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ABSTRACT 

 
Low cost and efficient adsorption of heavy metals from wastewater and thorough removal of 

adsorbent after water treatment have become the two essential needs for the commercial use of any 

adsorbent. Biochar (BC), the solid byproduct of pyrolysis with microporous carbonaceous structure, 

has been increasingly recognized as an efficient adsorbent for a vast number of pollutants. 

Magnetization, though eases the separation and reuse of BC, significantly reduces its adsorption 

capacity to a comparatively much higher extent. In this study, a hybrid post-pyrolysis magnetization 

was developed which sustained and even significantly increased the adsorption capacity of biochar. 

The process included i) structural modification of biochar under ultrasound waves, ii) magnetization 

with magnetite (Fe3O4) nanoparticles and iii) functionalization with 3-aminopropyl triethoxysilane. 

Ultrasound irradiation exfoliates and breaks apart the irregular graphite layers of biochar, and creates 

new/opens the blocked microspores, thus enhancing the BC’s porosity. On the other hand, 3-

aminopropyl triethoxysilane stabilizes the magnetic nanoparticles on the biochar surface, while it 

participates in water treatment through the strong chelation ability of its amino groups 

toward metal ions. Scanning electron microscope image demonstrated the stable and uniform 

distribution of Fe3O4 nanoparticles on the surface of microporous biochar and Fourier-transform 

infrared spectroscopy suggested effective surface functionalization. In addition, although 

magnetization usually reduces the porosity of carbonaceous adsorbents, acoustic activation prior to 

magnetization increased the microporosity of biochar (from 123 for Raw-BC to 155 m2/g for 

acoustic-based magnetic biochar). Preliminary results of Ultraviolet–visible spectroscopy showed 

that acoustic-based magnetic biochar exhibited a much greater ability to remove Ni and Pb, with 

139% and 38% higher adsorption compared to raw biochar. Almost complete removal of Pb (91%) 

was observed by magnetic-BC.   
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1 Introduction 
Owing to the rapid boom in industrialization, the proper treatment of the heavy metals from 

industrial wastewater has become of monumental importance [1]. Heavy metals are readily soluble 

in aquatic environs and once these connect up to food or drinking water chain, considerable 

concentrations can accumulate inside the human body which can be lethal if allowed to go beyond 

tolerable limits [2, 3]. Nickel and Lead, which are used in manufacturing processes of batteries, 

super-alloys, and smelting of sulfide ores, are considered to be severely toxic even at low 

concentrations. Biosorbents and activated carbon are good adsorbents for these heavy metals but 

compared to biochar, are relatively expensive. Thus, for cost-effective interests, a wide variety of 

biochars have been extensively studied for their ability to sorb heavy metals [4-6]. Most derived 

biochars contribute to heavy metal adsorption through the processes of cation release, functional 

groups complexations and other physical and surface interactions. These, in turn, include 

mechanisms such as co-precipitation where a heavy metal cation substitutes another cation on the 

biochar’s surface. The heavy metal cations can also be directly adsorbed into the pores on the biochar 

through physical adsorption and surface precipitation (amorphous) [7]. 

A hindrance to these ongoing advancements in heavy metal adsorption has been biochar 

recovery after wastewater treatment. Time-consuming steps like centrifugation and filtration are 

unlikely to be efficient in large scale applications. So, the magnetization of biochar has provided a 

novel approach, allowing practical use of small particle size adsorbents which have high surface 

areas and fast adsorption kinetics. With the use of a magnet, magnetic biochar can be easily and 

quickly separated after adsorbing heavy metal contaminants from water. This makes either of batch 

and stirred processes a viable option while also overcoming the drawbacks caused by filtration of 

small particle size adsorbents and delivering faster adsorption kinetics [8].  
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Impregnation, co-precipitation, and liquid reduction are the most common methods have been 

used to prepare magnetic biochar. Impregnation includes mixing the biomass with a ferric or ferrous 

chloride precursor solution, and subsequent pyrolysis of the obtained biomass in an inert 

environment under high temperature. This single-step pyrolysis of FeCl3 loaded biomass can 

produce the biochar with magnetic properties but simultaneously produces secondary pollution, is 

costly and may not address any desired functional group on biochar surface [9]. Surface functional 

groups which support adsorption through complexation become limited via this process as they react 

with iron in various oxidation reactions during pyrolysis, reducing biochar’s heavy metal adsorption 

capacity significantly [10, 11]. The magnetization of biochar has typically been achieved through 

the traditional method of chemical co-precipitation with magnetite (Fe3O4) [10, 12]. In this process, 

iron oxides of magnetic nature are precipitated directly onto the biochar with the use of biocarbon 

and a mixed Fe2+/Fe3+ salt solution. These iron compounds have been used individually or in unison 

to impart magnetism on the biochar [13, 14]. The liquid-phase reduction method comprises mixing 

the biocarbon with Fe2+ salt solution and then reducing Fe2+ to the zero-valent iron on biochar surface 

using a reducing agent (NaBH4/KBH4). The two latter methods method can reduce the porosity of 

biochar due to the aggregation of iron oxides in the aqueous solution. This results in a decrease in 

the surface area and hence the adsorption capability of biochar [15]. Even with the optimum amount 

of doping, the decrease in heavy metal adsorption is prevalent. To reap the benefits of magnetic 

separation, overcoming these drawbacks is crucial [16]. 

