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Study of Pharmaceutical Tablets Using Raman Mapping 

Kyle Pauly (under the direction of Dr. Nathan Hammer) 

 

Covalent bonds are the strongest type of bonds holding molecules together.  Based on the 

pattern of bonding of the molecule, the atoms associated with the bond will vibrate at a 

specific frequency.  Utilizing vibrational spectroscopy, such as Raman spectroscopy, these 

unique vibrational frequencies can be used to detect the presence of analytes over a selected 

area.  Furthermore, the intensities of the vibrational modes can be tracked to comparatively 

quantify the concentration of analytes at various locations.  This is a method of great 

importance due to its ability to compare pharmaceutical tablets synthesized with different 

techniques. Here, the presence and concentration of ibuprofen in lipid matrix was observed.  

This was done in collaboration with a pharmaceutical lab with the hopes of producing a 

higher quality suppository tablet. 
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Chapter 1: Pharmaceuticals 

 

1.1 History of Pharmaceuticals 

 A pharmaceutical is described as a substance that is used for the diagnosis, 

treatment, or prevention of a disease.  This substance usually evokes beneficial response 

that results in the restoration, correction, or modification of organ functions.  This process 

has existed for centuries, dating back to ancient civilization consuming medicinal plants 

and minerals; however, the pharmaceutical revolution began in the 16th century with the 

construction of the first pharmacopoeia in Germany detailing a list of drugs and their 

preparation.  This resulted in the rapid development of the pharmaceutical industry and has 

led to modern pharmaceutical approach.1  

 At the heart of modern pharmaceuticals in the United States is the Food and Drug 

Administration (FDA).  This federal government agency was established in 1906 as a result 

of the Federal Food and Drugs Act.  In addition, this act outlawed the mislabeling and 

selling of tainted food, drinks and drugs.  This along with the Shirley Act passed in 1911, 

which outlawed medication from making false medical claims, were the first steps taken 

by the United States in order to make the pharmaceutical industry more scientific field.2  

Through trial and error and legislation, the FDA has slowly evolved into its modern form 

and, as a result, a five-step drug development process is required for every new medication. 
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1.2 The Drug Development Process 

 As outlined by the FDA, the drug discovery process consists of five steps: discovery 

and development, preclinical research, clinical research, FDA review, and FDA post-

market safety monitoring. 

 The discovery and development step begins at the research level.  As organ systems 

and disease become more understood, more molecules are tested to find possible beneficial 

effects.  Thousands of chemicals are tested, but very few make it to later stages of testing.  

After this initial testing, the chemical properties of the molecules must be further studied 

to understand how it is absorbed, distributed, metabolized and excreted.  This 

understanding helps researchers and manufacturers to determine the dosage and best 

method of administration.  After this, the compound then moves to the preclinical research 

stage of development.3 

 In this stage, in-vitro, test tube and culture tests, and in-vivo, live animal tests, are 

performed.  Since the toxicity of the compounds are discovered in this step, the in-vivo test 

is typically preformed on animals.4  The choice of animal is dependent upon the organ 

system of interest and ethicality of the experiment.  For example, larger animals, such as 

dogs, cats, and non-human primates, are commonly used as models for cardiology, 

endocrinology, bone, and joint research. However, a majority of these tests are performed 

on mice and rats.5  The goal of this stage of research is to provide more detailed insight 

into the dosing and toxicity levels of the compounds before moving into human testing.4 

 The clinic research stage is typically the most important stage of drug development 

process as it is the first stage in which the drugs are tested on humans.  Within this stage 

of research, there is typically three to four phases of human research.  These tests begin 
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small in size, 20-100 people, to confirm the safety and dosage of the drug.  After this, the 

tests get larger in size and begin to focus in on the efficacy and side effects of the drugs.  

The time period of these tests range from a few months to up to four years. If the drug has 

evidence of effectiveness and is seemingly safe, the drug developer files an application to 

the FDA to market the drug.6 

 This application must include the proposed labeling, safety, dosing, and directions 

of use.  In addition, all of the studies, data, and analysis have to be shared with the FDA.  

Once this application has been completed, the review team analyzes the sections of 

application based on the specialties of the individual reviewer.  For example, a 

pharmacologist will review the data from animal studies. As well as reviewing the 

application, the laboratory is also inspected for any signs of fabrication, or withheld data.  

The review team has six to ten months to make a decision on whether or not to approve the 

drug. After this total review, the review team offers a recommendation to a senior FDA 

official who makes the final decision regarding the marketing of the proposed drug.7 

 Once a drug hits the market, the FDA continues to monitor its safety and efficacy.    

