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SUMMARY

The majority of excitatory postsynaptic currents in
the brain are gated through AMPA-type glutamate re-
ceptors, the kinetics and trafficking of which can be
modulated by auxiliary proteins. It remains to be
elucidated whether and how auxiliary proteins can
modulate synaptic function to contribute to proce-
dural memory formation. In this study, we report
that the AMPA-type glutamate receptor (AMPAR)
auxiliary protein SHISA6 (CKAMP52) is expressed in
cerebellar Purkinje cells, where it co-localizes with
GluA2-containing AMPARs. The absence of SHISA6
in Purkinje cells results in severe impairments in the
adaptation of the vestibulo-ocular reflex and eye-
blink conditioning. The physiological abnormalities
include decreased presence of AMPARs in synapto-
somes, impaired excitatory transmission, increased
deactivation of AMPA receptors, and reduced induc-
tion of long-term potentiation at Purkinje cell synap-
ses. Our data indicate that Purkinje cells require
SHISA6-dependent modification of AMPAR function
in order to facilitate cerebellar, procedural memory
formation.

INTRODUCTION

The a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid

glutamate receptors (AMPARs) are one of the main drivers of

excitatory postsynaptic currents (EPSCs). Different families of

auxiliary proteins have been shown to modulate trafficking,

membrane mobility, and gating properties of AMPARs, each of

whichmay shape cell- and/or brain-region-specific types of syn-

aptic transmission and plasticity crucial for behavior (Greger
This is an open access article under the CC BY-N
et al., 2017). Previous work has shown that auxiliary subunit

members from the SHISA family of proteins are differentially ex-

pressed in the brain and can affect the mobility (SHISA6) and

gating properties of AMPARs (SHISA6, SHISA7, and SHISA9),

such as receptor deactivation and desensitization (Pei and

Grishin, 2012; Huettner, 2017; Greger et al., 2017; Klaassen

et al., 2016; Farrow et al., 2015; von Engelhardt et al., 2010;

Schmitz et al., 2017; Chen et al., 2018). However, despite evi-

dence for brain-circuit-specific expression of SHISA members,

the focus has so far been on global knockout (KO) mouse

models, which hampers the investigation and interpretation of

brain-region-specific physiological and behavioral relevance.

In the current study, we investigated cellular and systems

functions of the SHISA6 family member in the cerebellum, a

brain area known to be crucial for the formation of procedural

memories that can be studied in well-defined behavioral para-

digms, such as the adaptation of the vestibulo-ocular reflex

(VOR) and Pavlovian eyeblink conditioning (Gao et al., 2012).

Cell-specific promoters allow genetic manipulations, which

have provided important insights into the cellular mechanisms

of motor learning in the cerebellum. For example, experiments

using the granule-cell-specific GABAA-receptor subunit a6 pro-

moter (Galliano et al., 2013) or the Purkinje-cell (PC)-specific L7

promoter (Schonewille et al., 2010; Gutierrez-Castellanos et al.,

2017) have confirmed that baseline parallel fiber (PF) to PC syn-

aptic physiology is essential for cerebellum-dependent motor

learning. To date, these studies have elucidated that AMPAR-

dependent long-term potentiation (LTP) and depression (LTD)

of postsynaptic currents (PSCs) can play differential roles in

different forms of memory formation (Schonewille et al., 2010;

Peter et al., 2016; Gutierrez-Castellanos et al., 2017; Takamiya

et al., 2008; Suvrathan and Raymond, 2018; Suvrathan et al.,

2016). Even though it is becoming evident that the synaptic

modification of PF to PC AMPAR number and conductance

are important mechanisms for the facilitation of procedural

memories in the cerebellum, it is unclear whether these AMPAR
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Figure 1. Mice Lacking SHISA6 in PCs Show Impaired Motor Learning

(A) Out-of-phase visual and vestibular stimulation aimed at increasing the VOR gain. VOR gain increase was impaired in Shisa6L7 KO mice.

(B) Re-recording of OKR gain (compare to transparent inset of baseline OKR gain data, Figure S1C) following the VOR phase reversal training (see C) shows

severe impairments for OKR gain increase in Shisa6L7 KO mice.

(C) The ability of mice to reverse the direction of their VOR was tested by training the mice and testing them in the dark. The Shisa6L7 KO mice showed severe

impairments in VOR phase reversal adaptation, evidenced by a lack of VOR gain and phase changes over days, whereas control mice showed a reduction in VOR

gain and an increase in phase (control, 7 mice; Shisa6L7 KO, 6 mice).

(legend continued on next page)
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modifications require members of the SHISA family of trans-

membrane auxiliary proteins.

We find that deletion of the Shisa6 gene in a PC-specific KO

model results in severely impaired motor learning, in that both

VOR adaptation and eyeblink conditioning are affected. We

show that SHISA6 is prominently expressed by PCswhere it inter-

acts with AMPARs and PDZ-containing proteins in the synapse.

The absence of SHISA6 results in the downregulation of AMPAR

subunit levels while not affecting synapse number. The PC-spe-

cific ablation of SHISA6 drastically affects the function of the PF

to PC synapse, in that they have increased deactivation of AM-

PAR-mediated EPSCs, highly reduced PF to PC excitatory trans-

mission, and impaired LTP.Moreover, PCs that lackSHISA6 show

significantly reduced simple spike (SiSp) firing. Taken together,

our data highlight a critical role for the SHISA6 protein in the facil-

itation of AMPAR-mediatedPSCs inPCs,which is essential for the

formation of procedural memories in the cerebellar cortex.

RESULTS

Shisa6L7 KO Mice Show Impaired Motor Learning
In order to assess procedural learning phenotypes in a cere-

bellum-specific PC Shisa6 KO (Shisa6L7 KO) mouse model, we

screened different learning behaviors that are typically controlled

by either zebrin-positive (i.e., VOR adaptation) or zebrin-negative

zones (i.e., eyeblink conditioning) in the cerebellum (De Zeeuw

and Ten Brinke, 2015). The impact of SHISA6 on cerebellum-

dependent eye movement adaptation was assessed by subject-

ing the Shisa6L7 KO and control mice to visuo-vestibular

mismatch training (Figures 1A–1C). Mice were subjected to six

training sessions with mismatched out-of-phase visual and

vestibular stimulation, with the goal of increasing the gain of

the VOR in the dark (Figure 1A). Whereas control mice were

able to increase their VOR gain, mice that lacked SHISA6 were

not, resulting in a statistical difference (Figure 1A, left; p =

0.031). To examine this further, a more sensitive training protocol

was applied (Figure 1C), which includes a 5-day training para-

digm that aims to decrease the gain and then to reverse the

phase (i.e., direction) of the VOR. During such training, the visual

stimulus rotates in phase with the vestibular stimulus on all days.

On the first day, both stimuli rotate at a 5� amplitude, effectively

causing a decrease of VOR gain, while on the next four training

days, the visual stimulus amplitude increases first to 7.5� (day

2) and subsequently to 10� (days 3–5) while the vestibular stim-

ulus remains the same; this approach allows for a gradual

reversal of VOR phase. Analysis of the first day showed that

Shisa6L7 KO mice have impaired VOR gain-decrease learning

(Figure 1C, left; p = 0.024), a sign of severemotor learning impair-

ment (Schonewille et al., 2010; Hansel et al., 2006). Indeed,

whereas control mice demonstrated the ability to reverse the
(D) Experimental setup for the eyeblink conditioning where an LED light was use

stimulus (US). Post-training testing was done using only the CS. Right panels: th

(E) The average CR amplitude (threshold: eyelid movement at least 10% of a full b

lower in the Shisa6L7 KO mice compared to the controls (control, 16 mice; Shisa6

(F) The percentage of CR responses over sessions. The Shisa6L7 KOmice showed

learning (control, 16 mice; Shisa6L7 KO, 16 mice).

Data are represented as mean ± SEM; *p < 0.05, **p < 0.01.
phase of their VOR, Shisa6L7 KO mice did not (Figure 1C, right;

p < 0.001). In addition to the VOR gain decrease and phase

reversal phenotypes, an optokinetic reflex (OKR) gain-increase

phenotype was revealed when the OKR gain measurement

was repeated following the VOR phase reversal training para-

digm (Figure 1B, right; p < 0.001) (shaded baseline is data from

Figure S1C, left).

We next subjected the mice to a Pavlovian eyeblink condition-

ing paradigm using a light pulse as a conditioning stimulus (CS)

and a corneal air puff as an unconditioned stimulus (US) (ten

Brinke et al., 2015: Figure 1D). Shisa6L7 KO mice had both

a significantly lower conditioned response (CR) amplitude and

a significantly lower percentage of successful CRs (Figure 1E;

CR amplitude, p = 0.006; Figure 1F; CR percentage, p =

0.004). Together, the compensatory eyemovement and eyeblink

conditioning paradigms indicate that SHISA6 expression in PCs

is essential for cerebellum-dependent motor learning.

Considering the severe impact on motor learning, we as-

sessed additional cerebellum-dependent motor behaviors in

the Shisa6L7 KO mice. Baseline motor performance, as tested

on a rotarod, revealed that Shisa6L7 KO mice fall earlier from

the rotating wheel (Figure S1A, left; days 1–4, 40 rpm, p =

0.044; day 5, 80 rpm, p = 0.008). This was not due to altered

grip force because this parameter was unaffected in a grip test

(Figure S1A, right; p = 0.28). The balance beam assay, used to

evaluate gross movement coordination on a small diameter

rod, revealed no significant impairment in the Shisa6L7 KO

(Figure S1B, left; 6-mm rod, p = 0.34; 12-mm rod, p = 0.22).

