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ABSTRACT 

Human Immunodeficiency Virus type 1 (HIV-1) is one of the most serious health 

challenges worldwide and at the end of 2018 approximately 37.9 million people lived with HIV. 

In 1996 was developed a new therapeutic strategy for HIV infection that consist in the 

combination of different antiretroviral drugs and, with the development of effective cART, 

occurred a substantial reduction in deaths associated with the virus. This therapy rapidly 

decreases plasma viral load below the limit of detection and, at the same time, prevents viral 

replication. Although cART is highly effective it is not curative due to several mechanisms 

contribute to HIV persistence. HIV-1 can infect both activated and resting cells, which the viral 

genome can be permanently integrated into a host cell chromosome. Latent HIV-1 reservoirs 

are established early during primary infection and are a major barrier to eradication, even in the 

presence of highly active cART. Targeting this latent reservoir is one of the main focus of HIV-

1 cure investigation, and the development of a rapid and accurate assay for the reservoir 

quantification is an essential step in the search for a cure. Thereby, correct quantification of 

residual viremia and of the viral reservoir size are crucial in HIV-1 eradication studies and is 

important to increase the sensibility of the methods used. 

The most commonly used assays are standard PCR assays targeting conserved regions 

of HIV-1 genome and has been widely used to quantify plasma viremia in individuals on 

antiretroviral therapy, as the Roche COBAS AmpliPrep/ COBAS TaqMan HIV-1 test v2.0. 

Since this assay is used to quantify cell-associated HIV-1 nucleic acid in peripheral blood 

mononuclear cells from seropositive patients and assess the existing viral load, an optimized 

protocol for the sample’s preparation was developed to enhance the sensitivity of the technique. 

The results show that collecting a larger volume of blood from the patients, plasma 

ultracentrifugation and the treatment of the plasma samples with DNase I allowed achieve a 

more accurate result of HIV-1 residual viremia quantification. Thus, modification of 

commercial assays that quantify HIV residual viremia could contribute to the progress in HIV 

cure studies. 

 

 

Keywords:  HIV-1; Residual Viremia; Latency; Ultrasensitive PCR. 
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RESUMO 

O Vírus da Imunodeficiência Humana tipo 1 é um dos maiores desafios relacionados 

com a saúde a nível global, sendo que, no final de 2018, aproximadamente 37,9 milhões de 

pessoas estavam infetadas pelo vírus. 

Em 1996 foi desenvolvida uma nova estratégia terapêutica para a infeção com o HIV 

que consistia na combinação de diferentes classes de fármacos antirretrovíricos. Com o 

desenvolvimento desta terapêutica mais eficaz houve uma redução substancial das mortes 

associadas à infeção pelo HIV. Esta estratégia faz com que a carga viral sanguínea diminua 

rapidamente, abaixo do limite de deteção, e, ao mesmo tempo, impede que ocorra replicação 

viral. Apesar desta terapêutica antirretrovírica combinada ser altamente eficaz, esta não é 

curativa devido a diferentes mecanismos que contribuem para a persistência do HIV. Este vírus 

infeta tanto células ativadas com células em repouso, integrando permanentemente o seu 

genoma na célula hospedeira. Os reservatórios latentes do HIV-1 estabelecem-se no início da 

infeção primária e esta é uma das principais barreiras para a erradicação do vírus, mesmo na 

presença de uma terapêutica otimizada. Assim, um dos focos fundamentais dos estudos 

relacionados com a cura da infeção pelo HIV-1 são os reservatórios latentes do vírus, sendo o 

desenvolvimento de um método rápido e preciso para a quantificação dos mesmo um passo 

essencial para a descoberta de uma cura. Portanto, uma correta quantificação da carga viral e 

da dimensão dos reservatórios do vírus são cruciais nos estudos da área, sendo também 

importante aumentar a sensibilidade dos métodos usados. 

O método mais utilizado para a quantificação da carga viral no plasma de indivíduos 

seropositivos sob terapia antirretrovírica é técnica de PCR que tem como alvo as regiões 

conservadas do genoma do HIV-1, sendo um exemplo deste método o teste COBAS AmpliPrep/ 

COBAS TaqMan HIV-1, versão 2.0. Este método quantifica ácidos nucleicos do vírus em 

células mononucleares do sangue periférico e avalia a carga viral e, neste estudo, foi 

desenvolvido um protocolo otimizado de preparação das amostras de plasma para aumentar a 

sensibilidade da técnica. Os resultados demonstraram que a recolha um maior volume de sangue 

dos doentes, a ultracentrifugação do plasma e o tratamento das amostras de plasma com DNase 

I permitiram obter resultados mais exatos e autênticos de carga viral. Deste modo, a 

modificação de métodos comerciais que quantificam a carga viral de HIV pode contribuir para 

o progresso nos estudos relacionados cura da infeção por HIV. 

Palavras – Chave: HIV-1; Virémia Residual; Latência; PCR Ultrassensível.  
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AIDS Acquired Immune Deficiency Syndrome 

ART Antiretroviral Therapy 
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cART Combinational Antiretroviral Therapy 

CCR5 Cysteine-Cysteine Chemokine Receptor Type 5 
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CD3 Cluster of Differentiation 3 

CD4 Cluster of Differentiation 4 

CD4 Cluster of Differentiation 8 

CD28 Cluster of Differentiation 28 

CNS Central Nervous System 
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DNA Deoxyribonucleic Acid 

DTG Dolutegravir 

EDTA Ethylenadiamine Tetraacetic Acid 

ELISA Enzyme-linked Immunosorbent Assay 

FBS Fetal Bovine Serum 

GALT Gut-associated Lymphoid Tissue 

HB Hepatitis B Virus 

HCV Hepatitis C Virus 

HIV Human Immunodeficiency Virus 

HIV-1 Human Immunodeficiency Virus type 1 

HIV-2 Human Immunodeficiency Virus type 2 

ITI Integrase Inhibitors 

IN Integrase 

LTR Long Terminal Repeats 

NFAT Nuclear Factor of Activated T-cells 
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NNRTI Non-Nucleoside Reverse Transcriptase Inhibitors 

NRTI Nucleoside Reverse Transcriptase Inhibitors 

NtRTI Nucleotide Reverse Transcriptase Inhibitors 

PBMC Peripheral Blood Mononuclear Cells 

PCR Polymerase Chain Reaction 

PEP Postexposure Prophylaxis 

PHA Phytohemagglutinin 

PI Protease Inhibitors 

PMTCT Prevention of Mother-to-Child Transmission 

PR Protease 

PrEP Pre-Exposure Prophylaxis 

pTEFb Positive Transcription Elongation Factor b 

qPCR Quantitative Polymerase Chain Reaction 

QS Quantification Standard 

QVOA Quantitative Viral Outgrowth Assay 

RCR Replication Competent Retrovirus 

RNA Ribonucleic Acid 

RT Reverse Transcriptase 

RT-PCR Reverse Transcription Polymerase Chain Reaction 

SCA Simple Copy Assay 

TDR Transmitted Drug Resistance 

WHO World Health Organization 
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1 INTRODUCTION 

1.1 Human Immunodeficiency Virus (HIV) 

1.1.1 The Virus 

The Human Immunodeficiency Virus (HIV) belongs to the Retroviridae family and to 

the Lentivirus group (1), being a Ribonucleic Acid (RNA) virus. This virus was recognised as 

the causative agent of one of the most devastating infectious diseases to have appeared in recent 

history: the Acquired Immune Deficiency Syndrome (AIDS) (2).  

In the beginning of the 1980s, in the United States of America, groups of people starter 

to show commons signs and symptoms of a novel immunodeficiency and it became evident that 

an infectious agent was involved. In 1983, Francoise Barre-Sinoussi and her colleagues at the 

Pasteur Institute in Paris prove the involvement of a retrovirus in the lymph node of a patient 

that show lymphadenopathy (1). 