The FDA also monitors advertisement to ensure the information provided is truthful and 

sufficiently describes the side effects.  This is a continuing process that lasts the entire 

length of product’s lifetime in the marketplace. Lastly, when the initial patents of the drugs 

expire, generic brands can be made following the original instructions, and do not require 

the manufacturers to undergo as rigorous of testing since this was already done when the 

initial patent was filed for.8 

 In this thesis, the stage of development that was concentrated on was discovery and 

development.  The collaborator to this experiment provided samples mixed in various ways 
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with a novel instrument to be analyzed using Raman mapping.  The goal of this was to 

provide experimental data to ensure the proper mixing and an even distribution of the active 

ingredient.  Once the method was established, the goal was to then analyze a sample with 

more active ingredients. 

 

1.3 Ibuprofen 

 The initial active ingredient analyzed was ibuprofen.  This drug is a propionic acid 

derivative that was introduced in 1969 as an alternative to aspirin.  Today, it has become 

the most commonly used and prescribed non-steroidal anti-inflammatory drug (NSAID).  

Its function is to inhibit cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2), 

which are enzymes involved in the synthesis of prostaglandins.  These prostaglandins are 

lipid autacoids that play a key role in the inflammatory response.9  Inflammation is a 

response by the immune system to infection and injury.  Typically, inflammation is a 

healthy and beneficial response as it leads to the removal of offending factors and restores 

tissue and physiological function.  However, these prostaglandins also play an important 

role in the production of pain and, therefore, are a key target for pain reducing drugs.10  In 

addition, due to its single chiral center, there exists two enantiomers: R(-) and S(+).  The 

S(+) enantiomer inhibits the cyclooxygenases, whereas the R(-) enantiomer becomes 

involved in the lipid metabolism pathway and is incorporated into triglycerides.  

Interestingly, 50-60% of the R(-) undergoes metabolic inversion to the S(+) enantiomer 

depending on the dosing situations.  Therefore, due to the safety and inversion of the 

enantiomers, ibuprofen is typically taken as a racemic mixture.11  The structure of the S(+) 

enantiomer of Ibuprofen is shown in Figure 1. 
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Figure 1. Line structure of the S(+) enantiomer of Ibuprofen. 

 

 Ibuprofen is typically taken orally with a potency of 200 to 800 mg.  It is available 

as an over the counter medication and has been rated as the safest conventional NSAID in 

the UK.  It has a maximum daily dose of 3200 mg, with over dosage resulting in seizures, 

apnea, and hypertension9.  It has been shown to have therapeutic application for patent 

ductus arteriosus, rheumatoid and osteo-arthritis, cystic fibrosis, orthostatic hypotension, 

dental pain, dysmenorrhea, fever, and headaches.9 

 

1.4 Suppositories 

 There are six general routes of entry into the body for drug administration.  In order 

of fastest to slowest central nervous system response, these are: intravenous, inhaling, 

snorting, oral, and rectal.12 Suppositories often follow the rectal route of entry.  Though its 

absorption is typically slow, it offers many advantages as well.  By avoiding the stomach, 

acidic and enzymatic degradation of the drug can be avoided as well as irritation of the 

stomach and small intestine.  In addition, these medications can be taken before surgeries 

and by patients with upper gastrointestinal diseases.  Furthermore, the delivery of the 

medication can be stopped in cases of accidental overdose by simply removing the 

suppository.13 

O

OH
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 Rectal suppositories are typically inserted as a solid, and then are slowly dissolved 

within the body. The medication is then taken up by the epithelial cells lining the rectum.  

From here, the medication passes through the lower and middle hemorrhoid veins and enter 

systemic venous circulation via the internal iliac veins.13  Due to this mode of entry, the 

medication circumvents the liver and, therefore, does not undergo first pass metabolism.  

This increases its bioavailability.13 
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Chapter 2: Raman Spectroscopy 

 

2.1 What is Spectroscopy? 

Spectroscopy is defined as the study of interactions between light and matter.  Light 

is electromagnetic radiation with a consistent speed depending on the medium that it travels 

through.  In addition, light has a characteristic referred to as wave-particle duality.  This 

principle states that light exhibits properties of both waves and particles.  This particle is 

referred to as a photon.14  An understanding of both of these properties is required for 

spectroscopy as the energy of this photon of light is determined by its wavelength.  This 

theory which is shown in Equation 1.1 was proposed by Einstein who postulated that the 

amount of energy, E, carried by a photon depends on its frequency, ν, multiplied by 

Planck’s constant, h.14 

E = hν      (1.1) 

Furthermore, frequency is equal to the speed of light, c, divided by its wavelength, λ.  This 
expands Equation 1.1 into Equation 1.2: 
 

                               (1.2) 
 

Planck’s constant, 6.626 x 10-34 J•s, and the speed of light, 3.00 x 108 m/s, are both 

constants.  Therefore, there is an inversely proportional relationship between the energy 

and wavelength of light.  The full range of wavelengths and their corresponding energies 

is shown in Figure 2. 

