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ABSTRACT
The growing number of novel swarm-based meta-heuristics has
been raising debates regarding their novelty. These algorithms of-
ten claim to be inspired by different concepts from nature but the
proponents of these seldom demonstrate whether the novelty goes
beyond the natural inspiration. In this work, we employed the con-
cept of Interaction Networks to capture the interaction patterns that
take place in the algorithms during the optimisation process. The
analyses of these networks reveal aspects of the algorithm such as
the tendency to achieve premature convergence, population diver-
sity, and stability. Furthermore, we propose the usage of Portrait
Divergence, a state-of-the-art metric to assess the structural simi-
larities between networks. Using this approach to analyse the Cat
Swarm Optimisation algorithm, we were able to identify some of
the algorithm’s characteristics, assess the impact of one its param-
eters, and compare it to two other well-known methods (Particle
Swarm Optimisation and Artificial Bee Colony). Lastly, we discuss
the relationship between the interaction network and the perfor-
mance of the algorithm and demonstrate the similarities between
Cat Swarms and Particle Swarms.
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1 INTRODUCTION
Several published studies indicate that the number of proposals
of “novel” optimisation methods has been increasing in recent
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years [12, 22]. This is mostly related to the proposal of methods
claiming to have a different source of inspiration but that in reality
have only this inspiration as novelty given that they can behave
like (or be a particular case of) another existing method [28]. In fact,
many authors have pointed out that several new methods can use
inaccurate or unconvincing metaphors to justify the proposal of
algorithms which often can be considered a simplification/variation
of another method [5, 8, 20, 21].

As a sub-class of nature-inspired algorithms, Swarm Intelligence
(SI) methods also are susceptible to this issue. Part of this problem
comes from the fact that, currently, there is no comprehensive
method to explain, assess, classify or compare those algorithms. In
fact, the most common type of comparison between SI algorithms
relies on the fitness results. Moreover, despite the rich literature in
the field, the complex behaviour that emerges from the interactions
in swarm-based algorithms is still not well understood.

When it comes to SI algorithms, regardless of their source of
inspiration they all share the premise that the elements which con-
stitute the population present some degree of information exchange
among them. In fact, the intelligence of the swarm emerges from
these interactions. For example, in the Particle Swarm Optimisation
(PSO) [4], the particles exchanges positional information of the
global/local best particle in the swarm. In the Artificial Bee Colony
(ABC) [10] the onlooker bees select a food source to explore based
on the information obtained from the employed bees.

The existence of such common feature can be used to develop
tools to assess, classify and compare SI algorithms from the inter-
action level. One possible way of analysing the information flow
and interaction patterns in a swarm algorithm is to model the in-
teraction between the elements as a network and use it to obtain
information about the algorithm.

This idea of creating a network to capture the flow of information
or interactions patterns in a swarm-based algorithmwas introduced
in 2013 by Oliveira et al. [17]. This initial concept, known as the
Influence Graph (later renamed to Interaction Network), was ap-
plied the assess particle swarm optimisers from a network science
perspective. At each iteration, a graph was created by connecting
the particles which shared information (e.g. a connection would be
created between all particles in the swarm and the best particle in
a PSO with global topology). The authors examined the character-
istics of the influence network for the PSO with global, ring and
dynamic topologies and analysed the Laplacian Matrix, R-value
and Density Spectrum of the networks. The experiments conducted
indicates that the influence graph could be used to analyse the
search behaviour of the particles and diagnose stagnation.

In 2014 the authors introduced the concept of Influence Graph
with History [14]. The main motivation for the introduction of
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the concept of history was to have a method to record all the
information exchange that occurred in a given time window and
assess the whole history of interactions. This was achieved by
summing the adjacency matrix of the networks generated at each
iteration within the time window. This approach was also tested in
the PSOwith global, ring and dynamic topologies and they analysed
the distribution of node degrees and the impact of edge removal on
the network structure.

