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Abstract

Alterations in the DNA methylation pattern of endometriotic lesions and endometrium of en-
dometriosis patients have been proposed as one potential factor accompanying the endometriosis
development. Although many differentially methylated genes have been associated with the patho-
genesis of this disease, the overlap between the results of different studies has remained small.
Among other potential confounders, the impact of tissue heterogeneity on the outcome of DNA
methylation studies should be considered, as tissues are mixtures of different cell types with their
own specific DNA methylation signatures. This review focuses on the results of DNA methylation
studies in endometriosis from the cellular heterogeneity perspective. We consider both the studies
using highly heterogeneous whole-lesion biopsies and endometrial tissue, as well as pure cell
fractions isolated from lesions and endometrium to understand the potential impact of the cellular
composition to the results of endometriosis DNA methylation studies. Also, future perspectives on
how to diminish the impact of tissue heterogeneity in similar studies are provided.

Summary Sentence

Cellular heterogeneity of endometriotic lesions and endometrial biopsies has significant impact
on the results of DNA methylation studies in endometriosis.

C© The Author(s) 2018. Published by Oxford University Press on behalf of Society for the Study of Reproduction. All rights reserved.
For permissions, please e-mail: journals.permissions@oup.com

273

D
ow

nloaded from
 https://academ

ic.oup.com
/biolreprod/article-abstract/99/2/273/4950388 by ELN

ET G
roup Account user on 26 February 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at Tartu University Library

https://core.ac.uk/display/322658107?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.oxfordjournals.org
mailto:merli.saare@ut.ee
mailto:journals.permissions@oup.com


274 M. Saare et al., 2018, Vol. 99, No. 2

Key words: endometriosis, epigenetics, DNA methylation, tissue heterogeneity, deconvolution.

Introduction

DNA methylation is a common epigenetic process, occurring mainly
in CpG dinucleotide-rich areas, referred as CpG islands, where the
cytosine nucleotide is converted by DNA methyltransferases into 5´-
methylcytosine (5mC). Large majority of annotated gene promoters
are associated with CpG islands and methylation of these islands
may result in downregulation or silencing of the gene expression [1].
Thus, the DNA methylation has crucial role in regulation of many
fundamental cellular processes, including genome regulation, devel-
opment, and maintenances of tissue-specific gene expression pattern.
Alterations disturbing DNA methylation/gene expression may initi-
ate pathologic processes and contribute to the development of many
diseases [2]. In recent years, alterations in the DNA methylation
process have also been considered as one possible mechanism be-
hind endometriosis development.

In addition, a functionally different type of DNA modification,
namely hydroxymethylation, has recently been described [3,4]. Ten-
eleven translocation (TET) proteins are responsible for creating 5-
hydroxymethylcytosine (5hmC) [4] that is most abundant within the
central nervous system, but has also been detected in other tissues
including endometrium [5–8], and can contribute to the regulation
of gene expression in endometriosis.

However, the number of studies evaluating the DNA methylation
profiles in endometriosis has remained relatively moderate and only
first attempts have been done to elucidate the possible role of hydrox-
ymethylation in the disease development. To date, around 30 studies
using both candidate gene-based and epigenome-wide association
studies (EWAS) approaches have been conducted to uncover the
DNA methylation changes in endometriotic lesions, in endometrium,
and also in in vitro cultured endometrial stromal cells from lesions
and endometrium (Tables 1–3). Despite the fact that these studies
have brought out a large number of differentially methylated genes
(e.g. Nuclear receptor subfamily 5 group A member 1 [NR5A1],
Homeobox A10 [HOXA10], Progesterone receptor [PGR], GATA
binding protein 2 [GATA2]) that could be associated with disease
initiation, progression, and pathogenesis, the overlap between the re-
sults of different studies has remained small and alterations in DNA
methylation patterns reported in one study are seldom confirmed by
others. As the understanding about the nature of differential DNA
methylation in different tissues and cell types is constantly evolving
and there is clear evidence about the normal variability in DNA-
methylation signature in different tissues and cells [9–11], it can be
assumed that one potential reason for varying results of endometrio-
sis studies may be hidden in the tissue/cell type heterogeneity
(Figure 1). In endometriosis studies, different strategies have been
applied and tissues with different level of cellular heterogeneity
have been used. Some studies have compared whole-lesion biop-
sies with endometrial tissue; however, the cellular composition
of endometriotic lesions is highly heterogeneous, as endometrial
stromal and epithelial cells are mixed with cells from surround-
ing tissue (peritoneal tissue, ovarian components, etc.) and tissue-
infiltrated blood cells in variable proportions. Therefore, the amount
of disease-specific cells in lesions may have a crucial impact on
the outcome of DNA methylation analysis and may lead to in-
consistent or wrongly interpreted results. Some studies have an-
alyzed moderately heterogeneous endometrial tissue, with no cel-
lular contribution from other tissues, from patients and controls,
and some have used pure endometrial stromal cell populations