 

 

E = hc
λ
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Figure 2. Electromagnetic Spectrum. 

 

At the core of the interaction between light and molecules is the concept that atoms 

and molecules exist at well-defined energy levels.  Quantum chemistry defines four 

primary energy levels for molecules: electronic, vibrational, rotational, and translational.15 

Due to their lack of bonding, only electronic and translational energy levels exist for atoms. 

These energy levels can be experimentally analyzed with light due to the fact that a photon 

can only be absorbed or emitted if its energy is equivalent to the energy gap between two 

atomic or molecular quantum energy states.15  Typically, the magnitude of these transitions 

is as follows:  Electronic > Vibrational > Rotational > Translational15.  A schematic 

depicting these transitions is shown in Figure 3.  Based on this understanding, different 

energy level transitions result from different regions of the EMS.  For example, Electronic 

transitions are comparatively large, so high energy light, such as ultraviolet (UV) or visible 

light, must be used to probe these transitions.  On the other hand, lower energy light, such 

a microwave, is needed to probe rotational transitions. Therefore, spectroscopic 

instruments typically utilize specific regions of the EMS to analyze the unique molecular 

transitions of analytes.15  For example, IR spectroscopy, as the name suggests, analyzes the 

absorption of infrared light by a molecule.  IR spectroscopy is a form of vibrational 

spectroscopy and its absorption arises from a net change in dipole moment of a molecule.  

Dipole moment refers to the magnitude of the charge separation in polar covalent bonds.  

Wavelength (m)

Form of Radiation

Frequency (Hz)

Gamma Rays X-rays Ultraviolet Infrared Microwaves Radiowaves

Visible Light

10-14 10-12 10-9 10-6 10-3 1 103

1024 1020 1016 1012 108 104
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Therefore, only asymmetric vibrational modes can be analyzed with this technique as the 

net charge separation of symmetric vibrational modes is always zero.15 

 

 

Figure 3.  Quantum Mechanical Transitions. 
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2.2 Raman Spectroscopy 

When analyzing benzene with a mercury lamp, Sir C.V. Raman observed an 

unexpected wavelength in the light scattered from benzene.  This became known as the 

Raman Effect and the unknown spectrum he observed was the Raman spectrum of benzene.  

As he explored this phenomenon more, he found that, regardless of the excitation 

wavelength, the change in wavelength was consistent for a given molecule.15  However, 

Sir Raman, was not the first person to observe scattering.  Previously, Lord Rayleigh had 

explained that the color of the sky was due to the elastic scattering of light by the molecules 

in the atmosphere.16  As a result, the ideas of these great minds combined to form the 

foundation of Raman spectroscopy. 

 

2.3 Principles of Raman Spectroscopy 

Complementary to IR, Raman spectroscopy is also a form of vibrational 

spectroscopy.  Rather than absorption or emission of light, Raman spectroscopy occurs due 

to the scattering of photons by a molecule.  This scattering is best described as an 

absorption of light by a molecule to excite it to a virtual state, which is nearly immediately 

followed by the emission of light.15  As opposed to other forms of spectroscopy, this virtual 

state can exist at any energy level.  Yet, so as to not break any quantum rules, this virtual 

state exists for around 10-13 seconds and is only achievable under strong electromagnetic 

conditions.15  These conditions are supplied by the laser.  After this virtual state is achieved, 

the photon will then be emitted by the molecule.  There are three possible emission patterns 

for this photon.  The first of these is Rayleigh scattering.  If the molecule, originally in a 

ground state, is excited up to the virtual state and then falls back into the ground state, 
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Rayleigh scattering has occurred.  As previously stated, this is an elastic form of scattering 

as the incident and emitted light have the same energy.  This is not useful for Raman 

spectroscopy because no molecular properties are revealed.15  Therefore, the only useful 

scattering patterns for Raman spectroscopy are inelastic scattering in the forms of Stokes 

and anti-Stokes scattering.  Stokes scattering occurs when the molecule, originally in the 

ground state, is excited to the virtual state.  This time, however, it falls into an excited 

vibrational state.  Therefore, the emitted photon now has less energy as some energy was 

absorbed by the molecule.15 Finally, anti-Stokes scattering occurs when the molecule is 

already in an excited vibrational state. When the molecule emits a photon, the electron 

returns to the vibrational ground level; this causes the emitted photon to be higher in energy 

than the incident photon.  Anti-Stokes is the rarest form of scattering as it requires the 

molecule to be in an excited vibrational state before analysis.  However, the incidence of 

anti-stokes scattering can be increased by heating the sample.15  For research purposes 

though, only Stokes scattering is typically observed.  The Raman scattering patterns are 

shown in Figure 4. 
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Figure 4. Scattering Patterns of Raman Spectroscopy. 