A new metric which could be applied over the influence graph
to obtain information on the behaviour of the algorithm was intro-
duced in 2016 [15]. This metric, called Communication Diversity,
measures the existence of different information flows within the
swarm during the optimisation process. The experiments performed
with the PSO indicated that communication diversity can be used
to predict the stagnation of the algorithm. Furthermore, a further
study from 2017 showed how this metric could be applied to exam-
ine the exploration/exploitation capabilities of the PSO [16].

Besides the applications of the influence graph to analyse PSO, in
2019 this method, which was renamed to Interaction Network and
applied on the Artificial Bee Colony (ABC) [24] and Ant Colony
Optimisation (ACO) [9]. These examples showed that the influence
graph/interaction network could be used to assess other swarm-
based algorithms.

Among all the swarm-based algorithms which were not assessed
using the interaction networks, the Cat Swarm Optimisation (CSO)
[6, 7] figures as a promising candidate since it is a fairly new
algorithm which shares similarities with the PSO and has been
applied to tackle a wide list of real-world optimisation problems
[11, 18, 19, 25, 27].

In this work, we present a model for the interaction network
of the CSO algorithm and the experiments performed allowed us
to identify important characteristics of the algorithm regarding
the flow of information, convergence capabilities and the influence
of one of its parameters. More importantly, this is the first work
which looks more deeply into variations that take place within
the interaction network by adopting a recently-proposed metric to
estimate structural similarities between networks [1]. Using this
metric we were able to perform a stability analysis of the algorithm
and compare it to the PSO (global and local topology) and the
ABC. We also conducted experiments to study how the interaction
network is related to the performance of the CSO.

2 THEORETICAL BACKGROUND
This section is devoted to explain the theoretical background of
this work. It describes the Cat Swarm Optimisation algorithm, the
Interaction Networks and the Portrait Divergence metric.

2.1 Cat Swarm Optimisation
The Cat Swarm Optimisation (CSO) is a bio-inspired meta-heuristic
which was proposed in 2006 by Chu et al. [6, 7]. As in the PSO, the
cat (akin to a particle in the PSO) is comprised of a position within
the search space (candidates solution), velocity, and a fitness value
which quantifies the quality of its current solution.

The main feature of this algorithm is that the cats have two types
of behaviour named seeking and tracing. In the seeking, mode the
cats perform a local search around their current position using

a mutation operation applied to some of the dimensions of the
cat’s current position, given by a parameter called 𝐶𝐷𝐶 (Seeking
Memory Pool). However, the first step in the seeking mode is to
make several copies of itself and apply the mutation to all but one
of these copies; the number of copies is a system parameter called
𝑆𝑀𝑃 (Seeking Memory Pool). Note that one of the copies is left
intact to represent the original cat. The mutation is described by
Equation 1:

®𝑐𝑖,𝑑 (𝑡 + 1) =
{
(1 + 𝑆𝑅𝐷) ®𝑥𝑖,𝑑 (𝑡) if 𝑟𝑎𝑛𝑑 < 0.5)
(1 − 𝑆𝑅𝐷) ®𝑥𝑖,𝑑 (𝑡) otherwise,

(1)

where ®𝑐𝑖,𝑑 is the position of the 𝑖th copy in the 𝑑th dimension of
the problem, 𝑡 is the current iteration, 𝑟𝑎𝑛𝑑 is a random number
in the interval [0, 1] drawn using a uniform distribution, and 𝑆𝑅𝐷
is a parameter which controls the radius of the local search. After
performing the mutations, the fitness of all (new) cats is calculated
and a roulette wheel based on such fitness used to select one cat to
replace the original cat.

In the tracing mode, the cats have a position update rule similar
to the PSO with a global best topology. Hence, this mode is guided
by the current best cat in the swarm and the position is updated
according to Equation 2:

®𝑥𝑖 (𝑡 + 1) = ®𝑥𝑖 (𝑡) + ®𝑣𝑖 (𝑡 + 1) (2)
where ®𝑥𝑖 is the position of the 𝑖th cat and ®𝑣𝑖 (𝑡 + 1) is the velocity of
this cat calculated as described by Equation 3.

