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The EuroFlow PID consortium developed a set of flow cytometry tests for evaluation of

patients with suspicion of primary immunodeficiency (PID). In this technical report we

evaluate the performance of the SCID-RTE tube that explores the presence of recent

thymic emigrants (RTE) together with T-cell activation status and maturation stages

and discuss its applicability in the context of the broader EuroFlow PID flow cytometry

testing algorithm for diagnostic orientation of PID of the lymphoid system. We have

analyzed peripheral blood cells of 26 patients diagnosed between birth and 2 years of

age with a genetically defined primary immunodeficiency disorder: 15 severe combined

immunodeficiency (SCID) patients had disease-causing mutations in RAG1 or RAG2 (n

= 4, two of them presented with Omenn syndrome), IL2RG (n = 4, one of them with

confirmed maternal engraftment), NHEJ1 (n = 1), CD3E (n = 1), ADA (n = 1), JAK3

(n = 3, two of them with maternal engraftment) and DCLRE1C (n = 1) and 11 other

PID patients had diverse molecular defects [ZAP70 (n = 1), WAS (n = 2), PNP (n = 1),

FOXP3 (n= 1), del22q11.2 (DiGeorge n= 4),CDC42 (n= 1) and FAS (n= 1)]. In addition,

44 healthy controls in the same age group were analyzed using the SCID-RTE tube in

four EuroFlow laboratories using a standardized 8-color approach. RTE were defined

as CD62L+CD45RO-HLA-DR-CD31+ and the activation status was assessed by the
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expression of HLA-DR+. Naïve CD8+ T-lymphocytes and naïve CD4+ T-lymphocytes

were defined as CD62L+CD45RO-HLA-DR-. With the SCID-RTE tube, we identified

patients with PID by low levels or absence of RTE in comparison to controls as well

as low levels of naïve CD4+ and naïve CD8+ lymphocytes. These parameters yielded

100% sensitivity for SCID. All SCID patients had absence of RTE, including the patients

with confirmed maternal engraftment or oligoclonally expanded T-cells characteristic for

Omenn syndrome. Another dominant finding was the increased numbers of activated

CD4+HLA-DR+ and CD8+HLA-DR+ lymphocytes. Therefore, the EuroFlow SCID-RTE

tube together with the previously published PIDOT tube form a sensitive and complete

cytometric diagnostic test suitable for patients suspected of severe PID (SCID or CID)

as well as for children identified via newborn screening programs for SCID with low or

absent T-cell receptor excision circles (TRECs).

Keywords: flow cytometric immunophenotyping, primary immunodeficiencies (PID), EuroFlow, standardization,

severe combined immune deficiency (SCID), diagnosis

INTRODUCTION

Severe combined immunodeficiency (SCID) and combined
immunodeficiency (CID) are two of the most severe forms
of inherited disorders of the immune system (1, 2) with an
incidence of 1:35,000–50,000 newborns. Patients are usually
born asymptomatic, but they develop severe (opportunistic)
infections, failure to thrive within the first months of life and
generally die before the age of 1 year, unless they receive
adequate and curative treatment. This includes hematopoietic
stem cell transplantation (HSCT). For some genetic forms
of SCID gene therapy is available (3, 4). HSCT is indicated
immediately after birth, since patients transplanted before the
age of 3.5 months or patients without infections have a superior
prognosis as compared to those transplanted later or when
infectious complications have accumulated (5, 6). In contrast,
patients with CID usually do not have complete absence of
T-lymphocytes as typically seen in SCID, but they frequently
show profound impairment of T-cell immunity leading to severe
infections, autoimmunity, andmalignancies. Thus, the indication
of HSCT for CID is less clear as it is less evident whether
the T-cell deficiency is sufficiently severe to justify the risks of
HSCT (7).

T-cells are generated in the thymus and released to peripheral
blood as antigen inexperienced, naïve T-cells. These cells called
“recent thymic emigrants” (RTE) are the recently formed naïve T-
cells that are produced in the thymus and their numbers correlate
with thymic output (8). To date, disease-causing mutations
have been reported in 17 genes leading to SCID, and another
43 genes are reported as being mutated in CID (9, 10). The
majority of SCID and CID patients presenting in the first 2 years
of life have a defect in T-cell development in the thymus. A
complete defect (null mutation) results in absence of T-cells, but
hypomorphic (“leaky”) mutations can give rise to an incomplete
defect leading to presence of variable numbers of T-cells with
poor immune function and inadequate control of autoreactivity.
This leads to immunodeficiency and dysregulation such as seen
in Omenn syndrome (11). Likewise, variable degree of T-cell

immunodeficiency is found in patients diagnosed with 22q11.2
deletion syndrome (DiGeorge syndrome) (12).

An assay for early detection of SCID via newborn screening
(NBS) has become available to identify T-cell lymphopenia
directly after birth. This assay is based on measurement of T-cell
receptor excision circles (TRECs) via quantitative PCR on dried
blood spots (13). TRECs are formed as circular excision products
during T-cell receptor gene rearrangement in developing T-
cells in the thymus and are a molecular marker for recently
formed T-lymphocytes. Absence or strongly reduced levels of
TRECs are indicative for T-cell lymphopenia and can identify
children who may have SCID. TRECs will not be detected
in case of the presence of maternally engrafted T-cells. In
addition, TRECs will also be low/absent in patients with Omenn
Syndrome because of oligoclonal expansion of the autologous
T-cells, which makes the TREC assay also useful in these
subtypes of SCID. Follow-up diagnostic testing in case of low
or absent TREC contents is needed to confirm the diagnosis
by flow cytometric immunophenotyping and subsequently by
targeted genetic testing for SCID-CID gene aberrations or
broader genetic testing (e.g., WES or WGS) in combination
with a SCID or PID filter. It should be noted that low or
absent TRECs can also be identified in children with T-cell
impairment syndromes [such as 22q11.2 deletion syndrome (14),
Down’s syndrome or Ataxia Telangiectasia], and children with
T-cell impairment secondary to other neonatal conditions or
patients with idiopathic lymphocytopenia (15, 16). Furthermore,
low/absent TREC levels can also be found in preterm children or
in children from mothers on immunosuppressive therapy (17).

