that having full information leads to, on average, a 13% cost decrease
compared to the case where the service provider has only partial in-
formation on the components’ deterioration levels. Interestingly,
having full information is more valuable for cheaper, less reliable
components than for more expensive, more reliable components. This is
important to know for reliability engineers in the design phase of a
system when making decisions on which sensors to install.

The rest of this article is organized as follows. Section 2 reviews the
related literature and contextualizes our contribution. Section 3 con-
tains the model formulation. Section 4 gives the results of the numerical

experiment and the managerial insights derived from it. Finally, the
conclusions and future research directions are provided in Section 5.

2. Literature review

There exists a lot of literature on CBM; we referred to some review
papers in the previous section. Here, we only review the most relevant
papers on CBM: single-component models with partial observability
and multi-component models. As the joint optimization of CBM and
spare part inventory decisions are beyond our scope, the studies in that
research stream are not included in our review (we refer to the review
paper by Van Horenbeek et al. [41]).

As one of the early studies within the stream of single-component
CBM models, [32] address a system monitored with a sensor giving the
decision-maker partial information about the system state. The authors
reveal that the optimal inspection and replacement policy for the
system is in the class of modified monotonic four-region policies[33].
extend the model of [32] by considering an action set including
minimal-repair and failure-replacement actions. [28] investigates the
problem of scheduling both perfect and imperfect observations and
preventive maintenance actions for a multi-state, Markovian dete-
rioration system with self-announcing failures. [3] study maintenance
and operation policies that maximize the overall effectiveness of a
single-component system with respect to availability, productivity, and
quality[19]. address an availability maximization problem for a par-
tially observable deteriorating system subject to random failures, em-
ploying a continuous-time Markov model. In [12], the problem of
finding the optimal maintenance policy for partially observed systems is
addressed, where only a limited number of imperfect maintenance ac-
tions can be performed. The authors prove the existence of an optimal
threshold-type maintenance policy. Flory et al. [15] develop a condi-
tion-based maintenance policy for a deteriorating system with a par-
tially observable environment, where the degradation rate is influenced
by the operating environment. Van Oosterom et al. [43] examine a
system having multiple spare part types that cannot be distinguished by
their exterior appearance but deteriorate according to different transi-
tion probability matrices. Abdul-Malak et al. [1] extend the model in
[43] by removing some of the restrictions on the systems time-to-failure
distribution and considering both repair and replacement actions. Jin
and Yamamoto [20] propose a non-stationary partially observable
Markov decision model to study the optimal maintenance policy for an
aging system with imperfect inspections. Van Oosterom et al. [42] ex-
amine the problem of finding the optimal maintenance policy for a
safety-critical system and its deteriorating sensor. Nguyen et al. [31]
focus on the interest of adjustment of inspection quality in CBM opti-
mization.

The stream of multi-component CBM models consists of only a
limited number of papers. Barbera et al. [8] introduce a CBM model
considering exponential failures and fixed inspection intervals for a
two-component system in series, and derive the optimal solution
minimizing the long-run average cost of maintenance actions and fail-
ures. Barata et al. [7] employ a Monte Carlo simulation approach to
determine the optimal maintenance schedule for continuously mon-
itored deteriorating systems with non-repairable, single-components
and multi-component repairable systems. Marseguerra et al. [29] for-
mulate an optimization model with availability and net profit criteria to
investigate the optimal CBM policy for a multi-component system, and
they come up with a solution algorithm combining Monte Carlo simu-
lation and genetic algorithms. Castanier et al. [11] introduce a sto-
chastic model based on a semi-regenerative process to study the optimal
maintenance scheduling of a two-component series system subject to
continuous deterioration. Tian and Liao [39] deal with the problem of
determining the optimal maintenance policy for a multi-component
system whose components are economically dependent, using a pro-
portional hazards model. Hong et al. [17] develop a copula model to
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investigate the influence of dependent stochastic degradation of mul-
tiple components on the optimal maintenance decisions. They conduct
an analysis related to the effect of different risk attitudes of the decision
maker to the selection of the optimal policy. Zhu et al. [46] study the
optimal maintenance policy for a multi-component system with a high
maintenance setup cost. The authors evaluate the cost-saving potential
of the optimal policy by comparing it with a failure-based and age-
based policy. Arts and Basten [5] study a similar problem, but with
minimal repairs, allowing them to exactly evaluate policies. Keizer
et al. [23] develop condition based maintenance policies for k-out-of-N
systems subject to both redundancy and economic dependencies. Li
et al. [25] examine a system whose components are both stochastically
and economically dependent, using a Lévy copula modeling approach.
Özgür-Ünlüakın and Bilgiç [34] assess the performance of two different
maintenance optimization procedures for a Markovian deteriorating
system under partial observations in a finite discrete time horizon. For a
system with homogeneous components that follow the same stochastic
degradation process, [24] examine a maintenance scheduling problem
where all units in the system are renewed simultaneously. Eruguz et al.
[14] extend the model of [32] by considering a setting in which the
system contains multiple components. The authors model the system as
an infinite horizon POMDP under the discounted cost criterion, but
without a spare parts selection decision.

3. Model description

In this section, we describe our problem and formulate a partially
observable Markov decision process.

3.1. Problem definition

We consider a system that consists of N critical components. The
system is operational as long as all critical components are functioning.
The critical components are subject to deterioration during the time
that the system is operating. They deteriorate according to a discrete-
time discrete-state space Markov chain (see, e.g., Giorgio et al. [16],
Neves et al. [30], Si et al. [38], and 26, for a detailed discussion on how
and why Markov chain models are employed to represent the compo-
nent degradation and how the necessary parameters are estimated). For
each component, there exists a predetermined defect level and a failure
level. The component is referred to as being non-defective when its
deterioration level is strictly less than the corresponding defect level;
the component whose deterioration level is at or above the corre-
sponding defect level but is strictly smaller than the corresponding
failure level is called defective. The component is referred to as failed
when its deterioration level is at the corresponding failure level.

There is a single sensor on the system that provides partial in-
formation about the condition of the system: Sensor information does
not indicate the condition of the components, but indicates that a defect
or a failure exists in the system. If at least one component is defective
(has failed), a defective (failure) signal is observed. When the system
has neither a defective nor a failed component the sensor displays a
non-defective signal. The exact state of the components can be observed
only through a complete and perfect inspection.