Based on genetic characteristics and viral antigens, exists two subtypes of the HIV: HIV-

1 and HIV-2 (3). The main differences between the two types of this virus are the viral 

replication, the rate of evolution, the viral load and the co-receptor need in the host cell (4). The 

viral load of the HIV-2 is lower than the HIV-1, which leads to a lower transmission rate of this 

subtype (2). 

The HIV-1 has four different lineages, that resulted from cross-species transmissions. 

The Group M represents the pandemic form of the virus and was the first being discovered. The 

Group O is restricted to Cameroon, Gabon and nearest countries. The Group N has only 13 

cases documented, all from Cameroon. The Group P was discovered  in 2009 in a Cameroonian 

women (2). 

The three main ways of viral transmission are blood, sexual contact and maternal-fetal 

infection, and the highest viral load is found in the blood in two forms: as free virion 

(extracellular infective form of a virus) in the plasma or in infected peripheral blood cells (1).  

 

1.1.2 Structure 

1.1.2.1 Genome Structure 

HIV-1 genome holds all the information needed to produce new virions after the 

infection and is formed by two identical single-stranded RNA molecules encapsulated in the 
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core of the virus particle. The HIV provirus genome is made by reverse transcription of the viral 

RNA into complementary Deoxyribonucleic Acid (cDNA), followed by degradation of the 

RNA and integration of the HIV Deoxyribonucleic Acid (DNA) into human genome (3). As 

showed in figure 1, flanking both ends of the DNA genome are the Long Terminal Repeat 

(LTR) sequences. The 5’LTR region codes for the promoter involved in the transcription of the 

viral genes (5). Following the reading frame in 5’ to 3’ direction there is the gag gene. This 

gene encodes the proteins of the external core membrane (p17), the capsid protein (p24) and 

the nucleocapsid (p7). Adjacent to gag gene is the pol reading frame that codes the protease 

enzyme (p12), the reverse transcriptase (RT), the RNase H (p15) or RT and RNase H together 

(p66) and integrase (p32). The pol gene is followed by the env reading frame, which the 

envelope glycoproteins gp 120 (surface protein) and gp41 (transmembrane protein) result. 

Besides this three structural genes, the HIV genome encodes for regulatory genes, such as tat 

(transactivator protein), rev (RNA splicing-regulator) and nef (negative regulating factor), 

important for the initiation of the HIV replication cycle, and accessory genes: vif (viral 

infectivity factor), vpr (virus protein r) and vpu (virus protein unique), playing an essential role 

on the replication, budding and pathogenesis of the virus (3). 

 

 

Figure 1 - Structure and organization of the HIV-1 genome. Shown are the reading frames of the genes coding for viral 

proteins (structural, regulatory and accessory): LTR = long terminal repeat; gag = group-specific antigen; pol = polymerase; 

env = envelope. The regulator genes, the proteins of tat and rev have two gene regions. The 5´ and 3´ LTR nucleic acid 

sequences are not translated into protein. The genome of HIV-1 consists of 9,200– 9,600 nucleotides. Adapted from Khoury 

G, Darcis G, Lee MY, Bouchat S, Van Driessche B, Purcell DFJ, et al. The Molecular Biology of HIV latency. In: Advances 

in Experimental Medicine and Biology. 2018. p. 187–212. 

 

1.1.2.2 Particle Structure 

The HIV virus is rounded shaped, measuring approximately 100 nm in diameter. The 

particle has an external lipid membrane as envelope, formed of trimers of the env proteins (3). 

The gp120 surface protein trimers are attached to the membrane by the gp41 transmembrane 

protein trimers (6).  The viral envelope has a lipid bilayer, which are part the glycoproteins 
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gp120 and gp41 in the mature virus particles, that covers the external capsid membrane. This 

capsid membrane is formed by matrix protein p17 and the inner capsid protein p24 (7). The two 

molecules of viral RNA, of approximately 9.7 kb, are encapsulated in the capsid (1) and the 

viral enzymes RT/ RNAse H are bound to the nucleic acid (3). The viral enzymes reverse 

transcriptase (RT), protease (PR) and integrase (IN) are also packaged into the core particle (1).  

The maturation phase of the particle occurs by cleavage oh the gag and gag/pol precursor 

proteins (p55, p160) into individuals proteins at the final part of the budding phase and 

throughout release of virions from the cell (3). 

 

1.1.3 Replication Cycle / Infection of Human Cells 

The first phase of the infection of human cells by the HIV-1 virus is protein-protein 

interaction: in the mature HIV particle the surface gp120 recognize the Cluster of 

Differentiation 4 (CD4) receptor of the human host cell. Thus, all CD4+ cells (T helper cells, 

monocytes, macrophages, dendritic cells and astrocytes) have susceptibility to this virus (3). 

After the attachment, the CD4 receptor and gp120 suffer a conformational change, establishing 

a new site for gp120 to allow binding to a co-receptor: chemokine receptor 5 (CCR5) or 

chemokine receptor type 4 (CXCR4) on the cell surface (8). This bindings produce another 

conformational change in gp120 and, consequently, in gp41(9).  The N-terminus of gp41 is 

presented on the viral membrane, creates a channel and inserts into the plasma membrane of 

the target cell, completing the fusion of the viral envelope with the human cell membrane (3).  

This fusion promotes the translocation of the viral capsid into the cytoplasm, due to an 

absorption of the capsid by an endosome that leads to a change in the pH value in the phagosome 

(3). In the cytoplasm, the RT is activated, and a single-strand HIV RNA is transcribed into 

cDNA. At the same time, the other RNA strand is degraded by the RNase H and the single-

stranded cDNA is converted into double-stranded DNA (proviral DNA) by an DNA polymerase 

(10). Then, the proviral DNA is imported into the cell nucleus (via nucleopores) in the form of 

a complex integrase – linear or circular proviral DNA. The integrase inserts the proviral genome 

into the host cell genome. This integration is the final step of the HIV infection. During the cell 

division, the proviral genome is replicated together with and as part of the human host cell 

genome (3), generating new viral proteins which will develop new virions. These virions, after 

the externalization, become mature and are ready to infect new cells (11).   
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For this reason, as all viruses, the HIV-1 virus depends on host cells to fully complete its 

replication cycle (12).  

 

1.2 Antiretroviral Therapy 

In the last years, significant progress has been accomplished in antiretroviral therapy, 

increasing the therapeutic strategies and making HIV infection a controllable condition rather 

than a fatal outcome.  

Drugs with different classes and mechanism of action are applied: Nucleoside Reverse 

Transcriptase Inhibitors (NRTI), Nucleotide Reverse Transcriptase Inhibitors (NtRTI), Non-

Nucleoside Reverse Transcriptase Inhibitors (NNRTI), Reverse Transcriptase Inhibitors 

combined with Protease Inhibitors (PI or PRI), Fusion Inhibitors and Integrase Inhibitors (ITI) 

(13). These treatments aim different stages and targets in HIV replication cycle (see figure 2). 

The most frequently used therapeutic strategy consists in a combination of drugs from 

distinctive classes, being entitled as Combinational Antiretroviral Therapy (cART) (14), to 

improve the efficacy and durability of therapy (15).  

 

 

 

 

 

 

 

 

 

 

Figure 2 - HIV-1 Replication Cycle and cART. Adapted from: Barré-Sinoussi F, Ross AL, Delfraissy J-F. Past, present and 

future: 30 years of HIV research. Nat Rev Microbiol. 2013 Oct 28;11:877–883 
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According to the World Health Organization (WHO), European and Portuguese Guidelines 

for antiretroviral treatment (16–18), a reference resistance test should be performed to 

determine transmitted drug resistance (TDR), which can influence the first-line antiretroviral 

response (19). 

Antiretroviral drugs belonging to the no NNRTI and PI classes allows a fast reduction in 

plasma HIV-1 RNA levels (20), and the combination of three drugs rapidly reduced viremia to 

below the limit of detection of clinical assays (21). For this reason, for adults, the first-line 

Antiretroviral Therapy (ART) should consist in the combination of two NRTI with a NNRTI 

or an ITI, to achieve potent inhibition of viral replication (16–18). 