Flow cytometric immunophenotyping of lymphocytes proved
useful for the early diagnosis of SCID in patients with clinical
symptoms or newborns with low/absent TRECs, showing
complete lack of one or more lymphocyte lineages (T-cell, B-cell
and NK cell) (15, 18). However, interpretation of this basic flow
cytometric screening is not sufficient when T-cells are present,
either due to a hypomorphic defect or due to the presence of
maternal T-cell engraftment. Maternal T-cell engraftment is a
relatively frequent finding in SCID (40% in a cohort of 121
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patients from Ulm or 47% in the California cohort) (19, 20). In
those cases, a flow cytometric test which allows more detailed
phenotyping of the T-cells, including analysis of newly generated
T-cells, is warranted. At present there is no consensus on the
exact composition of a flow cytometric test, although critical
parameters (Naïve T-cells, RTE, activated T-cells) are listed by the
European Society for Immunodeficiencies (ESID), the American
PID treatment consortium (PID-TC) and by other groups (7, 21).

Flow cytometry allows to discriminate naïve T-cell subsets
from antigen experienced memory subsets by presence of
typical markers (CD45RA isoform, costimulatory molecules
CD27, homing receptor CCR7 and CD62L) and absence of
memory markers (CD95 and CD45RO isoform) (22, 23). This
is useful for diagnostic evaluation of patients with profound T-
cell (function) deficiency, where T-cells are detectable (at normal
or even increased levels) as a result of peripheral expansion
of memory T-cell clones from either autologous or maternal
origin. Immunophenotyping could show a skewed redistribution
from naïve to memory and activated phenotypes within T-
lymphocytes, which alerts for a possible lymphocyte development
defect. Furthermore, newly generated T-cells released from the
thymus to the periphery (RTE) can also be identified using flow
cytometry. RTE are CD4+ T-cells with the highest TREC levels
(24) and a phenotype characterized by expression of CD45RA
and CD31 (25, 26). Finally, activated T-cells acquire a memory
phenotype and temporary signs of activation, which can be
detected via analysis of CD69, CD25, and HLA-DR, among other
markers (27).

In this study, the EuroFlow PID group consortium has
designed, developed and validated a standardized approach for
flow cytometric evaluation of naïve, RTE and activated CD4+
and CD8+ T-cells that would offer a high sensitivity test toward
disclosing (S)CID in line with the ESID diagnostic criteria in
the settings of a multi-center collaboration study. The here
developed 8 color “SCID-RTE tube” complements the recently
published PIDOT tube (18, 28) for orientation and screening of
primary immunodeficiencies (PID) of the lymphoid system. The
combination of the two 8-color tubes (or a single 12-color variant
of both tubes) could readily be applied in routine diagnostic
screening for patients clinically suspected for having (S)CID, as
well as in follow-up diagnostics in NBS programs.

MATERIALS AND METHODS

Patient and Control Samples
Our patient cohort consisted of 26 patients with a genetically
defined PID diagnosed between birth and the age of 2
years at participating centers (Table 1). Genetic analysis was
performed locally according to the routine procedures of the
collaborating laboratories using Sanger sequencing or next
generation sequencing (NGS). In addition, 44 healthy controls
without any known hematological or immunological disorder
in the same age range were also enrolled. The samples have
been collected from 2013 to 2018. All 26 patient samples were
collected according to the local medical ethics regulations of
the participating centers, after informed consent was provided
by the subjects, their legal representatives, or both, according

to the Declaration of Helsinki. The study was approved by the
local ethics committees of the participating centers: University of
Salamanca, Salamanca, Spain (USAL-CSIC 20-02-2013); Charles
University, Prague, Czech Republic (15-28541A); Erasmus
MC, Rotterdam, The Netherlands (MEC-2013-026); University
Hospital Ghent, Belgium (B670201629681/B670201214983) and
St. Anne’s University, Brno, Czech Republic (METC 1G2015)-.

SCID-RTE Tube Composition and Staining
Protocol
The SCID-RTE tube aims to assess relevant lymphoid
subpopulations important in PID diagnostics in a single 8
color test. It includes markers for T-cells (CD3, CD4, CD8,
TCRγδ), including their naïve (CD62Lpos, CD45ROneg) and
RTE (CD31pos) stages, as well as their activated forms (HLA-
DR). Detailed composition and volumes of antibodies used are
listed in Table 2.