®𝑣𝑖 (𝑡 + 1) = 𝜔 ®𝑥𝑖 (𝑡) + 𝑟1𝑐1 [®𝑥best (𝑡) − ®𝑥𝑖 (𝑡)] (3)
in which 𝜔 is the inertia factor, 𝑟1 is a random number in the
interval [0, 1] drawn using a uniform distribution, 𝑐1 is a constant
defined by the user, and ®𝑥best is the position of the current best
cat in the swarm. It is worth mentioning that at the beginning of
each iteration the swarm is divided into the group of cats that will
perform the seeking mode and the ones who will have the tracing
mode. The percentage of cats in each mode is determined by the
𝑀𝑅 parameter. The CSO is summarised in Algorithm 1.

2.2 Interaction Networks
The interactions among elements within swarm is a key factor
for swarm-based algorithm and the Interaction Networks emerged
from the strategy of capturing these interactions into a network
structure. In this network, the nodes represent the elements in the
swarm and the edges indicate some interaction (i.e. information
exchange) between the two nodes. Note that at each iteration a new
network is created. The analyses of these structures can be made
based on the network of each iteration or by combining several
networks using the sum of all the networks in a given interval
(time window). Equation 4 shows the definition of the interaction
networks (𝐼 )

𝐼𝑤𝑡 =

𝑡∑
𝑡 ′=𝑡−𝑤+1

𝐼 (𝑡 ′) (4)

where 𝑡 is a given iteration,𝑤 is the size of the time window and 𝑡 ≥
𝑤 ≥ 1. Figure 1 illustrates the procedure to create the interaction
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Algorithm 1: CSO Algorithm
1 Initialise all cats positions and velocity randomly;
2 while stop criterion is not reached do
3 Evaluate each cat and update ®𝑥best;
4 Choose randomly𝑀𝑅% of the cats to perform the

tracing and the seeking mode;
5 for each cat do
6 if ®𝑥𝑖 (𝑡) is in seeking mode then
7 Make 𝑆𝑀𝑃 copies of the current cat;
8 for each of the 𝑆𝑀𝑃 − 1 copies do
9 Select 𝐶𝐷𝐶 dimensions and update them

according to Equation 1;
10 end
11 Evaluate the fitness of the 𝑆𝑀𝑃 − 1 copies;
12 Apply roulette wheel method using the 𝑆𝑀𝑃

copies to select the candidate to replace the
original cat;

13 end
14 if ®𝑥 (

𝑖
𝑡) is in tracing mode then

15 Update cat’s velocity with Equation 3;
16 Apply Equation 2 to update the cat’s position;
17 end
18 end
19 end
20 Return the ®𝑥𝑏𝑒𝑠𝑡 as the final solution.

networks from the algorithm’s interactions. Note that, for 𝑤 = 1
the set of networks in 2 is equal to the networks on 3.

Figure 1: The process to create the interaction network.
Where 1 represents the iterations of the algorithms, 2 illus-
trates the networks generated for each iteration and 3 is the
networks which result from the application of the time win-
dow𝑤 .

Previous works [9, 14–17, 24] used the interaction networks to
assess several aspects of SI algorithms such as the influence of
parameters and operators in the performance of the algorithm,
exploration/exploitation balance, premature convergence analysis,
and communication diversity.

In this work, we intend to expand the set of applications of the
interaction networks by measuring the similarities between the
networks generated. This approach can be useful to perform a sta-
bility analysis of the algorithm (comparing the similarity between

the network of multiple executions of the same algorithm) and to
quantify the degree of similarity between two different algorithms.

To be able to measure the degree of similarity between networks
we used the idea of Portrait Divergence (PD) [1]. According to a
study comparing various metrics to compare networks [23], the PD
figures as a graph invariant metric suitable to measure structural
similarities between networks regardless of them being directed or
undirected.

2.3 Portrait Divergence
Portrait Divergence is a metric which quantifies the structural sim-
ilarities of networks [1]. It was proposed by Bagrow and Bollt and
performs the comparisons based on the idea of portraits of com-
plex networks. A Network Portrait is the name given to a matrix
(𝐵-matrix) that encodes the structural information of a given net-
work [2]. The 𝐵-matrix is calculated as indicated by Equation 5.