 

The importance of the inelastic scattering is the difference in energy between the incident, 

λ0, and transmitted light, λ1.  This is referred to the Raman shift, Δṽ,  and it is what is 

graphed when analyzing a Raman spectrum.15  Raman shifts, similarly to IR spectroscopy, 

are recorded as wavenumbers, cm-1.  This observed shift is therefore calculated using 

Equation 1.3: 

  (1.3) 

Additionally, not all vibrational modes can be analyzed with Raman spectroscopy.  For 

Raman, a change in polarizability, α, of the molecule is required.  Polarizability is defined 

n = 0

n = 1

n = 2

Virtual States

Stokes
Scattering

Rayleigh Anti-Stokes
ScatteringScattering

Δν =
1 1- • 10-7 nm cm-1

λ0 [nm] λ1 [nm]
~
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as the difficulty of an external electronic field to distort the electron cloud of an atom of 

molecule.15  This concept is shown in Equation 1.4. 

µinduced=αE        (1.4) 

µinduced is defined as the induced dipole moment and E refers to the external electric field. 

A change in polarizability is observed during symmetric stretching modes of molecules.  

This is because the simultaneous stretching and compressing of adjacent bonds 

significantly changes the electron cloud of a molecule.15  Antisymmetric modes, other the 

other hand, will not undergo a change in polarizability because the relative distances 

between the atoms are all the same.  Furthermore, bending modes are also generally Raman 

inactive.  This is because the change in polarizability is symmetric throughout bend, 

therefore there is no net change in polarizability.15  Interestingly, vibrational modes that 

are IR active are typically Raman inactive and vice versa.  A common example of this 

property is the antisymmetric and symmetric stretching modes of CO2 shown in             

Figure 5.15 

 

Figure 5.  IR and Raman Active Modes of CO2. 

 

This is why these spectroscopic methods are typically regarded as complementary.  

However, it is possible for vibrational modes to be both Raman and IR active, or neither.  

An example of a Raman and IR active vibrational mode is the HF stretching mode.  This 

CO O

C OO

CO O

C OO

Antisymmetic Stretching Symmetric Streaching

IR Active Raman Active

CO O CO OEquilibrium
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is because both the polarizability and dipole moment change as the molecule stretches and 

compresses.  Both these methods, when used in conjunction will provide the best overall 

understanding of the nature of the vibrational modes in the analyzed molecules.15 

 

2.4 Applications of Raman Spectroscopy 

 Raman spectroscopy has become an increasing common analytical technique.  Its 

main application is the identification of organic, inorganic, and biological samples.15  In 

fact, most applications where a non-destructive, microscopic, chemical analysis, and/or 

imaging technique is required can be probed with Raman spectroscopy.17 This is 

accomplished by comparing the observed spectral peaks with characteristic group 

frequencies.18  From these observed peaks, insights about the molecule’s vibrational modes 

are gathered, as well as its interactions with solvent molecules.19,20  In addition, this method 

can also be used to confirm the presence of molecules in complex mixtures by identifying 

molecule specific peaks within the obtained spectrum.21  Furthermore, this form of 

spectroscopy is not limited by the phase of the analyte.  Solids, liquids, gases, gels, slurries, 

and powders can all be analyzed with Raman Spectroscopy.17   

 

2.5 Instrumentation of Raman Spectroscopy 

The components of a typical Raman spectrometer include a radiant source, a 

wavelength discriminator, filters, and the detector.  Typically, the radiant light source for 

Raman spectroscopy is a laser in the visible range of the EMS.15  The visible region is 

usually an ideal option of light source for Raman spectroscopy because an optimal Raman 

light source excites the molecule without inciting electronic absorptions, as this would 
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result in fluorescence which would overwhelm the Raman signals.15  The chosen laser 

should possess sufficient energy such that the virtual state is higher in energy than the 

vibrational levels of the ground electronic state, allowing for analysis of all possible 

vibrational states.  In order to further show this, a comparison between stokes scattering 

and fluorescence are shown below in Figure 6.  Common Raman lasers include argon ion 

lasers (488 nm or 514 nm), diode lasers (785 nm or 830 nm), Nd:YAG lasers (532 nm or 

1064 nm), and neon-copper lasers (248 nm).15 
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Figure 6. Fluorescence versus Stokes Scattering. 
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 In order to differentiate between the wavelengths of light, diffraction grating is 

implemented.  Essentially, the grating refracts the light at a wavelength dependent angle.15  

However, the light travelling to travel to adjacent gratings will travel different distances to 

get to their respective grating. Depending on the length of this additional distance traveled, 

constructive or destructive interference can occur.  Constructive interference leads to bright 

lines being reflective off the grating.  Therefore, the goal is to only measure the light 

reflecting at an angle that produces constructive interference. This angle is determined 

using the grating equation shown in Equation 1.5. 