Ultrasound irradiation has been recently introduced as an effective method for activation of 

carbonaceous compounds with graphitic structures. Ultrasonic irradiation with a frequency between 

20 kHz and 1 MHz generates microscopic cavitation which is defined as the sequential formation-

generation, growth, and collapse of microbubbles [17]. Generation of micro-jets, shock waves and 
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highly pressurized over-heated regions known as hot-spots are the most well-known implications of 

explosion of micro-bubbles (cavitation phenomenon). [17]. The hot spots, with the temperature of 

5000 °C, pressure of 1000 atm and heating-cooling rates above 1010 K/s, hold sufficient energy to 

activate or split the larger particles into smaller ones, clean smooth surfaces, and increase the 

porosity of solid surfaces [18, 19]. The effect of ultrasound on graphite oxide was first discovered 

by Stanokovich, who found that a mild ultrasonic treatment (F=80 kHz, 150 W) of graphite oxides 

for 1 hour exfoliates its layers and forms stable aqueous dispersions that consist almost entirely 1-

nm thick sheets [20]. The physical structure of biochar comprises clusters of parallel graphene oxide 

layers consisting of acquirable oxygen functional groups [21-23]. Given this fact and inspired by 

Stanokovich’s works, our group investigated the interaction of ultrasound/biochar/CO2/water and 

discovered remarkable synergisms upon treating biochar (BC) with ultrasound (US) irradiation, 

which include disarrangement & exfoliation of BC’s graphitic structure, mineral leaching & 

significant increase in BC’s porosity, significant increase in BC's internal surface area, creation of 

new and opening of blocked mesopores, enhanced carbon and hydrogen content of biochar [24]. We 

further expanded the application of this advanced activation process to develop an effective 

adsorbent for removal of pollutant from either water or air.  

As a sequel to our previous works, this study proposes an acoustic based magnetization process 

which not only facilitate biochar removal after adsorption but also increases its adsorption capacity. 

The process includes three distinct steps I) physical activation of biochar under ultrasound irradiation 

(USBC), II) magnetization of sono-activated biochar with Fe3O4 nanoparticles (USMBC) and III) 

functionalization of USMBC with 3-(Triethoxysilyl)propylamine (TES) to improve the stability of 

Fe3O4 nanoparticles (Fe-NP) on the biochar surface and increase adsorption sites for heavy metals.  
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2 Materials and methods 

2.1 Materials 

Commercial Pinewood biochar supplied by Biochar Now (Berthoud Colorado, U.S.A) was used for 

the purpose of this experiment. The biomass is pyrolyzed at a temperature between 550 and 600oC 

in a kiln reactor with multi-zone combustion chamber, after which nitrogen is introduced to 

discontinue the process. The reagents used in the magnetization process were Iron(III) Chloride 

(FeCl3, 97% purity), Iron(II) Sulfate Heptahydrate (FeSO4.7H2O, 99.0% purity), 3-

(Triethoxysilyl)propylamine (TES) and Ammonium Hydroxide (NH4OH, 28% NH3 in H2O, 99.0%), 

all of which were obtained from Sigma Aldrich. The chemicals for preparing stock heavy metal 

solutions, Lead (II) Chloride (98% purity) and Nickel (II) Chloride (98% purity), were also obtained 

from Sigma Aldrich. The standards used for the measuring heavy metal concentration, TNT856 for 

Nickel and TNT850 for Lead, were purchased from Hach.  

 

2.2 Experimental Method 

2.2.1 Ultrasound Treatment of biochar and magnetization 

The raw biochar was first ground in a ball mill grinder and sieved several times to the range 

of 75-125µm. To modify the physical structure, a mixture of biochar in water of a specific ratio was 

irradiated with low-frequency ultrasound (QSonica sonicator model No. Q700, max power 700W). 

The duration of ultrasound treatment was selected based on the optimum values (30 and 60s) 

obtained from our previous studies [21, 23]. Fe-NPs were produced separately. Iron (III) Chloride 

(FeCl3) and Iron (II) Sulfate Heptahydrate (FeSO4.7H2O) with a 2:1 weight ratio were dissolved in 

pre-degassed distilled water. The solution was stirred for 30min at room temperature. NH4OH 28% 

was then added to precipitate the Iron(III) Oxide (Fe3O4) nanoparticles and the mixture was kept 
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stirring for 5hrs at 80oC. All these syntheses were performed in an inert atmosphere (N2) to avoid 

uncontrolled oxidation and formation of non-magnetic oxides through oxidation of Fe2+ to Fe3+, 

giving higher yeild of magnetite particles. The black precipitate was collected by filtration; washed 

and dried at 60oC for 12h. In the next step, varying ratios of ultrasono-activated biochar (US-BC) 

and Iron(III) Oxide nanoparticles (1:1, 2:1, and 3:1) were mixed with distilled water and stirred for 

2hrs at 50oC to obtain Fe3O4-loaded biochar. The ultrasono-magnetized biochar was then subjected 

to chemical functionalization with 3-aminopropyl triethoxysilane (TES). The dried composite of 

Fe3O4-loaded biochar was added to the diluted solutions of TES in water (5, 10 and 15mL in distilled 

water) and stirred for 8h at 50oC. Eventually, the functionalized-magnetized biochar was filtered, 

washed with distilled water several times (until pH is closed to 7) and dried at 60oC for 12h, Figure 