As the service provider cannot observe what the exact deterioration
level of each component is, she introduces a belief state to determine
the maintenance intervention moments. The belief state is a probability
measure to estimate the current state of the system based on the signal
being observed through the sensor. It is updated after each new signal
observation. The belief state evolves according to a discrete-time con-
tinuous-state Markov process as the sensor signals directly depend on
the components’ deterioration levels.

The sequence of events in each period is as follows: At the beginning
of each period, the service provider observes a new signal coming from
the sensor. Using this new observation, she updates her belief regarding
the components’ deterioration levels. The service provider then decides

whether or not to perform maintenance. She definitely performs
maintenance when the sensor displays a failure signal. When the sensor
displays a non-defective or defective signal the service provider may
choose to intervene preventively. In case maintenance is performed,
next the spare part selection decision is taken. Finally, costs are in-
curred.

The preventive and corrective maintenance interventions take a
negligible time. For each corrective maintenance intervention being
performed after a failure signal, she pays a fixed corrective maintenance
intervention cost. Additionally, for each preventive maintenance in-
tervention, she incurs a fixed preventive maintenance intervention cost.
Typically, corrective costs are higher than preventive costs.

When performing a preventive or corrective maintenance inter-
vention, the service provider observes the exact deterioration levels of
all components through inspection and replaces each defective or failed
component in the system with a new one. Each part replacement incurs
a replacement cost. Non-defective components are never replaced even
though they may not be as good as new.

For each component in the system, there is always a sufficiently
large number of spare parts on stock. When deciding to perform a
maintenance intervention, the service provider should also decide on
which components to bring to the customer. If a component that has not
been brought to the customer but needs to be changed, she employs an
emergency procedure to immediately bring the necessary component to
the customer. The service provider pays an additional emergency order
cost for the relevant component. If a component has been brought to the
customer but is not used in the maintenance, the service provider takes
the component back to use in another maintenance intervention. She
incurs an additional return cost for the relevant component.

The service provider seeks to find the optimal policy, i.e., to decide
when to perform maintenance interventions and which spare parts to
take along, that minimizes the expected total discounted maintenance
cost over an infinite time horizon.

3.2. The POMDP model

The set of components is represented by = N{1, 2, , }. Each
component has a finite number of deterioration levels. The deteriora-
tion level of component i is represented by si ∈ Si where

=S F{0, 1, 2, , }i i . For each component i , the state numbers are
ordered to reflect the deterioration level in an ascending order, i.e.,
state 0 represents the perfect working condition and state Fi represents
the failed condition.

For each component i , there exists a predetermined defect level,
Δi where 0 < Δi < Fi. Based on the corresponding defect levels, the
system components are classified into three groups: non-defective, de-
fective, and failed. Component i is classified as being non-defective,
defective or failed when its deterioration level is si < Δi, Δi ≤ si < Fi, or

=s F ,i i respectively.

3.2.1. Core states
The set of core states consists of all possible states that the system

can be in, i.e., = Si i is a product of totally ordered sets
=S F{0, 1, 2, , }i i where i . Each core state s is associated with a

unique N-dimensional condition vector = s s ss { , , , },N1 2 where the ith

element in the vector represents the deterioration level of component i.
The components deteriorate according to a discrete-time discrete-

state space Markov chain with an | |-by-| | dimensional one-step tran-
sition probability matrix Q. More specifically, the element qs s, in the
transition matrix describes the one-step transition probability from s to
s′. In order to avoid technical complications, all transition probabilities
are assumed to be stationary over time.

Remark 1. Consider the special case that the deterioration process of
each component i evolves according to an independent discrete-
time discrete-state space Markov chain with an +F( 1)i -by- +F( 1)i
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transition matrix Pi. More specifically, for component i , ps s,i i
denotes the one-step transition probability from deterioration level
si ∈ Si to s Si i. In this case, one can construct the transition matrix Q
by calculating the one-step transition probability from

= s s ss { , , , }N1 2 to = s s ss { , , , }N1 2 is as follows:

=q p .
i

s ss s, ,i i (1)

Note that it is possible to apply the proposed model to a system with
stochastic dependence among the components since we consider an
arbitrary matrix Q to model the components’ deterioration processes.

3.2.2. Observations
The system is periodically monitored through a sensor providing

only partial information on the components’ degradation levels. The
possible outcomes coming from the sensor are denoted by θ ∈ Θ where

= {0, 1, 2} and 0, 1, and 2 represent non-defective, defective, and
failure signals, respectively. To visualize how the sensor works, an il-
lustration for a system with two components is given in Fig. 1.

The system sensor works perfectly, as a result of which each core
state s can be matched with one of the observation states. The set of
core states can thus be defined as three disjoint sets:

= <s is{ : },i i0 (2)

= <i s s F is{ : , },i i i i1 (3)

= =i s Fs{ : }.i i2 (4)

Note that = and = . This structure also implies
that the conditional probability of monitoring signal θ given that the
core state is s equals 1.

3.2.3. Belief states
The set of all possible belief states composes the state space of the

problem. We denote the belief state by = ( , . , )1 2 | | where πs
represents the probability of the system being in core state s . As
each core state leads to a unique observation signal θ, the set of belief
states can be described with three disjoint sets Πθ. That is, for a given
signal θ ∈ Θ, one can define a unique set such that:

= = =+ s s: 0 , 0 , 1 ,s s
s

s
| |

(5)

where + is the set of non-negative real numbers. We can describe the
belief space as = .

For a given belief state , the probability of observing θ ∈ Θ in the
subsequent period is:

=P q( | ) .
s s

s s s,
(6)

If the observation being made in the subsequent period is θ ∈ Θ,
belief state is updated to T( , ). The s′th argument in the vector
T( , ) is :

=
q

PT s

s
( , ) ( | )

for ;

0 for .
s

s s s s,

(7)

3.2.4. Actions
At the beginning of each period, the service provider observes a

signal coming from the sensor and decides whether or not to visit the
customer for maintenance. When the sensor displays a failure signal,
she definitely performs a corrective maintenance intervention; when
the sensor displays either a non-defective or defective signal the service
provider may choose either to perform a preventive maintenance in-
tervention or not. The possible maintenance actions in belief state

are thus described as follows:

=A ( )
{1} if ;
{0, 1} if .

