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ARTICLE INFO ABSTRACT

Purpose: Quantification of the T," relaxation time constant is relevant in various magnetic resonance imaging
applications. Mono- or bi-exponential models are typically used to determine these parameters. However, in case
of complex, heterogeneous tissues these models could lead to inaccurate results. We compared a model, provided
by the fractional-order extension of the Bloch equation with the conventional models.

Methods: Axial 3D ultra-short echo time (UTE) scans were acquired using a 3.0 T MRI and a 16-channel surface
coil. After image registration, voxel-wise T," was quantified with mono-exponential, bi-exponential and frac-
tional-order fitting. We evaluated all three models repeatability and the bias of their derived parameters by
fitting at various noise levels. To investigate the effect of the SNR for the different models, a Monte-Carlo
experiment with 1000 repeats was performed for different noise levels for one subject. For a cross-sectional
investigation, we used the mean fitted values of the ROIs in five volunteers.

Results: Comparing the mono-exponential and the fractional order T»" maps, the fractional order fitting method
yielded enhanced contrast and an improved delineation of the different tissues. In the case of the bi-exponential
method, the long T»" component map demonstrated the anatomy clearly with high contrast. Simulations showed
a nonzero bias of the parameters for all three mathematical models. ROI based fitting showed that the T, values
were different depending on the applied method, and they differed most for the patellar tendon in all subjects.
Conclusions: In high SNR cases, the fractional order and bi-exponential models are both performing well with
low bias. However, in all observed cases, one of the bi-exponential components has high standard deviation in
T,*. The bi-exponential model is suitable for T,* mapping, but we recommend using the fractional order model
for cases of low SNR.
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1. Introduction

Tissues with low water content such as tendons, ligaments, menisci,
or cortical bone have extremely short T»" decays [1]. The MR signal of
these tissues rapidly decreases with longer echo times. Therefore, in
most of the routinely used MR sequences [2-5] they exhibit very low
signal intensity. With short echo times, fast spin echo (FSE) sequences
provide more opportunities to visualize these tissues, but due to T,
blurring and the lack of the efficiency of the acquisition, fine-scale
structures are still not well depicted [6]. However, if the echo time (TE)
is drastically reduced, the signal from these tissues can be detected as
well. The TE reduction gives the opportunity to characterize the tissues
and to manipulate the visibility [7]. Currently there is an increasing
interest in MR pulse sequences which provide extremely short echo

time, such as ultrashort TE (UTE) sequence [8], zero TE (ZTE) tech-
nique [9], single point imaging technique [10], and hybrid techniques
(e.g. PETRA [11] and AWSOS [12]). In order to quantify relaxation
times, proper mathematical models and post-processing algorithms are
as important as the acquisition strategy. Due to relatively new devel-
opments in MRI, quantification of multiple T» and T»" components has
become available [13]. These components can be used as markers for
different pathophysiological conditions. For example T»* has been
proposed as a marker for subclinical changes in menisci [15]. In gen-
eral, the assumption is that two types of water exist in connective tis-
sues, free and bound water. In the bound water compartment the mo-
lecules are assumed as bound to collagen fibers or proteoglycan
molecules. In case of two-component T>" analysis, the shorter compo-
nent (assumed as bound water) is usually only detectable with
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ultrashort/zero echo times sequences [30]. The problem with the
multiple component analysis is the high sensitivity to noise [14,19].

In case of complex, heterogeneous or porous tissues the simple
mono-exponential or sum of exponential solution of the Bloch equation
cannot perfectly describe the dynamics of the relaxation. In such
complex materials we observe stretched-exponential or power law be-
havior [20,21,26,27]. Fractional order generalization of the Bloch
equation provides an alternative mathematical model to describe the
observed signal in such tissues. It offers a description of the relationship
between relaxation processes and internal material structure. In this
study we tested the previously introduced fractional order model for
patellar tendon T," quantification. We investigated three different
models using UTE acquisitions: mono-exponential, bi-exponential and
fractional order models and assessed their repeatability.

2. Methods

In this study we compared three different mathematical models and
evaluated their repeatability and the bias of their derived parameters by
fitting at various noise levels. The mathematical models of signal in-
tensity as a function of echo time were the mono-exponential, bi-ex-
ponential and fractional order models.