The use of antiretroviral drugs could also be used for HIV prevention in specific cases as 

mother-to-child transmission (PMTCT), reduce the transmission of HIV, for example to 

serodiscordant sexual partners (pre-exposure prophylaxis (PrEP)), and to prevent the 

acquisition of HIV when a person is exposed to the virus (postexposure prophylaxis (PEP)) 

(16).  

Currently, the cART is the most effective therapy against the HIV virus. However, patients 

on cART must not stop their therapy due to the presence of latently infected cells that could 

lead to viral rebound. Thereby, the cART is a long-term treatment and not a cure (14). 

 

1.3 Latent Reservoirs 

In the HIV-1 infection the major barrier to achieve the cure is a small group of latently 

infected resting CD4+ T cells that persist in the patients, even those who are on optimal cART 

(22). In this state, the cells contain an integrated copy of the viral genome that is not expressed 

and, because of this, targeting the latent reservoir is one of the main focus of HIV-1 cure 

research (23).  

The terms Latency and Reservoir are commonly used when the subject is “HIV-1 cure”. 

Latency is a “reversibly nonproductive state of infection of individual cells where the viral 

genome persists in some form within the cells, but viral gene expression is limited” (23). 

Particularly for the Herpesvirus family, latency is a really important mechanism for viral 

persistence and immune invasion (24). Recent studies suggest that HIV-1 latency could be a 

consequence of infection of CD4+ T cells in a small-time window after activation, when the 

viral entry and reverse transcription happen (25). Furthermore, is known that latently infected 
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cells are present in all HIV-1 infected individuals and that these cells establish a reservoir that 

prevents cure with the antiretroviral therapy that are available (26). Thereby, this definition 

restricts the viral reservoirs to latently infected resting CD4+ T cells carrying stably integrated, 

transcriptionally silent but replication-competent proviruses. In resting state, this family of cells 

does not produce virus particles but could be stimulated to give rise to infectious virus, leading 

to viral rebound after an interruption of ART (27). 

A reservoir is a cell type or anatomical site where exist replication-competent forms of 

HIV-1 in patients on optimal cART regiments on a timescale of years (28). Currently, there are 

attention and several studies about other infected cell populations(29), including CD8+ T cells 

and cells from the myeloid line, for example macrophages, that could represent stable reservoir 

for HIV-1(30).  

Occasionally, these two terms are misused, considering that “latent reservoir” should be 

used only if the “relevant cell population is in a reversibly nonproductive state of infection” 

(23). Immune activation and viral reservoir are mechanisms that are dependent from each other: 

inflammatory environment and the activation of T cell can contribute to the preservation of 

HIV-1 reservoir by giving target cells for a new infection. At the same time, the perseverance  

of latently infected cells lead to immune activation (31) by the production of RNA and proteins 

and the capacity of these cells to reactivate the infection. 

The term reactivation is used when latency has been reversed, allowing viral gene 

expression and virus production (23). 

Compartment is defined as “a site that has a limited exchange of viral genetic information 

with other sites of infection” (32). Therefore, “in vivo virologic compartments” are cell types 

or tissues where the virus flow is limited and “virologic reservoirs” are cell types or tissues 

where the replication is relatively restricted (33).  

Exists specific anatomical compartments, called Sanctuary sites, that are poorly penetrated 

by antiretroviral drugs, allowing persistent viral replication (34). Gut-associated Lymphoid 

Tissue (GALT) is the largest lymphoid organ and is mainly constituted by lymphocytes and 

throughout untreated HIV-1 infection, most of viral replication takes place here (32). Based on 

higher amount of cells carrying HIV-1 DNA, comparing to plasma in patient under cART, 

GALT has been suggested as an anatomical compartment for HIV-1 during cART (12). There 

is also strong evidence for HIV-1 compartmentalization of the Central Nervous System (CNS) 

and that this works as a sanctuary site (35).  
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The frequency of latently infected cells is extremely small in patients under cART and only 

a small portion is replicant competent (28). The resting CD4+ T cells are the main cellular 

reservoir and latency can be established pre or post-integration (31).  

 

1.3.1 Establishment of Latent Reservoirs 

The establishment of latent reservoirs HIV-1 seems to be a repercussion of the tropism of 

the virus for activated CD4+ T cells (30). The LTR region of the viral genome has attachment 

sites for host transcription factors, for example nuclear factor k light chain-enhancer of 

activated B cells (NF-kB) or nuclear factor of activated T cells, both presents in nuclei of resting 

CD4+ T cells, that are sequestered in the cytoplasm. Additionally, the elongation phase of HIV-

1 is highly dependent on positive transcription elongation factor, that can also be sequestered 

in resting CD4+ T cells, in an inactive form (36). Furthermore, these resting cells have low 

expression of CCR5 (HIV-1 co-receptor). For these reasons, HIV-1 replicates well in activated 

CD4+ T cells but inadequately in resting CD4+ T cells. Nevertheless, an activated CD4+ T cells 

can be infected during the transition back to resting state, which is nonpermissive for viral 

replication, resulting in a “stably integrated but transcriptionally silent provirus in a long-lived 

memory T cell”. If, at any point, these provirus are stimulated by antigens or cytokines, a viral 

replication could start (30).   

This theory, exposed for the first time in 1995, elucidates different aspects of HIV-1 

persistence (37), having been demonstrated that resting CD4+ T cells contained integrated HIV-

1 DNA in all infected patients included in the investigation and that purified resting CD4+ T 

cells from the same subjects did not produce virus in a spontaneous way but could be induced 

to do so through cellular activation (37,38).  

To demonstrate the presence of latently infected cell is used a Viral Outgrowth Assay 

(figure 3). In this assay, the resting CD4+ T cells are isolated from infected patients on cART, 

diluted and activated with mitogen Phytohemagglutinin (PHA) and irradiated Peripheral Blood 

Mononuclear Cells (PBMC), causing a transformation of the CD4+ T cells to an activated state, 

which are permissive for viral gene expression. After that, viruses are expanded by coculture 

with additions of CD4+ T lymphoblasts from healthy donors. Two weeks after, is possible to 

expand the latently infected cells to the point that is possible to detect viral p24 antigen, using 

Enzyme-linked Immunosorbent Assay (ELISA), in the supernatant (30). This assay can be 
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converted into a Quantitative Viral Outgrowth Assay (QVOA), that will be explained in the 

next point (see Quantification of Reservoirs).  

 

Figure 3 - Viral Outgrowth Assay. Resting CD4+ T cells are represented in green and activated CD4+ T cells (in red). From:  

Siliciano JD, Siliciano RF. Recent developments in the search for a cure for HIV-1 infection: Targeting the latent reservoir for 

HIV-1. J Allergy Clin Immunol. 2014;134(1):12–19. 

 In the last years, new versions of the QVOA have been described. In some of them 

the activation of resting CD4+ T cells is accomplished with anti-CD3/anti-CD28 antibodies 

instead of Phytohemagglutinin (PHA) and irradiated allogeneic PBMCs. These assay also can 

be simplified using a transformed CD4+ T cells expressing CCR5 or, instead of realizing the 

final ELISA assay it is possible to use more sensitives assays, including Reverse Transcription 

Polymerase Chain Reaction (RT-PCR) for HIV-1 RNA in cells or in the supernatant virus, 

novel ultrasensitive assays for p24 protein or transfer of infection to a reporter cell line.   

 

1.3.2 Quantification of the Reservoirs 

Being the resting CD4+ T cells considered the main reservoir for the virus during cART, 

the majority of the procedures for the quantification of the reservoirs are directed to this type 

of cells (39). Although these cells are found in the plasma and lymphatic tissues, exists a cross-

infection between these two sites (40). Normally, studies are performed on cells found in blood. 
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As already explain, the QVOA takes into account the correlation between viral gene 

expression and the state of cell activation (23). Is important to point out that without activation, 

the CD4+ cells (the choice of input cell population) do not produce virus (37), so it is possible 

to affirm that any virus isolated from these cells, following activation, come from a latently 

infect cell. In this sense, the QVOA can be used to quantify latent reservoirs performing an 

ELISA assay and determining the frequency of latently infected cells with Poisson statistics. 