isolated from lesions and endometrium, as the study material
with the lowest cellular heterogeneity. In this review, the results of
DNA methylation and hydroxymethylation studies in endometriosis
are discussed in the perspective of cellular heterogeneity, considering
studies using high-, moderate-, and low heterogeneity samples.

High tissue/cellular heterogeneity—DNA

methylation studies in endometriotic lesion

whole-tissue biopsies

Highly heterogeneous endometriotic lesions, which are removed
during laparoscopic surgery, have been an attractive study object
for both candidate gene-based and genome-wide DNA methyla-
tion studies [12–26]. Up to date, DNA methylation profiles of
more than 10 candidate genes and transposable elements involved
in different pathways, such as hormonal signaling (PGR, Estro-
gen receptor 1 [ESR1], Estrogen receptor 2 [ESR2], prostaglandin-
endoperoxide synthase 2, also known as COX-2 [COX-2],
Catechol-O-methyltransferase [COMT]), ovarian cancer progres-
sion (Long interspersed nuclear element 1 [LINE-1]), carcinogenesis
(Paired box 2 [PAX2]), tumor repressor and apoptosis-related genes
(Cadherin 1 [CDH1], Ras association domain family [RASSF]), tis-
sue remodeling (Matrix metallopeptidase 2 [MMP2], Matrix metal-
lopeptidase 3 [MMP3], Matrix metallopeptidase 7 [MMP7], TIMP
metallopeptidase inhibitor 3 [TIMP3], and TIMP metallopeptidase
inhibitor 4 [TIMP4]), and genes needed for endometrial growth,
differentiation, and implantation (HOXA10) have been investigated
and associated with disease pathogenesis in whole endometriotic le-
sion biopsies (Table 1).

However, there are only two EWAS investigating DNA methy-
lation in whole lesion tissues [24,25]. Borghese et al. [24] evalu-
ated the DNA methylation status of more than 25,000 promoters
using MeDIP-chip technology to ascertain the methylation profile
of different type of endometriotic lesions (superficial endometriosis,
ovarian cysts, and deeply infiltrating endometriosis). The study com-
pared DNA methylation of pooled DNA samples from 15 eutopic
endometria with pooled DNA samples from different lesion-types
and detected 229, 161, and 108 differentially methylated regions
in superficial endometriosis, ovarian cysts, and deeply infiltrating
endometriosis, respectively. Some of the genes (FLJ38379, Defensin
beta 125 [DEFB125], Golgin B1 [GOLGB1], PERP, TP53 apoptosis
effector, nucleolar protein with MIF4G domain 1 [NOM1], centlein
[CNTLN], RASSF4, C10orf25, ZNF22, HRas proto-oncogene, GT-
Pase [HRAS], leucine rich repeat containing 56 [LRRC56], coagu-
lation factor VII [F7], DKFZp451A211, ADP-ribosylhydrolase like
1 [ADPRHL1], tryptase delta 1 [TPSD1], pyrin domain contain-
ing 1 [PYDC1], testis expressed 14, intercellular bridge forming
factor [TEX14], RAD51 paralog C [RAD51C], ring finger pro-
tein 126 [RNF126], follistatin like 3 [FSTL3], and ferritin heavy
chain 1 pseudogene 19 [FTHL19]) were differentially methylated
in all lesion subtypes. However, it should be pointed out that this
work did not confirm the differential methylation of previously re-
ported candidate genes. Authors suggested that this was because
of the use of highly specific microarray with limited capacity to
detect low CpG-containing regions. However, the most intriguing
finding of this study was that in endometriotic lesions hypomethy-
lated regions were distributed randomly across the chromosomes,
whereas hypermethylated regions tended to locate at the ends of the
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Table 1. Studies comparing DNA methylation between endometrium and endometriotic lesions.