2.1. Mathematical models

Fractional calculus defines real or complex number powers of the
differentiation operator as well as of the integration operator and de-
velops a calculus for these operators that generalizes the classical op-
erators [22,23]. We used a generalization of Bloch equations with
convolution kernels from Magin et al. [[21]]. The exact forms of these
kernels are unknown, and power law kernels with fading memory have
been introduced. The fractional order relaxations are the following for
T, relaxation:
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where M,(t) is the longitudinal magnetization, M, is the steady state
magnetization, and Ej is the stretched Mittag-Leffler (M-L) function:
k
_ 00 Z — ~ . .
Es(@) = 2o @D Note that for f 1, the M-L function is
equivalent to the simple exponential function.
The fractional order T,* relaxation model is given by:
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where M,,(0) is the transversal magnetization at TE = 0, and M, () is
the transversal magnetization at the steady state. The M,,(0) is related
to the proton density, and a can be interpreted as the memory of the
spin system.

The mono-exponential T,* relaxation model is given by:

_TE

M, (TE) = ape T + a; 3

where a, is the signal intensity at TE = 0, and a; is the baseline [29].
The bi-exponential T»" relaxation model is given by:

_TE _TE
M, (TE) = by-e Ts + by-e Bi + b, @
where by and b, are the component sizes, To, " is the short T>" com-
ponent, T, ;* is the long T," component, and b, is the baseline.
The tissue-related parameters are the corresponding T»" values. In
case of the fractional order method parameter « is also regarded as an
intrinsic parameter.
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2.2. Volunteers

In order to compare the performance of the different methods, we
have randomly chosen 5 volunteers from a clinical study on patellar
tendinopathy (PT). We have considered PT suitable to evaluate the
different fitting models on a disease condition [31].

The single-center prospective observational study was approved by
the local institutional review board. The volunteers were consecutively
recruited between January 2016 and January 2019. To be eligible for
inclusion, volunteers had to be aged 18-35 years, had to perform sports
involving frequent jumping or cutting maneuvers for at least 3 times per
week, and have a clinical diagnosis of patellar tendinopathy which was
confirmed by ultrasound.

PT is a sports-related overuse injury of the patellar tendon occurring
in tendon-loading sports, such as basketball, volleyball and soccer [16].
PT is associated with morphologic changes in tendon microstructure,
with mucoid degeneration, increased levels of hydrophilic (water-at-
tracting) glycosaminoglycans and water content as a result [17,18].

2.3. MR acquisition

MRI of the symptomatic knee was performed using a 3 T MR system
(Discovery 750, General Electric, Boston, Massachusetts, USA) using a
flexible 3.0 T 16-channel surface coil (NeoCoil, Pewaukee, Wisconsin,
USA). The volunteers were scanned feet-first in supine position with the
knee flexed in 30 degrees. The knee was fixed by a support base for
knee stabilization (NeoCoil, Pewaukee, Wisconsin, USA). The center of
the surface coil was aligned with the patellar apex. Prior to scanning
high-resolution images and 3D-UTE sequences [32,33], we acquired 3D
variable flip angle FSE sequences with and without fat saturation in
order to provide an overview of the entire knee and to use these images
as localizer to prepare the UTE-scans. Regarding 3D-UTE-MRY], a total of
16 echoes were acquired at TEs of 0.032, 0.49, 0.97, 2.92, 4.87, 6.82,
8.77, 10.72, 13.6, 12.67, 16.57, 18.52, 18.7, 20.47, 22.42, 24.37,
26.32 ms, where TE was defined as the start of the cones readout. The
16 echoes were acquired in 4 separate multi-echo sequences containing
4 echoes in interleaved order. For each multi-echo acquisition, the same
TR was used. The full MR acquisition protocol of the patellar tendino-
pathy study is listed in Table 1.

2.4. MR imaging analysis

The post-processing of the 3D-UTE images was performed with an
in-house developed script using Matlab software (R2015b;
TheMathWorks). All three models where fitted to all echoes of the da-
taset. The relaxation time per voxel was estimated using the FIT rou-
tine, and mean relaxation time and the standard deviation inside dif-
ferent regions of interest (ROI) were calculated. The Mittag Leffler
function (E,) uses the implementation of Garrappa [24]. ROI's were
manually drawn inside tendon (patellar tendon), bone marrow (femur)
and muscle (sartorius muscle), and each ROI contained approximately
50 voxels (Fig. 1). The voxel based fitting was used to compare the
resulting maps from the different models by visual inspection. ROI
based fitting (fit on mean over ROI) was used for quantitative mea-
surements, and to test the effect of the signal-to-noise ratio (SNR).
Additionally the mean T," value is given for the different models. For a
cross sectional investigation we used the mean fitted values of the ROIs
of five volunteers.