2

0 1 (8)

In Eq. (8), the decisions of performing and not performing maintenance
are represented by =a 1 and =a 0, respectively.

If the service provider prefers not to perform maintenance, she will
not change any component in the system. That is, the spare part se-
lection decision is irrelevant. On the other hand, if the service provider
decides to perform a maintenance intervention, she needs to determine
which spare parts to take along to the customer. We denote the spare
part selection decision by a binary vector = g g gg ( , , , )N1 2 where gi is 1
if the corresponding component is brought to the customer and 0
otherwise. Accordingly, in case the service provider decides to perform
a maintenance intervention, there exist 2N different options regarding
the spare part selection decision:

=
=

{0, 1}.
i

N

1 (9)

When performing a preventive or corrective maintenance inter-
vention, the exact deterioration levels of all components are revealed
through perfect inspections. Each defective or failed component found
in the system is replaced with an as-good-as new component. It is
possible to use our model to capture structural dependencies among the
components, with several basic changes in the action set and the
component replacement rules.

3.2.5. Cost functions
The service provider incurs a fixed preventive maintenance inter-

vention cost Cp for each maintenance intervention being performed
after a defective or non-defective signal whereas she incurs a fixed
corrective maintenance intervention cost Cc for each maintenance in-
tervention being performed after a failure signal, with Cc ≥ Cp. So, the

Fig. 1. An illustration for a two-component system (F1=4, Δ1=3, F2=2, and Δ2=1).
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fixed cost function for the maintenance intervention actions is:

=C
C
C

( )
if {0, 1};
if {2}.

f
p

c
(10)

Since we consider fixed costs for maintenance interventions, economic
dependence is captured with our model.

The service provider pays a replacement cost, C ,i
r when she replaces

component i with a spare part. While performing a maintenance
intervention, the service provider may need a spare part that has not
been brought to the customer. In such a case, she employs an emer-
gency order procedure with zero lead time to immediately bring the
spare part and incurs an emergency order cost, Ce. She also pays a re-
turn cost, Cb, for each spare part that has been brought to the customer
but is not used in the maintenance. Accordingly, the variable cost
function is defined as:

= + +<C C C g C gg s( , ) (1 ) .
i

i
r

s
i

b
i s

i

e
i s

v
{ } { } { }i i i i i i

(11)

In Eq. (11), {.} is an indicator function that returns 1 when the given
condition holds and 0 otherwise.

3.2.6. Value function and operators
Let V ( )n be the value function denoting the minimum expected

total discounted cost using the optimal policy when there are n ≥ 0
periods left. We set the initial value function V ( )0 to 0. We describe the
operators of which V ( )n is composed.

Operator Γ0 denotes the action of not performing maintenance:

=V P V T( ) ( | ) ( ( , )) for .n n
0

0 1
(12)

We consider a discount rate γ with 0 < γ < 1 so that any cost incurred
in a subsequent period is discounted by this factor.

Let s( ) 0 denote the core state after the inspection and re-
placement actions are performed in state s . So, the ith element in
this vector can be defined as follows:

= ( )s is( ) 1 for .i s i{ }i i (13)

Let u s( ) be the | | dimensional unit vector with 1 on the s( ( ))th
element. If the system is in core state s , the belief state becomes
u s( ) after the maintenance intervention. So, the optimal spare part
selection action when the service provider decides to perform main-
tenance is :

= +V C V ug s( ) min ( , ) ( ) for , .n n
g s

s
s

s s1 v 0 ( )

(14)

Operator Γ1 denotes the maintenance intervention action:

= +V C V( ) ( ) ( ) for , .n n
1 f 1 (15)

Using operators Γ0 and Γ1, the value function can be expressed as:

=+V V( ) min { ( )}.n
a A

a
n1

( ) (16)

Our problem has a finite action space, includes strictly positive and
bounded costs, and is discounted. From the standard argument of the
theory of contraction mapping, the problem given in Eq. (16) converges
to a solution function V ( ) as n tends to infinity and there exists an
optimal deterministic stationary policy for the considered problem [see,
e.g.,Ohnishi et al. [32], Puterman [36]. Thus, the problem can be
solved by a successive approximation procedure such as value iteration.

4. Numerical experiment

This section summarizes our numerical experiment to assess, first,
how system characteristics affect the value of using the optimal policy

and, second, the value of having full information. For the analysis, we
employ three different benchmark policies that are introduced in
Section 4.1. Section 4.2 presents the setup we considered. Sections 4.3
and 4.4 report our numerical results for 2-component systems.
Section 4.5 illustrates our approach for 3-component systems.

4.1. Benchmark policies

To examine the impact of system characteristics on the value of
using the optimal policy, we consider two naive benchmark policies, a
corrective (CP) and a preventive policy (PP). Under CP, the service
provider performs maintenance only upon observing a failure signal;
otherwise, she does nothing. Under PP, the service provider intervenes
for maintenance when she receives a defective signal from the system.
Under both policies, the service provider determines which spare parts
to bring to the customer by solving the spare part selection decision
problem as she does in the original problem formulation.

We employ the grid-based solution method proposed by [27] to
obtain the optimal policy and to evaluate CP and PP. We note that our
solution algorithm suffers from the curse of dimensionality (see
Appendix A). Developing an efficient algorithm to solve large problem
instances is not in the scope of our paper. Therefore, we limit ourselves
to 2-component and 3-component problem instances in our numerical
experiment.

To analyze the impact of system characteristics on the value of
having full information, we consider a case where the service provider
has sensors that provide information about the exact deterioration level
of each component in the system, the full information policy (FI). Since
the components’ exact deterioration levels are completely observable,
the FI case can be formulated as a standard Markov decision process
and solved with the value-iteration algorithm [see, e.g., Puterman
[36]].

Solution algorithms have been coded in C++ and are run on a
supercomputer with QEMU Virtual CPU clocked at 2.30 GHz with 6
cores, and a total RAM capacity of 8.00 GB for 2-component problem
instances and with 12 cores and a total RAM capacity of 20.00 GB for 3-
component problem instances.