Candidate gene studies

Gene
Methylation status in lesion
compared to endometrium Region Reference

COX-2 Hypomethylation The NF-IL6 site within the promoter [12]
COMT Hypermethylation Promoter region [20]
CDH1 Hypermethylation Promoter region [18]
ESR1 ND NA [21]
ESR2 ND NA [21]
HOXA10 Hypomethylation Two different promoter regions [19]
HOXA10 Hypomethylation Promoter region [20]
LINE-1 Hypomethylation NA [13]
MMP2 Hypomethylation Promoter region [26]
MMP3, MMP7 Hypermethylation Promoter region [26]
PAX2 ND Two different promoter regions [16]
PGR Hypermethylation Promoter region B [17]
PGR ND Promoter region A [17]
PGR Hypermethylation Promoter regions A and B [21]
RASSF1A Hypermethylation Promoter region [15]
RASSF2 ND NA [14]
TIMP3 Hypermethylation Promoter region [26]
TIMP4 Hypermethylation Promoter region [26]

Epigenome wide association studies
Cases/Controls (n) Results Microarray References
Pooled samples of 5
OMA; 5 SUP; 5 DIE
and15 E

229 DMRs in SUP, 161 DMRs
in OMA, 108 DMRs in DIE

MeDIP array [24]

8 OMA; 8 SUP; 8 E and 8
HE

3858 DMRs Illumina Infinium
HumanMethylation450 BeadChip

[25]

DIE, deep infiltrating endometriotic lesion; DMR, differentially methylated; E, endometriosis endometrium; HE, healthy endometrium; NA, not applicable;
ND, no difference; OMA, endometrioma; SUP, superficial endometriotic lesion.

Table 2. Studies comparing DNA methylation in endometria of women with and without endometriosis.

Candidate gene studies

Gene
Methylation status in endometria of patients

compared to healthy endometria Region References

CDH1 Hypermethylation Promoter region [18]
COX-2 Hypomethylation NF-IL6 site within the promoter [12,38]
HOXA10 Hypomethylation Promoter, intronic regions [33]
HOXA10 Hypermethylation Promoter [19]
HOXA10 Hypermethylation Promoter region [36]
HOXA10 Hypermethylation Upstream of exon 1, intron [34,35]
HOXA11 Hypermethylation Exon 1 [39]
PAX2 ND Promoter [16]
RASSF1A Hypermethylation Promoter region [15]
RUNX3 Hypermethylation Promoter region [37]

Epigenome wide association studies
Cases/controls (n) Results Microarray References
7 E; 6 HE 120 DM genes Illumina Infinium HumanMethylation27 BeadChip [40]
31 E; 24 HE 28 DMRs Illumina Infinium HumanMethylation450 BeadChip [41]
17 E; 16 HE MSE 137 CpG sites PE 58 CpG sites ESE 39

CpG sites
Illumina Infinium HumanMethylation27 BeadChip [42]

8 E; 8 HE ND Illumina Infinium HumanMethylation450 BeadChip [25]

DM, differentially methylated; DMR, differentially methylated region; E, endometriosis endometrium; ESE, early-secretory endometrium; HE, healthy en-
dometrium; MSE, mid-secretory endometrium; ND, no difference; PE, proliferative endometrium.
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Table 3. Methylation studies comparing endometriotic and endometrial stromal cells.

Candidate gene studies

Gene

Methylation status of endometriotic
stromal cells compared to
endometrial stromal cells Region References

CYP-19 Hypomethylation Exon 2 [48]
DUSP2 ND Promoter region [49]
ESR2 Hypomethylation Promoter and exon 1 region [81]
NR5A1 Hypermethylation Intron 1 [46]
NR5A1 Hypermethylation Exon 2 and intron 3 region [45]
NR5A1 Hypomethylation Promoter and exon 1 region [81]

Epigenome wide association studies
Cases/controls (n) Results Microarray References
5 EcSCs; 5 ESC 43 DM genes Illumina Infinium HumanMethylation450 BeadChip [6]
6 EcSCs; 6 ESC 9021 DM genes Illumina Infinium HumanMethylation450 BeadChip [50]
3 EcSCs + 3 ENSC; 3
ESC