2.5. Effect of signal to noise ratio

To investigate the effect of the SNR for the different models, we
performed a Monte-Carlo experiment with 1000 repeats for different
noise levels in case of one volunteer. To obtain Rice distributed data
with lower SNR we computed the magnitude after adding zero mean
complex Gaussian noise with standard deviation o to the original ROI
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Table 1
Imaging protocol for patellar tendon imaging.
Sequence 3D PD CUBE 3D PD CUBEFS 3D ME-GRE 3D ME-UTE 3D ME-UTE 3D ME-UTE 3D ME-UTE
Matrix 384 x 384 384 x 384 400 x 400 252 x 252 252 x 252 252 x 252 252 x 252
Scan plane Sagittal Sagittal Coronal oblique  Axial oblique Axial oblique Axial oblique Axial oblique
Fat saturation NONE Fat Fat Special 2 excitations per FS 2 excitations per FS 2 excitations per FS 2 excitations per FS
FOV (cm) 15.0 15.0 16.0 15.0 15.0 15.0 15.0
Resolution (mm®) 0.4 X 0.4 x 1.0 0.4 x 0.4 x 1.0 0.4 mm® 0.6 X 0.6 X 1.5 0.6 X 0.6 X 1.5 0.6 X 0.6 X 1.5 0.6 X 0.6 X 1.5
Slice thickness 1.0 1.0 0.4 1.5 1.5 1.5 1.5
(mm)
Number of slices 120 120 52 60 60 60 60
TE (ms) 30.0 30.0 3.4/8.5/13.6/ 0.032/4.87/12.67/ 0.49/6.82/14.62/ 0.97/8.77/16.57/ 2.92/10.72/18.52/
18.7 20.47 22.42 24.37 26.32
Number of echoes 1 1 4 4 4 4 4
TR (ms) 1200.0 1200.0 22 83.4 83.4 83.4 83.4
Flip angle () 7 17 17 17 17
Bandwidth 83.33 83.33 83.33 125 125 125 125
( = kHz)

NEX 0.5 0.5 1.0 1.0 1.0 1.0 1.0
Scan time (mm:ss)  03:17 03:18 05:27 13:15 13:15 13:15 13:15

N = LJOO,

SNR ©
where
mean signal(inside the tissue)
SNR = s
o(noise) )]

Fig. 1. ROIs for the quantitative measurements. Red - patellar tendon, blue -
bone marrow (femur), and green - muscle (sartorius muscle). (For interpreta-
tion of the references to color in this figure legend, the reader is referred to the
web version of this article.)

means.

We selected 12 o from 1% to 35% of the mean inside the ROI of the
TE = 0.032 ms image. All three models were fitted to the realizations.
The mean and the standard deviation of the resulting parameters were
taken. Two datasets were used, extracted from the ROI of the patellar
tendon and the muscle. The resulting bias from the original parameters
and the standard deviation were investigated. The more bias appears,
the less robust is the method, and the higher the standard deviation is,
the less repeatable the fitting is. The difference between the fitting re-
sults of an original derived parameter (p,), and the mean of that derived
parameter over the 1000 Monte-Carlo simulations (p,) is what we refer
to as the bias (B):

2, = Pal 100,
P, 5)

B=

This bias is shown as function of the noise percentage (N), defined
as:
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where mean signal (inside the tissue at TE = 0.032 ms) is the mean
signal value of the chosen ROI, and o(noise) is the standard deviation of
the signal value in this ROI.

3. Results

The bias and the repeatability of the T»" parameter estimation using
three different fitting models at different noise levels were the main
interest in our investigation. Simulations showed (see in Figs. 2 and 3) a
nonzero bias for all three mathematical models. Our main interest was
the patellar tendon, where the original SNR was 39. For the muscle this
value was 26. In case of the patellar tendon the resulting highest bias
(=200%) appeared for only 10% of extra added noise for the short bi-
exponential component. In contrast, the highest values for the bias for
the other 2 fitting models and for the other bi-exponential component
were below 80% after 35% of extra added noise. The mono-exponential
and the fractional order model showed similar behavior, but the bias of
the mono-exponential model's in the patellar tendon was a few percent
lower. For the muscle the bias of the long bi-exponential component
exceeded 1000% after 15% of extra added noise. The short bi-ex-
ponential component had a lower but still =100% bias after 20% of
extra added noise. The bias of the other two models (mono-exponential
and fractional order) was below 50%. None of the component sizes of
the bi-exponential model were negligible (Table 2 b, b;) so the bias was
not the result of the small component size.

