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a b s t r a c t

The model yeasts, Saccharomyces cerevisiae and Schizosaccharomyces pombe, display Core Environmental
Responses (CERs) that include the induction of a core set of stress genes in response to diverse envi-
ronmental stresses. CERs underlie the phenomenon of stress cross-protection, whereby exposure to one
type of stress can provide protection against subsequent exposure to a second type of stress. CERs have
probably arisen through the accumulation, over evolutionary time, of protective anticipatory responses
(“adaptive prediction”). CERs have been observed in other evolutionarily divergent fungi but, interest-
ingly, not in the pathogenic yeast, Candida albicans. We argue that this is because we have not looked in
the right place. In response to specific host inputs, C. albicans does activate anticipatory responses that
protect it against impending attack from the immune system. Therefore, we suggest that C. albicans has
evolved a CER that reflects the environmental challenges it faces in host niches.
© 2020 The Author(s). Published by Elsevier Ltd on behalf of British Mycological Society. This is an open

access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

To survive in dynamically changing niches, yeasts must be able
to detect environmental challenges and activate the appropriate
cellular responses. Environmental changes that perturb cellular
homeostasis represent a stress to the yeast cell and, therefore, the
imposition of stress is likely to be a common occurrence. Indeed, it
has been suggested that microbes are unlikely ever to be
completely stress-free (Hallsworth, 2018).

Stresses such as changes in ambient temperature, pH, osmo-
larity and redox status are likely to have influenced the evolution of
ancient life forms in diverse ecosystems. Consequently, funda-
mental aspects of the cellular responses to these stresses are
conserved across all kingdoms of life (Kultz, 2003). For example, in
bacteria, archaea and eukaryotes, heat shock induces the synthesis
of evolutionarily conserved protein chaperones that protect against
the perturbation of cellular proteostasis (Karlin and Brocchieri,
1998; Lindquist, 1986). Furthermore, the key regulators that con-
trol this heat shock response are conserved across the fungal
kingdom and eukaryotes in general, and this evolutionary conser-
vation of key regulatory modules holds true for other stress
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responses, such as for osmotic and oxidative stress (Brown et al.,
2017).

The presence of an Environmental Stress Response was
proposed in Saccharomyces cerevisiae in the 1990’s (Martinez-
Pastor et al., 1996). The global definition of core responses to
environmental change followed the development of tech-
nologies for genome-wide transcriptional profiling in the
evolutionarily divergent model yeasts, S. cerevisiae and Schizo-
saccharomyces pombe (Causton et al., 2001; Chen et al., 2003;
Gasch et al., 2000). The Core Stress Response, or Core Envi-
ronmental Response (CER), represents a set of genes that is
commonly induced in response to diverse types of environ-
mental input, plus a second set of genes that is commonly
repressed in response to these inputs. CERs have since been
discovered in other fungi, plants and animals (Dodd et al.,
2018; Emri et al., 2015; Hahn et al., 2013; Roetzer et al.,
2008; Singh et al., 2010). As discussed below, these CERs pro-
vide additional levels of cellular protection, over and above the
protection provided by stress-specific signalling pathways.
Therefore, the finding that the fungal pathogen, Candida albi-
cans, displays a dramatically reduced CER (Brown et al., 2014a;
Enjalbert et al., 2003, 2006; Nicholls et al., 2004) was partic-
ularly interesting. This article considers why CERs might have
evolved in fungi and, importantly, how these CERs might have
evolved. On this basis, we suggest that C. albicans has probably
ological Society. This is an open access article under the CC BY license (http://
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evolved a CER after all, but that this CER has remained obscure
because we have not looked in the right place!

2. Perspectives on Core Environmental Responses

2.1. Key stress signalling modules and responses are evolutionarily
conserved

CERs probably evolved in fungi because they provide fitness
advantages over and above stress-specific responses. These stress-
specific responses are likely to have evolved earlier than CERs
because, as mentioned above, they drive adaptation to fundamental
environmental challenges that were, no doubt, experienced by
ancient ancestral species. There exists a wide variety of stress-
specific responses, which protect against xenobiotic, pH ex-
tremes, weak acids, UV and other forms of radiation, to name a few.
For the purposes of this discussion, heat shock, oxidative and os-
motic stress is discussed briefly here because these are often
examined as part of core stress responses.

