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AT A GLANCE COMMENTARY 

Scientific knowledge on the subject: Long-term and prophylactic antibiotics including 

macrolides are being increasingly used in the management of frequently exacerbating patients 

with chronic respiratory disease including severe asthma, COPD and bronchiectasis. The 

airway resistome, while recognised, is poorly characterised and its relationship to the host 

microbiome unknown. 

What this study adds to the field: We, for the first time, in the largest and deepest 

metagenomics assessment of the airway evaluate airway resistomes across chronic respiratory 

disease states, and, relate them to host microbiomes. We identify a ‘core’ airway resistome, 

harboured by the host microbiome, and, dominated by macrolide resistance genes but with high 

prevalence of -lactam, fluoroquinolone and tetracycline resistance. This ‘core’ resistome is 

independent of health status or antibiotic exposure and shares significant overlap with 

resistomes detected on paired patient inhaler devices where the latter represents a proxy for the 

host microbiome. Metagenomic analysis of the airway reveals a core macrolide resistome with 

implications for potential macrolide antibiotic resistance in the management of respiratory 

disease.

Online data supplement statement: This article has an online data supplement, which is 

accessible from this issue's table of contents online at www.atsjournals.org
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ABSTRACT

Rationale: Long-term antibiotic use for managing chronic respiratory disease is increasing 

however the role of the airway resistome and its relationship to host microbiomes remains 

unknown 

Objective: To evaluate airway resistomes, and, relate them to host and environmental 

microbiomes using ultra-deep metagenomic shotgun sequencing Methods: Airway specimens 

from n=85 individuals with and without chronic respiratory disease (severe asthma, COPD and 

bronchiectasis) were subjected to metagenomic sequencing to an average depth exceeding 

twenty million reads. Respiratory and device-associated microbiomes were evaluated based on 

taxonomical classification and functional annotation including the Comprehensive Antibiotic 

Resistance Database (CARD) to determine airway resistomes. Co-occurrence networks of 

gene-microbe association were constructed to determine potential microbial sources of the 

airway resistome. Paired patient-inhaler metagenomes were compared (n=31) to assess for the 

presence of airway-environment overlap in microbiomes and/or resistomes. 

Results: Airway metagenomes exhibit taxonomic and metabolic diversity and distinct 

antimicrobial resistance patterns. A ‘core’ airway resistome dominated by macrolide but with 

high prevalence of -lactam, fluoroquinolone and tetracycline resistance genes exist, and, is 

independent of disease status or antibiotic exposure. Streptococcus and Actinomyces are key 

potential microbial reservoirs of macrolide resistance including the ermX, ermF and msrD 

genes. Significant patient-inhaler overlap in airway microbiomes and their resistomes is 

identified where the latter may be a proxy for airway microbiome assessment in chronic 

respiratory disease. 

Conclusion: Metagenomic analysis of the airway reveals a core macrolide resistome harboured 

by the host microbiome.
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INTRODUCTION

The development, progression and associated phenotypes of chronic airways disease has been 

associated with perturbation of the airway microbiome. Such airway dysbiosis is often 

characterised by predominance of pathogenic bacteria such as Haemophilus, Streptococcus 

and/or Pseudomonas which co-exist with a gamut of other taxa forming the airway 

‘pathobiome’ (1, 2). Patients with airways disease and frequent exacerbations are therefore 

prescribed long-term antibiotic regimes aiming to reduce bacterial burden, inflammation and 

improve clinical symptoms with variable results (3-5). The selective pressure resulting from 

such an approach however promotes antimicrobial resistance, a key global concern and serious 

threat to public health (5).

The impact of antimicrobial exposure on lung microbiome architecture, and, mechanisms 

promoting antimicrobial resistance remain an intense area of clinical and research interest. In 

addition, the broader implications of antibiotic exposure on the resident airway resistome, 

beyond that related to the target bacterial pathogen alone, has lacked study. This is important 

as interspecies interactions are plentiful in the airway, and, the emergence of resistance in non-

pathogenic organisms are key factors potentially influencing therapeutic outcomes (6). 

Moreover, the environment remains a vast, mobilizable reservoir of resistance determinants 

with great potential to seed the airway resistome but remains inadequately characterised in the 

setting of chronic respiratory disease states (7). 