However, when we evaluated the walking patterns on the pres-

sure-sensitive rungs of the ErasmusLadder, we observed a

significantly increased number of missteps in the Shisa6L7 KO

(Figure S1B, right; p = 0.004), indicating impaired motor coordi-

nation (Vinueza Veloz et al., 2015).

Next, we analyzed baseline compensatory eye movements,

commonly used to assess the cerebellar contribution to motor

performance (Gonshor and Jones, 1976; Galliano et al., 2013).

Examination of the OKR indicated that both its amplitude

(Figure S1C, left; p = 0.008) and phase (Figure S1C, right;

p = 0.033) with respect to those of the stimulus were reduced

in Shisa6L7 KO mice. When testing the VOR, driven by head mo-

tion only, we found that the gain was increased in Shisa6L7 KO

mice (Figure S1D, left panel; p = 0.008), as was the phase lead

(Figure S1D, right panel; p = 0.036). Using the visually guided

VOR (VVOR) paradigm, in which the OKR and VOR work

together, we found no differences in gain (Figure S1E, left panel;

p = 0.51) or phase (Figure S1E, right panel; p = 0.71). These data

not only suggest that the increase in VOR gain allowed

the Shisa6L7 KO mice to compensate for their impairments in

optokinetic control under normal conditions in which the

light is present, but they also highlight that the learning deficits
d as the conditioned stimulus (CS) and a corneal air puff as the unconditioned

e eyelid responses for all individual trials.

link) for eyelid movements in the 500 ms centered on the US was significantly
L7 KO, 16 mice).

significantly fewer responses than the controls over time, indicative of impaired
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that occurred during the visuo-vestibular mismatch training

described above cannot be linked to an inability to detect and

track the visual stimulus when combined with a vestibular input.

SHISA6 Interacts with AMPA Receptors at the PC
Synapse
mRNA expression levels visualized by in situ hybridization indi-

cate that of the SHISA6, SHISA7, and SHISA9 family mem-

bers—which are all prominently expressed in the brain—only

SHISA6 is expressed in the cerebellum (Lein et al., 2007). Using

immunohistochemistry, we demonstrated that the SHISA6 pro-

tein is expressed in PCs of control mice and is absent in PCs

of Shisa6L7 KO mice (Figure 2). Given the association and co-

localization of SHISA6 with GluA2 in the hippocampus (Klaassen

et al., 2016), we next investigated to what extent this apposition

also occurs in the cerebellum. Using 3D structural illumination

microscopy (3D-SIM), we found that SHISA6 also co-localizes

with GluA2 subunits in the molecular layer (ML) of the cerebellum

(Figure 2C). These data were in line with the outcome of the pro-

tein interaction profile of SHISA6. When we immunoprecipitated

cerebellar SHISA6 protein complexes from the n-Dodecyl-beta-

D-Maltoside-extracted crude synaptic membrane fraction and

subjected these to mass spectrometric (MS) analysis (Figure 2D;

Table S1), we observed that AMPAR subunits GluA1-3 (Gria1-3)

were highly enriched in cerebellar SHISA6 complexes.

Absence of SHISA6 Decreases the AMPAR Level in
Cerebellar Synaptosomes
Because SHISA6 associates with synaptic AMPARs, we next

investigatedhow theabsenceofSHISA6affectedsynapticprotein

levels. To this end, we first extracted all proteins from the crude

synaptic membrane fraction of eight wild-type (WT) and Shisa6null

mice and subjected these to sequential window acquisition of all

theoretical fragment ion spectra (SWATH) MS analysis (Figures

3A and S2A; Table S2). The resulting proteome encompassed

3142 protein groups with highly reproducible quantification (Fig-

ure S3C: WT: coefficient of variation (CV) = 0.071; Shisa6null:

CV = 0.064). The relative intensity of AMPAR subunits revealed a

significant downregulation of both synaptic GluA3 (Gria3) (p <

0.001) and GluA2 (Gria2) (p < 0.001), whereas GluA1 (Gria1) levels

did not change significantly (q = 0.196; cut-off false discovery rate

[FDR] value of 0.05). These findings were confirmed using immu-

noblotting for GluA2 andGluA3 in synapse-enriched postsynaptic

density (PSD) and synapse surface fractions of the cerebellum in

Shisa6L7 KO mice (Figure S2D, GluA2, P2: p = 0.042; GluA2,

PSD: p = 0.034; GluA3, P2: 0.039; GluA3, PSD: 0.12; Figure S2E,

total GluA2: p = 0.038; surface GluA2: p = 0.039). It should be

noted, though, that because the synaptosomes are extracted

from the whole cerebellum, the relative reduction of the AMPAR

subunits reported here is most likely an underestimation of the

reduction in PCs. Considering the reduction of AMPA subunits,

we next investigated the impact on synapse number and synaptic

morphology in PCs using electron microscopy (Figure 3B). The

number of PSDs was unaffected in Shisa6L7 KO (Figure 3B, top;

p = 0.65). Similarly, the length of the PSD was not affected (Fig-

ure 3B, bottom; p = 0.51). In addition, we did not observe changes

in the protein composition of the PSD, as indicated by the unmod-

ified expression of PSD marker proteins (e.g., Shank1, PSD95
4 Cell Reports 31, 107515, April 14, 2020
(Dlg4), Homer3, and CamK2B) (Figure S2B). In short, the absence

of SHISA6 does not affect the composition, length, or number of

PSDs in PCs, but the removal of Shisa6 does reduce the number

of GluA2- and GluA3-containing AMPA receptors.

Altered AMPAR Kinetics and Reduced Frequency and
Amplitude of mEPSCs in the Absence of SHISA6 in PCs
Considering the reduced number of GluA2- and GluA3-contain-

ing AMPARs, we aimed to uncover the functional role of SHISA6

at the PC synapse. First, we stimulated afferent PFs to evaluate

PF to PC synaptic functionality using whole-cell recordings

of PCs. The excitatory postsynaptic response at the PF to

PC synapse was highly reduced in Shisa6L7 KO (Figure 4A, left;

p < 0.001). In contrast, PF paired-pulse facilitation was normal

(Figure 4A, right; p = 0.86).

Previously, Klaassen et al. (2016) reported that EPSCs of CA1

pyramidal cells of Shisa6nullmice do not faithfully follow high-fre-

quency stimulations. We also checked this in PCs and found that

EPSCs generated with high-frequency stimulations were not

more attenuated in the absence of SHISA6 than under control

conditions (Figure S3E; stimulation strength as covariate; effect

genotype: p = 0.29). Therefore, unlike in the hippocampus, the

absence of SHISA6 in PCs does not result in attenuated EPSCs

as a result of high-frequency afferent fiber stimulation.

To get a better understanding of the single synapse response,

we recorded miniature EPSCs (mEPSCs) in PCs of Shisa6L7 KO

(Figure 4B). The mEPSCs in Shisa6L7 KO PCs had a decreased

rise time (Figure 4B, top left; p < 0.001) and a decreased decay

time compared to the controls (Figure 4B, top right; p < 0.001),

indicating that SHISA6 has a role in the deactivation of AMPARs.

The frequency distribution of mEPSCs in PCs of Shisa6L7 KO

mice indicated a large reduction in the total number of events

(Figure 4B, bottom left), which was found to be significantly

different (Figure 4B, bottom left; p < 0.001). However, themedian

amplitude of mEPSCs was not different in Shisa6L7 KO mice (Fig-

ure 4B, bottom right; p = 0.41). Even thoughwe did not find direct

evidence for reduced mEPSC amplitudes, we considered the

possibility that lower mEPSC amplitudes could disappear in

the noise floor of our recordings. We therefore utilized forskolin

(FSK), which has been shown to increase the conductance of

GluA3-containing AMPARs (Gutierrez-Castellanos et al., 2017).

The rationale for this experiment was that if very lowmEPSC am-

plitudes disappear in the noise floor, we would be able to reveal

this population by increasing AMPAR conductance. First, we

confirmed the measurements of our previous mEPSC experi-

ments (Figure 4B) on the decreased rise time (Figure 4C, top

left; p = 0.002) and decay time (Figure 4C, top right; p < 0.001).

The frequency distribution of mEPSCs with FSK also confirmed

our previous finding, in that it was strongly reduced in the mutant

(Figure 4C, bottom left; p < 0.001). However, with the addition of

FSK, we now observed a lower median amplitude of mEPSCs in

Shisa6L7 KO mice (Figure 4C, bottom right; p < 0.001).

In addition to PF to PC EPSC characteristics, we assessed

whether SHISA6 plays a role in climbing fiber (CF) synaptic trans-

mission. To this end, we performed both VGluT1 and VGluT2

staining in SIM to disentangle the presence of SHISA6 at CF syn-

apses (Figure S3A). Based on these results, it appears that

SHISA6 is also present postsynaptic to CF inputs (VGluT2). It
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Figure 2. SHISA6 Is Expressed in PCs and Interacts with AMPARs

(A) Representative widefield images of control with SHISA6 expression and Shisa6L7 KO mice without SHISA6 expression in PCs.

(B) Additional higher-magnification confocal images showing the absence of SHISA6 signal in the ML of the Shisa6L7 KO mice confirming to PC specificity of

SHISA6 expression.

(C) SIM imaging in control mice shows colocalization of SHISA6 (red) and GluA2 (green) in the ML.