In response to heat shock, fungi induce the expression of heat
shock proteins, which include chaperones that promote protein (re)
folding (Karlin and Brocchieri, 1998; Lindquist, 1986). This induc-
tion is mediated by an essential, evolutionarily conserved, auto-
regulatory circuit in which Hsp90 controls the activity of the heat
shock transcription factor Hsf1 (Leach et al., 2012a; Nicholls et al.,
2009; Taipale et al., 2010; Voellmy, 2004). In addition to promot-
ing the adaptation and recovery of cells from an initial heat shock,
this response provides transient protection against a subsequent,
more severe, heat shock (Piper, 1993).

Similarly, prior exposure to oxidative stress provides fungal cells
with protection against a subsequent, more severe oxidative stress
(Collinson and Dawes, 1992; Davies et al., 1995). This protection is
mediated by cellular adaptation to oxidative stress, which is
dependent upon AP-1-like transcription factors that are conserved
from yeasts to mammals (Toone et al., 2001). For example, in
S. cerevisiae, Sz. pombe and C. albicans, the transcriptional induction
of oxidative stress responsive genes is driven largely by the tran-
scription factors Yap1, Pap1 and Cap1, respectively (Alarco and
Raymond, 1999; Stephen et al., 1995; Toone et al., 1998; Znaidi
et al., 2009). Their target genes encode functions involved in the
detoxification of the oxidative stress as well as proteins that repair
the damage caused by the oxidative stress (Brown et al., 2017;
Cohen et al., 2002; Znaidi et al., 2009).

Hyper-osmotic stresses also triggermolecular responses in fungi
that lead to cellular adaptation to this stress and transient protec-
tion against a subsequent hyper-osmotic stress (Hohmann, 2002;
Klipp et al., 2005). This adaptation, which includes the accumula-
tion of osmolytes that promote the restoration of turgor pressure
and growth (Albertyn et al., 1994; Kayingo and Wong, 2005; San
Jose et al., 1996), is dependent on a highly conserved mitogen
activated protein kinase (MAPK) signalling module that includes
the Hog1 stress activated protein kinase (Sty1 in Sz. pombe)
(Brewster et al., 1993; Enjalbert et al., 2006; Millar et al., 1995; San
Jose et al., 1996).

Stress gene expression is thought to be costly in energetic terms,
in part because stress gene expression is noisy relative to house-
keeping genes, for example (Lopez-Maury et al., 2008). The in-
duction of energy generating metabolic functions in response to
stress is consistent with the view that mounting stress responses is
energetically demanding (Causton et al., 2001; Chen et al., 2003;
Enjalbert et al., 2006; Gasch et al., 2000; Roetzer et al., 2008).
Nevertheless, the cost-benefits of mounting of stress responses
seem to be favourable as these types of response have been
retained across all kingdoms of life. In addition to promoting stress
adaptation and cellular recovery, these responses provide transient
Please cite this article as: Brown, A.J.P et al., Thoughts on the evolution
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protection against a subsequent, acute dose of the same type of
stress. The length of this protection depends on the rate of loss of
the “molecular memory” (i.e. the protective enzymes or molecules)
following the initial adaptation (Klipp et al., 2005; You et al., 2012).

The maintenance of cellular homeostasis under “normal” condi-
tions (i.e. in the absence of stress) provides another strong selective
pressure for the evolutionary retention of stress responses. Stress
responses are frequently studied following the imposition of acute
doses of stress. However, in reality, the heat shock response is acti-
vated and maintains proteostasis during mild temperature fluctua-
tions (Leach et al., 2012b), the osmotic stress response is activated
during subtle changes inwater balance (Muzzey et al., 2009), and no
doubt oxidative stress response functions promote cellular redox
homeostasis in the absence of large doses of exogenous reactive
oxygen species (ROS). Clearly, significant evolutionary pressures
have promoted the retention of stress-specific responses.