The samples were processed in four EuroFlow laboratories
(Charles University, Prague, Czech Republic; Erasmus MC,
Rotterdam, The Netherlands; Ghent University, Ghent,
Belgium; University of Salamanca, Salamanca, Spain) following
standardized EuroFlow approaches (29, 30) (detailed protocols
are publicly available at www.EuroFlow.org). In short, peripheral
blood (n = 66) or cord blood (n = 4) (up to 2ml) was mixed
with ammonium chloride lysing solution (48ml) and incubated
for 15min at room temperature in order to lyse erythrocytes.
Obtained WBC were washed twice with phosphate buffered
saline (PBS) containing 0.5% bovine serum albumin (BSA) and
0.09% sodium azide (NaN3) and subsequently stained with
the antibodies listed in Table 2 in a final volume of 100 µl for
30min at room temperature in the dark. Whenever possible,
up to one million cells were processed, or all cells available
in lymphopenic PID patients. In each case, at least 2 × 105

cells were stained. Next, the cells were incubated with 2ml BD
FACSTM Lysing Solution (BD Biosciences) for 10min at room
temperature in the dark, washed and resuspended in 250 µl
washing solution.

Data Acquisition and Analysis
Data acquisition was performed on BD FACSCanto II, BD LSR
II or BD FACSLyric instruments (BD Biosciences) equipped
with 405, 488, and 633/640 nm lasers and PMT detectors,
following the EuroFlow instrument set-up Standard Operating
Protocol (29, 31). Data were analyzed using Infinicyt (Cytognos,
Salamanca, Spain) and FlowJo (FlowJo LLC, Ashland, Oregon)
software. Normal values for all T-cell subsets were determined
as numbers above the 5th percentile of the healthy controls.
In case of HLA-DR positive activated T-cells, we determined
normal values as below the 95th percentile of the healthy controls
(see Table 3). Therefore, specificity was by definition 95%. For
sensitivity calculations we divided the number of patients with an
abnormal value by the total number of patients measured in each
parameter/subset separately (see Table 3). For statistical analysis,
GraphPad Prism software Mann-Whitney test was used.
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TABLE 1 | Characteristics of patients, WBC and lymphocytes subsets (TBNK) reported by the referring clinician (x 10e3/µl).

Category Case no. Gender Disease Mutation Protein WBC T-cells (abs) B-cells (abs) NK-cells (abs) Age

SCID Case_1 F SCID, CD3E deficiency CD3E exon 6 c.173delT p.Leu58HisfsX9 13.9 0.32 2.6 1.4 0.3

SCID Case_2 M SCID, ADA deficiency ADA exon 4 homozygous

c.302G > A

p.Arg101Gln 2.5 0.03 0 0.01 1.3

SCID Case_3 M SCID, JAK3 deficiency with

mat.engr.

JAK3 heterozygous c.561delT,

c.2066C > T

p.Val188SerfsX14, p.Pro689Leu 11.8 6.31 3.02 0.02 1.8

SCID Case_4 F SCID, JAK3 deficiency JAK3 exon 12 homozygoot

c.1765G > A (NM_000215)

p.Gly589Ser 6.5 0.03 0.8 0.08 0

SCID Case_5 F SCID, JAK3 deficiency with

mat.engr.

JAK3 exon 5 c.578G > A, exon

19 c.2712C > A

p.Cys193Tyr 15.5 1.68 0.37 0.1 0.2

SCID Case_6 M SCID, Cernunnos/XLF

deficiency

NHEJ1 exon 5 homozygoot

c.532C > T

p.Arg178X 3.4 0.22 0.04 0 0.9

SCID Case_7 F SCID, Artemis deficiency DCLRE1C c.1A > C c.401C >

G (compound heterozygote)

M1V, T134R (Met1Val,

Thr134Arg)

3.6 0.00132 0 0.0018 0.4

SCID Case_8 M SCID, RAG2 deficiency RAG2 homozygous

c.1280_1281insTGGATAT

p.Asn428GlyfsX12 33.1 0.04 0.01 1.61 0.2

SCID Case_9 M SCID, RAG2 deficiency RAG2c.107G > A p.Trp36* 2.8 0.04236 0.0444 0.0678 0.2

SCID Case_10 M Omenn syndrome, RAG1

deficiency

RAG1c.983G > A/c.1186C > T

(compound heterozygote)

pCys328Tyr/pArg396Cys 27.9 6.767 0.0303 1.818 0

SCID Case_11 M Omenn syndrome, RAG1

deficiency

RAG1 exon 2 c.519del p.Glu174Serfs*27 8.05 2.15 0 0.429 0.3

SCID Case_12 M SCID, IL2RG deficiency with

mat.engr.

IL2RG c.270-1G > A n.d. 3.6 0.04 0.57 0 0.7

SCID Case_13 M SCID, IL2RG deficiency IL2RG c.613G > A p. Trp174* 9.5 0.001045 0.22325 0.022895 0.7

SCID Case_14 M SCID, IL2RG deficiency with

mat.engr.

IL2RG c.269+3A > T n.d. 5.4 0.6804 0.783 0.00891 0.5

SCID Case_15 M SCID, IL2RG deficiency IL2RG exon 5 hemizygoot

c.595-1G > T

n.d. 8.6 0 0.6 0.02 0.3

other PID Case_16 M CID, PNP deficiency PNP c.700C > T p.Arg234X 6.1 0.5 0.07 0.01 1.6

other PID Case_17 M ZAP70 deficiency ZAP70 exon 10 homozygoot

c.1193C > T

p.Ile398Ser 11.3 2.18 1.03 0.17 0.6

other PID Case_18 M Wiskott-Aldrich syndrome WAS c. 1271_1295del p.Gly424Glufs*13 8.4 1.47 0.95 0.25 0.3