770 DM genes Illumina Infinium HumanMethylation27 BeadChip [52]

DM, differentially methylated; EcSCs, ectopic endometrial stromal cells; ENSC, endometrial stromal cells from women with endometriosis; ESC, endometrial
stromal cells from healthy women; ND, no difference.

chromosomes. The authors proposed that noticed asymmetric
methylation pattern enhances chromosome stability and presumes
endometriotic cells from malignant transformation [24]. In the most
recent study, Rahmioglu et al. [25] analyzed the DNA methylation
profiles of 14 endometriotic lesions (both endometriomas and
peritoneal lesions) and 16 endometrial samples from endometriosis
patients and found 27,493 significantly differentially methylated
sites corresponding to 8133 genes. Among these genes was a
significant enrichment for WNT signaling, angiogenesis, cadherin
signaling, and gonadotropin-releasing-hormone-receptor pathways
that have been previously associated with endometriosis pathogene-
sis. The authors brought out that endometrium, endometriomas, and
peritoneal lesions have their distinct DNA methylation signatures
and suggested that whole-tissue profiling will detect robust DNA
methylation between the individuals, but for low-variability DNA
methylation sites the cellular heterogeneity and technical variability
hinder the detection of biologically meaningful alterations. Further-
more, significant impact of menstrual cycle phases on endometrial
and peritoneal lesions DNA methylation signature was noticed, but
in endometriomas, this effect was less pronounced [25].

The studies concerning hydroxymethylation level in endometrio-
sis whole tissues have given contradictory results, most probably be-
cause of different methodologies used to detect the amount of 5hmc.
Using an ELISA-based colorimetric quantification, it was found that
DNA of whole endometriotic tissues contains very high amounts of
5hmC compared to nonendometriosis control eutopic endometrium,
a phenomenon corroborated by the inverse expression of TET genes
in these tissues [5]. In the following immunofluorescence study,
Yotova et al. showed that on the whole tissue level there was a
disease-dependent loss of 5hmC in the endometriotic tissue epithe-
lial cells but not in the stromal cell compartment [6].

The high heterogeneity of endometriotic lesions’ cellular compo-
sition and lack of knowledge about the normal DNA methylation
profiles of surrounding tissues and cells makes the discovery of dis-
ease specific changes extremely difficult and even if thousands of
differentially methylated genes have been reported, it is almost im-
possible to distinguish whether these findings reflect the complex
mixed cellular composition of lesions or these alterations are truly
endometriosis-related changes.

Moderate tissue/cellular heterogeneity—DNA

methylation studies of endometrium and

potential impact of menstrual cycle on

endometrial methylome

The theory of endometrial origin of endometriosis, which postu-
lates that endometrial cells are refluxed via retrograde menstruation
and implant into the abdominal cavity and form ectopic lesions, is
widely accepted [27]. However, for successful establishment of le-
sions, endometrial cells of endometriosis patients should have altered
characteristics triggering the endometrial cell adhesion and growth
in the ectopic locations. This assumption is supported by multiple
lines of evidence showing that endometria of endometriosis patients
have aberrant gene expression profiles compared to healthy women
[28–30]. As DNA methylation is a potential cause of gene expression
alterations, it has encouraged researchers to seek for the methylation
changes in patient’s endometria. Although the endometrium is a mix-
ture of different cell types, where endometrial apical and glandular
epithelial and stromal cells are mixed with tissue-infiltrated blood
cells, the cellular heterogeneity between endometrial samples from
patients and controls is definitely less pronounced than between
endometrium and lesion biopsies, facilitating the identification of
true disease-related DNA methylation changes. Still, the search for
disease-related endometrium-specific DNA methylation alterations
is a challenging task because of extensive molecular, morphological,
and physiological changes occurring during the menstrual cycle. Fur-
thermore, the impact of menstrual cycle phases on the DNA methyla-
tion profile in healthy women’s endometrial tissue has recently been
demonstrated [31, 32].