2.2. Fungal Core Environmental Responses differ

Core responses to environmental change were defined
comprehensively in the domesticated yeast, S. cerevisiae, by tran-
script profiling following exposure to a wide variety of stresses,
including thermal, oxidative, osmotic, pH and nutrient stresses
(Causton et al., 2001; Gasch et al., 2000). Hierarchical clustering of
genes based on their expression patterns under these conditions
revealed a large set of genes that was down-regulated under stress
conditions. Many of these genes encode growth-related functions
(transcription, RNA processing, translation, cell cycle), consistent
with the observation that growth is temporarily slowed during
cellular adaptation to stress (Escote et al., 2004). Interestingly, a
core set of up-regulated geneswas also observed undermany of the
stress conditions examined (Causton et al., 2001; Gasch et al.,
2000). These included heat-shock and oxidative stress genes, as
well as genes involved in central carbohydrate metabolism and
energy generation. Together, these up- and down-regulated genes
represent the CER in S. cerevisiae. The partially functionally
redundant zinc-finger transcription factors, Msn2 and Msn4, are
essential for the activation of up-regulated CER genes (Causton
et al., 2001; Gasch et al., 2000; Martinez-Pastor et al., 1996).

The pathogenic yeast, Candida glabrata, also displays a CER
(Roetzer et al., 2008). Like S. cerevisiae, the core set of up-regulated
genes in C. glabrata includes heat shock, oxidative and osmotic
stress genes, and their induction is dependent on Msn2. Interest-
ingly, constitutive activation of MSN2 is deleterious to C. glabrata,
consistent with the idea that CER activation is energetically
demanding (Roetzer et al., 2008).

Despite having diverged from S. cerevisiae and C. glabrata around
300 million y ago (Dujon et al., 2004), Sz. pombe also displays a CER
(Chen et al., 2003). Once again, heat shock, antioxidant and energy
generating functions were identified in the core set of up-regulated
genes. However, the activation of these CER genes was dependent
on Sty1 (the Sz. pombe orthologue of the Hog1 MAPK) and the
transcription factor, Atf1 (Chen et al., 2003), rather than Msn2/4
orthologues (Causton et al., 2001; Gasch et al., 2000; Roetzer et al.,
2008). Therefore, there appears to have been regulatory rewiring of
the CER in Sz. pombe relative to those in S. cerevisiae and C. glabrata
(Gasch, 2007).

The surprise came when the CER was examined in C. albicans.
Like C. glabrata, C. albicans is a major fungal pathogen of humans.
Both species are frequent causes of life-threatening systemic in-
fections in immunocompromised patients (Morgan, 2005; Pfaller
et al., 2014). However, unlike C. glabrata (Roetzer et al., 2008), the
CER in C. albicans was found to be minimal, if not non-existent
(Enjalbert et al., 2003, 2006). There was minimal overlap be-
tween heat shock, oxidative stress or osmotic stress genes
of Core Environmental Responses in yeasts, Fungal Biology, https://
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(Enjalbert et al., 2003), and the small set of putative CER genes (24
genes) was not significantly enriched for genes involved in oxida-
tive or osmotic stress or energy generation (Enjalbert et al., 2006).
Furthermore, the orthologues of Msn2/4, the key transcriptional
inducers of the CER in S. cerevisiae and C. glabrata, have been
functionally reassigned in C. albicans (Nicholls et al., 2004;
Ramsdale et al., 2008). Therefore, the apparent lack of a broad
CER in C. albicans is not a trivial observation based on the stress
doses used in the transcript profiling experiments, for example.

2.3. Core Environmental Responses confer stress cross-protection

Given that CERs are likely to be even more energetically
demanding than stress-specific responses (Lopez-Maury et al.,
2008), the evolutionary retention of CERs in diverse yeasts sug-
gests that these responses must confer significant fitness benefits
over stress-specific responses.