other PID Case_19 M Wiskott-Aldrich syndrome WAS c.344A > G p.His115Arg 4 1.271 0.4305 0.3075 1.1

other PID Case_20 M Complete DiGeorge syndorme del22q11.2 6.7 0.48776 0.003819 0.1206 1.6

other PID Case_21 F Complete DiGeorge syndorme del22q11.2 5.1 0.00126684 0.655 0.504 0.2

other PID Case_22 F DiGeorge syndrome del22q11.2 9.9 0.914354 1.342852 1.008826 0.6

other PID Case_23 M DiGeorge syndrome del22q11.2 6.7 0.97 1.29 0.7 0.3

other PID Case_24 M Takenouchi-Kosaki syndrome CDC42c.191A > G p.Tyr64Cys 2.4 0.436 0.094 0.094 1.5

other PID Case_25 M IPEX syndrome FOXP3 c.721T > C S241P (p.Ser241Pro) 15.135 2.42353 1.013115 0.349624 0.2

other PID Case_26 M Autoimmune lymphoproliferative

sy

FAS exon 7 heterozygous

(frameshift)

n.d. 29.8 20.818 2.146 0.226 0.3
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TABLE 2 | Composition of the EuroFlow SCID-RTE tube*.

Marker Fluorochrome Clone Source Catalog number µl/test

CD3 APC SK7 BD Biosciences 345767 2.5

CD4 BV510 OKT4 Biolegend 317443 1.5

CD8 APC-Alexa750 B9.11 Beckman Coulter A94683 1.5

CD31 PE MEM-05 Exbio 1P-273-T100 5

CD45RO FITC UCHL1 Exbio 1F-498-T100 10

CD62L BV421 DREG-56 Biolegend 304827 2

HLA-DR PerCP-Cy5.5 L243 Biolegend 307629 1.5

TCRγδ PE-Cy7 11F2 BD Biosciences 649806 2.5

*Both the SCID-RTE tube and the PIDOT tube have originally be designed for application in 8-color format. However, because of their strong complementarity, it can be efficient and
cost-effective to use a 12-color “combined PIDOT & SCID-RTE variant” by supplementing the PIDOT tube with the CD45RO, CD31, HLA-DR, and CD62L markers.

RESULTS

Composition of the SCID-RTE Tube
The SCID-RTE tube was designed with the purpose of
identifying the relevant lymphoid subpopulations important in
PID diagnostics of severe PID in newborns, using a single
8-color test. It identifies naïve CD4+ T cells and among
them, the RTEs. The definition of naïve T-cells includes a
selection of non-activated (HLA-DR negative) cells, together
with absence of CD45RO (a memory T-cell marker) and the
presence of the naïve T-cell marker L-selectin (CD62L). The
definition of RTE uses the naïve T-cell gate and is further
complemented by CD31, Platelet endothelial cell adhesion
molecule (PECAM-1) (Table 2, Figure 1). After gating T-cells
as CD3+ and lymphocytes on FSC and SSC, four markers
(CD3, TCRγδ, CD4, and CD8) were used to define TCRγδ+

and TCRγδ- CD4+, CD8+ and double negative (DN) T-cells
(Figure 1A, Supplemental Figure 1). The CD4+ T-cells were
further subdivided into RTE, naïve, central memory (CM),
effector memory CD45RO+ (EMRO+) and CD45RO- (EMRO-)
and activated memory T-cells (Figures 1B,D); for CD8+ T-
cells the same subsets were defined except for the RTEs
(Figures 1C,D). The total set and hierarchy of T-cell subsets
that was identified is listed in Figure 1D. To offer intuitive and
fast interpretation of the complete lymphoid compartment we
developed a new analysis and visualization strategy for the SCID-
RTE tube using principle component analysis (PCA)-based
multidimensional views (APS graphs). First, reference plots were
generated using a set of 10 samples of healthy donors in Infinicyt
software. The lymphocyte populations were manually analyzed
and subsequently, the most discriminating projection into a
single APS graph was determined (Figure 1E). A software tool
for automated identification of the cell populations present in
the SCID/RTE tube was built, containing normal blood samples
stained with the same antibody combination.

Identification of RTEs by the SCID-RTE
Tube in PID Patients
The SCID-RTE tube allows analysis of the naïve and memory
subsets of T-cells (Figure 2A) that are abnormally distributed
in patients with PID (Figure 2B). Typically, their numbers are

different in childhood compared to the adult age (Figure 3),
however within 2 years of age a general threshold for CD4+
RTE (<800 cell/µl), naïve CD4+ (<1,000 cell/µl) and naïve
CD8+ lymphocytes (<290 cell/µl) is justified. Notably, the
number of RTEs are abundant in childhood, whereas the
numbers of activated memory CD4+ and CD8+ T-cells are low
(Figures 2A, 3).

SCID patients that present without T-cells (Figure 2B, IL2RG)
are straightforwardly identified by the SCID-RTE tube, but they
never pose a diagnostic dilemma even in a simple T-B-NK
flow cytometric assay. However, in SCID and Omenn syndrome
patients with paradoxically normal or even increased total
absolute numbers of T-cells, the SCID-RTE tube allows detection
of the activation status of T-cells (HLA-DR positive). These
activated T-cells can be of maternal origin in SCID with maternal
engraftment (Figure 2B, JAK3 with maternal engraftment) or
can be oligoclonal, expanded T-cells in Omenn syndrome
patients (Figure 2B, RAG1 Omenn syndrome). RTE cells are
virtually absent in these patients with T-cell production defects
(SCID and Omenn patients). Patients with PNP deficiency
and complete DiGeorge syndrome also lack RTEs, but patients
with ZAP70 deficiency, Wiskott-Aldrich Syndrome and ALPS
have detectable RTEs (Figure 2B, detailed dot plots shown in
Supplemental Figures 2, 3).