∆s=	mλ	=	d(sinα	+	sinβ)             (1.5) 

∆s refers to the difference in path length, m is the order of reflection, λ is the wavelength 

of the incident light, d is the grating spacing, α is the incident angle, β is the angle of the 

reflected light.  An order of zero refers to simple reflection, while higher orders refer to the 

points of constructive interferences depending on the wavelength of the incident light.  

Additionally, as higher orders are used, the resolution of the signal improves but the optical 

signal is reduced and ultimately lowers the signal to noise ratio.  When a monochromator 

is used, first order diffraction is implemented.  This includes m values equal to +1 and -1.15  

A given grating’s ability to discriminate between wavelengths, λ and λ+∆λ, effectively is 

referred to as its resolving power, R. 

        R= λ
'(∆λ

                        (1.6) 

This resolving power can be further related to the order, m, and the number of grooves, N, 

within the grating. 

R=mN              (1.7) 
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In addition to grating, filters are also implemented to block the Rayleigh scattered light 

while allowing Raman scattered light pass through.15  Finally, a detector is used to convert 

the electromagnetic energy of the scattered photons into an electrical energy.  The most 

common detector in modern Raman spectrometers are silicon charge coupled device 

(CCD) detectors.  This detector is sensitive to electromagnetic radiation between ~400 and 

~1,000 nm.  This detector can be further enhanced through cooling which reduces the 

thermal noise and, therefore, increases the signal to noise ratio.15 

 Additional components can be added to the Raman spectrometer to improve its 

functionality.   
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Chapter 3: Raman Mapping 

 

3.1 Principles of Raman Mapping 

Raman mapping is a branch of Raman spectroscopy.  In fact, in order to perform 

Raman mapping, the instrumentation remains the same, but a motorized x-y-z stage must 

be fitted onto the instrument to move the sample from point to point.22  In principle, Raman 

mapping involves collecting spectral data over a defined area or volume.19  In addition to 

Raman mapping, another similar method is referred to as Raman imaging.  The function of 

both of these methods is to analyze spectra over an area, but the difference revolves around 

sample movement.  In Raman mapping, the sample is moved, but in Raman imaging, the 

area of the CCD is utilized by recording the spectra at each pixel within the detector.  Due 

to the typically large area of the CCD detector, the sample can be analyzed at multiple 

points simultaneously without sample movement.19  However, wavelengths of light must 

be analyzed individually, slowing the process.  Here, the process of Raman mapping is 

expanded upon.  

As previously stated, Raman mapping involves the translational motion of the 

sample.  As the sample moves from point to point, a point source is used to capture the 

Raman spectra at each location.19,22,23  From here, two common approaches can be 

implemented to analyze the Raman maps: univariate and multivariate.  In the univariate 

approach, reference samples of the individual constituents are analyzed and spectral-

specific bands that are free of interferences from other constituents are used to classify the 

analytes within the system.19,24,25,26  These bands are then further characterized by their 

position, area, or height.  In comparison, multivariate methods do not require prior spectral 
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information and improves interpretation of results.  Within this method, each component 

receives a score or parameter, which is mapped at each location analyzed.19,22  This score 

or parameter is based on the agreement to theoretical or reference spectra and the intensity 

of the peak.19,25,27 

 

3.2 Applications of Raman Mapping 

Regardless of the method of analysis, the goal is typically to produce a composite 

imagine illustrating the distribution of all of the components within the analyzed area.19  

By classifying molecule specific peaks, the presence of the analytes can be determined at 

the various points in the mapped area.  In addition to these qualitative studies, quantitative 

studies can also be performed with this technique.  The rarity of Raman scattering plays a 

key role in this as increasing the concentration of analyte increases the chances of Raman 

scattering occurring if all other experimental parameters are held constant.15,19,28 

Furthermore, if calibrated with reference material of known concentrations, a calibration 

curve can be created to determine the concentration of analyte throughout the analyzed 

area.28  However, without a calibration curve, the intensities can still be used to 

comparatively quantize the concentrations of analyte within the system if experimental 

parameters are consistent.19 

In addition to producing composite images, Raman mapping can also be used to 

gather spectroscopic information about a system over a larger area.  To ensure a 

comprehensive spectrum is obtained, individual Raman spectra can be collected at various 

spatial locations, as would be done for a composite image, and then averaged.29  This 

method becomes when useful when analyzing large analytes such as protein.  For example, 
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this strategy was used to observe the aggregation of α-synuclein amyloids, which are 

present in large amounts within Lewy bodies.  These Lewy bodies are a diagnostic hallmark 

of Parkinson’s disease, so understanding their formation is of great importance.29 

 