1. The synergisms of Fe3O4 loading, TES functionalization, and ultrasound activation were 

investigated with respect to adsorption rates of Nickel and Lead. 
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Figure 1. Biochar magnetization process and the mechanism of TES functionalization, developed partially 

based on [25, 26] 

 

 

2.3 Characterizations of the Adsorbent 

The porosity and surface area of the raw, ultra-sonicated, and magnetized biochars were measured 

using a surface area analyzer (3Flex Series, Micromeritics). The morphological analysis was also 

conducted using SEM (JSM-7200 Scanning Electron Microscope, JEOL USA Inc., Thad Cochran 

Research Center, MS) to study the structural surface of synthesized biochars. The presence of iron 

and organic compounds (C, N, H, O) were investigated through combustion analysis by Huffman 

Hazen Laboratory, Colorado, USA Fourier. Raman (LabRam HR Evolution) and Transform Infrared 

(FTIR, Cary 660 FTIR Agilent) spectroscopies were also employed to characterize the graphitic 

structure of samples and surface functional groups, the doping of iron oxides on the biochar surface 

and the presence of TES.  

 



7 
 

2.4 Nickel and Lead Adsorption Studies 

Distinct solutions containing 100 mg/L Ni2+ and Pb2+ were prepared using powder Nickel (II) 

Chloride (98%, Sigma Aldrich) and powder Lead (II) Chloride (98%, Sigma Aldrich), respectively. 

In each adsorption experiment, 0.5g of the synthesized biochar was added to a 50mL solution of 100 

mg/L Ni2+ or Pb2+ and was stirred in a shaker for varying durations (30min, 1, 2, 4, and 6h), after 

which the biochar was separated from the solution using strong neodymium magnets and further by 

filtration. The metal ion concentration of the filtrate was determined through UV-

VIS spectroscopy (DR6000, Hach) using the respective standard kits (TNT856 For nickel and 

TNT850 for lead). 

2.5 Initial Challenges 

Before moving onto the topic of magnetization, a well-suited biochar had to be chosen with 

appropriate amount of adsorption capacity for Nickel and Lead metal ions. Deciding on the biochar 

source was pretty simple since the lab already had ample amount of commercial pinewood biochar. 

The problem was deciding on the biochar’s particle size range. Based on previous literature, smaller 

particle sizes have better adsorption, but only up to a certain point. So, I had to grind and sieve 

biochar of different size ranges and run adsorption tests on all of them before coming up with the 

optimum range.  

 Starting the magnetization of biochar was another hurdle since this was a very new subject 

for our lab. Initially, we decided on precipitating iron oxides directly onto the biochar, which ended 

up significantly reducing the adsorption capacity of the biochar towards Lead and especially Nickel 

ions. In fact, we were not seeing any noticeable adsorption for Nickel. After discussing, we 

concluded that the biochar was getting oversaturated with iron oxides which were covering up the 

pores or adsorption sites on the biochar surface. So, we came up with a process of firstly precipitating 

iron oxides separately, drying them, and then mixing it with biochar in a distilled water solution. 
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This increased the preparation time for our magnetized biochar but significantly helped in sustaining 

the adsorption capability.  

 

3 Results and Discussion 

3.1 Mechanism of Chemical Activation of Biochar 

The co-precipitation process has a well-known mechanism as represented by Eq. (1-3). This 

process can synthesize the particle size in the range above 10 nm. 

𝐹𝑒2+ + 2𝑂𝐻− → 𝐹𝑒(𝑂𝐻)2 (1) 

𝐹𝑒3+ + 3𝑂𝐻− → 𝐹𝑒(𝑂𝐻)3 (2) 

𝐹𝑒(𝑂𝐻)2 + 2𝐹𝑒(𝑂𝐻)3 → 𝐹𝑒3𝑂4 + 4𝐻2𝑂 (3) 

Though loading the magnetic Fe3O4 on the surface, deliver magnetization property to the biochar 

matrix, some magnetic nanoparticles may be detached when the biochar comes in contact with 

aqueous solutions.  The main objectives of TES addition included; stabilizing the Fe3O4 

nanoparticles (Fe-NP), preventing the dissociation of Fe-NP from the biochar and increasing the 

quantity of N-containing functional groups for enhanced adsorption of metal ions. TES can be 

attached to the porous structure of biochar either through impregnation using weak Van Der Waals 

force [27] or grafting using strong covalent bonds to the biochar’s functional groups. Partial 

impregnation of TES on the magnetic biochar during the functionalization stabilizes the Fe-NP on 

the surface improving the reusability of the adsorbent. Theoretically, surface functionalization with 

TES should afford a homogeneous coupling between surface OH groups and silanols from 

hydrolyzed TES [25, 26]. However, hydrogen bonding between surface OH and silanols/amino 

groups may also happen (Figure 1).  
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The amine functional groups of TES often increases the adsorption capacity due to complexation 

with heavy metals [7] [28]. Cu(II), Ni(II) and Pb(II) strongly bind to amine groups. Weaker binds 

have been observed between amine-containing sites and Cd(II) or Zn(II). However, they yet prefer 

amine sites to pure carboxylates. No preference has been observed for Ca(II) binding with amine 

compared with carboxylate ligand groups, indicating Ca(II)  is bound by more negatively charged 

molecules [29]. Amine groups also effectively participate in the adsorption of Cr(VI). Amination 

with (3-aminopropyl) trimethoxysilane (APTMS), which is slightly lighter than TES, increased the 