(D) Native SHISA6 complexes were immunoprecipitated (IP) from the cerebellum of Shisa6WT and Shisa6null mice (n-Dodecyl-beta-Maltoside [DDM]-extracted

crude synaptic membranes; 3 IPs per genotype) and subjected to MS analysis. Significantly enriched proteins are represented by closed-circle symbols and

labeled by gene name (Student’s t test with permutation-based FDR analysis; S0 = 0.5, FDR = 0.01).

Additional information, including protein identification and quantification, statistical analysis, data distribution, and the full list of proteins is provided in Table S1.
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Figure 3. SHISA6 Absence Alters Synaptic Glutamate Receptor Levels without Affecting PSD Length or Count

(A) Comparison of the cerebellar synaptic proteome of WT and Shisa6null mice, as acquired by label free SWATH-MS measurement. Proteins with a significant

difference between themice are represented by circle symbols and labeled by gene name (Student’s t test with permutation-based FDR correction, FDR% 0.05);

filled circles indicate proteins with a difference greater than 10%. AMPAR subunits GluA2 (Gria2) and GluA3 (Gria3) are significantly downregulated upon Shisa6

deletion. See Figure S2A for a more detailed overview of the proteins at the center of the volcano plot and Table S2 for a full list of proteins. Right panels: detailed

comparison of GluA regulation after setting the mean WT intensity to 1.

(B) Examples of EM pictures including PF to PC synapses and their PSDs. Top middle: cumulative frequency plot (histogram inset) of all sampled EM pictures

indicating no population difference in PSD count (control, 640 images/5 mice; Shisa6L7 KO, 640 images/5 mice). Top right: average PSD count per animal did not

differ between the groups. Bottom middle: cumulative frequency plot (histogram inset) of all sampled PSDs indicating no population difference in PSD length

(control, 2629 PSDs/5 mice; Shisa6L7 KO, 2629 PSDs/5 mice). Bottom right: average PSD length per animal did not differ between the groups.

Data are represented as individual replicates and by the mean ± SEM; *p < 0.05, **p < 0.01.
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(legend on next page)
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should be noted, though, that this type of analysis is difficult to

interpret because of the very large number of PF to PC (VGluT1)

synapses present. We therefore also investigated the CF to PC

synapse at the cell physiological level by recording EPSC re-

sponses. Here, we found no difference in amplitudes (Fig-

ure S3B, right panel, p = 0.24), rise time (Figure S3C, left panel,

p = 0.71), paired pulse depression (PPD) (Figure S3D, left panel,

p = 0.49), and CF elimination in P10–P12 mice (Figure S3F, right

panel, p = 0.57). However, the CF to PC EPSCs showed a decay

phenotype (Figure S3C, right panel, p < 0.001) similar to the PF to

PC EPSCs, indicating that SHISA6 has a similar function at this

synapse for AMPAR deactivation kinetics. Together, these re-

sults indicate that SHISA6 can have different functional profiles

depending on not only the type of neuron, but also the synapse.

We also explored the possibility of impaired postsynaptic

inhibitory responses in the PCs (Figure S3E). We found that

spontaneous inhibitory PSCs (sIPSCs) did not differ in their rise

time (Figure S3F, left panel, p = 0.50), decay time (Figure S3F,

right panel, p = 0.23), frequency (Figure S3G, left panel, p =

0.32), or amplitude (Figure S3G, right panel, p = 0.63). From

these results, we conclude that SHISA6 is specifically involved

in the facilitation of functional PF to PC excitation and AMPAR

deactivation at the PF to PC and CF to PC synapse.

Impaired LTP, But Not LTD, in PCs Lacking SHISA6
Given that auxiliary proteins of AMPARs have been associated

with postsynaptic AMPAR current potentiation (MacLean et al.,

2014; Greger et al., 2017), we hypothesized that PC synaptic

plasticity might be affected in the Shisa6L7 KO. Using high-fre-

quency stimulation (Figure 5A), we found that LTP can be

induced in PCs of control mice (Figure 5A, p = 0.027), but not

Shisa6L7 KO (Figure 5A, p = 0.54), resulting in a significant differ-

ence between groups (Figure 5A, p = 0.029). The paired

pulse facilitation (PPF), a measure of presynaptic release proba-

bility, did not differ significantly between control mice and

Shisa6L7 KO mice (Figure 5A, p = 0.23).

Considering the lower synaptic GluA3 expression in Shisa6L7

KO and the importance of modification of GluA3-containing

AMPAR conductance for PF to PC LTP (Gutierrez-Castellanos

et al., 2017; Renner et al., 2017), we tested the hypothesis that

the inability to induce LTP in the Shisa6L7 KO was caused by

the inability of GluA3-containing AMPARs to switch to higher

conductance states (Figure 5B). For this purpose, we applied

FSK, which induces increased GluA3-conductance-mediated

LTP. We did not observe any significant difference between

the groups (p = 0.73), both presenting with a prominent potenti-

ation (controls, p = 0.033; Shisa6L7 KO mice, p < 0.001)

(Figure 5B). PPF was also not different between the groups
Figure 4. PC-Specific Absence of SHISA6 Leads to Reduced PF to PC

(A) Sample traces of evoked EPSCs generated by stimulating afferent PFs with

amplitude in the Shisa6L7 KO, whereas the PPF ratio was unaffected (control, 21–

(B) Whole-cell patch clamp recording configuration of mEPSCs including raw tra

faster in the Shisa6L7 KO in comparison to controls (control, 30 cells/4 animals; Shis

a significantly lower frequency, but with comparable median amplitude (control,

(C) With the addition of FSK, we increase the GluA3-containing AMPAR conductan

control and Shisa6L7 KO PCs, replicating the mEPSC trials without FSK. Lower pan

now a median amplitude difference is also revealed in the presence of FSK (con

Data are represented as mean ± SEM; *p < 0.05, **p < 0.01. See also Figure S3
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(Figure 5B, p = 0.61). These results reveal that increasing the

conductance of GluA3-containing AMPARs still induces LTP,

but afferent PF stimulation does not, indicating that the explana-

tion for the phenotype probably lies upstream of this FSK-

induced cyclic AMP (cAMP)-dependent form of LTP.

We also evaluated LTD using the classical 1-Hz protocol of CF

activation together with PF stimulation. LTD could be induced in

PCs of both control (p = 0.025) and Shisa6L7 KO mice (p = 0.008),

with no significant difference between the groups (p = 0.51; Fig-

ure 5C). In addition, the PPF was not different between the

groups (Figure 5C, p = 0.27). Together, these data indicate that

the absence of SHISA6 results in an impairment of PF to PC

LTP, but not of PF to PC LTD.

Reduced Spike Output and Enhanced Regularity of PC
Firing in the Absence of SHISA6
The highly reduced excitatory synaptic transmission and motor

coordination impairments induced by PC-specific ablation of

SHISA6 are quite prominent. We therefore aimed to further char-

acterize PC physiology by analyzing SiSp and complex spike

(CoSp) firing frequencies as well as firing regularity (CV2) of PCs

in vivo. To align our results with VOR adaptation and eyeblink con-

ditioning while taking the characteristics of the relevant cerebellar

zones into consideration (Zhou et al., 2015; tenBrinke et al., 2015),

we recorded PC activity from both anterior (lobules I–III) and pos-

terior (lobule X) lobules in awake mice (Figure 6A). The SiSp firing

rate of PCs was significantly lower in Shisa6L7 KOmice in both the

anterior (Figure6B, left; p=0.009) andposterior lobules (Figure6D,

left; p = 0.003). In addition, there was an increase in the regularity

of SiSp firing in PCs of the anterior lobe (i.e., a significant decrease

in the coefficient of variation for adjacent intervals, CV2; p < 0.001;

Figure 6B, right), whereas the regularity of SiSp firing in the poste-

rior lobe was not significantly affected (Figure 6D, right; p = 0.14).

The CoSp firing rate and regularity were both unaffected in the

anterior (CoSp rate: Figure 6C, left, p = 0.40; CoSp regularity: Fig-

ure 6C, right, p = 0.10) as well as the posterior lobes (CoSp rate:

Figure 6E, left, p = 0.16; CoSp regularity: Figure 6E, right, p = 0.16).

To exclude the possibility that the loss of SHISA6 impairs firing

rates in vivo through effects on mechanisms responsible for the

intrinsic generation of SiSps, we injected currents of varying

strengths into the PC soma ex vivo (Figure S4A). We found no

change in the number of spikes generated in theShisa6L7 KO (Fig-

ure S4A; p = 0.79). Blocking all afferent input and measuring the

pacemaker activity of PCs with cell-attached recordings ex vivo

revealed no differences in firing frequency or CV2 in the anterior

lobe (frequency, p = 0.29; CV2, p = 0.60; Figure S4B) or the pos-

terior lobe (frequency, p = 0.64; CV2, p = 0.33; Figure S4C). We

conclude that there are no major intrinsic impairments in the
Excitatory Synaptic Input

increasing stimulation strengths. Evoked EPSCs were consistently of lower

25 cells/6 animals; Shisa6L7 KO, 25–27 cells/7 animals).

ces. Top panels: mEPSC rise times and mEPSC decay times are significantly

aL7 KO, 31 cells/4 animals). Lower panels: mEPSCs in Shisa6L7 KO PCs occur at

30 cells/4 animals; KO, 31 cells/4 animals).

ce. Top panels: both the rise and decay time are significantly different between

els: the mEPSC frequency is still largely reduced in the absence of SHISA6, but

trol, 14 cells/3 animals; KO, 13 cells/3 animals).

for CF and sIPSC data.
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Figure 5. SHISA6 Is Important for PF to PC Induced LTP, But Not LTD

(A) Recording configuration for PF-PC stimulation and PC voltage clamp in LTP experiments including sample traces. LTP at the PF-PC synapse was induced in

control animals after a 5-min induction protocol, whereas LTP was absent in the Shisa6L7 KO (control, 7 cells/4 mice; Shisa6L7 KO, 9 cells/5 mice). No difference in

PPF was observed.