3.3 Raman Mapping of Pharmaceuticals 

The most common use of Raman mapping within the pharmaceutical industry is to 

track the distribution of the active pharmaceutical ingredient (API) for their density and 

blending distribution pattern.  Multiple components can be tracked simultaneously with 

this technique.  Understanding the distribution of API in tablets is of particular interest 

because the drug release rate is primarily determined by the distribution of the drug.19 In 

addition, from the Raman maps, the particle size and spatial distribution of the API can be 

estimated leading to consistent production of products.27  This is important because it can 

give insights about the manufacturing process and can then lead to optimization.  In fact, 

Raman Mapping can be implemented at each step of the manufacturing process to monitor 

and check for induced transitions and then check for drug stability to determine shelf life.26  

An example of this is an experiment in which Raman mapping was implemented to 

characterize the API and cyclodextrin formulations. This is important as cyclodextrins 

improve the dissociation characteristics of drugs.  0.8mm2 to 1mm2 maps were produced 

with step sizes of 40µm.  Three peaks that were specific to the API at 1581cm-1, 1586cm-1 

, and 1372cm-1 were determined to be markers for the API.  Therefore, changes in these 

peaks would indicate formation of an API-cyclodextrin formation.  Six different forms of 

cyclodextrins were analyzed and the formation of the API-cyclodextrin were analyzed over 

the mapped area.  This data was then compared to the results obtained via scanning electron 
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microscopy combined with energy-dispersive X-ray Spectroscopy (SEM-EDX) and X-ray 

powder diffraction (XRPD).  The results showed that Raman mapping is an effective to 

characterize the API-cyclodextrin formation over the analyzed area.30 

Raman maps can be taken at different points of the drug dissolution process.  This 

can give provide information about the physical changes that occur during the drug release 

progress and ensure a consistent release of the API.31   In addition to analyzing tablets, 

Raman mapping has also been employed to observe cellular uptake.19,32  This was 

accomplished by tracking the uptake of unmodified and TAT peptide modified liposome 

into human breast carcinoma MCF-7 cells over 24 hours.  To ensure proper detection, both 

of the analyzed liposomes were deuterated in order to distinguish them within the cells.32 

As will be discussed further, the limitations of Raman mapping arise due to the time 

required to collect data.  Typically, areas analyzed with Raman range from 25µm2 to 

~10mm2.19  However, as the area analyzed gets larger, the time of acquisition increases as 

well.  As instrumentation improves, it will open the door to new applications and make it 

an even more powerful technique. 
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Chapter 4: Method Development 

 In this experiment, the goal was to analyze the distribution of API within a 

suppository tablet using Raman mapping.  However, due to this being a relatively novel 

technique to the laboratory, the entire method of analysis needed to be constructed.  The 

underlying issues that were initially confronted were: the classification of the ingredients, 

the time taken to analyze, the area of analysis, and the construction of a 3D representation 

of the whole suppository.  In order to better define the method, a suppository containing 

just two ingredients, ibuprofen and a lipid matrix, was analyzed. Understanding this, 

reference spectra of pure samples of the individual analytes were gathered.  From this, 

spectral-specific bands could be selected to monitor the analytes.  Additional testing could 

then be performed to further optimize the time and area of analysis. 

 
4.1 Calibration and Sample Preparation 

In order to ensure consistent and precise measurements, the Raman spectrometer 

was calibrated before collecting any data.  This was done by obtaining the Raman shift for 

a silicon wafer.  Crystalline Silicon has a distinct peak at 520 cm-1 relative to the laser line, 

so aligning the detector with this known value establishes that the data produced by the 

instrument is accurate.33  In terms of sample preparation, it was previously established that 

Raman requires little to no sample preparation.  However, due to the large shape of the 

suppository, cross sections had to be collected by slicing the suppository with a utility blade 

which had proved successful in a previous experiment.34  Care was taken to have the cross 

sections be as flat as possible so avoid the laser coming out of focus which can lead to 

signal fluctuations.27 
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4.2 Reference Spectra 

 A univariate approach was applied to this experiment.  Therefore, spectral-specific 

peaks with good clarity and separation were needed for each of the analyzed molecules.  

To accomplish this, reference spectra of pure ibuprofen and the lipid matrix were obtained 

as shown in Figure 7.  The 532nm Nd:YAG laser with 100x objective, 100% laser power, 

and a 600 gr/mm grating with a 10 second acquisition time for 3 acquisitions was employed 

to record these reference spectra. 

 

 

 

 

Figure 7. Reference Raman Spectra of Ibuprofen and the Lipid Matrix. 
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 When analyzing the reference spectra, a distinct peak for Ibuprofen can be seen at 

1610cm-1.  This likely represents a C=C stretching mode.35  In addition, the lipid matrix 

contains unique vibrational modes from ~1410cm-1 to 1490cm-1.  This likely correlates to 

CH2 and CH3 bending modes.35  Ibuprofen also contains vibrational modes within this 

region, but the peak at 1442cm-1 is significantly more intense as was easily observed in 

samples containing both the ibuprofen and the lipid matrix.  Therefore, it was hypothesized 

that the presence of both of these analytes could be tracked within the region of 1400cm-1 

and 1650cm-1 as has been done in similar experiments.36  This region and the analyte 

specific modes are shown below in Figure 8.    