Cr(VI) uptake of  mesoporous silica from 36.95mg/g to 83.50mg/g [30]. Bamdad et al [25] applied 

two different chemical methods for amine functionalization of biochar, including i) nitration using 

concentrated nitric acid, followed by reduction, and (ii) condensation of aminopropyl triethoxysilane 

(TES) on the surface. Though the authors concluded that a moderate thermal activation is needed 

after amination, TES-aminated biochar indicated a higher CO2 adsorption capacity compared to 

nitration-reduction. 
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3.2 Physical Activation of Biochar  

Table 1. Surface area and porosity of raw and magnetized biochars 

 

ID 
BET Surface 

Area (m2/g) 

Using Harkins and Jura Equation 
t-plot Micropore 

Volume (cm3/g) 
t-plot Micropore 

Area (m2/g) 

t-plot mesopore surface 

area (m2/g) 

Raw BC 219.98 123.44 96.54 0.0458 

US30 261.67 193.22 68.45 0.0575 

US 0 BC:Fe-2:1 TES5 190.88 112.23 78.65 0.0504 

US30 BC:Fe-2:1 TES5 197.1 138.67 58.43 0.0563 

US60 BC:Fe-2:1 TES5 214.86 155.43 59.43 0.0533 

US30 BC:Fe-1:1 TES5 182.15 118.71 63.44 0.0349 

US30 BC:Fe-2:1 TES5 197.1 138.67 58.43 0.0563 

US30 BC:Fe-3:1 TES5 200.93 118.44 82.49 0.0525 

US30 BC:Fe-2:1 TES5 197.1 138.67 58.43 0.0563 

US30 BC:Fe-2:1 TES10 201.45 148.76 52.69 0.0379 

US30 BC:Fe-2:1 TES15 181.65 125.98 55.67 0.0335 

 

Table 1 shows the surface area, and total pore volume of raw, ultrasound activated and 

magnetized/functionalized biochars using different loadings of Fe-NP and TES concentrations. The 

specific surface area of BCs was calculated using the BrunauereEmmetteTeller (BET) and Harkins 

and Jura Equations. The impact of ultrasound activation on increasing the micro-porosity and surface 

area of BC has recently been proved as an effective method for the physical activation of biochar. 

This effect mainly attributes to the ultrasound-induced cavitation and its implications. Besides, the 

explosion of cavitation bubbles and generation of micro-jets can create a regular pattern of new pores 

into/onto the biochar surface which is visible in SEM images (Fig 2b vs Fig 2a). As a result, the BET 

surface area of raw biochar increased from 219.98 to 261.67 m2/g after only 30 sec of BC exposure 

to ultrasound irradiation. On the other hand, the mesopore surface area reduced from 96.54 to 68.45 

m2/g due to their partial conversion to micropores. In other words, many macropores are broken 

down into micropores enhancing the overall surface with more porosities. As expected, the loading 

of nanoparticles and TES functionalization reduced micro and mesoporosity of biochar, which may 

cause a reduction in the adsorption capacity, yet exposure to 60sec of ultrasound activation could 
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sustain much of the BET surface area (214.86 m2/g) compared with raw BC. Further porosity 

reduction was observed by increasing the concentration of TES or maximizing the loading of 

Nanoparticles. Accordingly, the minimum BET surface area of 182.15 and 181.65 m2/g were 

observed for the samples containing either the maximum loading of Fe-NP (US30,BC:Fe-1:1,TES5) 

or TES (US30,BC:Fe-2:1,TES15).  

   
.(a) Scale bar: 100μm                             (b) Scale bar: 10μm                                  (c) Scale bar: 1μm 

   
.(d) Scale bar: 1μm                                  (e) Scale bar: 100 nm                                (f) Scale bar: 100 nm 

  
                                          (g)                                                                                      (h) 

Figure 2. SEM images of (a) raw biochar (longitudinal view), (b) ultrasound activated biochar, (c) ultrasound-

generated pore with a diameter of 2 μm, (d, e, f) magnetized and functionalized surface. EDX analysis of (g) 

magnetized and (h) magnetized and functionalized biochar.  
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The SEM images also demonstrate the increased partial coating of biochar surface with TES 

and a uniform distribution of Fe-NP on BC surface (Fig 2 d-f). EDX analysis of the biochar surface 

(Figure 2 g-h) shows the elemental percentage composition of C, O, Fe and S in the magnetized and 

functionalized biochar where C content was found to be 71-73% and that of O and S is found to be 

25-26% and 3.3 % respectively. 

 

3.2.1 Effect of Physicochemical Magnetization on Elemental Composition of Biochar 

Table 2. Elemental Analysis of raw and activated biochars 

 

Table 2 lists the elemental (C, H, N, S, O and Fe) and ash contents of raw, ultrasound activated and 

magnetized biochars. As observed, the acoustic activation of biochar increases the C content of 

biochar, which is consistent with our previous works. Ultrasound cavitation and its implications (e.g. 

micro-jets, hot spots, shock waves, etc) can exfoliate the graphitic structure of biochar and facilitates 

the leaching of mineral compounds (ash content), which subsequently increase the portion of organic 

compounds in the biochar structure. In addition, the results suggested that acoustic activation reduces 

the oxygen content of biochar mainly through the removal of some of the oxygen-containing 

functional groups.  