The candidate gene-based and DNA microarray studies com-
paring endometria from women with and without endometrio-
sis have brought out number of disease-related genes (Table 2)
[12,15,16,18,19,33–42]. The candidate gene-based studies have re-
ported dysregulation of genes involved in many important bio-
logical functions, such as hormonal regulation (COX-2), develop-
ment of female genital tract (Paired box 2 [PAX2]), endometrial
growth and receptivity (HOXA10, HOXA11), and tumor sup-
pression (Runt related transcription factor 3 [RUNX3], RASSF1A,
CDH1) [12,33,34,36,38,39,43,44].
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Figure 1. The impact of tissue heterogeneity on endometriosis DNA methylation studies. (A) Peritoneal lesions and endometriomas contain only a small fraction
of endometrium-specific cells (brown color in endometrioma and peritoneal lesion histological section indicates CD10+ endometrial stromal cells that surround
the endometrial epithelial glandular structure) surrounded by other cell types. This may lead to a heterogeneous DNA methylation signature as the same CpG
sites may have a cell-type specific methylation status. (B) Stromal cells isolated from endometrioma and endometrium are with low cellular heterogeneity
(immunofluorescence staining of cultured stromal cells using antibody against CD10), and the obtained DNA methylation signature is characteristic to a
homogeneous cell population.
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In addition to candidate gene studies, four EWAS comparing
endometria from healthy women and endometriosis patients have
been published [25,40–42]. The study by Naqvi et al. [40] investi-
gated 27,578 CpGs in 7 women with endometriosis and 6 controls
and found 120 statistically significant differentially methylated genes
(59 hypermethylated and 61 hypomethylated). They also confirmed
correlations between methylation status and gene expression level
among a set of 10 selected genes and proposed that these genes
may contribute to the abnormal regulation of endometrial cell pro-
liferation in women with endometriosis. However, our recent study
suggested that methylation profiles between endometria of patients
(n = 31) and controls (n = 24) are highly similar [41]. We found only
28 differentially methylated regions, from which 16 were associated
with known genes—Peptidase inhibitor 3 (PI3), solute carrier fam-
ily 43 member 3 (SLC43A3I), mannosyl (alpha-1,6-)-glycoprotein
beta-1,6-N-acetyl-glucosaminyltransferase, isozyme B (MGAT5B),
mucin 4, cell surface associated (MUC4), human immunodeficiency
virus type I enhancer binding protein 3 (HIVEP3), fibrinogen gamma
chain (FGG), cardiotrophin like cytokine factor 1 (CLCF1), calcium
activated nucleotidase 1 (CANT1), leukocyte receptor tyrosine ki-
nase (LTK), aryl-hydrocarbon receptor repressor (AHRR), aldo-keto
reductase family 1 member B (AKR1B1), acylaminoacyl-peptide hy-
drolase (APEH), cystatin 11 (CST11), ELOVL fatty acid elongase
4 (ELOVL4), hemoglobin subunit epsilon 1 (HBE1), and neuronal
growth regulator 1 (NEGR1). Furthermore, the overall magnitude of
methylation differences was rather small, and as the biological signif-
icance of small-scale changes in DNA methylation levels is currently
unknown, it is unclear whether and how these changes are associated
with disease pathogenesis. In addition, methylation status of some of
these genes, such as PI3, SLC43A3I, MGAT5B, MUC4, HIVEP3,
FGG, CANT1, and LTK, was influenced by menstrual cycle phase,
indicating that it is crucially important to take into account the nor-
mal epigenetic changes across the menstrual cycle when looking for
disease specific methylation differences in endometrial tissue [41].
The menstrual cycle-dependent endometrial DNA methylation was
also confirmed by Houshdaran et al. [42], who found that the DNA
methylome differences between the endometriosis patients (n = 17)
and controls (n = 16) were most contrasting in the mid-secretory
phase, at the time of the progesterone peak (137 CpG sites, cor-
responding to 125 loci), followed by proliferative (58 CpG sites,
corresponding to 58 loci) and early-secretory phase (39 CpG sites,
corresponding to 36 loci). Moreover, if all patient samples were
compared to all control samples regardless the menstrual cycle phase,
only three differentially methylated loci (ribosome production factor
2 homolog [RPF2], period circadian regulator 1 [PER1], and fam-
ily with sequence similarity 181 member A [FAM181A]) remained.
Locus in gene RPF2 was more methylated in controls, while loci in
PER1 and FAM181A were more methylated in endometriosis pa-
tients [42]. Menstrual cycle phase as an important covariate in DNA
methylation and RNA expression analysis was also reported by Rah-
mioglu et al. [25], who found no significant changes between the
endometrial DNA methylation profiles of women with and without
endometriosis but reported significant variability of DNA methyla-
tion between the different menstrual cycle phases.