(B) LTP configuration for induction of LTP with FSK. LTP at the PF-PC synapse was similarly induced in both groups after FSK application (control, 7 cells/4 mice;

Shisa6L7 KO, 9 cells/5 mice). Both groups have a significant but small effect in PPF and no PPF difference between the groups.

(C) Recording configuration for PF-PC LTD including sample traces. PFs are stimulated in the distal ML, whereas the CF is stimulated close to the soma. LTD was

successfully induced in both control and Shisa6L7 KO animals after a 5-min induction of conjunctive CF and PF stimulation (control, 7 cells/5 mice; Shisa6L7 KO, 7

cells/5 mice). No difference in PPF was observed. For both LTP and LTD, the pre-induction data are based on themean of the last 5 min of the baseline recording.

Post-induction data are the mean of minutes 20–25 of the post-induction recording.

Data are represented as mean ± SEM; *p < 0.05, **p < 0.01.
ability of PCs to generate SiSps or CoSps in Shisa6L7 KO mice,

suggesting that SHISA6 has a dedicated role in the proper inte-

gration of PF to PC synaptic excitatory inputs, which are required

to modulate the frequency and regularity of SiSp firing of PCs in

awake behaving animals.

DISCUSSION

In the current study, we provide evidence for the functional role

of the AMPAR auxiliary protein SHISA6 in a brain area relevant
for procedural memory formation. The ablation of SHISA6 in

PCs of the cerebellum results in severely dysfunctional motor

learning. We observe the co-localization of the SHISA6 protein

with AMPARs in PCs and report an interaction with AMPARs

containing subunits GluA1–3. In the absence of SHISA6,

AMPAR subunits GluA2 and GluA3 are downregulated, while

mice with a PC-specific deletion of SHISA6 show strongly

reduced PF to PC basal excitatory postsynaptic transmission,

impaired LTP, and reduced SiSp activity in vivo. Together, our

findings suggest a crucial role for SHISA6 in PC-dependent
Cell Reports 31, 107515, April 14, 2020 9
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Figure 6. Shisa6L7 KO Mice Show Reduced SiSp Frequencies and Increased SiSp Regularity In Vivo

(A) Top: recording configuration for in vivo spiking. Bottom traces: raw recordings for anterior (lobules I–III) and posterior (lobule X) in vivo recordings. Note the

complex spikes (indicated with asterisk) and subsequent SiSp pause.

(B) Left panel: SiSp frequency in lobules I–III was significantly lower in the Shisa6L7 KO. Moreover, a significant difference in the CV2 (right panel) was found

between the two groups, indicating that the SS regularity was increased in the Shisa6L7 KO.

(C) There was no difference in the anteriorly recorded CoSp frequency or regularity (control, 16 cells/3 mice; Shisa6L7 KO, 20 cells/3 mice).

(D) SiSp frequency was lowered in the Shisa6L7 KO mice, whereas spike regularity was unaffected (control, 13 cells/3 mice; Shisa6L7 KO, 15 cells/3 mice).

(E) There was no difference in the posteriorly recorded CoSp frequency or regularity.

Data are represented as mean ± SEM; *p < 0.05, **p < 0.01.
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motor learning by facilitating PF to PC AMPAR postsynaptic

transmission.

Several auxiliary subunits have thus far been shown to affect

AMPAR conductance, kinetics, and localization (Greger et al.,

2017). The first mouse line to spur interest in auxiliary subunits

was the severely ataxic stargazin mouse mutant, in which a

lack of the transmembrane AMPAR regulatory protein TARPg-

2 (i.e., stargazin) resulted in the absence of excitatory transmis-

sion at the mossy fiber to granule cell synapse (Hashimoto et al.,

1999; Chen et al., 2000). TARPg-2, as well as other family mem-

bers, has been shown to control both trafficking and kinetic pro-

files of AMPARs (Tomita et al., 2005; Yamazaki et al., 2015;

Greger et al., 2017). For the more recently identified Shisa family

of auxiliary AMPAR proteins, both member-specific as well as

partially overlapping modulatory effects on AMPAR properties

have been reported. For instance, in the hippocampus, the first

identified member of the Shisa family, SHISA9 (CKAMP44),

was shown to cause fast and strong desensitization of AMPAR

currents (von Engelhardt et al., 2010; Chen et al., 2018), whereas

SHISA6 and SHISA7 were reported to decrease the rates of

deactivation and desensitization of AMPARs (Klaassen et al.,

2016; Schmitz et al., 2017). Relatively little is known about the

role of Shisa family members in specific brain circuits and how

the different members affect behavior.

Here, we set out to explore a PC-specific KO of Shisa6 in the

cerebellum and dissect the physiology behind the severely

impaired motor learning tasks that are known to depend on the

function of the PC synapse. We confirm a strong expression of

SHISA6 in PCs and report the interaction between SHISA6 and

AMPAR subunits GluA1–3. Interestingly, we find that levels of

GluA2 and GluA3 are decreased in cerebellar synaptosomes in

the absence of SHISA6. In addition, we find PF to PC evoked

EPSC amplitudes to be largely reduced upon afferent PF stimula-

tion. This result raises twopotential explanations: the total number

of synapses is reduced, and/or the individual synapse is function-

ally dampened due to the reduced number of AMPARs. We per-

formed quantitative electron microscopy (EM) analyses and

showed no difference in the number and/or PSD size in the

absence of SHISA6, indicating that decreased PF to PC synaptic

input results from the reduced number of AMPARs. In our explora-

tion of synaptic dysfunction, we examined mEPSCs and confirm

the previously reported hippocampal AMPAR phenotypes

(affected rise and decay time) and furthermore reveal that the fre-

quency of mEPSCs is largely reduced, while, to our surprise, the

amplitude ofmEPSCs is, at least initially, not significantly different.

As the EM data of ML PSDs did not indicate a reduced number of

PF to PC synapses, we argue that it is very likely to be the noise

floor of mEPSC recordings that prevented us from observing

lower mEPSC amplitudes in the absence of SHISA6 in the PC.

We therefore further explored the possibility of enhancing AMPAR

conductance amplitude by using FSK, which was recently shown

to specifically enhance the conductance of postsynaptic GluA3-

containing AMPARs (Gutierrez-Castellanos et al., 2017; Renner

et al., 2017). Indeed, under the FSK condition, we were able to

reveal a significant reduction in mEPSC amplitude, while the fre-

quency of detected mEPSCs also increased, highlighting that

applying FSK facilitates the detection of additional synapses that

are otherwise nondetectable.
Dynamic changes in the number and sensitivity of AMPARs

are thought to be part of the central mechanism that facilitates

different types of learning (Nabavi et al., 2014; Makino and Mali-

now, 2011; Gutierrez-Castellanos et al., 2017). While assessing

the role of SHISA6 in long-term synaptic plasticity, we found

that the induction of LTP in PCs of Shisa6L7 KO mice was

impaired, whereas LTD could still be induced. However, by

applying FSK, postsynaptic LTP could still be induced and be

modulated by increasing the GluA3-containing AMPAR conduc-

tance (Renner et al., 2017; Gutierrez-Castellanos et al., 2017).

These experiments raise the possibility that the normal PF-

dependent LTP induction is hampered by lower levels of the

GluA2/3 AMPAR in the absence of SHISA6, which is not

compensated for by a GluA3 conductance increase, normally

occurring at the PF to PC during LTP induction. Alternatively,

as PF to PC synapses are typically activated by sensory-

learning-mediated bursts of granule cell activity (van Beugen

et al., 2013), which in turn can drive Ca2+ T-type channel-depen-

dent LTP (Ly et al., 2013), it is possible that impaired LTP induc-

tion in Shisa6L7 KO is partly a result of faster AMPAR deactivation

and thus insufficient postsynaptic depolarization for Ca2+-

dependent LTP induction. However, it should be noted that our

attempts to induce LTP using high-frequency PF stimulations

at quasi-physiological temperatures (34� ± 1�C)was not effective

in the control. Therefore, it remains to be elucidated whether the

observed impairment in LTP in the absence of SHISA6 at room

temperature (21� ± 1�C) can be extrapolated to in vivo relevance

for procedural motor learning. Because the CF to PC physiolog-

ical experiments did not show anymajor impairments, except for

the AMPAR deactivation times, we hypothesize that in principle,

the CFs of Shisa6L7 KO mice should be able to guide LTD induc-

tion tuned to the procedural demands in a sufficient matter.