Sample 
Carbon 

(% w/w) 

Hydrogen 

(%w/w) 

Nitrogen 

(%w/w) 

Sulfur 

(%w/w) 

Oxygen 

(%w/w) 

Ash 

(%w/w) 

Iron (% 

w/w) 

Raw-BC 60.26 2.96 0.25 0.82 10.79 23.45 0.616 

US 30-BC 66.56 2.32 0.21 0.61 9.93 21.20 0.438 

US  0 ,BC:Fe 2:1,TES5 58.75 2.7 0.65 0.70 13.17 22.20 3.8 

US 30,BC:Fe 2:1,TES5 54.65 2.24 0.51 0.62 12.59 21.42 7.98 

US 60,BC:Fe 2:1,TES5 52.09 1.59 0.56 0.48 12.33 23.00 6.56 

US 30,BC:Fe 1:1,TES5 57.42 2.18 0.75 0.87 12.92 22.60 7.33 

US 30,BC:Fe 2:1,TES5 54.65 2.24 0.51 0.62 12.59 21.42 7.98 

US 30,BC:Fe 3:1,TES5 54 2.07 0.49 0.52 12.31 24.52 9.01 

US 30,BC:Fe 2:1,TES5 54.65 2.24 0.51 0.62 12.59 21.42 7.98 

US 30,BC:Fe 2:1,TES10 57.6 2.09 0.70 0.47 12.21 23.40 8.62 

US 30,BC:Fe 2:1,TES15 58.52 2.64 0.79 0.61 12.82 24.65 8.23 
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Upon magnetization and loading of Fe3O4 nanoparticles, the Fe and O contents of the samples 

increased as expected. Ultrasound activation also affects the loading of Fe3O4 Nanoparticles. As 

observed US0,BC:Fe 2:1,TES 5 contained the least Fe (3.8%) content. However, the Fe content 

increased to 7.93% and 6.56% for US30, BC:Fe 2:1,TES5 and US60,BC:Fe2:1,TES5, respectively. 

Compared to sonicated-functionalized BC, US0, BC:Fe 2:1,TES5 contained a higher quantity of C, 

H, and N. This may be due to higher porosity and surface area of the US-BC and subsequent 

incorporation of a higher quantity of Fe-NP into biochar structure which affects the % of other 

elements.  

As expected, the increased ratio of BC to magnetic Nanoparticles reduced their loading and hence 

O contents declined. However, Fe content shows an increase, which is against our expectations. It 

should be explained that different combustion analyzers are used for the analysis of C, H, N, S; O; 

and Fe which needs different samples. This paradox between O and Fe trend can be due to the 

agglomeration of Nanoparticles in a sample. To get reasonable results and prevent such paradoxes, 

we synthesized three sets of samples and analyzed the elements three times. However, it was not 

possible to eliminate all the inaccuracies. The last section of the table focused on the effect of TES 

concentration during the process of functionalization. As observed N and ash contents significantly 

increased with TES concentration up to 10 ml/lit. However, a further increase of TES to 15 ml/lit 

just slightly increased the quantities of N and ash. As a result, the maximum N content was observed 

for US 30, BC:Fe 2:1,TES15. 
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3.2.2 Effect of Physiochemical Magnetization on Functional Groups of Biochar 
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Figure 3. The effect of ultrasound irradiation on FTIR spectra of raw and the magnetized biochar. The 

effect of biochar to Fe nanoparticles ratio The effect of TES (3-(Triethoxysilyl)propylamine) concentration 

 

The effects of magnetization and TES functionalization on functional groups of ultrasound-

magnetite biochar under different conditions are provided in Figure 3. Data were analyzed by Origin 

software (Original data graphs in Appendix A.3.). The wide band at 3300-3600 cm-1 represents the 

stretching vibration of the hydrogen-bonded hydroxyl group. The intensification of this bond was 

significantly reduced due to ultrasound activation. This is consistent with our elemental analysis 

which confirms the reduction of O and H containing groups and our previous studies. According to 

the literature, the most prominent features of TES are located between 740-1250 cm-1 [31], [32], 

[33]. Accordingly, the characteristic peak at 765-795 cm-1 corresponds to the Si-C vibration [33], 

[34] or SiO-C [35], suggested that the organic alkyl chains are covalently bonded to the Si-O-Si 

networks [34], [36].  The other two peaks at and 952 cm-1 and 1047 cm-1 were assigned to the Si-O-

C bond [33], [37], [35] and Si-O-Si stretching [34], [37], [35], respectively (herein referred to as the 

Si-O-X region).  These two peaks can confirm the coating of the magnetite surface through the 

silanization reaction. The silica network is adsorbed on the surface by Si-O-C bonds [35], [38]. 

The peak at 1100 cm-1 is associated with either the stretching vibration of C-N of the incorporated 

C-NH2 bond [33] or Si-O-C bond [39]. The observed Si-corresponded bands proved that TES was 

successfully grafted onto the magnetized biochar. The other new peak exhibited at 1580-1620 cm-1 

was also assigned to the N-H bending of the NH2 amine group [46,47], [39]. [35]. Additionally, the 

peak appeared at around 2200 which could be corresponded to H-Si-O [39]. There could be some 

overlap between the peaks. As an instance, a peak that is observed 1047 cm−1 could also be 

associated with Si-O-Fe stretching vibrations [36]. In addition, the two peaks valued at 1635 and 

575 cm−1 are assigned to symmetrical and anti-symmetrical of the Fe–O vibrations [36, 40, 41] and 

a small peak next to it (at around 665 cm−1) can result from the FeOOH stretching vibration, which 
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is usually appeared at the activated carbon modified by Fe3+ [42, 43]. It may also have some overlap 

with O-Si-O asymmetric flexing [44]. The presence of these two strong bonds in all magnetized 

samples suggested the attachment of magnetic nanoparticles to the biochar.  