𝐵ℓ,𝑘 = 𝑁𝑃ℓ (𝑘) (5)
where 𝐵ℓ,𝑘 is the ℓ row of the B-matrix and represents the number
of nodes which have 𝑘 neighbours at a distance ℓ . It is worth noting
that the network portrait independent of the network labels which
means that networks with the same structure will have the same
matrix. Also, for weighted networks, the matrix is calculated using
a binning strategy to estimate the distance ℓ .

Portrait Divergence is defined based on the portraits of two
networks. It uses the Jensen-Shannon divergence to calculate the
distance between the two portraits. Moreover, the computational
cost of this method is low for small and medium-sized networks
[23]. It produces values between zero and one, where zero means
that the two networks are identical and one means that they are
completely different.

To illustrate the effectiveness of the Portrait Divergence to mea-
sure the structural distance between networks, we applied the pro-
posed approach to networks generated from three different models:
Erdös–Rényi (ER), Random Regular (RND) and Barabási–Albert
(BA) Networks. To determine if there will be a connection between
nodes in a Erdös–Rényi network, a random number is drawn from
a uniform distribution and if it is greater than a probability 𝑝 , a
link will be created. The Random Regular is a type of the random
networks where all the nodes have the same number of connections
(𝑑). Lastly, the Barabási–Albert model generates networks in which
nodes are connected to 𝑘 other nodes and have a tendency to create
connections with nodes that are highly connected. For each type of
network, 30 networks were generated and the results are depicted
in Figure 2.

As can be noticed, when comparing the networks generated
from the same model (Figure 2 (A) and (B)) the Portrait Divergence
value was less than 0.5; however, the comparison between networks
generated from different models presented 𝑃𝐷 > 0.5. These results
indicate that Portrait Divergence seems to capture the differences
between networks.

3 EXPERIMENTS AND RESULTS
The first step to model the interaction network of a swarm-based
meta-heuristic is to identify in the algorithm the locations in which
information is directly or indirectly exchanged among elements in
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Figure 2: Application of the Portrait Divergence to mea-
sure the distance (difference) between Barabási–Albert (BA),
Erdös–Rényi (ER) and Random (RND) Networks. The BA
networks were generated with 𝑛 = 100, 𝑘 = 50 and 𝑝 = 0.25,
the ERhad𝑛 = 100 and 𝑝 = 0.25, and theRNDused𝑛 = 100 and
𝑑 = 5. (A) Comparison between 30 different BA networks, (B)
30 different ER networks, (C) comparison between ER and
BA and (D) comparison between RND and BA networks.

the swarm. For the CSO, because in the seeking mode the cats only
perform a mutation which is not influenced by other cats, all the
interactions take place in the tracing mode. In this case, since the
tracing mode is similar to the update rule of particles in the PSO
with global best topology, we can adopt a strategy similar to the one
used to model the network of the PSO in previous works [14, 15].
This strategy consists of creating a link between the elements in
the swarm and the best element of the current iteration. The main
difference is that for the CSO the link is established between the
best cat and the other cats in the tracing mode.

3.1 Analysis of the CSO Network
In order to execute CSO we selected the parameters so that𝑀𝑅 =

20%, 𝑆𝑀𝑃 = 5, 𝐶𝐷𝐶 = 0.8, 𝑃𝑀𝑂 = 0.2, 𝐶1 = 2.0, and 𝜔 decreases
linearly from 0.9 to 0.4. The population size was set to 100 and the
stopping criteria was a limitation of 500 iterations. The benchmark
problem selected was the Sphere function with 100 dimensions
and we performed 30 independent simulations of the algorithm.
These values were defined based on previous works in the literature
[6, 26].

Figure 3 presents the adjacency matrix (i.e. representation of
the graph’s connections as a matrix) and the degree histogram of
the network created combining the last 10 iterations (time window
equals to 10) of the CSO executions. These plots give us information
related to the structural characteristics of the network. For instance,
if one column of the adjacency matrix has more red colour than

the other, it means that the cat represented by that column guided
the swarm in most of the iterations (e.g. a uniform degree distri-
bution in the interaction network can be an indication of swarm
convergence).