 

 

Figure 8. Reference Raman Spectra between 1400cm-1 and 1650cm-1. 

 

In addition to the univariate approach, a multivariate approach was also 

implemented.  However, with the multivariate approach, small deviations in peak position 
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from the reference peaks lead to drastic changes in the outputted intensities displayed 

within the composite images produced.  Using the univariate approach, the peak heights 

over a small range of wavenumbers could be analyzed allowing for these small deviations 

to be analyzed without skewing the results, producing more precise results. 

 

4.3 Step Size and Area Mapped 

As mentioned earlier, a Raman map is obtained by gathering the spectral data over 

a defined area.  Over this area, the translational stage moves to allow the sample to analyzed 

uniformly with a specified distance between the points.  The distance between these points 

is important due to the particle size of the analytes.  If the step size is significantly larger 

than the particle size, the distribution of analytes will not be represented correctly as the 

laser spot is typically around 1µm.2,21,24,34 Furthermore, the smaller the step size, the longer 

it will take to analyze the area21.  Therefore, initially a 110µm2 area with a step size of 5µm 

was analyzed.  This was performed with the 532 Nd:YAG laser, 100% power, and a 

600gr/mm grating with an acquisition time of 3 second for 2 acquisitions at each analyzed 

point.  The EMS region of 1400cm-1 to 1650cm-1 was used.  A compilation of all of the 

spectra gathered during analysis is shown below in Figure 9. 
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Figure 9. Composition of Spectra Gathered from 5-micron 12,100µm2 Raman Map. 

 

 From these spectra, the peak at ~1610cm-1 can be clearly seen as well at the broad 

peaks for the lipid matrix from 1410cm-1 to 1470cm-1.  There is less clarity to these peaks 

due to the relatively short time and number of acquisitions. However, this quickened time 

is necessary as these spectra were gathered over the course of six hours.  Small increases 

in these parameters result in significantly more time being required to perform these 

analyses.   Still, the distribution of ibuprofen and lipid can be determined with this method.  

As these spectra were gathered at distinct locations over the mapped area, it was possible 

to produce the Raman maps.  Using the univariate technique, Figure 10 and Figure 11 

were produced from this data. 
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Figure 10. 12,100µm2 Raman map of Ibuprofen with a 5-micron Resolution. 
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Figure 11. 12,100µm2 Raman map of the Lipid Matrix with a 5-micron Resolution. 
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Within the ibuprofen image, a bright red square can be seen in the center of the 

image.  This correlates to the very intense peak at ~1610cm-1 seen in Figure 9. This further 

indicates that a high concentration of ibuprofen is present at this location. However, this 

also presents as drawback of this method.  Due to this point being significantly more 

intense, the significance of the rest of the points is underestimated.  There could be a 

substantial amount of analyte at other locations that is now being treated as a miniscule in 

comparison to this point. 

Information about the suppository is also revealed from the lipid Raman map.  

Within the region designating the lipid matrix, peaks were consistently seen with intensities 

between 150 and 220 counts, signifying a near homogenous distribution of the lipid within 

the matrix.  Based on this assumption, further testing was conducted over a shorter 

wavelength range in an effort to make a more efficient test.   

To confirm the results of this test, another test was performed on this same region 

of the suppository, but a 2µm step size was utilized.  All other parameters were held 

constant.  The spectra and composite image are shown in Figure 12 and Figure 13, 

respectively.  From the figures, a very similar distribution of analyte is seen, as well as the 

intense peak seen towards the center of the gathered image.  This supports the conclusion 

that the distribution was properly captured at the lower resolution.  In addition, the spectra 

for this 2µm image were taken over the course of 17 hours further supporting the necessity 

for a more efficient method. 
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Figure 12. 12,100µm2 Raman map of Ibuprofen with a 2-micron Resolution. 
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Figure 13.  Composition of Spectra Gathered from 2-micron 12,100µm2 Raman Map. 

 

Unfortunately, a 12,100µm2 area reveals very little about the overall distribution of 

Ibuprofen in a suppository.  The average width of a suppository is roughly half an inch, 

meaning each cross section would be roughly 1.267x108µm2.  Therefore, the size of the 

map also had to be increased.     In the next test, a 360,000µm2 with a larger step size of 

10µm  

was analyzed over the wavelength region of 1600cm-1 to 1650cm-1.  One again this was 

performed with the 532 Nd:YAG laser, 100% power, and a 600gr/mm grating with an 

acquisition time of 3 second for 2 acquisitions at each analyzed point over the wavelength 

range of    1600cm-1 to 1650cm-1.  This was also captured in the area around the initially 
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analyzed 12,100µm2 area to determine if the original distribution could be seen within the 

larger map. 