In the patellar tendon the T, ;* had the highest coefficient of var-
iation (=50%). The T, and a values from the fractional order, the
mono-exponential and the short bi-exponential models had a coefficient
of variation below 15%. In case of the fitting in the muscle the coeffi-
cient of variation was below 15% for all of the three models.

Fig. 4 shows representative axial T,* and @ maps for all three
models. On visual inspection, the fractional order maps showed the
anatomy clearly, the contrast between tissues was higher than for the
mono-exponential map, and the parameter maps were homogenous
within the tissues. Clearly, when comparing the mono-exponential and
the fractional order maps, the fractional order fitting method yielded
enhanced contrast, an improved delineation of the different tissues, and
a higher homogeneity inside a given tissue. In case of the bi-exponential
method the long component map demonstrated the anatomy clearly
with high contrast. Nevertheless, the short component map exhibited
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Trend of the error - Patellar tendon
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Fig. 2. Bias of T2* in the patellar tendon as given by Eq. (5). B = “’";7"7"-100 as function of the noise level N. With extra added noise we assessed the robustness of
(]

the different fitting methods. Extra added noise is equivalent to the decreasing SNR. The level of the extra added noise ranged from 1% to 35% of the mean signal
inside the tissue Eq. (6). The original SNR was 39. The standard deviation over the 1000 different fits in the Monte-Carlo experiment is shown as error bars. The

o(noise)

horizontal axis shows Noise = ————————
mean signal(inside the tissue)

-100 (Eq. (6).).
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Fig. 3. Bias of T2* inside the muscle. The method is the same as for the patellar tendon. The original SNR of the muscle was 26.

Table 2

Comparison of the different fitting methods in different tissues for one volunteer. The indicated values are the mean =+ the standard deviation of the T»"-s in [ms]

and the a parameter. The chosen tissues were the patellar tendon, muscle (sartorius muscle) and the bone marrow (of the femur). The results are from the ROIs =50

voxels.
Bi-exponential Mono-exponential Fractional order
T, 5" [ms] Ty, ;" [ms] by b T,* [ms] T,* [ms] a
Patellar tendon 4.56 = 0.68 7.25 = 9.05 1412.4 *= 247.68 448.41 = 102.05 1.4 = 7.41 5.05 = 0.97 0.79 = 0.02
Muscle 1.10 = 3.16 22.71 = 5.49 103.53 * 44.24 428.29 + 71.24 24.84 *+ 1.68 24.08 = 1.93 0.79 = 0.06
Bone marrow 0.34 = 0.36 10.31 + 12.79 327.59 =+ 108.16 112.41 + 105.52 0.96 = 0.82 0.51 += 0.15 0.5 = 0.15

poor contrast.

Table 2 shows the mean quantitative parameters (X;, where i stands
for the different fitting parameters) and the standard deviation over the
ROI's (0;) for one volunteer for each of the fitting methods. The T,*
values were different depending on the applied method, and they dif-
fered most for the patellar tendon. In case of the muscle the derived T,*
values were within the standard deviation for all of the three different

models. For the bi-exponential model the component sizes were in-
cluded, and this showed that none of the compartments were negligible
(std < mean value). The T," values in the bi-exponential model
showed the largest standard deviation among the models. In all tissues,
the T," of one of the components had a larger standard deviation than
the average value. In the patellar tendon the mono-exponential model
showed similar behavior to the bi-exponential one, while the T,* of the
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[b] Bi-exponential method
long T2* component

[e] Fractional order

method T2*

Fig. 4. [a] Bi-exponential method T, ", [b] bi-exponential method T, ;*, [c] mono-exponential method T,", [d] fractional order a, [e] fractional order T,". T," maps
for all three different fitting models. The fitting was not performed in the background, shown black in the images. The a parameter is dimensionless, the T," values are

in ms.

fractional order model had a lower standard deviation.