As can be noticed, the network is not fully connected due to
the fact that the connections are concentrated around the best
cat. Also, the degree histogram indicates the distribution of the
number of connection that the cats have during the optimisation.
Furthermore, there is no guarantee that all cats will have tracing
behaviour during the iterations. In fact, the degree histogram shows
that a few cats comprise most of the connections. Notice, however,
that the connections are not focused on one single element of the
swarm. This indicates that during the optimisation process the
best solution, which guides the search process in the tracing mode,
is represented by different cats. The changing of the best cat can
be important to reduce the chances of getting trapped in a local
optimum.

Figure 3: Adjacency matrix (A) and network degree his-
togram (B) of the network created combining the last 10 it-
erations of the CSO.

In order to measure the impact of the stochastic components of
the algorithm on the interaction network, we applied the network
portrait metric to compare thirty different executions of the CSO
and the result is presented in Figure 4 (A). As can be noticed, in most
of the executions, the PD value was less than 0.5 which indicates
a moderated degree of similarity between the networks. In other
words, the algorithm tends to converge to networks that share
similarities in their structure. This is result could be an indication
that there is some type of “signature” of the algorithm which is
encoded in the network and does not change drastically regardless
of the random components of the meta-heuristic. The existence of
such a signature could be useful to create methods to classify and
compare different SI methods.

Figure 4 (B) depicts the application of the PD to compare the
networks generated throughout the iterations. This experiment has
the objective to identify if the networks of the algorithm change
during the optimisation process. The results illustrated by 4 (B)
reviews that the characteristic of the network changes significantly
during the optimisation. The initial networks are considerably dif-
ferent (𝑃𝐷 > 0.8) to the final ones. One possible explanation is that
events, such as the convergence of the algorithm, can modify the
structural characteristics of the network.
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Figure 4: Characteristics of the CSO’s interaction network.
Using the Portrait Divergence to compare different execu-
tions of the CSO (A) and to compare the evolution of the
networks throughout the iterations (B).

3.2 Comparison of CSO with other Swarm
Algorithms

To test the hypothesis that we can use this approach to compare two
different algorithms, we implemented the networks for the Artificial
Bee Colony (ABC) [10] and the Particle Swarm Optimization (PSO)
with local best or ring topology (LPSO) and global best topology
(GPSO) [4]. The network for the ABC was modelled as described
in [24] and the PSO follow the same modelling as the one adopted
for the CSO. The trials limit for the ABC was set as 100 and the
colony has 100 bees. For the PSO, we employed 𝐶1 = 𝐶2 = 1.49
and 100 particles. we used the same fitness function and these
two algorithms were executed 30 times with stop criteria of 500
iterations.

Figure 5 shows the adjacency matrix and the degree histogram
of the networks of the CSO (A)(E), GPSO (B)(F), LPSO (C)(G) and
ABC (D)(H), respectively. As in the previous case, the network was
created combining the last 10 iterations (𝑤 = 10) of the algorithms’
executions. As can be seen in Figure 5 (A) to (D), the network of the
CSO is similar to the GPSO since they both share the interactions
based on the spread of a global best information. The difference
between them is mainly because not all cats perform the position
update based on the global best (tracing mode). In fact, the network
degree histogram of the CSO is also similar to the GPSO, supporting
the argument that both networks have a similar structure.

On the other hand, the network for the ABC presents a more
chaotic pattern, which can be explained by the characteristics of the
operators in this method. In this algorithm, the interactions occur
when the employee bees randomly select a food source, and when
the onlooker bees select a food source based on a roulette wheel
mechanism. For the LPSO with the ring topology, the network does
not experience much change and the interactions are limited to the
particle’s neighbours. For both LPSO and ABC we can see that the
degree distribution is more even (the majority of the nodes posses
a similar number of connections).

Concerning how the networks of these algorithms change from
one execution to another due to the influence of the stochastic op-
erators, Figure 6 shows that the LPSO is the one with less variation
due to its fixed communication topology. The ABC and the GPSO

presents a similar degree of variation, while the CSO falls between
the them.