Absence of RTEs in SCID Patients
In our current study, we analyzed 15 SCID patients and 11 other
PID patients diagnosed before 2 years of age. SCID patients had
disease-causing mutations in RAG1 or RAG2 (n = 4, two of
them presented with Omenn syndrome), IL2RG (n = 4, one of
them with confirmed maternal engraftment), NHEJ1 (n = 1),
CD3E (n = 1), ADA (n = 1), JAK3 (n = 3, two of them with
maternal engraftment) and DCLRE1C (n = 1) (see Table 2 and
Supplemental Figure 2).

In the SCID patients, the absolute levels of CD3+ T-cells were
strongly reduced (n = 7) or undetectable (n = 5), but for three
patients (20% of our cohort) the absolute CD3+ T-cell counts
were in the normal range (see Table 3). These patients were
proven to havematernal engrafted T-cells (n= 2) or oligoclonally
expanded cells characteristic for Omenn syndrome (n= 1).
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TABLE 3 | Lymphocytes subsets evaluated by SCID-RTE tube.
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Case_1 CD3E SCID 7 246 0 0 5 13 93 228 0 0 0 0 2 5 93 12 83 188

Case_2 ADA SCID 55 18 13 2 1 0 83 15 0 0 0 0 0 0 n/a n/a 93 14

Case_3 JAK3 SCID 69 5,610 1 67 4 210 94 5,256 0 0 0 1 2 117 64 134 95 4,967

Case_4 JAK3 SCID 2 15 3 0 1 0 85 12 0 0 0 0 0 0 n/a n/a 99 12

Case_5 JAK3 SCID 80 2,247 0 4 98 2,202 1 23 0 0 0 1 0 0 86 1,896 86 19

Case_6 XLF SCID 38 294 89 263 0 1 2 7 0 0 0 0 0 0 n/a n/a 64 5

Case_7 Artemis SCID 18 84 55 46 38 31 1 1 6 2 6 2 31 0 88 28 44 0

Case_8 RAG2 SCID 2 40 1 1 71 29 1 0 0 0 0 0 17 0 91 26 n/a n/a

Case_9 RAG2 SCID 32 78 5 4 86 67 5 4 0 0 0 0 3 0 66 44 77 3

Case_10 RAG1 SCID 68 4,621 3 158 43 1,964 44 2,024 0 0 0 0 0 1 85 1,661 86 1,739

Case_11 RAG1 SCID 69 1,916 6 109 88 1,690 3 64 0 0 0 2 1 1 68 1,154 83 53

Case_12 IL2RG SCID 12 92 0 0 71 65 28 25 0 0 0 0 4 1 94 61 81 20

Case_13 IL2RG SCID 0 1 5 0 31 0 1 0 0 0 0 0 0 0 n/a n/a n/a n/a

Case_14 IL2RG SCID 45 677 25 171 48 325 23 156 0 0 1 3 7 11 87 282 94 147

Case_15 IL2RG SCID 0 1 17 0 58 0 0 0 0 0 0 0 0 0 n/a n/a n/a n/a

Case_16 PNP other PID 63 281 3 7 48 134 37 105 0 0 0 0 0 0 63 84 99 103

Case_17 ZAP70 other PID 51 1,661 3 47 89 1,482 2 29 24 357 34 505 19 5 17 246 30 9

Case_18 WAS other PID 50 1,092 4 41 82 891 13 138 53 470 82 730 56 78 3 23 3 4

Case_19 WAS other PID 57 978 28 271 31 303 38 376 18 55 40 122 6 23 39 119 85 319

Case_20 del22q11.2 other PID 50 328 37 122 15 47 3 9 0 0 0 0 1 0 43 21 65 6

Case_21 del22q11.2 other PID 0 1 10 0 0 0 70 1 0 0 0 0 14 0 n/a n/a 58 1

Case_22 del22q11.2 other PID 27 1,592 9 138 65 1,030 22 344 56 579 71 729 87 300 5 56 4 14

Case_23 del22q11.2 other PID 33 756 8 63 65 493 22 169 50 246 72 356 87 147 4 20 4 7

Case_24 CDC42 other PID 63 465 39 180 34 159 23 107 40 63 66 105 58 63 6 10 21 22

Case_25 FOXP3 other PID 61 1,664 1 22 70 1,157 22 363 40 465 66 765 81 295 4 48 5 19

Case_26 FAS other PID 86 12,833 3 444 26 3,324 15 1,912 58 1,938 81 2,692 92 1,761 11 356 5 88

Controls

5th percentile 52 2,010 0.7 20 54 1,201 13 335 58 840 72 1,030 60 287 0 9 0 2

95th percentile 86 6,626 7 340 82 4,094 35 2,204 86 2,393 96 3,149 96 1,614 3 66 11 80

Sensitivity other PID 55% 91% 55% 20% 55% 82% 27% 64% 91% 91% 73% 91% 64% 73% 90% 40% 55% 27%

Sensitivity SCID 67% 80% 33% 60% 60% 80% 53% 87% 100% 100% 100% 100% 100% 100% 100% 50% 100% 33%