Upon magnetization and functionalization, the intensity of Fe-O (at 575 cm−1) and Si-O-X (700-

1200 peaks cm−1) significantly increased. The highest intensities of Si-O-X and Fe-O (at 575 cm−1) 

peaks were observed for the highest durations of ultrasound activation.  

The FTIR spectra of magnetization using different loading of Fe3O4 nanoparticles are 

represented in maroon color in Figure 3.  As expected the highest Fe-O peak (at 575 cm−1) was 

observed for US30-BC:Fe 1:1-TES, since an equal quantity of biochar and Fe nanoparticles were 

used in the activation process. The intensity of this peak gradually decreased with the reduction of 

F-NP loading. Another important observation is that not only Fe-O peak but also the intensity of Si-

O-X peaks are also significantly higher in US30-BC:Fe 1:1-TES sample, which can be due to the 

increased attachment of  TES into this sample. However, it does not necessarily improve the 

adsorption capacity of biochar as this capability is a resultant of a series of phenomena including 

physical adoption, surface complexation, inner-sphere complexation, etc. Higher Fe and TES 

loading reduces the surface area and porosity of biochar which may negatively affect its adsorption 

capacity.  

The lines highlighted in the blue color of Figure 3 demonstrate the effect of different TES 

concentrations in the amination step. The intensity of FTIR peaks of Si-O-X and Fe-O cm−1 

increased with TES concentration up to 10 ml, however, no further increase in the intensity of peaks 

was observed with for higher concentration of TES up to 15, which is consistent with the trend of 

Fe and N contents in the samples.  

 



17 
 

3.2.3 Effect of Physiochemical Magnetization on graphitic structure of Biochar 

Figure 4. Raman Spectra of the biochars activated and functionalized under different ultrasound irradiation 

and TES loading (Left). Evolutions of the G band in the Raman spectrum as functions of the number of 

graphene layers,  Reproduced (Right) [45].  

 

Figure 4. shows the Raman Spectra of the biochar activated and functionalized under different 

ultrasound irradiation and TES loading. The spectra were recorded with a linear laser excitation of 

532 nm and the baselines were revised. In general, their spectra share common features at around 

1000-1529, 1500-1775, 2800 cm-1, the so-called D, G, and 2D peaks respectively. The D-band (or 

“disorder-induced” peak) attributes to in-plane vibrations of sp2-bonded carbon within structural 

defects, amorphous or disordered graphite. The D band has a low intensity in well-organized 

carbonaceous materials and graphite. However, it becomes equivalent to the G band for more 

disordered carbons such as biochar. The G-band (Stretching carbon-carbon sp2 bonds) arises from 

the in-plane vibrations of the sp2-bonded carbon in graphitic crystallites. The intensity ratio between 
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the D and G band (ID/IG) is a measure of defects in graphite-based materials. The comparable 

intensity of D-band and G-band with an intensity ratio ranging from 0.46 to 0.72 indicates that 

biochar is made of a high quantity of ordered and disordered graphitic carbons. 

The 2D-band (also known as G′-band) is the second-order of the D-band and is the result of a two 

phonon lattice vibrational process, but unlike the D-band, it does not need to be activated by 

proximity to a defect. The 2D band is usually used to determine graphene layer thickness. It is much 

sharper and more intense in the single-layer graphene as in multi-layer graphene. According to the 

Raman results and as expected, the biochar structure involves multi-layer graphene mainly (graphitic 

structure).  

It has been reported that the intensity of the G band increases with the number of graphene layers 

(for thin samples, up to 7 layers) and then decreases with the further increase of the number of layers 

(∼23, ∼40 layers and graphite) [45]. Raw chars usually contain clusters of 4 to 6 parallel graphene 

and graphitic oxide sheets [46, 47]. Therefore, reduced intensity of G peak can also be related to the 

exfoliation and reduction of biochar layers due to ultrasound activation. In addition, a lower intensity 

of D and G bands in ultrasound-activated samples can also indicate the size of crystallites reduces. 

This is consistent with our observation confirming the reduced biochar’s particle size upon 

ultrasound activation.  

The intensity of D and G peaks further reduced as a result of magnetization and functionalization. 

This indicates increasing the roughness and thickness of crystals due to the partial coating of the 

surface. However, the intensity of the D/G peak intensity ratio increases with ultrasound activation 

duration from 0.56 for US0-BS:Fe-2:1 TES5 to 0.72 for US60-BS:Fe-2:1 TES5. Generally, the 

maximum ID/IG ratios were observed in the samples activated with the highest ultrasound duration 
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(US60-BS:Fe-2:1 TES10)) and the TES concentration of 10ml/lit (US30-BS:Fe-2:1 TES10), 

indicating the increased defects or functional groups in the graphitic structure of these samples. 

 

3.3 Heavy Metal Adsorption Studies 

 
Figure 5. The effect of ultrasound activation, magnetization and TES functionalization on adsorption of Ni2+ 

and Pb2+ by biochar within 6 hours.  