Other important point is that this assay gives meaningful results only in patients who have had 

suppression of detectable viral replication for at least six months (23). Instead of realizing the 

final ELISA assay it is possible to use more sensitives assays, including RT-PCR for HIV-1 

RNA in cells or in the supernatant virus, novel ultrasensitive assays for p24 protein or transfer 

of infection to a reporter cell line. However, these assays could potentially detected virus 

released from defective proviruses and some are capable of giving rise to viral RNA and protein. 

Although the standard QVOA detects the latent proviruses that are capable of causing viral 

rebound, some problems with the assay persist. It requires large blood samples (100-200 mL), 

the assay is labor-intensive (tissue culture work in Biosafety Level 3 (BSL-3) laboratory), and 

the turnaround time is slow (1-3 weeks to detect outgrowth) (23).  

 Due to the difficulties with the QVOA already elucidated, investigators use simple 

Polymerase Chain Reaction (PCR) assays to detect proviral DNA in latently infected cells. The 

frequency of infected cells detected by PCR is better than the frequency measure by QVOA 

(22). PCR assays amplify short conserved regions of the provirus and the Alu-PCR assays 

amplify the regions between an Alu element and the integrated provirus and, providing 

discrimination between integrated and unintegrated provirus. However, the subgenomic PCR 

assays do not precisely distinguish between intact and defective provirus since they will not 

amplify proviruses with deletions that overlap the primer binding sites, but do amplify 

proviruses with defects outside of the region amplified (23). Studies carried by Ho et al. and 

Bruner et al. concluded that in patients who start cART during chronic infection, 98% of 

provirus have major defects, preventing replication. Many of these proviruses would be 

detected by standard PCR assays or Alu-PCR assays that detect integrated HIV-1 DNA. These 

defects are quickly accumulated and are readily, even in patients who start cART in the 

beginning of the infection (41). Therefore, standard PCR assay overestimates latent reservoir 

size in all patients (23). 
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 There are an increasing number of PCR-based assays capable of detecting lower 

concentrations of HIV RNA and HIV DNA. This technique have the advantages of using small 

volumes of fresh and frozen samples (including blood and tissues), is fast and simple (42).   

 Analyzing with full genome sequencing could be really useful to understand the 

distribution of latent HIV-1 in different T cells (12). So, there are a large number of intact 

proviruses that are not induced to produce replication-competent virus in the standard QVOA 

(23).  

 Recent studies have used hybridization-based assays for viral DNA and RNA, 

allowing the visualization of infected cells in tissues (43). These assays can be useful to 

understanding the anatomical distribution of infected cells. 

 Another approach to measure the reservoirs is the in vitro treatment of the latently 

infected cells with a latency reversing agent (44) and the induction of the viral gene expression 

is then measured. This is called “Induction Assays” because the dependence of the stimulus that 

will induce the latent proviruses. The QVOA belongs to this group of assays but the majority 

of inductions assays measure viral RNA in cells or in culture supernatants rather than release 

of infectious virus. Therefore, they are easier and quicker than the QVOA. If the cells are 

stimulated and cultured before plating a limiting dilution then cell proliferation, viral spread 

and other complications may impede the precise measurement of infected cell frequency. These 

assays suffer from two major disadvantages. First, they can detect viral gene expression from 

defective proviruses (that can be transcribed, and some can even give rise to viral proteins). 

Defective proviruses with small deletions in the packaging signal can give rise to virus-like 

particles. Thus, these assays may detect defective as well intact proviruses. Second, recent 

studies show that many agents that work well in this model systems fail to induce latent 

proviruses from patient cells (23).  
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Figure 4 - Schematic representation of the size of the latent reservoir, as assessed with different assay methods. The 

Viral Outgrowth assay (yellow) can estimate the minimal reservoir size, while PCR assays for proviral DNA (blue) drastically 

overestimate the dimension of the reservoir, since can detect defective and replication-competent provirus. A fraction of intact 

provirus (pink) are integrated into genomic regions that manage to prevent induction. The remaining intact provirus can be 

induced after activation (red) and represent the true size of the reservoir.  From: Siliciano JD, Siliciano RF. Recent 

developments in the search for a cure for HIV-1 infection: Targeting the latent reservoir for HIV-1. J Allergy Clin Immunol. 

2014;134(1):12–9 

The importance of measuring the latent reservoir is the ability to distinguish a patient that 

is “cured” (Figure 5. A), that have just defective proviruses, from a patient that have increased 

replication-compartment of latent reservoir (Figure 5. B), consequently rising the frequency of 

the replication-competent proviruses. Since the most commonly used assay is PCR assays for 

proviral DNA and this method can detect defective and replication-competent provirus, is 

difficult to differentiate the two situations already exposed, since the value obtain from the 

assay for residual viremia is the same. So, the capacity to measure the “true” reservoir size have 

been a topic of different studies nowadays.  

 

 

 

 

 

 

 

 

Figure 5 - Schematic representation of the importance of measuring the latent reservoir. The figure A is a representation 

of a “cured” patient, with just defective provirus (blue) and in the figure B exist an increasing of the quantity of intact non-

induced proviruses (pink), intact non-induced proviruses but inducible after a stimulus (red) and induced proviruses (yellow). 

Adapted from: Siliciano JD, Siliciano RF. Recent developments in the search for a cure for HIV-1 infection: Targeting the 

latent reservoir for HIV-1. J Allergy Clin Immunol. 2014;134(1):12–9 

A. 

B. 
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1.4 Persistent Viremia 

When the antiretroviral therapy is started, plasma viral load decline while cART prevents 

(almost) all infection of new target cells (32). Because the short half-life of the free plasma 

virus, viral decay in plasma throughout treatment is primally affected by the life period of 

previously infected cells (12). There are different phases of viral decay during cART (figure 6). 

The first phase match predominantly the infection of activated CD4+ T cells, occurring a rapid 

exponential decay with a half-life of 1-2 days (45). This phase is followed by a gradual decay 

with a half-live of approximately 2-3 weeks and, based on this half-life, macrophages has been 

proposed to be the type of cells corresponding to this phase (12).  During this second phase, the 

majority of the patients achieve viral suppression (<50 HIV-1 RNA copies/ mL) (32). 

Nevertheless, using more sensitive methods of quantification was possible to identified a third 

phase of decay with a half-life of 39 – 63 weeks (9 to 15 months) followed by a fourth phase 

that is extremely stable, around 1 to 3 HIV-1 RNA copies/ mL in most patients on cART (46). 

This level of viremia during cART has been called Residual Viremia (12). The half-life of the 

cells that match with the third phase of decay correspond to the characteristics of resting CD4+ 

T cells. These cells may also be found in the fourth phase, due to the possible rate of division 

corresponds to their death rate (32). If we correlate the residual viral set-point with pre-therapy 

plasma viral levels and with the levels of pre-treatment total HIV-1 DNA (47) is possible to 

realize that the infection is established in long-lived cells early in the infection, which is also 

set by the non-evolutionary nature of viruses captured from resting CD4+ T cells in patients 

under cART (12,48).  