For ROI based fitting we made a comparison for the five subjects.
Table 3 shows the mean (X), and the standard deviation (ox) of the
quantitative parameters over the five volunteers and the mean of the
standard deviations within the ROIs; the pooled standard deviations
(@). ox shows the variability over their individual anatomies, & contains
more information by describing how much the parameters differs inside
the given ROI for all volunteers. The bi-exponential model short T5"

95

value shows the largest standard deviation for the G for all three tissues.
The fractional order model's highest variance is 14% for the same value,
while the mono-exponential's is 15%.

4. Discussion

Our simulations show that the results of parameter fitting vary with
signal to noise ratio. One component of the bi-exponential method
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Table 3

Comparison of the different fitting methods in different tissues in case of five volunteers. The indicated values are the mean of the five volunteers: X, the standard
deviation over the five volunteers oy, and the pooled standard deviations: ©. The T,"-s are in [ms] and the a parameter is dimensionless. The chosen tissues were the
patellar tendon, muscle (sartorius muscle) and the bone marrow (of the femur). The results are from the ROIs =50 voxels.

Bi-exponential Mono-exponential Fractional order

Ty, s [ms] Ty, ;" [ms] b b Ty" [ms] Ty* [ms] a
Patellar tendon X 4.01 15.46 1477.56 457.81 7.17 5.36 0.77
Ox 0.44 8.08 359.67 94.19 4.29 0.55 0.55
T 4.98 5.18 52.60 51.59 0.18 0.46 0.02
Muscle X 0.49 9.78 63.19 332.40 0.62 0.69 0.46
ox 0.02 3.08 23.30 31.58 0.06 0.02 0.04
< 3.38 3.14 43.67 45.03 0.03 0.1 0.03
Bone marrow X 0.28 24.09 376.78 86.18 14.42 22.53 0.74
ox 0.05 2.74 58.74 5.64 1.84 2.82 0.04
T 0.16 2.63 24.46 7.20 0.93 0.71 0.02

(depending on the type of tissue) has extremely large (=100%) bias
from the original value at a given noise level after 10% of extra added
noise. In the patellar tendon, the component with the larger bias is the
one with the larger component value (76%) and, in the case of the
muscle, the long component (80% component value) has the largest
bias. While the bias curve is flat, the ROI based standard deviation is the
highest in the case of the bi-exponential long component, so the re-
peatability of the values is low. The bias curve for the mono-ex-
ponential and the fractional order models are close to each other in
both the patellar tendon and the muscle. However, due to the tissue
characteristics, it is known that the T,* decay curves are not simply
mono-exponential. We may expect mono-exponential behavior inside
the muscle, but a previous study [28] and the a parameter as well as the
bi-exponential component sizes show that the muscle tissue is hetero-
geneous.

Our results clearly demonstrate that, in the case of lower SNR, the
bi-exponential model has low repeatability. None of the components
simultaneously has small bias and low standard deviation. In this study,
the focus was on different regions of the knee, however, the acquisition
was optimized for the patellar tendon, and a surface coil (NeoCoil,
Pewaukee, Wisconsin, USA) was used to maximize SNR. This experi-
mental setup resulted in sufficiently high SNR at the tendon, but that is
not feasible for all the tissues. The difference in bias between the mono-
exponential and the fractional order model is only a few percent
(=10%), and in the case of lower SNR the fractional order model has
the smallest standard deviation. The heterogeneity of the tissues also
indicates that the fractional order or the bi-exponential models are the
most appropriate models for fitting.

The parametric maps of the different methods demonstrated dif-
ferences in contrast and tissue homogeneity. Comparing the mono-ex-
ponential map to the long T," bi-exponential map, we observed a si-
milar trend as both of them give more contrast, and the tissue outlines
are more visible. The short T>* bi-exponential map did not distinguish
the different tissues clearly, and the contrast to noise level was low. The
a map offers the best anatomical visualization along with a high tissue
contrast, and it gave different values for the different tissue types. On

found that this reaches > 100% of X in case of the patellar tendon, and
the muscle for the bi-exponential method, while in case of the other two
methods it is maximum 15% of X for the T," parameters. As 0. is
much smaller than the difference among the T,*. The main reason be-
hind the different T,* values is the chosen fitting method as in most
cases or5 is greater than ory..

In conclusion, when SNR is high, a fractional order and bi-ex-
ponential model are both performing well with low bias. However, in
all observed cases, one of the bi-exponential components has high
standard deviation in T>" (=50%). The bi-exponential model is suitable
for T," mapping, but we recommend to use the fractional order model
in the case of low SNR.
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