Figure 7 depicts the network comparison over the optimisation
process. As can be observed, the pattern displayed on the CSO x
GPSO comparison (Figure 7 (B)) is similar to the one displayed for
the CSO x CSO (Figure 7 (A)) but with some shift in the results. In
fact, the results presented in Table 1 shows that excluding the first
and last time windows, the network of the CSO for a 𝑁𝑒𝑡𝑤𝑜𝑟𝑘𝑖 will
have an equivalent GPSO network at 𝑁𝑒𝑡𝑤𝑜𝑟𝑘𝑖−𝑑 , where the value
of 𝑑 increases over the iterations. Again, this can be associated to
the fact that only 20% of the cats displays a behaviour akin to what
happens in the GPSO at each iteration.

Table 1: Best interaction network match between the CSO
and the GPSO for a𝑤 = 10.

CSO Network Best GPSO Network Match PD Value
1 1 0.4039
2 2 0.0825
3 2 0.1458
4 3 0.0752
5 3 0.1221
6 4 0.0750
7 4 0.1273
8 5 0.0714
9 6 0.1807
10 7 0.3237

Regarding the comparison to the LPSO (Figure 7 (C)), we can
observe that these algorithms start with a network structure rel-
atively similar to each other and, but as the iterations progress,
their structure becomes increasingly different. The highest degree
of similarity (𝑃𝐷 = 0.2959), was achieved between the first time
window of CSO and the fourth of the LPSO.

For the ABC, Figure 7 (D) indicates that during all the optimisa-
tion process, the degree of similarity between the networks of CSO
and ABC was low. In fact, the minimum Portrait Divergence value
comparing these algorithms was 0.9862.

From what we have seen so far, the Cat Swarm algorithm is con-
siderably similar to the Particle Swarm Optimisation with global
best topology. It was stated that the main difference between the
interaction patterns of these algorithms is that in the CSO, a per-
centage of the cats is selected randomly each iteration to perform
the position update based on the global best information. There
could be other factors which could also contribute to these differ-
ences such as the absence of the 𝑝𝐵𝑒𝑠𝑡 on the CSO and the usage of
the mutation operator. However, since the interaction network, at
this stage, do not capture auto-loop patterns, we will focus the next
analysis on the number of cats performing the PSO-based position
update rule.

The𝑀𝑅 parameter controls the percentage of the swarm which
performs the tracing mode and Figure 8 presents the network pro-
duced from CSO executions with values of𝑀𝑅 equals to 10%, 40%,
60%, and 100%. As can be noticed, as the value of𝑀𝑅 increases the
adjacency matrix of the CSO (Figure 8 (A) – (D)) becomes more
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Figure 5: Comparison between the adjacencymatrix and degree distribution of the final networks of the CSO (A) and (E), GPSO
(B) and (F), CSO (C) and (G) and ABC (D) and (H).

Figure 6: Comparison between the 30 different executions of
the CSO (A), GPSO (B), LPSO (D), and ABC (E).

similar to the GPSO matrix. Nonetheless, for 100% the degree his-
togram (Figure 8 (E) – (H)) displays a different characteristic. A
possible explanation for this difference is that for𝑀𝑅 = 100% the
seeking mode the swarm only explores regions around the global
best location and this could lead to premature convergence of the
swarm. This premature convergence makes the fitness of the cats

Figure 7: Network comparison over the optimisation process
for CSO x CSO (A), CSO x GPSO (B), CSO x LPSO (C), CSO x
ABC (D).

more similar to each other, this could make the alternation of the
global best more frequent and, as a result, the degree of the nodes
in the network become more similar as in the ABC or the LPSO.
The PD divergence comparison (Figure 8 (I) – (L)) also displays
this behaviour where the network for𝑀𝑅 = 100% presents fewer
similarity points to the GPSO than the network for the other values
of this parameter.
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Figure 8: Experiments with different values for the 𝑀𝑅 parameter. (A) – (D) shows, respectively, the adjacency matrix for the
CSO network with 𝑀𝑅 = [10%, 40%, 60%, 100%], (E) – (H) shows the degree histogram of these networks and (I) – (L) compares
the w of those networks to the GPSO.