As next generation sequencing becomes cheaper, the era of clinical metagenomics represents 

an emerging and robust molecular tool allowing characterisation of airway microbiomes in 

tandem to assessment of their functional properties for use in diagnosis, treatment and/or 

patient risk stratification (8, 9). Work performed in Cystic Fibrosis (CF) reveals the cumulative 

effect of antibiotic exposure on the airway microbiome and recent data in chronic obstructive 
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pulmonary disease (COPD) confirms the airway as an important reservoir for antimicrobial 

resistance genes, however, no work has been performed using metagenomics and no dedicated 

studies including severe asthma or bronchiectasis (10, 11). Unlike targeted amplicon 

sequencing approaches (e.g. 16S rRNA) metagenomic shotgun sequencing remains less 

susceptible to polymerase chain reaction (PCR) amplification bias, is not influenced by copy 

number variation and, critically, provides scope to probe the functional aspects of the 

microbiome including its resistome (9, 12, 13).  

Here, we report the largest application of deep metagenomic shotgun sequencing to airway 

samples across a range of chronic respiratory disease states (severe asthma, COPD and 

bronchiectasis) and include non-diseased (healthy) individuals to characterise resident airway 

resistomes. We provide taxonomic and functional insight to airway-based resident antibiotic 

resistance in health and disease, and, further assess patient inhaler devices as a potential 

environmental reservoir of resistance. Some of the results of these studies have been previously 

reported in the form of an abstract (14).

METHODS

Study Population(s)

Patients with respiratory disease were prospectively recruited during routine attendance at 

respiratory outpatient clinics at two tertiary hospital sites in Singapore (Table 1): Singapore 

General Hospital (SGH) and Tan Tock Seng Hospital (TTSH). Non-diseased (healthy) 

individuals were recruited through an established voluntary exercise program at Nanyang 

Technological University (NTU), Singapore. Severe asthma patients were graded as being at 

least step four of the Global Initiative for Asthma (GINA) guideline treatment ladder and met 

current criteria for severe asthma. COPD was defined according to the global initiative for 

chronic obstructive lung disease (GOLD) criteria and bronchiectasis (Non-CF) was defined by 
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radiological confirmation of bronchiectasis by either dynamic Computed tomography (CT) or 

High-resolution computed tomography (HRCT) thorax in accordance with British Thoracic 

Society guidelines along with the absence of any other major concurrent chronic respiratory 

disease state (15-18). Non-diseased (healthy) individuals had no active or past history of any 

respiratory or other medical disease and normal spirometry measured in accordance with 

ERS/ATS criteria. Non-diseased individuals were free from any exposure to inhaled 

medications or antibiotic use in the preceding 12-month period. Demographics and associated 

clinical data were collated including age, sex, ethnicity, body mass index (BMI), lung function 

(FEV1 % predicted), smoking status and antibiotic use in the preceding six-month period. In 

addition, the number of exacerbations in the year preceding study recruitment was recorded for 

all patients with respiratory disease (severe asthma, COPD and bronchiectasis) and these 

patient groups had their respective disease severity/control scores recorded respectively by the 

Asthma Control Test (ACT), Global Initiative for Obstructive Lung Disease (GOLD) score 

and Bronchiectasis Severity Index (BSI) (15, 19, 20). 

Whole-genome shotgun sequencing of clinical and environmental samples

Representative, spontaneously expectorated sputum samples were obtained from all 

participants through directed coughing using the Huff cough manoeuvre. An independent and 

prospective cohort of patients with severe asthma, COPD or bronchiectasis (as defined above) 

using regular inhaled bronchodilator and/or corticosteroid therapy were recruited and the 

inhaler used most frequently sampled (Supplementary Table E1). Patients had documented 

self-reported inhaler adherence over the preceding six-month period and demonstrated 

objective evidence of stable and/or improved pulmonary function on spirometry. Paired airway 

specimen (sputum) and an inhaler swab was obtained and subjected to metagenomic analysis. 