Additional experiments in vivo using single-unit recordings of

PCs reveal that the firing frequency and the irregularity of SiSps

were lower in the absence of SHISA6. We thus hypothesize that

the largely reduced synaptic excitatory input at the PF to PC syn-

apse is contributing to the change in SiSp firing frequency and

increased regularity. However, changes in the inhibitory input

from ML interneurons may also affect the regularity of SiSps

(Wulff et al., 2009; Peter et al., 2016). Still, given the absence

of changes in frequency or amplitude of sIPSCs of PCs, we pro-

pose that the reduced excitatory synaptic input is the main

reason for a more regular SiSp output. Several studies have

investigated the importance of modulated SiSp firing by means

of synaptic input and its crucial roles in motor learning (Hoebeek

et al., 2005; Wulff et al., 2009; Peter et al., 2016; Walter et al.,

2006; Nguyen-Vu et al., 2013; Jirenhed et al., 2007). We hypoth-

esize that the main pathway by which the absence of SHISA6 in

PCs contributes to the behavioral phenotypes reported in this

study is by highly reduced PF to PC excitatory transmission

and, as a result, much reduced PF afferent information process-

ing, leading to impaired spatiotemporal coding of sensorimotor

information (De Zeeuw et al., 2011). It is of interest to note that

the PF to PC synaptic reduction in AMPARs, as detected here,

was not found in the Shisa6null mouse line in the hippocampus

(Klaassen et al., 2016), indicating specific roles of SHISA6 de-

pending on the cell and/or synapse types studied. Together,

the results presented here provide insight into SHISA auxiliary
Cell Reports 31, 107515, April 14, 2020 11



AMPAR subunit modulation of synaptic currents and highlight

the importance of baseline synaptic PF to PC transmission for

both procedural motor learning and coordination.
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EXPERIMENTAL MODELS AND SUBJECT DETAILS

Experiments and analyseswere performedwith the experimenters blinded to the genotype. Bothmale and femalemicewere used for

all experiments and all mice were allocated to an experimental group by genotype. Male and female mice were pooled, because of

the limited availability of experimental mice in this study. All mice were individually housed from postnatal day (P)21 with food and

water available ad libitum and in 12:12 h light/dark cycles. All experiments were approved by local (DEC) and national ethical com-

mittees. Adult mice aged 4 to 24 weeks old were used for the behavioral assays, in vivo physiology and immunoprecipitation and

SWATH protocol. Mice used were Shisa6L7 KO and their littermate controls all bred on a mixed C57BL6/Nhsd and C57BL6/J

background. The Shisa6L7 KO model was generated by crossing Purkinje specific L7(Pcp2)-Cre mice (Barski et al., 2000) with

Shisa6tm1a2(Caliper)CNCR-VUA (Klaassen et al., 2016). Genotyping was performed on P7–10 using primers Rz742, Rz804 and Rz803.

Using a previously described PCR method (Klaassen et al., 2016), we found that the Shisa6L7 KO littermates contained a relatively

large number of germline deletions always affecting one allele. For the immunoprecipitation and SWATH protocols we usedShisa6null

mice and their WT litter mates. In the current manuscript, all mice denoted as control are Shisa6L7 HET (i.e., heterozygous whole-body

deletion), whereas the Shisa6L7 KO is a full KO for PCs and has heterozygous whole-body deletion. All experiments were conducted in

line with the European guidelines for care and use of laboratory animals (Council Directive 86/6009/EEC). The individual experimental

protocols were approved by the Animal Experiment Committee (EDC) of the ErasmusMC.

METHOD DETAILS

Immunoprecipitation and mass spectrometry
Immunoprecipitation (IP) using anti-Shisa6 antibody (Chen et al., 2014) was performed on the n-Dodecyl-beta-Maltoside (DDM) ex-

tracted crude synaptic membrane fraction, prepared from the cerebellar tissue ofWT and Shisa6nullmice, as described previously for

the hippocampus (Klaassen et al., 2016). Eluted proteins were fractionated by SDS-PAGE, subjected to in-gel tryptic digestion, and

analyzed on a TripleTOF 5600+ mass spectrometer (Sciex, Framingham, MA, USA) operating in information-dependent acquisition

(IDA) mode, as described previously (Klaassen et al., 2016).

TripleTOF 5600+ data was imported intoMaxQuant (version 1.6.1.0) (Cox andMann, 2008) and searched against the Uniprot mouse

reference proteome (April 2018 release; including canonical and additional sequences).Methionine oxidation andN-terminal acetylation

were selected as variable modifications, and proprionamide set as fixed cysteine modification. For both peptide and protein identifica-

tion the false discovery rate was set to 0.01. Match between runs was enabled with a match timewindow of 0.7 min and alignment time

window of 20 min. MaxLFQ normalization was enabled with a LFQminimal ratio count of 1. Remaining parameters were left to default,

with protein group identification requiring a minimum of 1 razor + unique peptide. The filtering and statistical analysis of the Maxquant

results was performed in Perseus (version 1.6.2.1) (Geyer et al., 2016). in the following order: (1) Importing the Maxquant proteinG-

roups.txt file into Perseus; (2) Removal of ‘‘Reverse,’’ ‘‘Potential contaminant,’’ and ‘‘Only identified by site’’ protein groups; (3) Log2

transformation of all LFQ intensity values; 4) Removal of protein groups in which anyWT value was derived ‘‘Bymatching,’’ (5) Removal

of protein groups with less than three valid Log2 LFQ intensity values in the WT group; (6) Imputation of missing values (7.7% of the KO

population) from a normal distribution (width 0.3, down shift 1.8, whole matrix) (7) Performing a Student’s t test (S0 = 0.5) followed by

permutation-based FDR analysis on the Log2 LFQ intensity values (FDR = 0.01, 2500 permutations).
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Immunoblot analysis
Protein samples were dissolved in Laemmli sample-buffer, heated to 96�C for 5 minutes, and loaded onto a 4%-15% Criterion TGX

Stain-Free gel (Bio-Rad, Temse, Belgium) along with Precision Plus protein standard (Bio-Rad, Temse, Belgium). The gel-separated

proteins were imaged with the Gel-Doc EZ system (Bio-Rad, Temse, Belgium), transferred O/N onto PVDF membrane (Bio-Rad;

Temse, Belgium) and probed with various antibodies (see ‘Antibodies’ section). Scans were acquired with the Odyssey Fc system

(Li-Cor, Lincoln, NE, USA), and adjusted and quantified using Image Studio Lite 5.2.5 software (Li-Cor, Lincoln, NE, USA).

Sample preparation for SWATH MS analysis
Crude synaptic membranes were prepared from the cerebellum of WT and Shisa6null mice as described previously (Klaassen et al.,

2016), with the addition of PhosSTOP phosphatase inhibitors (Roche, Basel, Switzerland) to the homogenization buffer. Proteins

were extracted and digested according to the filter-aided sample preparation (FASP) protocol (Wi�sniewski et al., 2009) with some

adaptations. Proteins were extracted and reduced by incubation with SDS-lysis buffer (final concentration of 1 mg protein/ml, 2%

SDS, 100 mM Tris-HCl (pH 8.5) and 2.5 mM Tris(2-carboxyethyl)phosphine-HCl (TCEP)) for 1 hour at 56�C with 1100 RPM mixing.

Next, proteins were alkylated by addition of methyl methanethiosulfonate (MMTS; final concentration of 5 mM) for 10 minutes at

RT. The protein lysate was diluted to 0.5% SDS with Urea buffer (8 M Urea, 100 mM Tris-HCL (pH 8.5)), centrifuged at 20,000x g

for 2 minutes at 20�C, and 100 ml was loaded onto a Microcon Ultracel PL-30 filter (Merck Millipore, Darmstadt, Germany). The filters

were centrifuged at 12,000x g for 10 minutes at 20�C and subsequently washed five times with 100 ml Urea buffer and four times with

100 ml 50 mMNH4HCO3 (identical centrifugation settings). After washing, Trypsin/LysCMix (Promega, Leiden, the Netherlands) was

added to the filters at an enzym to protein ratio of 1 to 25, and incubated O/N at 37�Cwithin a humidified chamber. Digested peptides

were collected from the filter by elution with 50mMNH4HCO3 and acidified to a final concentration of 0.5% trifluoroacetic acid (TFA).

Finally, the eluted peptides were desalted using an Oasis HLB 96-well melution plate (Waters, Milford, MA, USA) following the man-

ufacturer’s guidelines and using 0.1% TFA and 80% acetonitril + 0.1% TFA as binding and elution buffers, respectively.

In order to prepare an experiment-specific spectral library, an additional four FASP preparations were performed on lysate pooled

equally from all WT mice. Two samples were purified directly by Oasis HLB desalting, with the remaining two samples pooled and

fractionated using the high pH reversed-phase peptide fractionation kit (Pierce, Thermo Scientific, Waltham, MA, USA) according to

the manufacturer’s instructions.

Micro-LC and MS of spectral library fractions
Peptides were analyzed by micro LC MS/MS using an Ultimate 3000 LC system (Dionex, Thermo Scientific, Waltham, MA, USA)

coupled to the TripleTOF 5600+ mass spectrometer. Dried peptide samples were redissolved in 5% acetonitril + 0.1% formic

acid (FA), supplemented with iRT calibration peptides (Biognosys, Zurich, Switzerland) and loaded onto a 5 mm PepMap100 C18

precolumn (300 mm i.d., 5 mm particle size (Dionex, Thermo Scientific, Waltham, MA, USA). Separation was achieved on a

150 mm ChromXP C18 column (300 mm i.d., 3 mm particle size (Sciex)) using a linear aqueous-organic gradient of 5%–18% aceto-

nitrile (+0.1% FA) in 88 minutes, 25% at 98 minutes, 40% at 108 minutes and 90% at 110 minutes, using a flow rate of 5 mL/minute.