According to Portugal Guidelines, virologic failure is defined as the inability to achieved or 

maintain suppression of viral replication, in patients under cART during 6 or more months, to 

a viral load < 50 copies/mL, measured two times consecutives, separated at least for 15 days 

(18). Thereby, an important monitorization for develop HIV-1 eradication strategies is the 

measuring of residual viremia. In some patients, could be clinical important to monitor viremia 

even if < 50 HIV-1 RNA copies/ mL (49) and, in recent years, the Simple Copy Assay (SCA)  

has been widely used since is a quantitative technique that is able to detect less than 1 copy of 

HIV-1 RNA/ mL (50). However, this a technique that involves major laboratory work. So, for 

quantifying HIV-1 viremia in a systematized and reliable way, commercial quantitative PCR 

(qPCR) kits are used. These kits have the disadvantage that the limit of detection is between 20 

and 50 copies/ mL, depending on the assay (23). Increasing the sample volume and 

ultracentrifugation of the sample could be strategies to reduce stochastic influences (51).  
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Nowadays the two commercial assays that are mainly used to monitor and control plasma 

viral load in patients with HIV-1 infection, under cART, are the Abbott RealTime assay and 

the COBAS Taqman HIV-1 test version 2.0. These assays are based on RT-PCR but the 

COBAS Taqman HIV-1 test, version 2.0, appears to have higher detectability rates than Abbott 

RealTime assay and have a lower limit of detection (20 copies/ mL compared to 40 copies/mL) 

(52).  

Since the residual viremia represent virus release from stable viral reservoir is normal to 

ask if the measurement of residual viremia could, or not, provide an alternative approach to 

reservoir measurement. Probably the level of residual viremia is related to reservoir size, but 

the nature of this relationship is not clear because: 

- The level of residual viremia is very low and is normally below the level of detection of 

sensitive assays. Thus, for some patients is necessary collect large volumes of plasma (23).  

- The residual viremia is usually dominated by a clonal population of viruses and latently 

infected cells. This reflect the fact that CD4+ T cells can proliferate after infection and copying 

unmodified forms of the viral genome into progeny cells (53). 

Another important event is the viral rebound after the interruption of cART (figure 6). 

Normally, viral rebound is detected two weeks after interruption of the therapy (54). The 

relationship between the size of the latent reservoir and time until the rebound had been 

described in a mathematical model (30). Because of this correlation, time to viral rebound is 

used as an outcome measure in some clinical studies (23). Nevertheless, there are some 

problems with this approach: there are risks to the patient, including drug resistance (23), and 

the variations between patients, introducing a variability in rebound time for a given degree of 

reservoir reduction (26).  
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Figure 6 - Decay dynamics of plasma HIV-1 RNA before, during and after cART treatment. The green line represents 

the limit of detection of the PCR assay. When the cART is started occurs a rapid exponential decay until a persistence residual 

low-level viremia. If the cART is interrupted is possible to observe an increase of viremia (viral rebound). 

   

1.4.1 Possible Sources of Viremia  

In patients not treated with cART, viremia is mostly caused by repeated cycles of infection-

replication in activated CD4+ T cells. This is sustained by classical studies in viral replication 

kinetics that show a decay in viremia in two phases, after initiating cART (55). In the first phase 

occurs viral producing by activated CD4+ T cells that have short half-lives (approximately 24 

hours), that are responsible for 90% of plasma viral load. The second phase is related with the 

viral replication from reservoirs with a half-life of a few weeks, which produce HIV-1 at minor 

rates (56).  

Currently different mechanisms are proposed to be possibly responsible for the residual 

viremia detected during cART: ongoing cycles of HIV replication in specific anatomical 

compartments with infection of new host cells and proliferation of infected long-lived cells that 

might produce virus, in reaction to cell activation (31).  

At the first time that residual viremia was confirmed, in 1999, it was presumed that ongoing 

cycles of replication were possible, despite the presence of cART (57). However, based on the 

nature of the HIV-1, this theory infers some assumptions. The first assumption is the possibility 

of viral evolution and the appearance of resistant viral strains during residual viremia (15). 

Another assumption is the possibility of the intensification of cART affects residual viremia 

(12), being this an area widely study nowadays. Thus, ongoing HIV replication during cART 



 27 

is still controversial in the scientific community and is sustained by the detection of free virions 

in plasma, mainly due to their short half-life, although their presence could not be an outcome 

of active viral replication (31). On the other hand, different studies question the role of active 

viral production in HIV persistence (46). Nevertheless, has been demonstrated that in sites 

where exists a suboptimal drug penetration or weak control by the host immune system 

(lymphoid tissue, gastrointestinal tract, CNS and genital tract) occurs low-level viral replication 

(28). Particularly in the lymph nodes was already documented residual replication due to high 

frequency of infection per cells and to a drug concentration lower than in the blood (12).  

The existing data concerning the source of residual viremia is, generally, coherent with the 

release of archival viruses from stable reservoirs. Despite the existence of these reservoirs, 

transcriptionally silent but replication-competent proviruses can be isolated from resting CD4+ 

T cells in all patients on cART, regardless of the duration of treatment (49). This establishes 

the reservoirs of the virus as one of the most important barrier to HIV-1 eradication (58). 

Thereby, the source of persistent residual viremia is controversial and have been proposed 

different theories to explain.  Ongoing replication is proposed to occur due to a non-fully 

suppressive cART (59) caused by the intrinsic ability of the virus to exhibit genetic diversity 

that reduce the susceptibility to some antiretroviral drugs (60) and, in the other way, is 

suggested the reactivation of viral expression from latently-infected cellular reservoirs 

harboring stably integrated, transcriptionally silent but replication-competent proviruses, a 

theory well accepted.  
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2 GOALS  

This thesis is integrated in Gilles Darci’s work entitled “Effect of Dolutegravir 

intensification on blood and tissue latent HIV-1 reservoirs and on residual viremia despite 

ART” and developed in the AIDS Reference Laboratory of the University Health Center 

(Laboratoire de Référence Sida du Centre Hospitalier Universitaire) in Liège, Belgium.  

This study has three main goals: 

- Develop an optimized highly sensitive assay to measure the Replication Competent 

Retrovirus (RCR) and to quantify RCR in tissues; 

- Create a blood/PBMCs bank with samples from new patients (see the evolution of RCR 

under therapy) to better define the contribution of ongoing replication to residual 

viremia and immune activation; 

- Evaluate the impact of dual therapy/monotherapy at the level of residual viremia, 

replication competent retrovirus and immune activation in blood in tissues. 

Twenty patients under Triumeq (Abacavir + Dolutegravir + Lamivudine) were 

randomized into two different groups, being a triple blind study: 10 patients in the control 

group, that maintain the therapy already doing, and 10 patients that will receive an additional 

50 mg of Dolutegravir. The impact of this strategy will be measured on residual viremia (by 

ultrasensitive RT-PCR), immune activation (by Fluorescence activated cell sorting from 

PBMCs) and replication competent retrovirus in blood and in tissues (by gut biopsies in day 0 

and day 84). 

Due to the importance of measuring the residual viremia of the HIV-1, the general aim 

of this work is to optimize a PCR assay, specifically the Roche COBAS AmpliPrep/ COBAS 

TaqMan HIV-1 v2.0 protocol, decreasing the limit of detection and enhancing the sensitivity. 

For this purpose, the protocol commonly used for this technique will be optimized in order to 

measure only viral RNA of the virus and reduce possible interferences.  
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3 MATERIALS AND METHODS 

3.1 Materials 

3.1.1 Plasma 

The plasma samples were collected from patients at the National AIDS Reference 

Laboratory, Centre Hospitalier Universitaire (CHU) de Liège, and provided written informed 

consent for the “Effect of Dolutegravir intensification on blood and tissue latent HIV-1 

reservoirs and on residual viremia despite ART” study. All patients were HIV-1 seropositive 

individuals on stable suppressive cART and underwent phlebotomy (12 tubes of 10 mL). In a 

Biosafety Level 2 Plus (BSL-2+) laboratory, the plasma was separated by centrifugation of 

whole blood at 1200 X g for 10 min, followed by removal of the plasma layer. Three aliquots 

of 1,5 mL of plasma were stored at -80ºC and one Falcon of 50 mL was stored at 2ºC. The 

plasma stored on the Falcon was ultracentrifuged at 20 000 rpm for 50 min (4 ºC) in a BSL-3 

laboratory. 

 

3.1.2 Negative Plasma 

Negative plasma is a Defibrinated Delipidated Human Plasma, that was stored at 4 ºC. 