The phenomenon of stress cross-protection provides one such
fitness benefit. This is where exposure to one type of stress confers
protection against subsequent exposure to a different type of stress.
For example, exposing S. cerevisiae to a mild heat shock confers
protection against a subsequent oxidative, osmotic or freeze-thaw
stress (Lewis et al., 1995; Park et al., 1997; Wieser et al., 1991).
Stress cross-protection has been shown to be dependent on new
protein synthesis and upon the CER regulators, Msn2 and Msn4
(Berry and Gasch, 2008). For example, exposure to salt protects
S. cerevisiae cells against subsequent exposure to an oxidative
stress, as well as to subsequent salt exposure. Also, exposure to heat
shock protects yeast cells against subsequent exposure to an
oxidative stress, as well as to subsequent heat shock (Berry and
Gasch, 2008). Expressing stress functions in the absence of stress
does incur a fitness cost (Markiewicz-Potoczny and Lydall, 2016;
Pradhan et al., 2017). Nevertheless, by conferring stress cross-
protection, the CER appears to have provided a significant fitness
benefit during the evolution of a number of yeasts (Berry and
Gasch, 2008; Lopez-Maury et al., 2008).

2.4. Core Environmental Responses probably arose through the
development of protective anticipatory responses

The CER might be costly in energetic terms, but it appears to
confer significant fitness benefits (above). Yet there has been
Fig. 1. Core Environmental Responses are anticipatory responses that confer stress cross-p
type of environmental input is often followed by a second, and possibly a third. (B) Such micr
impending inputs when the first input is detected. This phenomenon has been termed “

anticipatory responses can occur, in addition to the asymmetric responses shown here. (C) A
enhance protection against a subsequent environmental input of a different type e a phe
responses probably underlies the development of Core Environmental Responses (CERs) in
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dramatic evolutionary rewiring of the CER in C. albicans relative to
other ascomycete yeasts, and this does not simply relate to its
pathogenic lifestyle, as both C. albicans and C. glabrata are major
pathogens of humans (above). Therefore, why might the CER have
been rewired in C. albicans? The answer to this question probably
lies in an understanding of how CERs arose.

The existence of common underlying mechanisms might have
contributed to the development of CERs. For example, exposure to
heat shock or antifungal drugs leads an increase in intracellular ROS
production levels (Abrashev et al., 2008; Davidson and Schiestl,
2001). In principle, this might explain why heat shock also acti-
vates an oxidative stress response (Causton et al., 2001; Chen et al.,
2003; Gasch et al., 2000; Roetzer et al., 2008). However, this is not
the case in C. albicans (Enjalbert et al., 2003, 2006). Hence, the
existence of common underlying mechanisms is not sufficient to
explain how CERs arose.

The broad coverage of functions activated by the CERs in
S. cerevisiae, Sz. pombe and C. glabrata (Causton et al., 2001; Chen
et al., 2003; Gasch et al., 2000; Roetzer et al., 2008) is unlikely to
have arisen in a single evolutionary event. This broad coverage is
more likely to have developed over time via an accumulation of
protective responses. Mitchell and co-workers have suggested that,
during its domestication, S. cerevisiae has evolved in a reasonably
predictable environment that imposes a reasonably predictable
series of inputs (Mitchell et al., 2009). They argue that, during
fermentation, the rise in temperature is followed by a switch from
fermentative to respiratory metabolism, which is accompanied by
changes that include elevated intracellular ROS levels. They suggest
that, as a result, S. cerevisiae has gained a fitness advantage by
developing anticipatory responses that include protection against
the impending oxidative stress that often follows an increase in
ambient temperature (Mitchell et al., 2009). Their ineluctable hy-
pothesis is that microbes that inhabit reasonably predictable en-
vironments might gain a fitness advantage through “adaptive
prediction”e the development of protective anticipatory responses
(Fig. 1). It has been argued that such anticipatory responses
represent a primitive form of microbial memory (Brown et al.,
2019; Casadesus & D’Ari, 2002; Hellingwerf, 2005; Wolf et al.,
2008).