Eluting peptides were electro-sprayed directly into the TripleTOF MS operated in IDA mode. One full scan consisted of a single full

profile MS scan (150 ms, m/z 350 to 1250 and charge state +2 to +5), followed by MS/MS analysis of the top 25 most intense pre-

cursor ions (150ms, m/z 200 to 1800, charge state +2 to +5, high sensitivity mode and precursor ion count/s > 150). Dynamic exclu-

sion was set to 16 s. Ions were fragmented using rolling collision energy with an energy spread of 5eV.

Micro-LC and SWATH MS
The LC setup and settings were identical to those described for the IDA MS of spectral library fractions. SWATH measurement con-

sisted of a full precursor ion scan (150 ms, m/z 350�1250) followed by sequential precursor isolation windows of 8 Da across the

mass range of m/z 450-770 with 1 Da overlap (80 ms). Total cycle time was around 3.2 s, providing 8-9 data points across a typical

peptide. The collision energy for each window was determined by the appropriate collision energy for a 2+ ion, centered upon the

window with a spread of 15 eV.

Analysis of spectral library IDA MS results
The spectral library files were imported into MaxQuant (version 1.6.1.0) (Cox and Mann, 2008) and searched against the Uniprot

mouse reference proteome (April 2018 release; including canonical and additional sequences) supplemented with the Biognosys

iRT FASTA database. Methionine oxidation and N-terminal acetylation were selected as variable modifications, and MMTS modifi-

cation of cysteine set as fixed modification. For both peptide and protein identification the false discovery rate was set to 0.01. Re-

maining parameters were left to default. The spectral library was made from the MaxQuantmsms.txt file using Spectronaut (version

11.0.15038.23) (Bruderer et al., 2015). Imported peptides were filtered for a Q-value threshold of < 0.01 with all other settings left to

default.

SWATH processing and statistical analysis
The peptide abundances were extracted from the raw SWATH data by Spectronaut (version 11.0.15038.23), using default BGS fac-

tory settings. Next, Spectronaut performed across-run normalization based on total peak areas. Peptide abundances were exported
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from Spectronaut as a report and further processed using the R language for statistical computation (R Core Development Team,

2013). Each unique precursor was considered a peptide (e.g., the same peptide sequence observed with distinct modifications or

charge was considered a distinct peptide). The Spectronaut fragment group Q-values were used to select for high confidence pep-

tides, with the following filter settings: Peptides must have a Q-value smaller than, or equal to, 10�4 in at least seven out of eight rep-

licas within at least one group. Protein abundances were calculated at the gene level by summation of the normalized peak area of

their respective peptides. Peptides that matched to multiple genes in the spectral library were compiled into separate groups with

unique sets of genes. Next, the protein abundance matrix was Loess normalized using the normalizeCyclicLoess function from

the limma R package (Smyth, 2005), which was set to ‘fast’ and iterations were set to 10. Finally, the normalized protein abundances

were imported into Perseus (version 1.6.2.1) for statistical analysis. All data was Log2 transformed and differential expression be-

tween the groups was assessed by Student’s t test (S0 = 0) followed by permutation-based FDR analysis (FDR = 0.05, 2500

permutations).

Isolation of postsynaptic density fraction
Crude synaptic membranes (P2) were prepared from the cerebellum of adult control and Shisa6L7 KO mice as described previously

(Klaassen et al., 2016). The P2 fraction was diluted in extraction buffer (0.15 mg protein/ml, 1% Triton X-100, 75 mM KCl, 25 mM

HEPES (pH 7.4), supplemented with EDTA-free Complete protease inhibitor (Roche, Basel, Switzerland)) and incubated at 4�C for

30 minutes with 10 RPM end-over-end mixing. The Triton X-100 insoluble fraction was precipitated by centrifugation at 20,000x g

for 30 minutes at 4�C. Subsequently, the pellet was resuspended in extraction buffer and once more incubated and centrifuged

as decribed above, yielding the final Triton X-100 insoluble PSD pellet. The P2 and PSD fractions were dissolved in 2x Laemmli sam-

ple-buffer, incubated at 56�C for 30 minutes in a thermomixer at 1200 RPM and heated to 96�C for 5 minutes prior to immunoblot

analysis.

Biotinylation of synaptic surface proteins
Crude synaptic membranes (P2) were prepared from the cerebellum of adult control and Shisa6L7 KO mice as described previously

(Klaassen et al., 2016). P2 samples of 200 mgwere resuspended in 1mL of homogenization buffer (0.32M sucrose, 10mMHEPES (pH

7.4), and EDTA-free Complete protease inhibitor (Roche, Basel, Switzerland)) supplementedwith 0.25mg/ml EZ-Link Sulfo-NHS-SS-

Biotin (Pierce, Thermo Scientific, Waltham,MA, USA) and incubated at 4�C for 30minutes with 10 RPMend-over-endmixing. Control

samples received identical treatment in the absence of biotin. Non-reacted biotin reagent was deactivated by the addition of 50 mM

glycine (final concentration). To remove free biotin, the P2 samples were centrifuged at 18,000x g for 30 minutes at 4�C and the pellet

washed with homogenization buffer supplemented with 50mM glycine. Proteins were extracted in 2%SDS, 50mM Tris-HCl (pH 8.0),

150 mM NaCl and EDTA-free Complete protease inhibitor (Roche, Basel, Switzerland)) for 30 minutes at RT with 1200 RPM mixing,

followed by 5minute incubation at 96�C. Protein extracts were cleared of unsoluble debris by centrifugation at 20,000x g for 5minutes

at RT and diluted 40-fold with Triton X-100 buffer (1% Triton X-100, 50mM Tris-HCl (pH 8.0), 150 mMNaCl and EDTA-free Complete

protease inhibitor (Roche, Basel, Switzerland)). Biotinylated proteins were isolated from the diluted protein extract by incubation with

NeutrAvidin Agarose Resin (Pierce, Thermo Scientific, Waltham, MA, USA) for two hours at RT and 10 RPM end-over-end mixing,

followed by four washes with Triton X-100 buffer and elution with 2x Laemmli sample buffer.

Electron microscopy
Adult mice were transcardially perfused with fixative 4% PFA (EM grade) 1% Glutaaraldehyde (EM grade) in 0.12 M sodiumcacody-

late (NaCac). The brains were removed and put in 4%PFA at 4�C overnight. The following day 100 mm sagittal slices were cut using a

Vibratome (VT1000S, Leica, the Netherlands). The slices were then washed, in order: 3 times 10 min in 0.1 M NaCac, 2 hours 4�C in

2% Osmium Tetroxide + 0.1 M NaCac + 1.5% K3Fe(CN)6, then 3 times 10 min in 0.1 M NaCac. Finally, 3 times 10 min MilliQ wash.

The slices were then bathed in ISO 3696 Type 1 ultrapure water (MilliQ) overnight. The next day, slices were washed again, and de-

hydrated in order: 10minMilliQ, 10min 50%EtOH, 60 min 1%Uranyl Acetate/50% EtOH, 10min 70%EtOH, 5min 80%EtOH, 5min

90% EtOH, 5 min 96% EtOH, 5 min 100% EtOH, 2 times 8 min Dimethoxypropane (DMP), 2 hours DMP: Durcupan 1 (Fluka) (1:1), 2

hours DMP: Durcupan 1 (1:3). The following day this was continued: 2 hours D1 (50�C), 2 hours Durcupan 2 (Fluka) (50�C) and then

polymerized 3 nights at 60�C. Ultrathin sections (60 nm) were cut using an ultramicrotome (Ultracut UCT, Leica) and contrasted with

6% uranyl acetate in MilliQ and lead citrate staining, sections from controls and Shisa6L7 KO mice were examined using an electron

microscope (Philips CM100). For ultrastructural PSD analysis, spine synapses have been selected from proximal and distal molecular

layer from lobule 3 and lobule 10. PSDs were manually counted and their length was quantified using Fiji software.

Immunohistochemistry
Mouse brains were snap-frozen after removal without perfusion. Tissuewas sectioned at 10 mmusing a cryostat at�20�Cand a knife

temperature of �14�C. Sections were air-dried on superfrost glass and stored at �80�C. For staining, sections were defrosted at

room temperature (RT) for 60 min and subsequently washed with�20�CClarks liquid (75 mL EtOH + 25 mL HAc) for 10 min followed

by 3 times 10 min of PBSwash. Sections were incubated for 120 min in blocking solution (PBS + 0.3% Triton X-100 + 4%NGS) at RT

and washed 3 times in PBS for 10 min. Following a 60-min incubation in 5% BSA (in PBS) at RT and subsequent PBS washing, sec-

tions were incubated in SA5193 antibody (1:1000, dissolved in 2% bovine-serum albumin) and anti-GluA2 antibody (1:200) overnight
Cell Reports 31, 107515, April 14, 2020 e4



at 4 �C. The sections were then washed for 3 times 10 min in PBS followed by 120 min of fluorescent antibody staining (1:200, Strep-

tavidin-Cy3) in 2%BSA at RT. After the fluorescent antibody staining, awash of 3 times 10 min of PBSwas followed by 2 times 10 min

wash with PB. The sections were then put in DAPI (200 mL in 50 mL 0.1 M PB) for 10 min. This was concluded by 2 times 10 min PB

wash. Following PBS washing, the sections were thionin-stained and permount-covered using standard protocols. Images were

taken using an upright confocal microscope (LSM 700, Zeiss, Oberkochen, Germany).