We use the following performance indicators, respectively, in order
to asses the value of using the optimal policy compared with a parti-
cular benchmark policy and the value of having full information:

=RD TC TC
TC

% ,m
P m

P
m
O

m
P (17)

=ex RD TC TC
TC

[1.5 ]% ,m
FI m

O
m
FI

m
O (18)

where TCm
P is the total discounted cost obtained for problem instance m

with the use of the corresponding benchmark policy P, TCm
FI is the total

discounted cost obtained for problem instance m with the use of the full
information policy, and TCm

O is the total discounted cost obtained for
problem instance m with the use of the optimal policy with a single
sensor. These indicators imply that for comparisons with CP and PP (for
comparisons with FI), the higher RD the higher the value of using the
optimal policy (the higher the value of having full information).

4.2. Setup

In this section, we present our setup for 2-component systems. The
conversion to 3-component systems are explained in Section 4.4.

We set the preventive maintenance cost as =C 100p and the cor-
rective maintenance cost parameters as in Table 1. We consider a return
cost of 30. We evaluate three alternatives for the emergency order cost,
see Table 2. With the considered setup, we ensure that emergency order
and return costs do not exceed the preventive or corrective main-
tenance costs, as expected in practice. Emergency order costs are non-
strictly higher than return costs as they include costs of delaying the
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maintenance or replacement.
We consider three alternatives for each component’s replacement

cost so there exist nine different combinations, see Table 3. We set the
replacement cost parameters such that they reflect different possible
cases in practice: These costs can be both higher and lower than the
preventive and corrective maintenance costs and the emergency order
costs. We set the discount rate as = 0.95.

For each component, we consider failure levels = =F F 31 2 . The
defect levels considered are given in Table 4. First, we consider the case
where the components deteriorate independently according to discrete-
time discrete-state space Markov chains. We use Remark 1 to construct
the transition matrix Q. For each component, we consider three dif-
ferent alternatives representing reliable, fair, and unreliable compo-
nents. To avoid repetitive instances, we treat only the combinations
given in Table 5. The considered deterioration rates are based on our
observations from real-life cases.

Overall, to examine the value of having full information and value
of using the optimal policy under the non-correlated degradation pro-
cesses, we perform a full factorial experiment with × × =5 3 2 32404 3

different instances. We thus provide a comprehensive numerical ex-
periment that well represents systems in practice. The results related to
this numerical experiment are reported in Tables 7–12.

Second, we examine how the correlation between the components’
deterioration processes affects the value of using the optimal policy and
the value of having full information. We consider five different corre-
lation coefficients ρ: 0, 0.1, 0.2, 0.4, and 0.8, as shown in Table 6. Since,
in practice, it is unusual to observe a negative correlation between the
components’ deterioration processes, we only consider positive corre-
lation coefficients.

We develop a procedure to form the transition matrices in such a
way that the specified correlation coefficients are obtained (see
Appendix B). The marginal transition matrices for each component and
the correlation coefficient are utilized as inputs. The procedure allows
the correlation coefficient to be set to a specified level, by fixing the
marginal transition matrices. As such, we are able to observe the direct
effects of the correlation coefficient.

The alternatives for the component transition matrices presented in
Table 5 are given as the input variables to the procedure. If the dif-
ference between the components’ deterioration rates is large, it is not
always possible to create a transition matrix having a high correlation
coefficient. More specifically, for Reliable-Fair and Fair-Unreliable (Re-
liable-Unreliable), we cannot define a transition matrix having a corre-
lation coefficient ρ > 0.4 (0.2); Table 6 shows all combinations of
correlation coefficient and marginal transition matrix that we thus

incorporate. For each given combination, we consider a full factorial
experiment. We thus generate 3240 problem instances for ρ ∈ {0, 0.1,
0.2}, 2700 for = 0.4, and 1620 for = 0.8. The results are reported in
Table 7 and in Fig. 2.

4.3. Value of using the optimal policy

Our numerical experiments show that when the components have
independent deterioration processes, the cost decreases obtained by
using the optimal policy instead of CP and PP are on average 15% and
28%, respectively. The minimum and maximum cost decreases
achieved with the use of the optimal policy instead of CP are 0% and
80%; the minimum and maximum cost decreases obtained with the use
of the optimal policy instead of PP are 0% and 74%. Moreover, the cost
differences remain relatively stable for different correlation values (see
Table 7). When correlation increases, components’ degradation pro-
cesses get similar, leading to better performance for all policies (see
Fig. 2).

Table 8 shows that if the cost ratio of preventive maintenance to
corrective maintenance is low, the benefit of using the optimal policy
instead of CP increases, while the benefit of using the optimal policy
instead of PP decreases. However, even with very high corrective
maintenance cost, PP still gives an average additional cost of 8%. This is
a result from low defect levels: When the defect levels for both com-
ponents are 1, PP performs preventive maintenance interventions in
states (1,1), (1,0), and (0,1). However, many of the maintenance in-
terventions performed in these states are unnecessary because in states
(2,1), (1,2), and (2,2), the components are still functional. Therefore,
under the optimal policy, the preventive maintenance interventions are
performed when the probability of being in these states are positive,
i.e., the corresponding belief state elements are greater than zero. When
the defect levels for both components are 2, the difference between the
optimal policy and PP does converge to 0. This also explains why the
additional costs of using PP instead of the optimal policy decreases
when the components’ defect levels increase, which Table 9 shows.

By definition, changing the components’ defect levels does not affect
the cost of CP. On the other hand, since increasing defect levels leads to
a decrease in the number of defective states that the system can be in,
the service provider’s belief on the system state becomes more accurate.
This yields a significant cost reduction for the optimal policy. As a re-
sult, the relative cost difference between the optimal policy and CP
increases, as shown in Table 9.

In order to avoid high emergency order costs due to ineffective spare
part selection decisions, the optimal policy performs preventive main-
tenance interventions when the service provider is almost sure which
components are defective. In this case, the optimal policy resembles CP.
Therefore, when the emergency order costs increase, the cost difference
between the optimal policy and CP decreases whereas the cost difference
between the optimal policy and PP increases Table 10.

Table 1
Alternatives for the fixed corrective maintenance cost.