Absolute counts (abs) as 10e3/µl. Values outside the normal range are in bold. Range obtained in controls (5th and 95th percentile) is given below the table. Sensitivity to disclose abnormal values in other PID and SCID group is given
for each measurement in the bottom two rows. Most informative parameters are highlighted in gray.
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FIGURE 1 | Gating T-cell subsets and generation of a reference principal component analysis representation in an n-dimensional space for SCID-RTE tube. (A) After

gating T-cells as CD3+ and FSClo and SSClo, the markers TCRγδ+, in combination with CD4 and CD8 were used to define TCRγδ+ T-cells (light blue),

CD4+CD8-TCRγδ- T-cells (pink); CD4-CD8+TCRγδ- T-cells (dark blue) and CD4-CD8- TCRγδ- double negative T-cells (green). (B) The CD4+ T-cell subsets were

further subdivided into recent thymic emigrants (RTE; CD62L+CD45RO-HLDR-CD31+; red), naïve (CD62L+CD45RO-HLDR-CD31-; purple), central memory (CM;

CD62L+CD45RO+HLDR-; orchid), effector memory CD45RO+ (EMRO+; CD62L-CD45RO+HLDR-; mauve), effector memory CD45RO- (EMRO-;

CD62L-CD45RO-HLDR-; pink) and activated memory (CD45RO+HLDR+; burgundy) CD4+ T cells. (C) The CD8+ T-cell maturation subsets were further subdivided

into naïve (CD62L+CD45RO-HLDR-; blue), central memory (CM; CD62L+CD45RO+HLDR-; blue-green), effector memory CD45RO+ (EMRO+;

CD62L-CD45RO+HLDR-; periwinkle blue), effector memory CD45RO- (EMRO-; CD62L-CD45RO-HLDR-; cyan) and activated memory (CD45RO+HLDR+; navy

blue) CD8+ T cells. (D) Definition and hierarchy of the defined subsets. (E) Principal component analysis representation (APS view) based on the most discriminating

parameters for T-cell populations, and CD4+ T-cells and CD8+ T-cell subsets.

Application of the SCID-RTE tube showed that all SCID
patients completely lacked RTE cells and other forms of naïve
CD4+ and CD8+ T cells (Figure 4A), even the patients with
normal T-cell counts (due to maternal T-cells or oligoclonal
expansion). The T-cells that could be detected had signs of
massive activation (64–94% HLA-DR+ in CD4+ and 44–99
% in CD8+ T cells) (Figure 4B). Overall, the SCID-RTE tube
detected severely decreased or absent numbers of RTE and naïve
CD4+ and CD8+ T-cell subsets in all SCID patients. In the
SCID patients with detectable levels of T-cells, the phenotype

was characterized by activation (HLA-DR+) and had a memory
phenotype (CD45RO+).

RTEs in Other Severe PID Diagnosed
Before 2 Years of Age
Patients diagnosed with other severe forms of PID (Other PID,
n = 11) had diverse molecular defects [ZAP70 (n = 1), WAS (n
= 2), PNP (n = 1), FOXP3 (n = 1) del22q11.2 (DiGeorge n =

2; complete DiGeorge n = 2), CDC42 (n = 1) and FAS (n = 1)]
(see Table 2 and Supplemental Figure 3). Except for the patient
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FIGURE 2 | PCA representation of SCID-RTE tube results, showing the distinct blood T-cell subsets in the supervised PCA analysis of blood samples from healthy

donors of different age (A) and SCID and CID patients (B). From the top down, APS plots of gated total, CD4+ and CD8+ T-cells are shown. Lines depict a 2

standard deviation boundary of all controls combined. (A) PCA (APS views) of all T-cell subsets of cord blood and peripheral blood from donors of different age.

(B) PCA (APS views) of all T-cell subsets of the following patients: a IL2RG-deficient patient, a JAK3-deficient patient with maternal engraftment, a RAG1-deficient

Omenn syndrome, a ZAP70-deficient patient, a PNP-deficient patient, a complete DiGeorge syndrome, a Wiskott-Aldrich syndrome (WAS) and an autoimmune

lymphoproliferative syndrome (ALPS) patient.
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FIGURE 3 | Flow cytometric analysis of T-cell populations using the EuroFlow SCID/RTE tube in 56 healthy controls of five different age ranges. All values of this

reference data set are displayed as bar graphs representing the median, and p10, p25, p75, and p90 percentiles. For data visualization package gplot2 for the

statistical language R was used.

with autoimmune lymphoproliferative syndrome (ALPS) due to
FAS mutation, all had decreased absolute counts of CD3+ T-cells
compared to controls. However, only one complete DiGeorge
patient had <300 T-cells/µl in the conventional TBNK test,
which is considered a diagnostic threshold in SCID patients.

When assessed by the SCID-RTE tube the patients showed
a heterogeneous pattern of T-cell subset abnormalities ranging
from strongly reduced/absent to normal numbers. However,
all of the patients showed at least one abnormality. With the
exception of the ALPS patient who presented with normal
proportion of naïve CD4+ T-cells (and elevated naïve CD8+
T-cell counts) (32), all had reduced naïve CD4+ T-cells and
RTEs below 5th percentile of healthy (Figures 2B, 4A, Table 3).
The ALPS patient was characterized by massively increased T-
cells especially of double negative T-cells (56% of CD3+TCRγδ-
cells) and activated CD4+ T-cells (11%). As previously described
(33), we found a high frequency of TCRγδ+ T cells (9–39
% of CD3+ cells), in patients with Wiskott-Aldrich syndrome
(WAS) as well as in DiGeorge (n = 2) and complete DiGeorge
patients. We also identified a high frequency of TCRγδ+ T-cells
in CDC42 deficiency. Four had normal total CD8+ T-cell counts,
but reduced naïve CD8+ T-cells and showed signs of activation:

WAS, immune dysregulation, polyendocrinopathy, enteropathy,
X-linked syndrome (IPEX), DiGeorge (Table 3).