DNA was extracted from airway and environmental samples according to previously described 

clinical and environmental sampling methods (21, 22). DNA was used in the preparation of 
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metagenomic shotgun sequencing libraries as described (23). Resultant sequence data was 

processed and quality trimmed before subjecting it to secondary analysis to derive taxonomic 

and functional genomic profiles including analysis with specific reference to the 

Comprehensive Antimicrobial Resistance Database (CARD) to assess the metagenomic 

resistome in all patient and environmental specimens (24). 

Full details on DNA extraction, metagenomic sequencing, functional and taxonomic 

assignment of metagenomic sequence reads, data analysis, visualization, statistical analysis and 

details on ethical approvals are provided in the supplementary material.

RESULTS 

The airway metagenome exhibits functional metabolic dysbiosis and antibiotic resistance: 

Functional classification of microbial gene content based on read assignment to functional 

categories illustrates variability in patients with COPD and bronchiectasis in contrast to 

relatively comparable profiles in healthy individuals and severe asthma patients (Figure 1A). 

A dysbiotic shift in the abundance of carbohydrate and amino acid related pathways toward 

lipid-associated pathways is evident in COPD and bronchiectasis with the latter exhibiting 

greatest change (Figure 1A). Classification of metagenomic data with reference to the KEGG 

functional database further reveals alteration in genes associated with antibiotic-associated 

pathways including degradation, detoxification and anti-microbial resistance (25). While drug-

related and xenobiotic metabolism is increased in COPD and bronchiectasis, genes involved in 

streptomycin, butirosin, neomycin and  -lactamase biosynthesis are abundant in severe 

asthma and healthy individuals (Figure 1A). To probe specifically for the composition of 

antibiotic resistance genes within the airway metagenome, reads were classified with reference 

to the CARD database – a dataset of curated antibiotic-resistance genes (24). Derived antibiotic 

resistance gene profiles exhibit variability across the healthy and diseased states with 
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contrasting abundances of aminoglycoside, bicyclomycin, diaminopyrimidine, multi-drug, 

peptide, phenicol, sulphonamides, sulfones and triclosan resistance genes (Figure 1B). 

Critically, recent antibiotic exposure (selective pressure) did not translate to a detectable higher 

relative abundance of anti-microbial resistance (AMR) and importantly, AMR profiles of 

healthy individuals and patients unexposed to antibiotics in the preceding six month period  

exhibit a significant presence of AMR suggesting the presence of a core airway resistome 

(Figure 1C, Table 2). 

The core airway resistome: Variable assemblages of antibiotic resistance genes are identified 

across individual disease cohorts including healthy individuals. Patients with COPD and 

bronchiectasis have the greatest repertoire of antibiotic resistance determinants, although this 

was potentially biased by the greater number of patients in these groups (Figure 2A). Patients 

with COPD harboured the highest diversity of resistance genes (n=92; 85% shared with other 

cohorts) distinguished by the presence of specific -lactam, fluoroquinolone, macrolide, multi-

drug, phenicol and tetracycline resistance determinants. While healthy individuals and severe 

asthmatics had a slightly lower number of cumulative AMR sequences, analysis revealed a 

strikingly consistent subset of 18 AMR genes common to all cohorts (including healthy) 

representing a ‘core resistome’ (Figure 2B, Table 2). Importantly, this ‘core resistome’ was 

predominated by AMR genes from the -lactam, fluoroquinolone, macrolide and tetracycline 

classes (Figure 1B, 2B and 2C, Table 2) and detectable in every individual recruited into our 

study irrespective of health or disease status and did not differ by type of chronic respiratory 

disease. In aggregate, genes encompassing a ‘core macrolide resistome’ were most abundant 

and included msrD (mel), ermB, ermX and ermF accompanied by genes encoding tetracycline 

(tetW, tetA(46), tetB (46)), -lactam (cfxA2), and fluoroquinolone (pmrA) resistance (Figure 

2C, Table 2).
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The microbial ecology of sputum samples across respiratory disease states: Deep 

sequencing of sputum revealed a microbiome profile dominated by bacteria, with fungi and 

viruses accounting for <0.01% and <0.25% average relative abundance respectively 

(Supplementary Figure E1). Dysbiosis of the respiratory microbiome was evident across 

chronic respiratory disease in line with established literature (Figure 3A) (26). Microbiome -

diversity between groups varied with healthy individuals exhibiting highest Shannon diversity 

compared to disease (Supplementary Figure E3A). Simpson diversity was comparable across 

cohorts while patients with severe asthma and bronchiectasis exhibited reduced Chao1 