While we compared all available data from the findings of
genome-wide studies demonstrating any changes in endometrial
DNA methylation in endometriosis [40–42], we found no common
genes, indicating that DNA methylation changes in endometrium are
probably not the main trigger leading to endometriosis development.
On the other hand, it is possible that the confounding factors, like
menstrual cycle, study design, differences in data analysis, and in-

terpretation, mask small but relevant changes. Furthermore, power
calculations revealed that most of the so far performed studies have
been unpowered to detect reliable methylation differences between
the groups [25]. For example, to detect 2% (�β = 0.02) DNA methy-
lation difference between cases and controls, at least 500 patient‘s
samples are needed [25].

Low tissue/cellular heterogeneity—DNA

methylation studies of endometrial primary

stromal cells

Investigation of primary cell cultures enables to minimize the con-
founding effects of the accompanying cells in the tissues and to com-
pare the same type of cells irrespective of the original location. The
use of primary cells from lesions and endometrium in DNA methy-
lation studies has its own pros and cons as discussed below, but
still offers a good solution to study the molecular mechanisms of
endometriosis with minimal impact of cellular heterogeneity.

To date, there have been nine studies (six candidate-gene and
three EWAS) determining the DNA methylation profiles of pri-
mary stromal cells from endometrium and lesions [45–51,6,52]
(Table 3). Closer look at the candidate-gene studies reveals that all
studies have been focused on the genes participating in the hormonal
regulation of the endometrial cells, such as NR5A1, ESR2, Cy-
tochrome P450 family 19 (CYP19), and dual specificity phosphatase
2 (DUSP2). The most commonly studied gene NR5A1 [45–47] en-
codes transcription factor steroidogenic factor 1 (SF-1) that has a
role in activating STAR and aromatase production and therefore
could potentially contribute to the higher level of estrogens in en-
dometriotic stromal cells [53]. Interestingly, methylation status of
distinct regions of NR5A1 influences its expression in different ways.
Hypermethylation of the proximal promoter of NR5A1 in endome-
trial stromal cells is accompanied by the lack of NR5A1 expression,
and on the opposite, the hypomethylation of the same region in en-
dometriotic cells leads to the high expression of NR5A1 mRNA,
confirming the general understanding that DNA methylation of pro-
moter region is inversely correlated with transcription [47]. How-
ever, the following studies revealed that hypermethylation of CpG
islands in introns and exon 2 leads to the high expression of NR5A1
mRNA in endometriotic cells [46,54] indicating that methylation of
CpG islands outside the promoter region may also play an important
role in regulating NR5A1 expression.

Beside candidate-gene studies, three EWAS methylation stud-
ies have been conducted concentrating on stromal cells from ovar-
ian cysts and eutopic endometria from endometriosis patients and
healthy women. As a result, a large number of potentially disease-
related differentially methylated genes were detected (9021, 770, and
43, respectively) [50,6,52]. When we compared the lists of genes that
were reported in all three studies, only a small subset of overlap-
ping genes (S100 calcium binding protein A4 [S100A4], RNA bind-
ing motif protein 24 [RBM24], GATA binding protein 2 [GATA2],
death associated protein kinase 1 [DAPK1], NR5A1, C11orf9, C-C
motif chemokine ligand 26 [CCL26], and GATA binding protein 4
[GATA4]) was found. Some of the genes from this list are particularly
interesting. For example, the GATA family members have previously
been associated with induction of “ovarian-like" differentiation of
ectopic endometrial cells [55]. It has been suggested that similarly to
the ovarian cells, the expression of GATA4 and GATA6 transcrip-
tion factors is induced via the positive feedback loop by the folli-
cle stimulating hormone receptor (FSHR) and luteinizing hormone
receptor (LHR) genes also in ectopic endometrial cells. Thus, the
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parallel increase in GATA4/6 transcription factors and FSHR and
LHR levels leads to enhanced production of the steroidogenic cas-
cade that supports estrogen-dependent disease progression [55]. Fur-
thermore, the hypermethylation and downregulation of GATA2
strongly regulates the genes essential for decidualization, and hy-
pomethylation and activation of GATA6 promotes an endometri-
otic phenotype through progesterone resistance and altered estro-
gen response [50]. Also, all microarraybased studies have reported
hypermethylation of fibroblast-specific protein-1 (S100A4). The ex-
pression of this gene is shown to be induced by the TGF-β pathway,
and silencing of S100A4 expression can inhibit the process of TGF-β-
induced epithelial-mesenchymal transition (EMT) [56]. As during the
EMT process epithelial cells lose their specific features and acquire
more invasive mesenchymal characteristics, the EMT is believed to
be a crucial event leading to the development of endometriosis [57].