On top of reduction or absence of naïve and RTE subsets
of CD4+ T-cells (Table 3), three of the four DiGeorge
patients showed decreased CD8+ T cells and their naïve
subsets. Activation of T cells (as measured by HLA-DR+)
ranged from mild to high. Both patients with WAS had
profoundly reduced naïve CD8+ T-cells, reduced naïve
CD4+ T-cells and RTE, activation was found in both
CD4+ and CD8+ T cells in one of the WAS patients. The
complete dataset of findings for all patients is provided
in Table 3.

Added Value of SCID-RTE on Top of the
PIDOT Tube
The proposed SCID-RTE tube is both a confirmation and
extension of the PIDOT tube. As the reduction of naïve
T-cells was one of the most important hallmarks of (S)CID
and PID in our cohort, as well as in the large group of
PID patients published previously (18), we investigated
whether the definition of naïve T-cells in the PIDOT tube
(CD45RA+CD27+) corresponds to the SCID-RTE tube
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FIGURE 4 | T-cell subset counts determined using the EuroFlow SCID-RTE tube. (A) Absolute values of CD3+ T-cells, RTE CD4+ cells, naïve CD4+ or CD8+ T-cells.

(B) Relative values of activated T-cells based on the expression of HLA-DR molecule on CD4+ T-cells (HLA-DR+CD4+) or CD8+ T-cells (HLA-DR+CD4+). SCID

patients (n = 15) are represented as red circles where open circles show patients with maternal engraftment, other PID patients (n = 11) as orange squares and

healthy controls (n = 44) as gray triangles. Detailed gating strategy is shown in Supplemental Figure 1. ***P ≤ 0.0005.

definition (CD45ROnegCD62L+HLA-DRneg). Indeed, we
found that both approaches yield correlating values in the
PID patients (Figure 5). Thus, the PIDOT tube is capable of
detecting reduction of naïve T-cells and directing the testing
toward confirmation with the SCID-RTE tube, which also allows
the specific detection of RTEs and activation status, which is
particularly important in patients with normal or close to normal
T-cell counts.

Both the PIDOT tube and the SCID-RTE tube have originally
been designed for application in an 8-color format. However,
because of their strong complementarity, it can be efficient and
cost-effective to use the 12-color combined PIDOT & SCID-
RTE variant in cases suspicious of (S)CID, by supplementing
the PIDOT tube with the CD45RO, CD31, HLA-DR, and
CD62L markers.

Specificity and Sensitivity
Next, we determined the sensitivity of the SCID-RTE tube to
find abnormal values (defined as below the 5th percentile, thus
allowing for specificity 95%) in our cohort of 15 (S)CID and 11
other PID patients.

The sensitivity of values of naïve CD4+, CD8+, and CD4+
RTE yielded 100% sensitivity to detect (S)CID (see Table 3).
This was despite the fact that several (S)CID patients presented
with close to normal total T-cells and their basic subsets
(CD4+ and CD8+ T-cells). Whenever T-cells were detectable,
their activation status (percentage of HLA-DR) was an equally
sensitive marker for (S)CID, as the naïve T-cells and RTEs.

However, naïve T-cells and RTEs were also abnormal in the
group of other PID, implying that these patients could also
be recognized and referred for genetic testing. Thus, it can be
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FIGURE 5 | Correlation between the SCID-RTE and the PIDOT tube in determining the levels of naïve CD4+ and CD8+ T-cell subsets in PID patients. (A) Absolute

counts or (B) Relative counts for each PID patient (n = 24) of naïve CD4+ T-cells (blue) and naïve CD8+ T-cells (green) measured by the SCID-RTE tube (x axis) and

the PIDOT tube (y axis). SCID (closed circles), other PID (open circles) patients. Detailed gating strategy is shown in Supplemental Figure 1.

concluded that in case of reduced naïve T-cells and RTEs fast
genetic testing is urgently needed.

DISCUSSION

There have been multiple initiatives for establishing
comprehensive and detailed reference values of human
lymphocyte subsets in children by several groups (34–36).
These studies were done by using two to four color flow
cytometry. There was no attempt to standardization and no clear
indication about the utility of individual subsets’ abnormalities
for PID diagnostics. Recently, Takashima et al. reported on a
detailed set of seven 8–10 color flow cytometry panels used
to investigate 75 PID patients, where they also found lack
of naïve T-cells in SCID (also with maternal engraftment),
Ataxia Telangiectasia and CMCD (37). However, this 7-tube
approach would be demanding to use at large scale, and it
requires relatively high sample volume for the seven tube-
aliquots. With the EuroFlow PID consortium, we developed a
standardized approach for flow cytometry testing in PID (38),
which includes a tube for screening and orientation (PIDOT)
(18), two 8-color tubes for analysis of pre- and post-germinal
center B-cells, and an additional isotype tube allowing full
characterization of B-cells, including analysis of IgH isotype
and subclass distribution within the memory B-cell (MBC) and
plasma cell (PCs) compartments (39). The EuroFlow approach
offers a systematic approach to diagnostics with a modular
design (37).