This map is shown below in Figure 14 along with an outline containing the original 

12,100µm2 area. 

 Looking at the outlined area within the composite image, the distribution of 

ibuprofen was still be reliably captured. Thus, it can be assumed that the distribution was 

correctly measured throughout the entire scan.  Therefore, these were the parameters that 

were used to conduct further testing. 
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Figure 14. 360,000µm2 Raman Map of Ibuprofen with outlined 12,100µm2 Raman Map. 
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4.4 Limitation and Errors of Instrument 

 It was around this time, that the laser began experiencing issues.  The first of these 

issues pertained to the baseline intensity. As can be seen in Figure 9 and Figure 13, the 

baseline intensity stays relatively constant.  However, spectra like the ones seen in Figure 

15 were soon regularly produced.  The cause of this error was unknown, but it led to 

baseline intensities that varied from 100 to 500 counts.  This was a significant issue due to 

the method of analysis implemented.  Using the univariate method of data analysis, the 

peak hieght is of great importance, but, with this error, a small signal may be greatly 

intensified solely based on the intensity of the baseline leading to very inaccurate results. 

To account for this, a baseline correction was applied to each of the gathered spectra.  

Interestingly, this also led to curvature within the baseline, producing broad peaks within 

the region of 1525cm-1 and 1575cm-1.  Luckily, the peaks around 1610cm-1 and 1435cm-1 

for Ibuprofen and the lipid matrix are still reliable seen.  This is shown in Figure 16. 

 

Figure 15. Composition of Spectra Displaying Baseline Error. 
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 Another, issue that was experienced was laser pulsing.  With this issue, the intensity 

of the laser light would fluctuate.  This was very apparent within the Raman maps as 

sections of the map would be significantly lower in intensity.  Due to these Raman maps 

taking many hours to produce, large portions of the data would be unreliable.  All of these 

issues became more relevant as the area mapped was increased significantly.  In an effort 

to determine the size limit of the instrument, a 25,000,000µm2 area with a larger step size 

of 25µm was analyzed.  This was performed with the 532nm Nd:YAG laser, 100% laser 

power, and the 600gr/mm grating with an acquisition time of 3 seconds for two 

acquisitions. The Spectra recorded and composite image are shown below in Figure 16 

and Figure 17. 

 

 

 
 
Figure 16. Composition of Spectra Gathered from 25,000,000µm2 area. 
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Figure 17. 25,000,000µm2 Raman Map of Ibuprofen with 25-micron Resolution.  
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 Unlike the other Raman maps produced, no clear insights regarding the ibuprofen 

distribution are seen.  It seems like a homogenous mixture, but that is not what was seen in 

the higher resolution maps.  This indicates that most likely too large of a step size was used 

to accurately map ibuprofen within the sample. However, this Raman map was produced 

over the course of 67 hours.  Therefore, a smaller steps size is not reasonable for research 

purposes as it would take even longer to produce the Raman maps.  Furthermore, this 

25,000,000µm2 area is still significantly smaller than the cross section of the suppository.  

In addition, due to the very long total acquisition time, dimming of the laser was seen 

toward the bottom of the map as can be seen in Figure 17.   

 Further data was set to be gathered, but, due to the COVID-19 outbreak, this was 

not feasible.  However, it was still possible to produce conclusions from the gathered data 

to date. 
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Chapter 5: Conclusions and Future Work 

 Based on the data, it can be concluded that further research should be conducted 

over smaller areas with smaller step sizes.  Larger sizes take significantly longer to produce 

and produce less accurate descriptions of the distribution of analytes.  Furthermore, this 

analysis could be performed with more analytes, but would require a larger range of 

wavenumbers and analyte specific peaks that are easily visible when analyzed within the 

mixture.  However, analysis on the overall distribution of ibuprofen throughout the 

suppository is not feasible with the current equipment due to the large sizes of the cross 

sections and acquisition times associated with this method.  On the other hand, optimization 

and the limitations of the method were successfully discovered.  Further uses of this method 

should be performed over smaller surface areas, or in a similar manner to the experiment 

probing the aggregation of α-synuclein amyloids, where spectra gathered with Raman 

mapping were averaged to acquire a more representative spectrum.  To perform large area 

Raman maps, specialized equipment, such as the Renishaw inViaTM Qontor® which is 

specifically designed for rapid large area Raman imaging, should be used to better 

understand the overall distribution of analytes within the system.37 However, a decently 

representative distribution could be achieved by combining data taken from different grid 

points as proposed by a previous experiment.21 
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