The plasma was acquired from SEQENS IVD manufactures and is obtained from human 

plasma, successively defibrinated, dialyzed, delipidated and then charcoal stripped to remove 

specific elements (vitamin D, steroids, hormones, T3/T4, TSH). Is tested and found negative 

for: 

      - anti-HIV 1+2 & anti- Hepatitis C Virus (HCV) antibodies; 

      - Hepatitis B (HB) antigen; 

      - HIV 1 & HCV RNA; 

      - Syphilitic serology. 

 

3.1.3 Peripheral Blood Mononuclear Cells (PBMCs) 

The PBMCs were collected from samples of HIV-1 seropositive individuals on stable 

suppressive cART, obtained by leukapheresis by Ficoll-Paque Plus density gradient 

centrifugation in a BSL-2+ laboratory. The PBMCs were cryopreserved in frozen mixture of 

10% Dimethyl sulfoxide (DMSO) in Fetal Bovine Serum (FBS) at -80ºC. 
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3.1.4 Deoxyribonuclease I (DNase I), Amplification Grade 

(Invitrogen®) 

The Amplification Grade from Invitrogen® is suitable for DNA during RNA purification, 

such as those prior to RNA-PCR amplification. DNase I, Amplification Grade is purified from 

bovine pancreas and has a specific activity of ³10000 U/ mg. The kit is composed by the DNase 

I, 10X DNase I Reaction Buffer and EDTA (pH 8,0).  

 

3.2 Methods 

3.2.1 Preparation of RNA Sample Prior to PCR assay with 

DNase I 

Due to the volume of plasma needed for the COBAS AmpliPrep/COBAS Taqman HIV-

1 test was larger than the volume of sample described in the Amplification Grade protocol, was 

necessary to scale up linearly the volume used of all the reagents. Therefore, for 1,2 mL of 

plasma sample was added 120 µL of 10X DNase I Reaction Buffer and 1,2 µL of DNase I (1 

U/ µL). The mixture was incubated for 15 minutes at room temperature. For the inactivation of 

the DNase I was added 120 µL of 25 mM Ethylenadiamine Tetraacetic Acid (EDTA) to the 

reaction mixture and heated 10 min at 65ºC. 

 

3.2.2 Isolation and Cryopreservation of PBMCs 

For the isolation of PBMCs by density gradient from whole human blood (figure 7), the 

blood samples from seropositive patients were collected (12 x 10 mL EDTA tubes from each 

patient) and centrifuged at 1200 X g for 10 min. The plasma was removed and stored at -80°C 

(2 aliquots of 1,5 mL) and at 2°C (1 Falcon of 50 mL). With RPMI, the blood was well 

homogenized. Gently, the blood was transferred for a Falcon that contained 12,5 mL of Ficoll 

and centrifuged for 20 minutes (acceleration 6, brake 0). The PBMCs layer was removed, 

diluted in RPMI (first wash) and centrifuged for 7 minutes (acceleration 9, brake 9). The 

supernatant was removed, and the process repeated 2 more times, completing 3 washes. The 

pellet of PBMCs was resuspended, and the cells were counted. FBS was added to the re-suspend 

pellet to obtain 10 x 106 cells/ 500 µL.  
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Figure 7- Schematic illustration of how to prepare the density gradient for isolation of PBMCs from blood and where 

in the gradient the PBMCs are found after centrifugation. The total blood is represented by the red layer, the yellow layer 

symbolizes the plasma, the Ficoll is the white layer and the PBMCs are represented by the green layer. Adapted from: 

Kleiveland CR (2015) Peripheral blood mononuclear cells. The impact of food bioactives on health. Springer Int Publishing, 

New York City, pp 161–167 

For the cryopreservation was added 500 µL of freeze mixture (10% DMSO in FBS) into 

500 µL of the cell suspension in cryotubes. For 24h, the cryotubes were storage in the Mr Frosty 

at -80 °C and then removed from the Mr Frosty and storage again at -80 °C.  

 

3.2.3 Ultracentrifugation of Plasma Samples  

The Ultracentrifugation was performed in a BSL-3 Laboratory in 50 mL of plasma 

samples. First was performed a centrifugation at 4°C, 500 x g, for 7 minutes. The total volume 

of plasma was divided between 2 ultracentrifugation tubes and added FBS to equilibrate the 

tubes in the support. This was followed by ultracentrifugation at 4°C, 20 000 rpm, for 50 

minutes. The supernatant was removed and saved, and the cells were resuspended with 1 mL 

of FBS. To ensure that all the cells and impurities were eliminate from the plasma samples, one 
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more centrifugation was performed at 4°C, 500 x g, for 7 minutes. The ultracentrifuged plasma 

sample was stored in a 1,5 mL aliquot at -80 °C.  

 

3.2.4 HIV-1 RNA PCR Assay: Roche COBAS 

AmpliPrep/COBAS Taqman HIV-1 test, version 2.0 

The Roche COBAS AmpliPrep/COBAS Taqman HIV-1 test, version 2.0 is use for 

quantitative detection of HIV-1 RNA in EDTA anti-coagulated plasma. Speciment preparation 

(isolation of HIV-1 RNA with a generic silica-based capture technique) is programmed in the 

COBAS AmpliPrep Instrument and the amplification and detection are automated in the 

COBAS TaqMan Analyzer. This method employs a dual target approach, using primers and 

probes specifics to LTR and gag genes. For the HIV-1 RNA quantification, this method uses a 

non-infectious armored RNA construct (quantification standard or QS) that contains HIV 

sequences with identical primers binding sites as the HIV-1 target RNA and a unique probe 

binding region that allows HIV-1 QS amplicon to be distinguished from HIV-1 target amplicon.  

The HIV-1 QS is added to all the samples at a known copy number and is carried through 

the specimen preparation, reverse transcription (generating complementary DNA), PCR 

amplification (with thermostable recombinant enzyme thermus specie DNA polymerase) and 

detection (by monitoring the emission intensity of fluorescent reporter dyes released during the 

amplification) phases of cleaved dual-labeled oligonucleotide probes. The COBAS TaqMan 

Analyzer calculates the HIV-1 RNA concentration in the samples that are tested by comparing 

the HIV-1 signal to the HIV-1 QS signal for each specimen and control.  

For this method is necessary 1,2 mL of plasma sample and is used a HIV-1 High Positive 

Control, a HIV-1 Low Positive Control, a Cobas TaqMan Negative Control (Human Plasma) 

and a Belgium Intern Control of 1000 copies/ mL. 

The results are shown in copies of HIV-1 RNA/ mL of plasma and the linear range is 

20 – 1x107 copies/ mL. The possible results, and the corresponding interpretation, are described 

in the follow table. If the log10 of the results is above 0,50 it is considered a significant different 

and the therapy should be reviewed.  

 

 

 



 33 

 

 

Table 1- Interpretation of the obtained results by Roche COBAS AmpliPrep/COBAS Taqman HIV-1 test, version 2.0. 

Titer Result Interpretation 

Target Not 

Detected (TND) 

Critical threshold (Ct) value for the HIV-1 above the limit for the assay 

or no Ct value for HIV-1 obtained. Results should be reported as “HIV-1 

RNA not detected”. 

< 20 cp/ mL 

Calculated cp/mL are below the limited of detection of the assay. Results 

should be reported as “HIV-1 RNA detected, less than HIV-1 RNA 

cp/mL”. 

20 - 1x107 cp/ 

mL 

Calculated results greater or equal to 20 cp/mL and less than or equal to 

1x107 cp/ mL are within the Linear Range of the assay. 

> 1x107 cp/ mL 
Calculated cp/mL are above the limited of detection of the assay. Results 

should be reported as “greater than 1x107 cp/ mL HIV-1 RNA cp/mL”.  
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4 RESULTS 

4.1 Analysis of the influence of Ultracentrifugation in Preparation of 

Plasma samples 

In the commonly used protocol for the preparation of the plasma samples prior to PCR 

assay, 1,2 mL of plasma is separate by a centrifugation of whole blood at 1200 X g for 10 min, 

followed by removal of the plasma layer. However, in studies that requires a measurement of 

residual viremia is necessary to increase the sensitivity of the methods used.  