Very Low Low Medium High Very High

Cc 100 200 300 600 1200

Table 2
Alternatives for the emergency order cost.

Low Medium High

Ce 30 60 90

Table 3
Alternatives for the replacement cost of components 1 and 2.

1st Component Low Low Low Medium Medium Medium High High High
2nd Component Low Medium High Medium Medium High Low Medium High

Cr
1 50 50 50 100 100 100 500 500 500

C r
2 50 100 500 50 100 500 50 100 500

Table 4
Alternatives for the deterioration level of components 1 and 2.

1st Component Low Low High High
2nd Component Low High Low High

Δ1 1 1 2 2
Δ2 1 2 1 2
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Table 11 shows that the positive impact of employing the optimal
policy instead of CP decreases when the replacement cost for one of the
components increases. As the replacement cost increases, the service
provider would prefer not to implement preventive maintenance in-
terventions. It causes the optimal policy to resemble CP, leading to a
decrease in the cost difference between these policies. Moreover, the
positive impact of using the optimal policy instead of PP increases as
the replacement cost for the unreliable component increases. Under PP,
the preventive maintenance interventions are performed in case of a
defective signal, leading to a large number of component replacements.
Therefore, the relative cost difference between PP and the optimal
policy is higher for expensive components.

In Table 12, as the difference between components’ deterioration
characteristics increases, the positive impact of using the optimal policy
instead of CP increases whereas the positive impact of using the optimal
policy instead of PP decreases. With an increase in the difference be-
tween the components’ deterioration rates, the risk of going to a failure
state after receiving a defect signal increases. The optimal policy avoids
this risk by performing preventive maintenance interventions in early
defective states. So, the optimal policy resembles PP and the cost dif-
ference between these two policies decreases. The same effect also leads
to an increase in the cost difference between the optimal policy and CP.

4.4. Value of having full information

When the components deteriorate independently, having full in-
formation leads to, on average, a 13% cost decrease compared to having
partial information with the minimum and maximum cost decrease of

0% and 51%, respectively. Moreover, the existence of a correlation
between the components’ deterioration processes affects the value of
having full information. There exists a slight downward trend in the
value of having full information with an increase in the correlation
coefficient (see Table 7). As the correlation increases, both components
will have increasingly similar deterioration characteristics. This makes
the system similar to a single component deteriorating system so that
the service provider’s beliefs regarding the system condition get more
accurate. As a result, having more information about the components’
deterioration levels does not bring a lot of value to the service provider
to plan maintenance interventions.

Table 8 shows that the positive impact of having full information
increases as the corrective maintenance cost increases. When the ratio
between the preventive and corrective maintenance costs is close to 0,
failures are very costly. Having more information on the components’
deterioration levels would help the service provider to exploit each
component’s lifetime and maintain the components just in time.

We observe that the benefit of having full information decreases
with an increase in the components’ defect levels (see Table 9). In this
case, the number of defective states in the system decreases and hence,
system condition information gets more accurate. Therefore, having
more information about the components’ deterioration levels does not
bring a lot of value to the service provider to plan maintenance inter-
ventions.

Table 10 shows that the benefit of having full information increases
when the emergency order cost increases. Having full information
about the system would help the service provider to improve spare part
selection decisions and to avoid high emergency order costs.

As shown in Table 11, the positive impact of having full information
decreases when the replacement cost for one of the components in-
creases. With an increase in the replacement cost, performing pre-
ventive maintenance interventions is getting more expensive thereby
decreasing its benefit for the service provider. In such a case, the service
provider prefers not to perform preventive maintenance interventions
frequently. Thus, having more information about the components’ de-
terioration levels would not bring a lot of value.

Table 12 shows that as the difference between the components’
deterioration rates increases, the value of having full information in-
creases first, and then decreases. More specifically, for both compo-
nents, the mean times to failure (defect) are almost the same when they
have similar deterioration characteristics. Therefore, joint maintenance

Table 5
Alternatives for the component transition matrices.

Deterioration Characteristic of Component 1 Deterioration Characteristic of Component 2

Alternatives Reliable: = =+p p s( 0.99, 0.01 , {0, 1, 2})s s s s1, 1 1, 1 1 1 Reliable: = =+p p s( 0.99, 0.01 , {0, 1, 2})s s s s2, 2 2, 2 1 2

Reliable: = =+p p s( 0.99, 0.01 , {0, 1, 2})s s s s1, 1 1, 1 1 1 Fair: = =+p p s( 0.95, 0.05 , {0, 1, 2})s s s s2, 2 2, 2 1 2

Reliable: = =+p p s( 0.99, 0.01 , {0, 1, 2})s s s s1, 1 1, 1 1 1 Unreliable: = =+p p s( 0.85, 0.15 , {0, 1, 2})s s s s2, 2 2, 2 1 2

Fair: = =+p p s( 0.95, 0.05 , {0, 1, 2})s s s s1, 1 1, 1 1 1 Fair: = =+p p s( 0.95, 0.05 , {0, 1, 2})s s s s2, 2 2, 2 1 2

Fair: = =+p p s( 0.95, 0.05 , {0, 1, 2})s s s s1, 1 1, 1 1 1 Unreliable: = =+p p s( 0.85, 0.15 , {0, 1, 2})s s s s2, 2 2, 2 1 2

Unreliable: = =+p p s( 0.85, 0.15 , {0, 1, 2})s s s s1, 1 1, 1 1 1 Unreliable: = =+p p s( 0.85, 0.15 , {0, 1, 2})s s s s2, 2 2, 2 1 2

Note: Each transition matrix defined above is a 3-by-3 matrix. Except for the elements specified above, all other elements are zero.

Table 6
Alternatives for the correlation between the components’ deterioration pro-
cesses.

Correlation Coefficient (ρ)

Transition Characteristics No Low Medium High Very High

No Difference: Reliable-Reliable 0 0.1 0.2 0.4 0.8
Fair-Fair 0 0.1 0.2 0.4 0.8
Unreliable-Unreliable 0 0.1 0.2 0.4 0.8

Low Difference: Reliable-Fair 0 0.1 0.2 0.4 -
Fair-Unreliable 0 0.1 0.2 0.4 -

High Difference: Reliable-Unreliable 0 0.1 0.2 - -

Table 7
Summary statistics regarding the instances having non-correlated and correlated degradation processes.