3D-SIM imaging and analysis
3D-SIM images were acquired using a Zeiss Elyra ps.1 microscope, fitted with bp 420-480, bp 495 – 575, bp 570 – 650 and lp 655

emission filters. Five rotations and five shifts of the illumination pattern were used to acquire raw images. A 3D volume was imaged

using a z stack with an interval of 110 nm. Raw images were reconstructed into high resolution images using the Zeiss ZEN software

on the default settings (segmentation of zeroth, first and second order were set on 100,100 and 83 respectively, where 100 is

maximum filtering, the generalized Wiener filter with a regularization of 10�6 was used to filter noise, images were baseline cut to

remove negative values).

Images were analyzed using ImageJ in the FIJI framework (Schindelin et al., 2012). The number of distinct synapses in which co-

localization was observed were determined using the maxima of individual Shisa6 and GluA2 spots in a single field of view at the

center of the 3D imaged volume. If Shisa6 spots were at a distance closer than 120 nm, they were defined as co-localizing.

Ex vivo electrophysiology
Following decapitation of the mouse under isoflurane anesthesia, the cerebellum was removed, and moved into an ice-cold ‘slicing

medium’. The slicing medium contained (in mM) 240 sucrose, 2.5 KCL, 1.25 Na2HPO4, 2 MgSO4, 1 CaCl2, 26 NaHCO3 and 10 D-

Glucose and was carbogenated continuously (95% O2 and 5% CO2). Sagittal slices, 250 mm thick, of the cerebellar vermis were

cut using a vibratome (VT1200S, Leica) and put in carbogenated artificial cerebrospinal fluid (ACSF) containing (in mM): 124 NaCl,

2.5 KCL, 1.25 Na2HPO4, 2 MgSO4, 2 CaCl2, 26 NaHCO3 and 15 D-Glucose. Slices were incubated for at least 1 hour at 34 ± 1�C
before the start of the experiment. Slice physiology was done at 34 ± 1�C unless otherwise specified in themethods section. Record-

ings were done in the presence of 100 mM picrotoxin. For mEPSC recordings 1 mm TTX was added. Whole-cell patch clamp record-

ings and cell-attached recordings were performed with EPC9 and EPC10-USB amplifiers (HEKA Electronics, Lambrecht, Germany)

using Pulse and Patchmaster software (HEKA Electronics). Recordings were excluded if the series (Rs) or input resistances (Ri)

changed by > 15%during the experiment, which was determined using a hyperpolarizing voltage step relative to the�65 mV holding

potential. Analysis of the sIPSC and mEPSC rise times, decay times (t), frequencies and amplitudes were done using custom-made

Python scripts, based on the deconvolution-based method for EPSC detection (Pernı́a-Andrade et al., 2012). Analysis of the AP

threshold (defined by a slope of > 20 mV/ms), AHP amplitude, decay time (t), spike count, and seal tests in intrinsic excitability ex-

periments was performed exclusively on the first AP elicited by a depolarizing current injection. All current clamp recordings were

analyzed using Clampfit (Molecular Devices). Spontaneous spiking rates in cell-attached experiments were analyzed using Clampfit,

after filtering the data with a 1.5 kHz low-pass filter and calculating the derivative of the original signal.

For whole-cell recordings PCs were visualized using upright microscopes (Axioskop 2 FS and Axio Examiner.D1, Carl Zeiss

Microscopy GmbH, Jena, Germany) equipped with a 40x objective. Recording electrodes (3–5 MU, 1.65 mm outside diameter

(OD) and 1.11 mm interior diameter (ID), World Precision Instruments, Sarasota, FL, USA) were prepared using a P-97 micropipette

puller (Sutter Instruments, Novato, CA, USA), and filled with an intracellular solution containing (mM): 120 K-Gluconate, 9 KCL,

10 KOH, 4 NaCl, 10 HEPES, 28.5 Sucrose, 4 Na2ATP, 0.4 Na3GTP (pH 7.25 – 7.35 with an osmolarity of 295 ± 5). Note that

we adjusted the osmolarity using sucrose. sIPSCs were recorded in the presence of NBQX disodium salt hydrate and APV

(Sigma-Aldrich, Missouri, United States), using an intracellular solution containing (mM): 150 CsCl, 1.5 MgCl2, 0.5 EGTA, 4 Na2ATP,

0.4 Na3GTP, 10 HEPES, 5 QX-314 (pH 7.25 – 7.35 with an osmolarity of 295 ± 5). mEPSCs were recorded at �75 mV using an intra-

cellular solution containing (in mM): 130 CsMeSO4, 4 MgCl2*6H2O, 0.2 EGTA, 10 HEPES, 4 Na2ATP, 0.4 Na3GTP, 10 phosphocre-

atine-disodium, 1 QX-314 (pH 7.25-7.35, osmolarity 295 ± 5). The forskolin mEPSCs were recorded with the addition of 50 mM FSK

dissolved in DMSO to the ACSF. The same internal solution was used for the CF elimination experiments. Cslow and Rseries

compensation were used for both sIPSC and mEPSC recordings, in order to improve the accuracy of measurements of the event

kinetics. For extracellular stimulation of PFs, patch electrodes were filled with ACSF and positioned in the upper third of themolecular

layer lateral to the soma of the patched PC. For afferent PF stimulation protocols intensities were varied between 3 – 15 mA, with 3 mA

increments for the experiments involving evaluation of stimulation strength to PC EPSC amplitude. For paired-pulse facilitation mea-

surements during PF–PC transmission, we used various inter-stimulus intervals (50 – 200 ms).

For CF stimulation, patch electrodes filled with ACSF were positioned near the patched PC soma in the surrounding granule layer.

We selected those recordings in which CF stimuli elicited clear all-or-none responses and lacked the co-activation of PC axons (iden-

tifiable by antidromic APs) for further analysis. For CF elimination (P10-P12 mice), experimental tissue was prepared in a similar way.

We systematically scanned the granule cell layer to elicit CF responses and recorded PC responses at �20 mV holding potential to

prevent voltage escape during the CF-evoked EPSCs.

The synaptic plasticity protocols for inducing LTP and long-term depression (LTD) were applied to lobules 5/6. In short, for synaptic

plasticity all recordings were done in voltage-clamp, except for the tetanus, which consisted of 8 pulses of PF-stimulation at 100 Hz

for 5 min (21 ± 1�C, LTP) or single-pulsed PF + CF stimulation (5 ms interval) at 1 Hz for 5 min (34 ± 1�C, LTD). We evaluated the syn-
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aptic plasticity by the change in PF-EPSC (baseline at 0.05 Hz) relative to themean value calculated during the last 5 min pre-tetanus.

For the FSK-dependent LTP induction we added FSK dissolved in DMSO to the ACSF up to a concentration of 50 mM FSK.

Cell-attached (CA) recordings weremade using similar patch pipettes as in the previously described experiments, and using ACSF

as an internal solution. Recordings were made in voltage clamp mode in lobules I-III and lobule X of the vermal cerebellum to allow a

comparison between anterior and posterior activity, respectively. Spontaneous spiking rates were recorded in the presence of PTX,

NBQX and APV, in order to eliminate synaptic input. Intrinsic excitability was measured using sequential current injections in current

clamp mode. Cells were held at a holding current equivalent to a �65 mV holding potential, and injected with 500 ms long current

pulses ranging from �100 pA to +1000 pA, relative to the holding current, in 100 pA increments (5 s inter-sweep interval).

In vivo electrophysiology
In vivo recordings were performed as recently described (Zhou et al., 2015). In short, an immobilizing pedestal was fixed on the skull

(see for details the section on ‘‘compensatory eye movements’’ below) and a craniotomy (Ø 1 mm) was performed on the occipital

bone under general anesthesia with an isoflurane/O2mixture (5% induction, 1.5 – 2.0%maintenance). The craniotomywas protected

by a recording chamber made with Charisma (Heraeus Kulzer, Germany) and closed with bone wax. After 3 days of recovery mice

were head-fixed to a head bar and the body was restrained in a custom-made tube for electrophysiological recordings. PCs were

recorded from vermal lobules I–III (pitch angle: �40�) and X (pitch angle: �65�) using borosilicate glass pipettes (OD 1.5 mm, ID

0.86 mm, Sutter Instruments, USA) mounted on a digital 3-axis drive (SM-5, Luigs & Neumann, Germany). PCs were identified by

the presence of simple and complex spikes, and determined to be from a single unit by confirming that each complex spike was

followed by a CF pause. All in vivo recordings were recorded amplified, filtered and digitized (Axon Multiclamp 700B, CED Po-

wer1401) and were analyzed offline using Spiketrain (Neurasmus BV, Rotterdam, the Netherlands, www.neurasmus.com), running

under MATLAB (Mathworks, MA, USA). For each cell the firing rate, CV and mean CV2 were determined for simple and complex

spikes, as well as the CF pause. The CV is calculated by dividing the s.d. by the mean of the interspike intervals, whereas CV2 is

calculated as 2 x |ISIn+1�ISIn|/(ISIn+1+ISIn). Both are measures for the regularity of the firing, with CV reflecting that of the entire

recording and mean CV2 that of adjacent intervals, making the latter a measure of regularity on small timescales. The CF pause is

determined as the duration between a complex spike and the first following simple spike.