Here we focused on the feasibility and performance
characteristics of the EuroFlow SCID-RTE tube for diagnostic
use in (S)CID and severe PID in a cohort of 26 patients,
genetically diagnosed before the age of 2 years. The challenge

in revealing SCID patients comes from the fact that a large
portion of them presents with detectable T-cells that are either
autologous oligoclonal T-cells as seen in Omenn syndrome
(40, 41), or arise from maternal engraftment [40% of SCID
according to Mueller et al. (19)]. The EuroFlow SCID-RTE tube
overcomes the limitations of the basic T, B, NK test that cannot
evaluate the nature of the T-cell subsets. In particular, the CD4+
naïve, CD8+ naïve, and CD4+ RTE subsets are shown to be
decreased in all SCID and a great majority of other PID in
our cohort. The RTE subset was reported as a useful proxy
for thymic output measurements (25, 42–45), correlating to
TREC levels (43, 45–47), that are used in newborn screening
programs for SCID.

Since (S)CID patients harbor deleterious mutations that
prevent normal T-cell development, any T-cells in their
bloodstream must be expanded T-cells of either autologous
oligoclonal origin or maternal origin. In order to improve the
RTE definition for patients with putative peripheral expansion
of T-cells, we gated not only on CD31+CD45RO-CD4+ T-
cells, but we additionally excluded TCRγδ+ and HLA-DR
positive cells and restricted the gate to include CD62L positive
cells only. Thus, only naïve, non-activated CD4+ T-cells (non-
TCR γδ+) are counted as RTE. This improved the accuracy
of the RTE measurements, particularly in other PID patients
with massive presence of HLA-DR, where some activated
(HLA-DR+) cells would be otherwise considered RTE. HLA-
DR was reported as a marker of residual T-cells in Omenn
syndrome patients by Saint Basil et al. (27) already in 1991.
The biological significance and mode of HLA-DR acquisition
by T-cells is thought to be explained by acquisition of the
molecule from antigen presenting cell (APC) after T-cell-APC
contact (48).
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A difficult PID category to be diagnosed with the SCID-
RTE tube would be DiGeorge syndrome patients who present
with near-normal counts of T-lymphocytes and their subsets.
DiGeorge patients have variable clinical presentations, TREC
levels and T-cell counts that are generally lower than normal,
but vary considerably from patient to patient (14). However,
their clinical course rarely requires HSCT. Rare cases of
complete DiGeorge patients resembled SCID patients in their
immunophenotype and thus pose no diagnostic challenge.
While in other PID patients in our cohort, T-cell production
(thymopoiesis) is not the mechanism responsible for the
immunodeficiency, but their mutation leads to more complex
changes broadly termed as dysregulation (WAS, ALPS, IPEX,
ZAP70, CID), the SCID-RTE tube was also able to find
abnormalities, mainly in the naïve/RTE compartments and in
the T cell subset activation status. A CDC42 mutation in a
Takenouchi-Kosaki syndrome (49, 50) patient was accidentally
found in an infant with failure to thrive, lymphopenia and
lymphedema by whole exome sequencing for PID suspicion.
Abnormalities in lymphoid cells were clearly revealed by the
PIDOT and SCID-RTE tube.

The SCID-RTE tube can also be used in patients with
Combined Immunodeficiency (CID), where severe clinical
presentation together with laboratory findings indicative of CID
can be used for HSCT indication. ESID criteria for CID diagnosis
require that apart from severe infection or immune dysregulation
or affected family members, two of the four following T-cell
criteria must be met: (a) reduced CD3 or CD4 or CD8 T-
cells, (b) reduced naïve CD4 and/or CD8 T-cells, (c) elevated
TCRγδ+T-cells, (d) reduced proliferation to mitogen or TCR
stimulation (51). All three immunophenotypic criteria can be
readily obtained from the SCID-RTE tube, furthermore the
threshold counts of CD4+ RTE (<800 cell/µl), naïve CD4+
(<1,000 cell/µl) and naïve CD8+ lymphocytes (<290 cell/µl)
are established in mutli-center and standardized diagnostic
test. We would propose that the SCID-RTE tube can be used
whenever there is a high clinical suspicion for SCID or CID.
The SCID-RTE tube should be measured together with the
PIDOT tube to obtain insight in the lymphocytes’ compartment
and to screen and diagnose (S)CID in a fast, standardized and
efficient manner. It can also be used in a sibling of a SCID
patient, immediately after birth or in children with low or absent
TRECs as identified via newborn screening. SCID-RTE and
PIDOT can yield the required information confirming severe T-
cell abnormality or disproving it in a pre-symptomatic phase,
but a separate study is needed to validate this approach in a
newborn screening program. SCID-RTE can be used in patient
where some abnormalities in the T-cell compartment were found
by PIDOT tube. Finally, SCID-RTE and PIDOT can serve as
a complementary immunophenotyping test for patients with
positive TREC findings, where immunophenotyping information
can serve to confirm the diagnosis of PID and direct subsequent
genetic testing. Moreover, it can offer hints for the decision
making process on appropriate conditioning regimen before
HSCT. Importantly, the two 8-color SCRID-RTE and PIDOT
tubes can also be combined into a single 12-color tube for more
efficient testing.

In conclusion, we have shown that the EuroFlow SCID-RTE
tube is a well-performing, fast and standardized diagnostic test
for (S)CID that can be deployed in any laboratory with 8-color
flow cytometer.
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