3.3 Relation between the Interaction Networks
and the Performance of the Algorithms

The last experiments made aim to identify possible relationships
between the characteristics of the interaction network of a given
algorithm and its performance in terms of fitness results. Figure 9
shows the results of the Pearson correlation between the PD value
and the fitness difference for𝑤 = 10. The autocorrelation analysis
of the CSO, Figure 9 (A), indicates that similar networks (𝑃𝐷 < 0.5)
have a similar fitness value. However, different networks can have
similar fitness. Moreover, for this algorithm high difference in the
fitness implies that the networks are different (𝑃𝐷 > 0.5).

Comparing the CSO with the GPSO (Figure 9 (B)) we can see that
for 𝑃𝐷 < 0.5 the CSO presented results similar (fitness difference
close to zero) or superior (negative fitness difference) to the GPSO.
Nevertheless, given that 𝑅 = 0.18 we can say that there is no linear
correlation between these two metrics of the correlation is week.

However, for LPSO we can observe a moderate negative corre-
lation. There is also an indication that the bigger is the difference
between the networks, the better is the CSO in terms of fitness value
when compared to the LPSO. Concerning the ABC, we cannot say
that there is a correlation between the PD value and the fitness
difference. It is worth mentioning that, among all the algorithms,
positive values for 𝑅 were just observed when comparing the CSO
to the GPSO.

Figure 10 depicts the autocorrelation analysis for the CSO, GPSO,
LPSO and ABC algorithm. As in the previous experiments, we can
see a degree of similarity between the CSO (Figure 10 (A)) and the
GPSO (Figure 10 (A)). Furthermore, Figure 10 reinforces the results
illustrated by Figure 6 and the highest correlation was achieved by
the algorithm with the lowest variation in its network structure in
different executions.

4 CONCLUSIONS
The lack of widely-adopted methods to classify and compare algo-
rithm within the swarm intelligence field is one of the main causes
behind the increasing number of proposals of algorithms with a
questionable level of novelty. Furthermore, despite the effort made
by researchers to better understand these algorithms, there is still
a gap in this area.

In this paper, we applied the interaction network to assess the
Cat Swarm Optimisation. Using the networks we were able to
assess the influence of the 𝑀𝑅 parameter, convergence capabilities,
information flow in the swarm and, using the Portrait Divergence
to compare the structural similarities between the networks, we
were able to analyse the stability of the CSO and the evolution of
its networks over the iterations.

Furthermore, the usage of the Portrait Divergence also allowed
us to perform comparisons between the CSO and ABC and the
Particle Swarm Optimisation. The comparison results indicated an
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Figure 9: Correlation between Portrait Divergence and fit-
ness for the CSO, GPSO, LPSO and ABC.

Figure 10: Auto-correlation between Portrait Divergence
and fitness for the CSO, GPSO, LPSO and ABC.

elevated degree of similarity between the CSO and the PSO with
global best topology, which was expected hence the tracing mode
of the CSO is analogous to position update rule of the PSO.

Finally, the experiments performed to study the relation between
the difference between the algorithm’s networks and their fitness
difference showed that there is a positive correlation between these
metrics when the network of the algorithm does not present drastic
differences in different executions. In these cases, the more similar
the networks the smaller is the difference between their perfor-
mance in terms of fitness. Moreover, the results indicate that the
correlation between two distinct algorithms for those metrics tends
to negative.

As future directions we plan the following activities:

• Investigate how other parameters (population size and SRD)
influences the structure of the network;

• Analyse the impact of external factors on the network charac-
teristics. For example, how the number of dimensions of the
problem and multi-modal functions can affect the network;

• Further assess the relation between the performance of the
algorithm and the network structure;

• Experiments with other swarm-based algorithms such as the
Fish School Search [3], Grey Wolf Optimiser [13] and The
Firefly Algorithm [29];

• Investigate the similarities between variations of the same
algorithm;

• Try to adapt the idea of interaction networks for genetic
algorithms.
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