With the intention to understand if ultracentrifugation would contribute to the 

optimization of HIV-1 RNA quantification, the PCR assay was performed using samples 

collected from two seropositive patients (GIL14 and GIL19) that were on cART. Was collected 

a larger volume of blood from both patients and 1,2 mL of the plasma was centrifuged and 50 

mL of plasma was ultracentrifuged. 

The objective of performing the ultracentrifugation was to pellet virions and concentrate 

the virus. 

 

Table 2 - Viral load, in HIV-1 RNA copies/ mL plasma sample from patients GIL14 and GIL19. The samples that were 

ultracentrifuged are identified with UC (GIL14 UC and GIL19 UC). 

 

In both patients samples the viral load detected in the centrifuged samples (GIL14 and 

GIL19) was not detected or was lower than the viral load detected in the ultracentrifuged 

samples (GIL14 UC and GIL19 UC). Nevertheless, was not possible to assurance that the assay 

was just measuring the HIV-1 RNA or if exist some HIV-1 DNA present in the plasma samples 

that are influencing the results. 

SAMPLE ID RESULT (cp/ mL) 

GIL14 Target Not Detected 

GIL14 UC 21,2 

GIL19 87,3 

GIL19 UC 489 
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4.2 Evaluation of the preparation of plasma samples prior to PCR with 

DNase I 

Considering that the plasma samples are collect from tubes with whole blood that were 

centrifuged or ultracentrifuged, is not possible to assurance that in the PCR assay only occur 

the measurement of HIV-1 RNA because could exist HIV-1 DNA in the sample that may 

change the obtained result.  

DNase I is an endonuclease that nonspecifically degrades double-stranded and single-

stranded DNA. In order to guarantee that in plasma samples did not exist DNA (from cells or 

virions) the Amplification Grade protocol was performed, with linear adjustments in the volume 

of reagents, in samples from 4 different seropositive patients on cART (GIL15, GIL16, GIL17 

and GIL18), in samples centrifuged and ultracentrifuged. Thereby, from the same patient, was 

compared the viral load in centrifuged plasma sample, centrifuged plasma sample treated with 

DNase I, ultracentrifuged plasma sample and ultracentrifuged plasma sample treated with 

DNase I to evaluate the importance to prepare the RNA samples prior to PCR with this enzyme. 
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Table 3 - Viral load, in HIV-1 RNA copies/ mL and log10 of the obtained value, in plasma sample from patients GIL15, 

GIL16, GIL17 and GIL18.  The samples that were ultracentrifuged are identified with UC (GIL15 UC, GIL16 UC, GIL17 

UC and GIL18 UC) and the plasma samples treated with DNase I before the PCR assay are identified with DNase I, having 

been centrifuged (GIL15 DNase I, GIL16 DNase I, GIL17 DNase I and GIL18 DNase I) or ultracentrifuged (GIL15 UC DNase 

I, GIL16 UC DNase I, GIL17 UC DNase I and GIL18 UC DNase I). 

SAMPLE ID RESULT (cp/ mL) RESULT (log10) 

GIL15 1110 3,05 

GIL15 DNase I Target Not Detected Target Not Detected 

GIL15 UC 270 2,43 

GIL15 UC DNase I 215 2,33 

GIL16 Target Not Detected Target Not Detected 

GIL16 DNase I Target Not Detected Target Not Detected 

GIL16 UC 259 2,41 

GIL16 UC DNase I 34,4 1,54 

GIL17 < 20 < 1,30 

GIL17 DNase I Target Not Detected Target Not Detected 

GIL17 UC 32,4 1,51 

GIL17 UC DNase I 228 2,36 

GIL18 < 20 < 1,30 

GIL18 DNase I < 20 < 1,30 

GIL18 UC 108 2,03 

GIL18 UC DNase I 176 2,25 

 

Results continues to show that was an increase of copies/ mL when the samples were 

ultracentrifuged, except the patient GIL15. When the plasma samples were treated with DNase 

I, exists a lightly decreased of viral load result and the most significant difference of values of 

viral load was between the samples of Plasma Centrifuged compared to samples of Plasma 

Centrifuged treat with DNase I. 

 However, in the DNase I protocol is used EDTA to inactivate the enzyme. The blood of 

the donors was collected in tubes with EDTA so is important to ensure if the EDTA in the 

samples influences the activity of the DNase I. 
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 For this purpose, was used “Negative Plasma” (Defibrinated Delipidated Human 

Plasma) to resuspended 10x106 infected cells, isolated from five seropositive patients’ whole 

blood (AZT63695, AZT64042, AZT64045, AZT64069, AZT64081) and compare the results 

with and without the treatment with DNase I. 

 

Table 4 - Viral load, in HIV-1 RNA copies/ mL and log10 of the obtained value, in cells diluted in Negative Plasma from 

infected patients AZT 63695, AZT 64042, AZT 64045, AZT 64069 and AZT 64081. The samples treated with DNase I 

before the PCR assay are identified with DNase I (AZT 63695 DNase I, AZT 64042 DNase I, AZT 64045 DNase I, AZT 64069 

and AZT 64081 DNase I). 

SAMPLE ID RESULT (cp/ mL) RESULT (log10) 

AZT 63695 4750 3,68 

AZT 63695 DNase I 811 2,91 

AZT 64042 2650 3,42 

AZT 64042 DNase I 240 2,38 

AZT 64045 734 2,87 

AZT 64045 DNase I 103 2,01 

AZT 64069 508 2,71 

AZT 64069 DNase I 36 1,56 

AZT 64081 8510 3,93 

AZT 64081 DNase I 67,6 1,83 

  

In all samples was obtained a higher viral load in the samples not treated with DNase I 

but not a “Target Not Detected” result.  

Due to this, was necessary to guarantee that the amount of DNase I used to prepare the 

plasma samples was enough to remove all HIV-1 DNA present, since the manufacturing 

protocol was changed.  

With the intention to understand if with a sample with less amount of viral DNA the 

result would be “Target Not Detect” (who means that the DNase I removed all the DNA present 

in the sample) was prepared pellets of 1 x 107 cells from a patient (AZT65528) whose plasma 

viral load was known and was low (116 cp / mL), made different dilutions of the cells in FBS 
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(10x, 101x, 102x, 103 x, 104 x, 105 x and 106x) and analyze in the Roche COBAS 

AmpliPrep/COBAS Taqman HIV-1 test, version 2.0. The final volume of each dilutions was 

2,4 mL to perform a DNase I and DNase I-free analysis. For DNase-free analysis was 

distributed 1,1μL of dilution and for the analysis with DNase was proceeded as follows while 

adapting the protocol, already explained above.  

Table 5 - Viral load, in HIV-1 RNA copies/ mL and log10 of the obtained value, in seven different dilutions in FBS (10x, 

101x, 102x, 103 x, 104 x, 105 x and 106x) of 1x106 cells. The total volume of the dilutions was 2,4 mL, having been used 1,1 

mL for the analyze of the samples not treated with DNase I (D1, D2, D3, D4, D5, D6 and D7) and 1,1 mL for the samples 

treated with the DNase I after the dilution (D1 DNase I, D2 DNase I, D3 DNase I, D4 DNase I, D5 DNase I, D6 DNase I and 

D7 DNase I). 