Correlation Coefficient

0 0.10 0.20 0.40 0.80

Mean Min Max Mean Min Max Mean Min Max Mean Min Max Mean Min Max

%RDCP 15.13 0.00 80.56 15.13 0.00 80.69 15.15 0.00 80.84 14.14 0.00 78.96 11.41 0.00 73.04
%RDPP 28.31 0.00 74.07 27.95 0.00 73.34 27.56 0.00 72.59 27.59 0.00 70.97 29.72 0.00 67.55
%RDFI 13.22 0.41 51.37 12.97 0.42 49.85 12.67 0.40 49.11 12.15 0.28 46.93 9.97 0.12 43.25
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interventions are cost-effective, i.e., the service provider can save on
fixed maintenance costs substantially. Moreover, since both compo-
nents are likely to fail/defect in the same period, the service provider
would bring both components to the customer when performing a
maintenance intervention. In this case, component returns are unlikely.
When the difference between the components’ deterioration rates in-
creases slightly, the likelihood of performing a joint intervention de-
creases, leading to an increase in fixed maintenance costs. Besides that,
the risk of bringing the wrong component to the customer increases.
With more information on the components’ deterioration levels, the
service provider is able to avoid these risks and to reduce the relevant
costs. As a result, the value of having full information increases when
the components’ deterioration characteristics shift from Reliable-Reli-
able to Reliable-Fair or from Unreliable-Unreliable to Fair-Unreliable.
When the difference between components’ deteriorating rates increases

considerably, performing joint maintenance interventions is not cost-
effective anymore. The is mainly because the mean times to failure/
defect are very different for the two components. This leads to an in-
crease in fixed costs. However, since, most of the time, the unreliable
component is the reason for performing maintenance interventions, the
service provider does not have difficulty in selecting the correct spare
part. It implies that the risk of bringing the wrong component to the
customer decreases. In such a case, having full information on the
components’ deterioration levels does not significantly help the service
provider to reduce the relevant costs. Therefore, the value of having full
information decreases when the components’ deterioration character-
istics shift from Reliable-Fair to Reliable-Unreliable or from Fair-Unreli-
able to Reliable-Unreliable.

4.5. Illustrative examples for 3-component systems

We extend our numerical experiment to 3-component systems in
order to illustrate the impact of components’ reliability and cost dif-
ferences on the value of the optimal policy and the value of informa-
tion. In particular, we consider three systems:

• System 1: identical, unreliable, cheap components;
• System 2: identical, reliable, expensive components;
• System 3: non-identical components.

Input parameters we consider are in accordance with the setup
given in Section 4.2. System 1 has Unreliable components with Low
replacement costs. System 2 has Reliable components with High re-
placement costs. System 3 consists of non-identical components, i.e.,
one Unreliable component with Low replacement cost, one Fair com-
ponent with Medium replacement cost and finally, one Reliable com-
ponent with High replacement cost. Degradation processes of the
components are uncorrelated. Each system has three deterioration le-
vels, i.e., = = =F F F 21 2 3 and = = = 1,1 2 3 which implies that the
optimal policy is either CP or PP. We consider High corrective main-
tenance cost and Medium emergency order cost as expected in a realistic
setting.

For the 3-component examples given above, =| | 1,0 =| | 7,1 and
=| | 192 . Setting the grid resolution at =M 10, we obtain more than 13

Table 8
The impact of fixed corrective maintenance cost on the optimal policy performance under non-correlated degradation processes.

Fixed Corrective Maintenance Cost %RDCP %RDPP %RDFI

Mean Min Max Mean Min Max Mean Min Max

Very Low 0.00 0.00 0.00 52.44 30.47 74.07 3.41 0.54 10.00
Low 0.15 0.00 5.82 38.02 0.69 62.08 4.49 0.47 13.48
Medium 4.20 0.00 31.68 27.79 0.00 57.03 11.32 0.41 31.24
High 23.17 0.22 62.83 15.03 0.00 43.84 20.63 1.26 45.23
Very High 48.11 10.72 80.56 8.54 0.00 29.86 26.23 0.91 51.37

Table 9
The impact of defect levels on the optimal policy performance under non-cor-
related degradation processes.

Defect
Levels of
Component
1 and 2

%RDCP %RDPP %RDFI

Mean Min Max Mean Min Max Mean Min Max

Low-Low 11.37 0.00 66.74 45.03 11.39 74.07 16.96 0.55 51.37
Low-High 14.91 0.00 79.00 22.73 0.01 63.69 13.26 0.59 44.78
High-Low 12.83 0.00 67.83 34.52 0.87 66.50 16.59 0.44 44.83
High-High 21.40 0.00 80.56 11.17 0.00 43.88 6.06 0.41 15.37

Table 10
The impact of emergency order cost on the optimal policy performance under
non-correlated degradation processes.

Emergency
Order Cost

%RDCP %RDPP %RDFI

Mean Min Max Mean Min Max Mean Min Max

Low 15.34 0.00 80.56 28.09 0.00 74.07 12.69 0.41 47.83
Medium 15.09 0.00 80.37 28.40 0.00 74.05 13.32 0.56 49.23
High 14.55 0.00 80.19 29.60 0.00 74.04 14.64 0.56 51.37

Table 11
The impact of replacement cost on the optimal policy performance under non-correlated degradation processes.

Replacement Costs of Component 1 and 2 %RDCP %RDPP %RDFI

Mean Min Max Mean Min Max Mean Min Max

Low-Low 23.72 0.00 80.56 26.55 0.00 74.07 20.39 2.21 51.37
Low-Medium 20.48 0.00 75.60 27.22 0.00 72.12 17.21 1.23 47.62
Low-High 8.70 0.00 53.11 31.52 0.00 67.31 8.69 0.43 35.56
Medium-Low 22.17 0.00 80.24 26.31 0.00 72.12 18.69 2.15 48.54
Medium-Medium 19.18 0.00 75.31 27.09 0.00 70.59 15.84 1.17 46.24
Medium-High 8.19 0.00 51.20 31.62 0.00 66.67 8.20 0.43 34.09
High-Low 15.03 0.00 77.77 25.88 0.00 65.19 12.59 1.50 39.02
High-Medium 13.10 0.00 73.06 26.94 0.00 64.77 11.09 1.03 38.88
High-High 5.56 0.00 45.07 32.13 0.00 65.04 6.25 0.41 32.49
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million grid points (see Eq. (A.1)). Indeed, these examples suffer from
the curse of dimensionality. To ensure reasonably fast convergence we
set discounting factor = 0.80. The corresponding computation time is
on average 154 hours per system.