How quickly can a microbe become entrained to a repetitive
environment? Microevolution experiments, involving the exposure
of Saccharomyces cerevisiae cells to repetitive environmental inputs,
rotection. (A) Some microbes inhabit reasonably predictable environments where one
obes may gain a fitness advantage by activating anticipatory adaptive responses against
adaptive prediction” (Mitchell et al., 2009). These authors point out that symmetric
s a result of anticipatory adaptive responses, exposure to one environmental input can
nomenon called “stress cross-protection”. The accumulation of anticipatory adaptive
some yeasts (see text).
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Fig. 2. Potential mechanisms underlying the development of protective anticipatory
responses. In principle, the development of a new anticipatory response, whereby
exposure to one environmental input (blue) can provide cross-protection against
subsequent exposure to a second type of input (red), could arise through a number of
mechanisms. Arguably, the most straightforward might involve the generation of a
new regulatory target site for a protein kinase from the blue pathway on a protein
kinase or transcription factor on the red pathway. This new link (either of the purple
arrows) could bring downstream signalling components on the red pathway under the
control of upstream regulators on the blue pathway (see text). (For interpretation of
the references to colour in this figure legend, the reader is referred to the Web version
of this article.)
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have revealed that this yeast can rapidly develop anticipatory re-
sponses, within 50e150 generations (Dhar et al., 2013; Lopez Garcia
de Lomana et al., 2017). In principle, this could be straightforward
from a mechanistic point of view (Fig. 2). For example, a signalling
pathway could develop control over an alternative stress regulon
simply through the emergence of a new protein kinase target site
on a regulatory protein (Bleuven and Landry, 2016; Holt et al.,
2009).

Therefore, fungal CERs have probably developed through the
accumulation of protective anticipatory responses. To some degree,
these CERs may reflect ancient, common molecular mechanisms
that underlie responses to certain types of stress. However, given
the speed with which regulatory links can evolve, at least in vitro in
response to tightly defined environmental transitions, it seems
Fig. 3. Core Environmental Responses in a domesticated and pathogenic yeast. The Core
environmental inputs that include stresses and nutrient depletion. This CER leads to the ac
environmental challenges. By analogy, the pathogenic yeast, C. albicans, triggers b-glucan m
masking attenuates recognition of C. albicans by innate immune cells, thereby providing som
yeasts appear to have evolved CERs that reflect the environmental challenges imposed by
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likely that CERs have undergone evolutionary tuning in response to
the patterns of stress imposition by their niche. Therefore, the na-
ture of the niche might account for the rewiring of the CER in
C. albicans.

2.5. A Core Environmental Response in a yeast that is obligately
associated with warm-blooded animals

C. albicans is a commensal of humans. However, this fungus
often causes mucosal infections in otherwise healthy individuals,
and life-threatening systemic infections in immunocompromised
patients (Brown et al., 2012; Denning et al., 2018; Neville et al.,
2015). C. albicans has been isolated from animals as well as
humans (Odds et al., 1988). It has also been recovered from envi-
ronmental samples including plants, soil, lakes, sewage and hos-
pital laundry (Barnett et al., 1983; Bensasson et al., 2019; Gentles
and La Touche, 1969), but these environmental isolates have been
restricted mainly to sites that may have been contaminated by
humans or animals (Odds et al., 1988). Consequently, C. albicans is
considered to be obligately associated with warm-blooded animals
(Odds et al., 1988). Herein might lie the basis for the divergence of
the CER in C. albicans compared with S. cerevisiae and Sz. pombe.
C. glabrata might also lack an environmental reservoir (Silva et al.,
2012), and yet this pathogen has retained a CER (Roetzer et al.,
2008). However, the shorter evolutionary distance between
C. glabrata and S. cerevisiae, compared with C. albicans (Shen et al.,
2016), means there has been less time for the CERs of C. glabrata
and S. cerevisiae CER to have diverged. In other words, in principle,
the CER of C. albicans has had more time to be tuned to the
evolutionary pressures of host niches. On this basis, should
C. albicans still display a CER, we have probably been looking for
this CER in the wrong place! Should it exist, this CER is more likely
to reflect the evolutionary pressures of host niches.