Compensatory eye movements
Mice between 6 and 12weeks of agewere prepared for head-restrained recordings of compensatory eyemovements. These types of

recordings have been described in detail previously (Schonewille et al., 2010). In order to head restrain themice during the eyemove-

ment task a small pedestal was attached using Optibond primer and adhesive (Kerr, Bioggio, Switzerland) under isoflurane anes-

thesia (induction with 4% and maintained at 1.5% concentration). After a recovery period of two to three days the mouse head

was restrained by fixation with screws on the pedestal at the experimental setup. A round screen with a random dotted pattern

(the drum) surrounded the mouse during the experiment. The optokinetic reflex (OKR), vestibulo-ocular reflex (VOR) and the light

guided vestibulo-ocular reflex (VVOR) were induced using a sinusoidal rotation of the drum (OKR) in light, rotation of the table in

the dark (VOR) or the rotation of the table and drum (VVOR) in the light. The motor behavior was assessed by rotating the table

and/or drum at 0.1 to 1 Hz with a fixed 5� amplitude. In order to evaluate motor learning, a mismatch between visual and vestibular

input was created. Rotating both the visual and vestibular stimuli in phase (at the same amplitude) induced a decrease of gain;

rotating the drum at greater amplitude relative to the table induced the so-called phase reversal of the VOR (day 1, 5�; day 2,

7.5�; day 3 – 4, 10�). Both training protocols were induced at 0.6 Hz with table rotation amplitude of 5�. For eye illumination during

the experiments two table fixed infrared emitters (output 600 mW, dispersion angle 7�, peak wavelength 880 nm) and a third emitter,

which produced the tracked corneal reflection (CR), were mounted to the camera and aligned horizontally with the optical axis of the

camera. Themovements of the eyeswere recordedwith eye-tracking software (ETL-200, ISCAN systems, Burlington, NA, USA). Gain

and phase values of eye movements were calculated using MATLAB (MathWorksInc, City, Country).

Eyeblink conditioning
Shisa6L7 KOmice and control micewere anesthetizedwith an isoflurane/oxygenmixture (5% for induction, 1.5 – 2% formaintenance).

After a local scalp injection of bupivacaine hydrochloride (2.5 mg/ml, Bupivacaine Actavis) we made a sagittal scalp incision of

2 – 3 cm length. Next, we carefully removed the exposed periosteum and further scratched the skull using an etchant gel (Kerr,

Bioggio, Switzerland). After this, we placed a construct allowing head-fixation using Optibond primer and adhesive (Kerr, Bioggio,

Switzerland) and Charisma (Heraeus Kulzer, Armonk, NY, USA). After surgery, mice had 3 – 5 days to recover.

All behavioral experiments were conducted using head-fixed mice that were placed on top of a cylindrical treadmill on which they

were allowed to walk freely. The treadmill consisted of a foam roller (diameter 15 cm, width 12 cm; Exervo, TeraNova EVA) with a

horizontal metal rod through the axis that was connected with a ball bearing construction to two solid vertical metal poles. A horizon-

tal messing bar was fixated to the same vertical poles at 3-5 cm above the treadmill. Mice were head-fixed to this bar using 1 screw

and 2 pins, thereby ensuring perfect head-fixation. This entire setup was placed in a sound- and light-isolating chamber. National

Instruments (NI-PXI) processorswere used to control experimental parameters and to acquire the eyelid position signal. Eyelidmove-

mentswere recordedwith themagnetic distancemeasurement technique (MDMT), whichmakes use of an NVEGMRmagnetometer,

positioned above the upper left eyelid, that measures movements of a minuscule magnet (1.53 0.73 0.5 mm) that is placed on the
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lower eyelid of the animal with superglue (cyanoacrylate). This way, MDMT allows high spatio-temporal detection of eyeblink kine-

matics(Koekkoek et al., 2002). The unconditioned stimulus (US) consisted of a weak air-puff applied to the eye (30 psi, 10 ms dura-

tion), which was controlled by an API MPPI-3 pressure injector, and delivered via a 27.5 gauge needle that was perpendicularly posi-

tioned at 0.5 – 1 cm from the center of the left cornea. Prior to training the experimenter always carefully inspected whether the needle

opening was positioned exactly perpendicular to the center of themouse’s cornea so that the air puff would hit the cornea and not too

much the surrounding areas and would thus elicit reliable reflexive eyeblinks. The conditional stimulus (CS) was a green LED light (CS

duration 260 ms, LED diameter 5 mm) placed 10 cm in front of the mouse’s head. Because we performed our experiments in almost

complete darkness this small LED light was a salient stimulus, which could be easily detected by both eyes. The training consisted of

2 daily habituation sessions, 1 baseline measurement and 6 daily acquisition sessions. During the habituation sessions, mice were

placed in the setup for 30 – 45 min, during which the air puff needle (for US delivery) and green LED (for CS delivery) were positioned

properly but no stimuli were presented. On the day of acquisition session 1, each animal first received 20 CS-only trials as a baseline

measure, to establish that the CS did not elicit any reflexive eyelid closure. During each daily acquisition session, animals received

200 paired CS-US trials and 20 CS only trials. The interval between the onset of CS and that of US was set at 250 ms. Because of the

inherent delay in the delivery of air puff of 14 ms, we triggered the air puff at 236 ms after CS onset so that it would hit the cornea

exactly at 250 ms after CS onset. The inter-trial interval was set according to the following constraints: at least 10 s had to elapse,

the eyelid had to be open below a predetermined threshold, and eyelid position had to be stable for at least 1 s for a trial to begin.

During all training sessions, the experimenter carefully inspected threshold and stability parameters and adjusted them if necessary.

All experiments were performed at approximately the same time of day by the same experimenter.

Individual eyeblink traces were analyzed automatically with custom software (LabVIEW or MATLAB) in a five-step process. First,

trials with significant activity in the 500ms pre-CS period were regarded as invalid for further analysis. Second, trials were normalized

by aligning the 500 ms pre-CS baselines and calculating the averaged UR amplitude in Volts per session. The voltage corresponding

with a full closure was further used in the analysis of the eyeblink traces as the 100% value reflecting full eyelid closure (±1mmmove-

ment), and other values like CR amplitude were expressed relative to this 100% value. Third, in valid normalized CS-only trials, eyelid

movements larger than 5% of the 500 ms pre-CS period and with a latency to CR onset between 10 – 250 ms and a latency to CR

peak of 25 – 500 ms (both relative to CS onset) were considered as conditioned responses (CRs). Fourth, based on this trial-by-trial

analysis we calculated for each session per mouse (1) the percentage of eyeblink CRs, (2) the averaged amplitude in the CS-US in-

terval (based on all valid trials and not thus only for trials in which a CR was present), and (3) timing parameters such as latency to CR

onset and latency to CR peak time relative to CS onset (based on only these trials wherein a CR is present). Fifth, we calculated group

averages (Shisa6L7 KO versus controls) for the same parameters (1 – 3) and determined statistically significant differences using

Repeated-measures ANOVA. Data was considered statistically significant if p < 0.05.

Griptest
The strength of the mice was determined using a grip test. By placing the forepaws of a grid attached to a force gauge (BIOSEB,

Chaville, France) and steadily pulling the mice by the tail. The grip strength was defined as the maximum weight pulled before

releasing the grid. The test was performed over the course of four consecutive days.

Rotarod
Mice were trained to walk on the accelerating Rotarod (Ugo Basile, Comerio Varese, Italy). The Rotarod consisted of a cylinder with a

diameter of 3 cm. The starting speed of the Rotarod was 3 rotations per minute (rpm) and was set to a maximum of 40 rpm in 270 s.

Themaximumwalking time on the rotarod was 300 s. Latency to fall was recorded on themoment themouse fell down or clang to the

rod for three turns. This experiment consisted of four dayswith four daily turns on the Rotarod. On the fifth day there was an additional

trial set to 80 rpm. The interval between each turn was 1 h.

Balance Beam
The Balance Beam is a small rod with a diameter of 12 or 6 mm. The Balance Beamwas elevated to 43 cmwith two steel rods at both

ends. The home cage of the animal was placed at the end of the rod. Mice were placed on the beam and had to walk from one end of

the beam to the other end where their home cage was located. The length of this trajectory was 80 cm.Wemeasured the time it took

for the mice to cross the beam. In addition, we analyzed video material to inspect if the mice presented with misstep behavior.

ErasmusLadder
Mice were tested on ErasmusLadder (Noldus, Wageningen, NL). The ErasmusLadder is a fully automated system consisting of a hor-

izontal ladder between two shelter boxes. It has 37 rungs on each side of the ladder and all the rungs are attached to custom-made

pressure sensors that are continuously monitored (Vinueza Veloz et al., 2015). In the current study, mice were tested in 5 daily ses-

sions, during which mice were trained to walk between two shelter boxes for 50 trials each day. Step length and step time were

defined as the distance and time between two consecutive touches from the right front limb, respectively.
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QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical analyses were performed using SPSS, Python, R or Graphpad Prism. Data in the figures is presented as mean ± SEM.

Sample sizes (n) are present in all Figure legends. The p values are indicated in the results section. Mean ± SD, Brown-Forsythe tests

for homogeneity of variances, type of statistical analysis, test-statistics and exact p values are reported in data Table S3. Extensive

statistics related to Figures 2 and 3 are reported in additional data Tables S1 and S2. All statistical analyses of the SWATH data were

performed on Log2-transformed data (see additional data Table S2). Non-parametric analysis of longitudinal factorial data was per-

formed using the nparLD package for R (Noguchi et al., 2012).

Linear mixed models were performed using the lme4 (Bates et al., 2015) and lmerTest (Kuznetsova et al., 2017) packages in R.

GluA2 and GluA3 enrichment in P2 and PSD fractions was tested using a directional one-tailed independent t test, as our hypothesis

based on the SWATH-MS data was whether enrichment was reduced in the Shisa6L7 KOmice. All other tests utilized two-tailed tests.
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