Table 13 shows that the optimal policy is PP when components are
cheap and unreliable (System 1) and CP when components are ex-
pensive and reliable (System 2). This can be explained by the trade-off
between preventive and corrective part replacements. When compo-
nents are non-identical, PP is optimal due to the existence of a cheap
and unreliable component in the system (System 3).

We observe that the value of information is low (2.02%) when
components are expensive and reliable. Since the optimal policy is ei-
ther CP or PP, the value of information stems from optimizing spare
parts selection decisions. When components are expensive, replacement
costs dominate the cost of emergency shipments and returns. Hence,
having full information does not bring significant benefits.

5. Conclusion and future research

We study an integrated maintenance and spare part selection deci-
sion for a partially observable multi-component system. The compo-
nents deteriorate according to a discrete-time discrete-state space
Markov chain. There is a single sensor on the system, which does not
indicate the condition of each component, but it indicates if a defect or
failure exists in the system. The service provider needs to infer the exact
state of the system from the current condition signal and the past data,
in order to decide when to visit the customer for maintenance and
which spare parts to take along.

For this problem, we propose a POMDP formulation and employ a
grid-based solution method to find the optimal policy. We conduct an
extensive numerical experiment to assess how system characteristics
affect the values of using the optimal policy and of having full in-
formation. On the basis of this experiment, we provide both researchers
and practitioners a new understanding of how the performance of the
optimal policy changes compared to two slightly naive policies, a cor-
rective (CP) and a preventive policy (PP). Specifically, we find that
using the optimal policy instead of CP and PP results in average cost
decreases of 15% and 28%, respectively. The results further indicate
that having full information on the components’ deterioration levels
leads on average to a 13% decrease in the cost obtained with the partial
information policy. We observe that the service provider needs less
information to manage the system effectively when the deterioration
characteristics (i.e., the reliability) of the components in the system are
very similar to or significantly different from each other. We also find
that as the correlation between the components’ deterioration processes
increases, the value of having full information decreases and the cost
performances of all policies improve. Interestingly, having full in-
formation is more valuable for cheaper, less reliable components than
for more expensive, more reliable components. This is an important
insight for reliability engineers in the design phase of new systems.

Our model considers economic and stochastic dependencies among
components in series, and it can easily be adapted to parallel and series-
parallel systems, as well as to capture structural dependencies among
the components. For instance, for an n-component parallel system with
a single sensor, the sensor might be such that it displays a defect signal
when more than Δ components are failed (0 < Δ < n) and a failure
signal when n components are failed. It would be possible to capture
this problem with our model after re-defining the action set for the
spare parts selection decisions (i.e., by including the number of spare
parts to be taken along). Similarly, it is also possible to use our model
for k-out-of-n systems. Additionally, our model is capable of capturing
structural dependencies among the components if component replace-
ment rules and spare parts selection decisions are adjusted accordingly.
Hence, practitioners can use our model to study a very broad range of
real-life maintenance problems and to derive insights.

Our work can be extended in several ways. First, the uncertainty in
components’ reliability as well as the imperfectness in the relation be-
tween sensor information and components’ actual condition can be
incorporated into our problem. This requires a thorough understanding
of the system and physical failure behaviour of the components [see
Tinga and Loendersloot [40]]. Second, efficient heuristics are required
in order to deal with the curse of dimensionality. Such heuristics could
be based on machine learning and artificial intelligence algorithms, i.e.,
Q-learning, reinforcement learning, and neural networks [see Andriotis
and Papakonstantinou [4], Jansen et al. [18], Özgür-Ünlüakın and
Bilgiç [34]]. Third, we assume that there exists a sufficiently large
number of spare parts on stock at all times. Extending this work to a
setting with inventory decisions would allow us to examine the impacts
of inventory decisions on the system. Fourth, we assume that the service
provider replaces all defective components in the system when per-
forming a maintenance intervention. This may in practice not be an

Table 12
The impact of transition matrices on the optimal policy performance under non-correlated degradation processes.

Deterioration Characteristics of Component 1 and 2 %RDCP %RDPP %RDFI

Mean Min Max Mean Min Max Mean Min Max

Reliable-Reliable 13.03 0.00 74.84 30.70 0.00 74.07 13.59 0.66 48.02
Reliable-Fair 16.65 0.00 78.43 26.57 0.00 69.33 14.65 0.79 51.37
Reliable-Unreliable 19.84 0.00 80.56 24.96 0.00 66.61 11.80 0.41 45.61
Fair-Fair 13.08 0.00 74.91 30.24 0.00 73.53 13.49 0.63 47.70
Fair-Unreliable 15.15 0.00 77.11 27.80 0.00 70.96 14.70 0.83 49.74
Unreliable-Unreliable 13.02 0.00 74.81 29.92 0.00 72.73 13.07 0.55 46.04

Fig. 2. The relative cost decrease under different correlation coefficients com-
pared to no correlation.

Table 13
Illustrative examples.

%RDCP %RDPP %RDFI

System 1 22.22 0.00 25.03
System 2 0.00 18.26 2.02
System 3 33.13 0.00 13.84

O. Karabağ, et al. Reliability Engineering and System Safety 200 (2020) 106955

9



effective way to reduce the cost because the service provider can further
utilize some of the defective components for a while and change them
in the subsequent maintenance interventions. Incorporating such a
decision into the current model would be challenging because of its
computational complexity. However, modeling this and developing a
fast algorithm to solve this model would be an interesting topic for
future research.
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Appendix A. Solution method

The grid-based solution method we employ considers a finite grid, computes the value function for the points in the grid, and uses interpolation to
evaluate the value function on all other belief states. We note that for observation θ ∈ Θ, the number of points in the grid is

= +G M
M

| | ( | | 1)!
! (| | 1)! (A.1)

where M is a positive integer that represents the resolution of the grid. The solution approach in Table A.14 is originally proposed by [27], to which
we therefore refer for a more detailed discussion.