 

Acoustic Activation Effect: Figure 5 presents the performances of raw, activated, and magnetized 

biochars in adsorption of nickel and lead ions. All tests were repeated two times. As observed, raw 

biochar can remove only 14% of nickel and 67% of lead ions. Generally, the removal of Pb2+ ions 

in aqueous solution is easier than Ni2+ ions [48] (Page 60). The ionic radius, electronegativity 

(covalent bond strength) and the hydration properties of the metal ions are the principal properties 

used in the interpretation of heavy metal adsorption mechanisms. Structures with smaller hydrated 
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radius and higher electronegativity are more potential for surface complexation or adsorption 

reactions [49]. The degree of hydration of metal ions depends on the ratio of charge (electrostatic 

charge) to volume. A lower number of water molecules hydrate the greater ions with smaller charges 

per volume. Pb(II) ions have a larger ionic radius than Ni(II) ions (0.119 vs 0.069nm); however, the 

hydrated radius of Pb(II) ions is smaller than that of Ni(II) ions (0.401nm vs 0.404 nm) [50]. Larger 

ionic radius and hence smaller hydrated one should be adsorbed more strongly. On the other hand, 

the stronger covalent bonds should be formed with more electronegative metals. The combination 

of higher electronegativity and a smaller hydration radius ensures a higher covalent bond between 

the metal ion and the electron donor of the adsorbent surface [48] (Page 60), [51].  

Short term physical activation of biochar with ultrasound irradiation could increase the nickel 

removal to 25% and lead removal to 78%. This improvement was caused by the ultrasound cavitation 

and its implications which subsequently increased the surface area and porosity of BC. Additionally, 

micro-jets can generate new pores and open some of the blocked pores which not only increases the 

porosity of biochar but also make channels to the under-layers of biochar where some functional 

groups are trapped. These effects favor both magnetization and functionalization steps as well.  

Magnetization usually decreases the adsorption capacity of biochar. However, comparing the 

adsorption results of US0-BC:Fe2:1-TES5 demonstrated the contribution of amine functionalization 

which not only prevented the reduction of metal removal but also slightly increased of adsorption 

capacity of biochar compared to raw biochar. Acoustic activation of biochar prior to magnetization 

and functionalization significantly increased the metal removal compared with raw biochar. Given 

the fact that the maximum nickel and lead removal is 17% and 79 % for US0-BC:Fe 2:1-TES5, 

further increase of Ni and Pb adsorption (32% and 90% respectively) attributes to the structural 

modification using ultrasound irradiation.  
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Magnetization effect: Magnetization process was conducted using three different BC: Fe ratios of 

1:1, 2:1, and 3:1. Generally, the lower the nanoparticle loading, the greater the adsorption capacity. 

The reduction of biochar’s adsorption capacity with nanoparticle loading is mainly due to their role 

in reducing the surface area and the porosity of biochar. Therefore, among the three Fe3O4 loadings 

with 30 sec of acoustic pre-activation, the maximum Ni(II) adsorption of 28% were observed for 

US30-BC:Fe 3:1-TES5 which contained the lowest quantity of Fe3O4 nanoparticles. The value 

further increased to 32% for US60-BC:Fe 3:1-TES5. Moreover, longer acoustic activation 

significantly reduced the adsorption time (increased the adsorption rate, in other words). The highest 

amount of nickel was removed by US60-BC:Fe 3:1-TES5 only within 2 hours. In terms of lead 

removal, the highest absorption was observed by US30-BC:Fe 2:1-TES5. However, in this case, also 

the sample containing the highest Fe-NP indicated the least adsorption.  

Functionalization effect: The highest adsorption of both Ni(II) and Pb(II), was observed for the 

sample containing the lowest TES loading, US30-BC:Fe2:1-TES5. Further increasing TES 

concentration reduced the adsorption capacity of the activated biochars. This can be due to the 

significant impact of chemical functionalization in reducing the surface area and porosity of 

adsorbent, particularly in terms of Ni(II) adsorption. However, the impact of TES in increasing the 

removal of Pb(II) can be noticed by comparing the results of US30 and US30BC:Fe 2:1 TES5. This 

observation suggests the more determinant role of chemisorption in Pb removal. Prominent 

capability of TES in removal of lead and other heavy metals has also been reported by other 

researchers [52]. Kong et al [53] functionalized the surface of silica nanoparticles by three silane 

coupling agents, such as (3-Mercaptopropyl) triethoxysilane (MPTES) and (3-Amincpropyl) 

trithoxysilane (TES) and compared their performances on the removal of Pb(II), Cu(II), Hg(II), 
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Cd(II), Zn(II). TES functionalized silica nanoparticles (SiO2-TES) exhibited maximum removal 

efficiency towards Pb2+ and Hg2+. Shi et al [54] also synthesized magnetic biochar in three steps, 

including preparation of carboxylated biochar, synthesis of Fe3O4@SiO2-NH2 particles from Fe3O4 

particles by modified with TEOS and TES via “Stober” method and then conjugated the 

Fe3O4@SiO2-NH2 with carboxylated biochar by forming amide bond via the classic EDC-NHS 

coupling. The Cr(VI) ions adsorption capacity of magnetic biochar was 27.2 mg·g−1, surpassing 

original carboxylated biochar (18.2 mg·g−1). Compared to their work, the method developed in this 

study is much simpler. In addition, the focus of the current work is promoting the adsorption and 

functionalization capability of biochar rather than using it as a carrier or support. And the last priory 

of this study over the other similar works is that pH as a master variable in adsorption of heavy 

metals was not adjusted in this study and the adsorption was conducted on the inherent pH of the 

solution.  
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3.4 Kinetic and the Equilibrium Adsorption 
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(b) 