What types of pressures does C. albicans face in host niches?
These pressures include our immune system, and innate immunity
in particular [which normally clears C. albicans efficiently from the
bloodstream and tissues (Dambuza and Brown, 2015; Netea et al.,
2015)], host-imposed nutritional immunity [which attempts to
deprive the fungus of essential micronutrients such as iron and zinc
(Crawford and Wilson, 2015; Potrykus et al., 2013)], contrasting
nutrient availabilities in different host niches [comparing the colon,
vagina and bloodstream, for example (Barelle et al., 2006; Brown
et al., 2014b; Childers et al., 2016; Ramirez and Lorenz, 2007)],
Environmental Responses (CERs) in S. cerevisiae can be activated by a wide range of
tivation of core stress genes and, thereby, to protection against a variety of impending
asking in response to a variety of specific inputs imposed by the host. This b-glucan
e protection against immune clearance. Therefore, these domesticated and pathogenic
their respective niches (see text).
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and hypoxic microenvironments [particularly in the gastrointes-
tinal tract and fungal lesions (Ernst and Tielker, 2009; Grahl et al.,
2012; Lopes et al., 2018)]. Interestingly, certain specific carbon
sources, iron deprivation and hypoxia all trigger protective re-
sponses in C. albicans that promote immune evasion (Ballou et al.,
2016; Pradhan et al., 2018, 2019).

Innate immune cells recognise invading microbes as “foreign”
via pathogen associated molecular patterns (PAMPs). C. albicans
displays b-glucan, mannan and chitin at its cell surface, and all
three are recognised as PAMPs by innate immune cells (Erwig and
Gow, 2016; Netea et al., 2006, 2008). b-glucan, in particular, is
highly inflammatory and its recognition by the pattern recogni-
tion receptor, Dectin-1, is important for antifungal immunity in
mice and humans (Brown and Gordon, 2001; Ferwerda et al.,
2009; Marakalala et al., 2013; Sem et al., 2016; Taylor et al.,
2007; Werner et al., 2009). PAMP recognition stimulates phago-
cytosis of C. albicans cells by innate immune cells, which attempt
to kill the fungus with a combination of acute stresses that include
reactive oxygen, nitrogen and other chemical species, cationic
stresses and nutrient starvation (Brown, 2011). The combination
of stresses appears particularly effective in killing Candida cells
(Kaloriti et al., 2014). Therefore, there must be a strong selective
pressure on C. albicans cells to avoid recognition by innate im-
mune cells.

We have found that C. albicans evades immune recognition my
reducing b-glucan exposure at its cell surface, and that it does so in
response to environmental inputs that are signatures of impending
immune attack. Exposure to lactate (Ballou et al., 2016), hypoxia
(Pradhan et al., 2018) or iron depletion (Pradhan et al., 2019) trig-
gers b-glucan masking at the C. albicans cell surface, and this cor-
relates with a decrease in phagocytosis and attenuated immune
responses. For lactate exposure (Ene et al., 2012) and hypoxia
(Lopes et al., 2018), the attenuated immune response correlates
with an increase in the virulence of the fungus. Therefore,
C. albicans displays anticipatory responses that provide protection
against our immune defences (Brown et al., 2019). Might this
common induction of a protective response by diverse environ-
mental inputs be the C. albicans equivalent of a Core Environmental
Response (Fig. 3)?

3. Conclusion

In conclusion, Core Environmental Responses (CERs) have
generally been defined on the basis of responses to “standard”
experimental inputs that were developed by the model yeast
research communities (e.g. Causton et al., 2001; Chen et al., 2003;
Gasch et al., 2000). We suggest that, as our exploration extends
into fungal pathogens of humans, animals and plants, and into
saprobic fungal species, we should consider CERs in broader terms.
For example, we argue that the CER of C. albicans includes immune
evasion. For other fungal pathogens, parasites or saprobes, what
types of anticipatory response might, in principle, confer fitness
benefits in their niches? An understanding of such behaviours
might provide considerable insight into the biology of these fungi
as well as providing potential targets for novel antifungal therapy.
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