Appendix B. Incorporating correlation

In this section, we introduce the procedure forming the transition matrices that are necessary to obtain the specified correlation between the
components’ deterioration processes. The marginal one-step-ahead transition matrices for each component and the correlation coefficient are given
as inputs. The procedure only works for the components having a transition matrix as described below. Let the one-step-ahead transition matrices for
the first and second components be characterized as follows, respectively:

> = > = …+p p p s S F0, 1 0 , {0, 1, 2, , 1},s s s s s s, , 1 , 1 1 11 1 1 1 1 1 (B.1)

> = > = …+p p p s S F0, 1 0 , {0, 1, 2, , 1}.s s s s s s, , 1 , 2 2 22 2 2 2 2 2 (B.2)

We consider that the transition matrices for the first and second components are F1-by-F1 and F2-by-F2 matrices, respectively. Except for the elements
specified above, all other elements in the corresponding matrices are zero. That is, for each state, it is possible either to stay in the same state or to go
to the next deterioration level. With the given structure, for the first and second components, we can define the expectation and variance of each row

Table A1
The solution algorithm for the POMDP model.

Initialization
1. Choose a grid resolution parameter M where +M . 2. For each set Πθ where

θ ∈ Θ, define the set of grid points:

= = = =+
+

={ }ms s^ : 0 , {0} , 1 where

.

m
Ms s s s

| |
1

| | 3. For each grid point, generate all possible next states being reachable after a single

period, i.e., T( , ), ^ where . 4. Define each T( , ) vector generated in Step 3 as a convex combination of the grid points using the method of [27]. More

specifically, (i) For a given T( , ), create an | | dimensional vector XT( , ) such that = =MX T s( , ) for 1 | |.is
T

s s
( , ) | | (ii) Let YT( , ) be the largest integer | |

dimensional vector such that <Y T s( , ) , .s
T

s
( , ) (iii) Let DT( , ) be an | | dimensional vector such that =D X Y .T T T( , ) ( , ) ( , ) (iv) Let OT( , ) denotes a permutation

of the integers 1, 2, 3, , | | that orders the components of DT( , ) in descending order, so that D D D D .
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T
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T
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T
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T

1
( , )

( , )

2
( , )

( , )

3
( , )

( , )

| |
( , )

( , ) (v) Find the vertices of the sub-

simplex that contains XT( , ) as follows: = = ++ e e k kY Y Y Y, where is the unit vector in for 1

| |.

k k
k

kT
OT1 ( , ) 1 ( , ) th | | (vi) Determine the barycentric (unique)

coordinates of XT( , ) with respect to the vertices found in Step v as follows: = = =+
=kD D D, for 2 | |, 1 .k
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( , )
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| |

The Value Iteration Algorithm

Initialization: Set =n 0 and =V ( ) 0 ^ where0 . Set ϵ to a positive real number. 1. Set n to be +n 1. 2. Calculate +V ( ) ^ wheren 1 . For calculating the
part regarding the future cost in Equation (16), use the convex combinations of T( , ) generated in the initialization procedure. 3. If the

<+V V| ( ) ( )| (1 )/2 ^ where ,n n1 stop the algorithm and return +V ( ) ^ wheren 1 . Otherwise, go to Step 1.
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in the marginal transition matrix as follows:

= + + ( )s p s pPE[ ] ( 1) 1 ,s
s s s s1 1 , 1 ,

1
1 1 1 1 (B.3)

= + + ( )s p s pPE[ ] ( 1) 1 ,s
s s s s2 2 , 2 ,

2
2 2 2 2 (B.4)

= + + ( )s p s pP PVar[ ] ( 1) 1 E[ ] ,s
s s s s

s
1 1

2
, 1

2
, 1

21
1 1 1 1

1 (B.5)

= + + ( )s p s pP PVar[ ] ( 1) 1 E[ ] .s
s s s s

s
2 2

2
, 2

2
, 2

22
2 2 2 2

2 (B.6)

Due to the marginal transition matrix structures given above, for each row of the joint matrix, there might be at most four states whose
probabilities are positive: + + + +s s s s s s s s s S F s S F( , ), ( 1, ), ( , 1), ( 1, 1) , { }, and { }1 2 1 2 1 2 1 2 1 1 1 2 2 2 . To determine these probability values,
we need to construct four unique equations. The first one comes from the fact that the sum of each row should be equal to one. The procedure should
allow the correlation coefficient to be set at a specified level while keeping the marginal transition matrices the same. Therefore, the second and third
equations are set in such a way that each joint probability distribution we find should give back the marginal distributions we use as inputs in the
procedure. The fourth one is set by using the correlation formulation. For all s1 ∈ S1∖{F1}, and s2 ∈ S2∖{F2}, the explicit forms of the equations are
given as follows, respectively.

=
+ + + +

+

+

+ +

p
p

s s s s s s s s

q
q
q
qP P

1

E[ , ]

1 1 1 1
1 0 1 0
1 1 0 0

( 1) ( 1) ( 1)( 1)

s s

s s
s s

s s s s

s s s s

s s s s

s s s s

,

,

1 2 1 2 1 2 1 2 1 2

( , ),( , )

( , ),( 1, )

( , ),( , 1)

( , ),( 1, 1)

1 1

2 2
1 2

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2 (B.7)

The vector on the right in the above equation represents the unknown variables and gives us the corresponding row in the joint transition matrix.
P PE[ , ]s s

1 2
1 2 is the covariance of the corresponding row in the joint transition matrix and its explicit form is:

= +P P P P P PE[ , ] Var[ ]Var[ ] E[ ]E[ ].s s s s s s
1 2 1 2 1 2

1 2 1 2 1 2 (B.8)

By solving Eq. (B.7) for each row with the given marginal transition matrices and correlation coefficient, we can describe the rows of the joint
transition matrix one by one thereby constructing the whole matrix. Thus, we can create a joint transition matrix having the specified correlation
coefficient and satisfying the given marginal transition matrices.

Supplementary material

Supplementary material associated with this article can be found, in the online version, at 10.1016/j.ress.2020.106955
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