Figure 6 (a) Pseudo-first-order and (b) pseudo-second-order models for Ni (II) adsorption onto Raw 

Ultrasound activated, magnetized/functionalized biochars. (C0[Ni(II)]= 100 mg L-1, V=50 ml, M= 50 mg) 

ID K1 R 

Raw BC 0.0106 0.76 

US30 0.0149 0.86 

US 0 BC:Fe-2:1 TES5 0.0095 0.79 

US30 BC:Fe-2:1 TES5 0.0089 0.97 

US60 BC:Fe-2:1 TES5 0.0111 0.97 

US30 BC:Fe-3:1 TES5 0.007 0.95 

US30 BC:Fe-1:1 TES5 0.0062 0.91 

US30 BC:Fe-2:1 TES10 0.0093 0.84 

US30 BC:Fe-2:1 TES15 0.0477 0.98 

ID K1 R 

Raw BC 0.0628 0.96 

US30 0.0197 0.98 

US 0 BC:Fe-2:1 TES5 0.0119 0.91 

US30 BC:Fe-2:1 TES5 0.0161 0.93 

US60 BC:Fe-2:1 TES5 0.0057 0.97 

US30 BC:Fe-3:1 TES5 0.0068 0.99 

US30 BC:Fe-1:1 TES5 0.0062 0.97 

US30 BC:Fe-2:1 TES10 0.028 0.91 

US30 BC:Fe-2:1 TES15 0.174 0.93 
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The equilibrium adsorption capacities for Ni(II) and Pb(II) was calculated according to 𝑞𝑒 =

(𝐶0−𝐶𝑒)𝑉

𝑀
, where C0, Ce, V and M are the initial and the residual concentration of metal ions in the 

solution (mg.L-1), the volume of heavy metal solution (mL) and the amount of adsorbents (mg), 

respectively. In addition, the pseudo-first-order (ln(𝑞𝑒 − 𝑞𝑡) = 𝑙𝑛𝑞𝑒 − 𝑘1𝑡)and pseudo-second-

order (
𝑡

𝑞𝑡
=

1

𝑘2𝑞𝑒
2 +

1

𝑞𝑒
𝑡)equations were used to model the adsorption process. Based on the analysis 

presented in Figure 6, the pseudo-second-order model was more suitable for explaining the behavior 

of Pb adsorption into magnetized biochar, indicating that the reaction is more inclined towards 

chemisorption due to the impact of functional groups on biochar surface rather than physisorption. 

However, in terms of Ni (II), both pseudo-first-order also show reasonable R values, suggesting the 

prominent impact of both physisorption and chemisorption in Ni removal.  

 

4 Conclusion 

Traditional magnetization through impregnation, co-precipitation, and liquid reduction has several 

major disadvantages, on top of that is the reduction of biochar’s adsorption capacity. This study 

introduced a post-pyrolysis acoustic-based magnetization process which not only prevented the 

reduction of biochar adsorption capacity but also further improved it. The process includes three 

subsequent steps, including acoustic modification of biochar’s structure followed by loading of 

Fe3O4 nanoparticles and functionalization using 3-(triethoxysilyl)propylamine (TES). In addition to 

immobilization of nanoparticles, TES functionalization increased the N-containing functional 

groups which further improved the adsorption capacity of biochar. The physical and chemical 

properties of magnetic biochar were characterized by Fourier-Transform Infrared Spectroscopy 

(FTIR), Raman spectroscopy, combustion analysis (organic contents), Scanning electron 

microscope, Transmission electron microscopy, and Sorptoanalysis. The synthesized biochar was 
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further tested for removal of lead and nickel, which demonstrated significant higher metal removal 

within a shorter duration. While raw biochar could remove only 13% and 68% of Ni and Pb with 

some signs of leaching, the biochar activated under 60 sec of ultrasound irradiation, magnetized with 

Fe3O4 with the ratio of 2:1 and functionalized with the least concentration of TES exhibited 32% 

and 90% of Ni and Pb removal without any leaching. In addition, magnetized biochar could further 

reduce the adsorption duration of nickel and lead from 8 to 2 hours and 1 hour respectively. 
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Appendix  

 

 

 
 

A.1. Raman plots of raw and magnetized biochar 
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A.2. Separation of 0.5g Biochar in 50 mL water by neodymium magnet. 
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(a) 

 
(b) 

 
(c) 

A.3. FTIR spectra of raw and the magnetized biochar. a) The effect of ultrasound irradiation b). The effect of 

biochar to Fe nanoparticles ratio, c) The effect of TES (3-(Triethoxysilyl)propylamine) concentration. The 

baselines of the graphs were revised in Origin lab (Version 2019b). 
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A.3. 2400 CHNS/O Series II System, Perkin Elmer (Anderson 222, University MS) 

 

A.4. DR6000 UV VIS Spectrophotometer (Anderson 223, University MS) 
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A.5. JSM 7200 FLV Field Emission Scanning Electron Microscope (Thad Cochran Research Center, MS) 

 

A.6. 3Flex Surface Characterization Analyzer, Micromeritics (Anderson 223, University MS) 
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A.7. Cary 660 FTIR Spectrometer (Coulter, University MS) 
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