It is worth mentioning that the differential methylation and
expression of NR5A1 seen in candidate-gene studies was proven
in EWAS studies. Moreover, it was confirmed that not only the
promoter-region hypomethylation regulates the expression of this
gene [50,52] but also that the intronic region hypermethylation in
endometriotic stromal cells allows for higher level of NR5A1 expres-
sion [50].

The first study assessing the role of 5hmC in endometrial and
endometriotic stromal cells [6] demonstrated that detected altered
methylation of brain derived neurotrophic factor (BDNF) gene in
the EWAS was partly caused by hydroxymethylation [6]. Still, to un-
derstand the exact role of 5hmC in endometriosis development and
endometrial biology, future studies elucidating the changes of 5hmC
in different cell types obtained from the endometrium or endometri-
otic lesions and along the menstrual cycle are urgently needed.

The studies on isolated stromal cells have found the greatest num-
ber of overlapping differentially methylated and expressed genes,
demonstrating the benefit of investigating homogenous cell popula-
tions. However, it should be pointed out that the use of primary cells
from lesions and endometrium in DNA methylation studies has its
own strengths and weaknesses. On the one side, primary cells are
phenotypically and epigenetically similar to the same cell type in the
tissue of origin, but on the other side, the natural environment of the
cells is destroyed in cellular separation with cells adapting quickly to
in vitro conditions. The in vitro environment with supporting hor-
monal milieu is especially important in case of hormone-dependent
cells such as endometrial cells. Furthermore, primary cell culturing
and repeated passaging changes the cell subpopulation dynamics and
leads to alterations in their whole transcriptome [58,59] and in DNA
methylation [60]. Thus, to keep the molecular signatures as similar as
possible to the original tissue, the studies of the primary cells should
be limited only to the early passages [58,59]. Furthermore, although
it is generally accepted that primary cell culture is a homogenous
mixture of identical cells, most of the primary cultures also include a
small fraction of other cell types from the same tissue, ranging usu-
ally around 1%–5% [61–64]. The issue of cellular contamination
becomes particularly important for establishing slowly proliferating
epithelial cell culture as even a small contamination with highly pro-
liferative stromal cells may largely change the cellular composition
of the culture. Although large efforts have been made to culture pri-
mary endometrial epithelial cells from endometrium, these cells can
only be passaged once [65,66] with cell senescence becoming evident
already within 2 weeks in culture [67]. Therefore, as culturing of en-
dometrial epithelial cells has still remained a challenge, no specific
studies on DNA methylation alterations in endometrial epithelial
cells from endometriotic lesions exist.

Moreover, in case of isolation and culturing of primary endome-
trial stromal cells from endometriomas, it is impossible to identify
the possible ovarian stromal contamination due to the lack of specific
markers [68], creating additional bias in endometrioma studies. Last
but not least, DNA methylation studies on isolated stromal cells of
lesions have thus far been concentrated only on cells isolated from en-
dometriomas. Whether there are also DNA methylation alterations
in cells isolated from peritoneal lesions is currently unknown but
definitely worth to study. Therefore, in order to eliminate the bias
coming from cell culturing and potential contamination of the pri-
mary cell culture, we suggest using uncultured cells from lesions
and endometrium to reveal the true molecular differences occurring
inside the lesions, as discussed in the next section.

Possible approaches to diminish cellular

heterogeneity in endometriosis studies

To diminish cellular heterogeneity in endometriosis studies and an-
alyze DNA methylation of endometrium-specific cells with minimal
impact of cells from surrounding tissues, several solutions could be
proposed. First, specific cell populations can be isolated from histo-
logical tissue sections, such as formalin-fixed and paraffin-embedded
(FFPE) tissues, RNAlater stored, or snap-frozen tissues, by laser cap-
ture microdissection (LCM). Although this methodology has been
suggested to be time-consuming, labor-intensive, and providing only
limited amount of DNA for methylation analysis, it still represents
the most effective technology to isolate a morphologically homo-
geneous population of specific cells. However, the attractiveness of
this methodology has remained small and to date, there are no DNA
methylation studies in endometriosis that had used the potential ad-
vantage of LCM. It is very likely that small interest of using LCM for
isolation of specific cell populations is related to the poor quality of
DNA obtained, especially when the DNA is isolated from archived
FFPE tissues. For example, LCM DNA from snap-frozen sections
allows to amplify DNA regions of >300 bp, while from FFPE tis-
sues only 150 to 200 bp fragments are available [69]. However,
cancer studies have clearly proven the usefulness of LCM in DNA
methylation analysis [70].