DILUTION 

ID 

NUMBER OF 

CELLS (IN 2,4 mL) 
SAMPLE ID RESULT (cp/mL) RESULT (log10) 

D 1 1 x 107 cells 
D1 104 2,02 

D1 DNase I TND TND 

D2 

(10x) 
1 x 106 cells 

D2 TND TND 

D2 DNase I TND TND 

D3 

(102x) 
1 x 105 cells 

D3 TND TND 

D3 DNase I TND TND 

D4 

(103x) 
1 x 104 cells 

D4 TND TND 

D4 DNase I TND TND 

D5 

(104x) 
1 x 103 cells 

D5 TND TND 

D5 DNase I TND TND 

D6 

(105x) 
1 x 102 cells 

D6 TND TND 

D6 DNase I TND TND 

D7 

(106x) 
10 cells 

D7  TND TND 

D7 DNase I TND TND 

Results show that only in the sample with 1 x 107 cells not treated with DNase I (sample 

D1) was detected viral load. In all the other samples the result was “Target not Detected”, 

meaning that all HIV-1 DNA was removed from the sample. 
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5 DISCUSSION AND CONCLUSIONS 
 

Since the discovery of viral reservoirs in HIV-infected patients receiving cART, measuring 

the level of viral persistence has been one of the major challenges of the HIV research. These 

reservoirs can be found primarily in resting memory CD4+ T cells, which contain HIV-1 DNA 

integrated into their genome. The existing antiretroviral therapies available depend on active 

viral replication to be efficient, therefore they are incapable of eliminating the latent cells from 

the host. Because latently infected CD4+ T cells are particularly rare (1 cell in a million resting 

CD4+ T cells are replication-competent), even the most sensitive assays have a limit of 

detection, often determined by the quantity of biological material that is available (61).  

The most commonly used assay is the PCR which target are the conserved regions of the 

HIV-1 genome. For that reason, it is crucial to optimize this assay to decrease the limit of 

detection an increase the sensitivity.  

The Roche COBAS AmpliPrep/ COBAS TaqMan HIV-1 v2.0 protocol is commonly used 

for measuring the HIV-1 RNA in 1,2 mL plasma sample collected from whole blood of 

seropositive patients on cART and the limit of detection is 20 copies/mL.  

Usually, after collecting the blood from the patients is performed a normal centrifugation 

(1200 X g for 10 min) to the blood tubes and then the plasma is collected and analyzed by PCR 

assay. Realizing ultracentrifugation in the plasma samples of HIV-1 infected patients GIL14 

and GIL19 and comparing with samples from the same patients that only underwent 

centrifugation was possible to understand that the ultracentrifugation is important to detect the 

actual quantity of HIV-1 RNA in the plasma. In both centrifuged samples the result was “Target 

Not Detected”, meaning that none HIV-1 RNA was detected, but in the ultracentrifuged 

samples a small amount of HIV-1 RNA was measured. Nevertheless, was not possible to 

guarantee that only HIV-1 RNA was measured, considering that HIV-1 DNA from cells could 

exist in the plasma samples. 

To evaluate the possible interference of the HIV-1 DNA in the obtained viral load values 

of the PCR assay was compared the results from samples centrifuged not treated with DNase I, 

centrifuged treated with DNase I, ultracentrifuged not treated with DNase I and ultracentrifuged 

treated with DNase I from four different patients (GIL15, GIL16, GIL17 and GIL18). Although 

slight, when the HIV-1 DNA was removed from the samples (centrifuged or ultracentrifuged, 

excluding in the GILP17) with the DNase I treatment was possible to verify that less copies/mL 
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of HIV-1 RNA were detected, which means that is possible that the plasma samples are 

contaminated with viral DNA when the protocol is performed, even in the ultracentrifuged 

samples.  Thus, removing the viral DNA from the samples increases the sensitivity of the 

method and its possible to obtain more reliable results. The ultracentrifugation step continued 

to prove to be important to the optimization of the assay.  

On the other way, in the DNase I protocol we used EDTA to inactivate the enzyme. 

Therefore, was necessary to ensure that the EDTA present in the patient's blood tubes would 

not influence DNase I activity. Using Negative Plasma to resuspend a predetermined number 

of cells from five patients (AZT 63695, AZT 64042, AZT 64045, AZT 64069 and AZT 64081) 

was performed the PCR assay in the Roche COBAS AmpliPrep/ COBAS TaqMan HIV-1 v2.0. 

Two possible results were expected, since that only HIV-1 DNA from the cells existed in the 

sample: equal results for samples with or without DNase I, meaning that the viral DNA was not 

removed from the sample by the DNase I and that was possible that the EDTA in the blood 

tubes inhibits the enzyme, or different results for samples with or without DNase I, meaning 

that the enzyme was not inhibit and the viral DNA was removed. Evaluating the results, in all 

the samples it was obtained a lower value of copies/ mL when the DNase I was used but none 

“Target Not Detected” result. This could mean that the EDTA in the collecting tube could 

partial inhibit the enzyme or that we were not using enough DNase I to remove all the viral 

DNA of the samples. Nevertheless, when we analyze the plasma samples, we have less quantity 

of viral DNA comparing to the samples that we had with ten million of cells. 

Is known that: was used the same negative plasma in all of the samples; the quantity of 

EDTA was similar in all of the samples; and that the quantity of EDTA in the plasma was not 

enough to inhibit the action of the DNase I so if we have a sample with less HIV-1 DNA (plasma 

sample) the DNase I would remove all of the viral DNA. Due to this, several dilutions of ten 

million of cells were made to assurance that the amount of DNase I that was used was correct 

and was enough to remove all the viral DNA from the plasma sample, since the manufacture 

DNase I protocol was changed (because of the larger volume of plasma sample necessary to the 

assay). Since all of the results were “Target Not Detected”, except in the sample with 1 x 107 

cells and not treated with DNase I, is possible to conclude that the quantity of DNase I that was 

used is adequate and that manage to remove the possible viral DNA that could alter the obtained 

result of viral load from plasma samples.  

Thus, the Roche COBAS AmpliPrep/ COBAS TaqMan HIV-1 v2.0 protocol was possible 

to optimize by collecting a larger volume of blood from the patients to proceed to the 
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ultracentrifugation (to concentrate the plasma). Was even possible to conclude that in plasma 

sample not only exist viral RNA but also HIV-1 DNA from cells so is important to, prior to the 

PCR assay, remove all viral DNA with DNase I and the DNase I Amplification Grade protocol 

is possible to scale up. 

However, exist some limitations in this work that include a small number of participant 

samples evaluated, the optimization was just for a specific equipment (Roche COBAS 

AmpliPrep/ COBAS TaqMan HIV-1 v2.0) and  uses only plasma samples, depend on the viral 

RNA that is present to measuring the viral load, and with this protocol was not possible to 

distinguishes between replication competent and non-competent pro-viruses, that should be one 

of the next steps in the “Effect of Dolutegravir intensification on blood and tissue latent HIV-1 

reservoirs and on residual viremia despite ART” study. 

In summary, was possible to increase and improve the Roche COBAS AmpliPrep/ COBAS 

TaqMan HIV-1 v2.0 protocol to achieve a more accurate and realistic result of HIV-1 residual 

viremia quantification, important for HIV cure studies. 
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6 FUTURE PERSPECTIVES 
 

Although effective treatment is available for a growing number of infected individuals and 

the therapy manage to control viral replication, HIV-1 is the cause of morbidity and death in 

millions of people worldwide. Thereby, it is crucial to develop a cure for the HIV-1 infection 

because, even though is widely accepted that early cART is beneficial, viral eradication and 

cure is not achievable with cART alone. Finding the association between immune activation 

and viral reservoir establishment and persistence may be a starting point for new potential 

therapeutic strategies for remission. 

On the other way, an accurate and measured assay for the latent reservoirs of the HIV-1 

virus is needed to allow assessment of the curative interventions targeting the reservoir. Because 

de majority of the proviruses are defective, these assays may not detect changes in the minor 

percentage of proviruses that are replication-competent and that might create a barrier to cure. 

In contrast, the QVOA could underestimate the size of the reservoir since not all replication-

competent proviruses are inducible by a single round of T cell activation.  The best methodology 

could be the measuring of all the proviruses with the potential to cause viral rebound.  

Modify commercial assays could be a way to achieve a more sensitive quantification of 

plasma HIV-1 RNA to be used to measure residual viremia and develop more advanced 

methods will continue to contribute to the progress in HIV cure studies and to the capacity to 

measure the “true” HIV-1 reservoir size. 
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