Second, the uncultured single cells or cell populations from le-
sion biopsies and endometrium can be isolated using fluorescently
labeled antibodies against cell surface markers in combination with
fluorescence activated cell sorting (FACS). FACS methodology has
previously been used to isolate specific cell types from endometrium
of healthy women [71] and from endometrium of women suffering
from endometriosis [72,73] for gene expression studies. We have
shown the usefulness of this methodology for isolation of CD10-
positive stromal cells from endometrioma biopsies for transcriptome
study [72] and the amount of cells obtained by FACS should also
be suitable for DNA methylation analysis. Currently, the main lim-
itation of this methodology is the absence of specific antibodies to
discriminate endometrial epithelial cells from lesion biopsy. While
the anti-CD10 antibody discriminates CD10-negative ovarian stro-
mal cells from CD10-positive endometrial stromal cells [74], the pre-
viously used endometrial epithelial cell-specific anti-CD9 antibody
[71] does not distinguish them from similar CD9-positive granulosa
and epithelial cells from endometrioma samples [75]. Furthermore,
it should be kept in mind that beside endometrial epithelial and
stromal cells, lesions also contain other cell types and DNA methy-
lation changes in these cells may have significant impact on disease
pathogenesis and deserve further investigation.
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Thirdly, computational approaches for tackling cellular hetero-
geneity can also be used. As already stated, each tissue or cell type has
a specific methylation signature and fluctuations in biopsy cellular
composition can dramatically confound analyses, either by creat-
ing false-positive associations (e.g. the detected differences actually
simply tag the change in cellular composition) or masking actual
associations. To overcome this obvious limitation in EWAS, several
computational approaches have been developed, which allow us to
adjust for cellular heterogeneity, an approach known as cell-type de-
convolution (reviewed by [76]). In broad terms, these deconvolution
methods can be either reference-based or reference free. The former
approach uses reference methylation profiles for cell types present
in the tissue and works under the assumption that the methylation
profile of a whole-tissue biopsy is a sum of reference profiles of each
cell type present in this biopsy. As a result, the algorithm calculates
the fractions for each cell type that match the whole-tissue biopsy
profile best. These fractions can then be used as covariates in differ-
ential methylation analysis to adjust for differences in whole-tissue
biopsy cellular composition. A major drawback for using this ap-
proach in the context of endometriosis studies is the lack of suitable
reference profiles for cell types present in the endometrial tissue or
endometriotic lesions.

As an alternative, reference-free deconvolution methods such as
EWASher [77], RefFreeEWAS [78], and ReFACTor [79] or surro-
gate variable analysis (SVA) that allow to adjust for fluctuations in
cellular composition can be used. Selection of the best method de-
pends on study design and research question, but SVA was shown to
be the most stable and robust method across different scenarios [80].
However, currently no study has compared the performance of these
different methods in the context of endometriosis. Therefore, since it
is clear that tissue heterogeneity is a very important confounder in en-
dometriosis research, there is a critical need to describe accurately the
cellular (sub)populations present in endometrium and endometriotic
lesions to generate high-quality reference methylomes for these cell
types, and to compare the performance of different deconvolution
algorithms for endometrium and endometriotic lesions. These bits
would provide the necessary basis to tackle the cellular heterogeneity
on a computational level and provide a viable alternative to analyz-
ing separate cell populations, which is labor-intensive and costly.

Conclusions

The first steps to unravel the role of altered DNA methylation and
hydroxymethylation in endometriosis development have been done
but there is a long way to go before we can ascertain whether the
knowledge gained from these studies could be benefitted in improv-
ing the endometriosis diagnostics or therapy. To overcome the issues
related to tissue biopsy heterogeneity, the methylation differences
should be demonstrated in pure populations of cells and a direct link
between the methylation and gene expression alterations in the same
cells should be established.
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