(Supplementary Figure E3B and E3C). Among the respiratory disease cohorts, microbiome 

profiles were distinguished by Actinobacteria (Rothia spp.) and proteobacteria (Pseudomonas 

and Haemophilus spp.) which exhibited increased abundance in diseased cohorts with 

corresponding reductions in Prevotella spp., Treponema spp. Fusobacteria spp. and diverse 

firmicutes compared to healthy individuals based on linear discriminant analysis 

(Supplementary Figure E3D and E3E). Among diseased patients, the increased abundance of 

Rothia mucilaginosa and Pseudomonas aeruginosa were among the most striking species-level 

differences associated with disease status in our analysis (Figure 3A). Fungi were detected 

sporadically and at low abundance and microbiome -diversity reveals heterogeneity to be 

highest in bronchiectasis, followed by COPD (Figure 3B). Conversely, healthy and severe 

asthma have more evenly distributed and diverse bacterial species in their airways further 

supported by analysis of average centroid distances, which is greatest in COPD and 

bronchiectasis (Figure 3C). 

Gene-microbe co-occurrence in the core resistome: We next looked at correlation between 

microbial taxa and the ‘core’ resistome by constructing a co-occurrence network of microbes 

and their respective antibiotic resistance genes (Figure 4). This revealed significant 

relationships (including correlation) between resistance genes (Figure 4A) and airway 
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microbiota (Figure 4B) allowing inference of gene-microbe associations within an integrated 

holistic network. We focused on the ‘core’ macrolide resistome because it formed a key 

component of the ‘core’ resistome (Figure 2B and Figure 2C) and is an antibiotic class gaining 

widespread use across chronic respiratory disease states (17, 27, 28). The macrolide resistance 

gene ermX, represents a highly connected node associated with several microbial taxa (Figure 

4C). These predominantly consist of upper airway commensals containing only few overtly 

pathogenic species (Figure 4C). Network inference further identifies a lesser number of 

microbial associations with ermF (Figure 4D) and msrD (Figure 4E) respectively. Streptococci 

and Actinomyces were associated with ermX and ermB while the strongest association detected 

is between ermF and the gut microbe Bacteroidetes thetaiotaomicron. Associations between 

msrD and the gut pathogen Clostridioidies difficile and the largely unstudied Morococcus 

cerebrosus were also detected (Figure 4D-E).

Metagenomics identifies inhaler devices as potential sinks for antibiotic resistance : To 

assess for potential sites of resistance host-environment transfer, patient inhaler devices with 

respectively paired airway specimens were obtained in an independent prospectively recruited 

cohort of patients with chronic respiratory disease and subjected to metagenomics sequencing 

and analysis (Supplementary table E1). We identify significant overlap between the airway 

metagenome and that detectable on patient-paired inhaler devices with a significant number of 

microbial taxa found on both specimens (Figure 5A). This suggests that an inhaler swab, when 

subjected to metagenomics could represent a surrogate measure of a patient’s airway 

microbiome. The number of microbes observed on inhaler devices (n=207) exceeds that 

detected from the airways (n=116) suggestive of other potential environmental influences 

however, 80 overlapping microbial taxa were observable in paired airway-inhaler specimens 

with 36 and 127 microbial taxa found in airway and inhaler devices respectively, suggesting 

increased microbial diversity on inhaler devices including microbes of potential environmental 
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origin (Figure 5B). Among the 80 co-occurring microbial taxa, most (63 species and 78.8% of 

all co-occurring taxa) were detected at the individual level in specimens obtained from the 

same patient, illustrated for the most abundant taxa in Figure 5C. Similar analyses focused on 

antibiotic resistance genes reveals comparable metagenomic profiles from paired airway-

inhaler device specimens but with lower resistance gene abundance on inhaler devices (Figure 

5D). Here, multi-drug, macrolide and tetracycline antibiotic resistance determinants were most 

frequently observed, a finding consistent with our previously described ‘core’ resistome 

(Figure 5D). A slightly higher number of resistance determinants (n=98) were found associated 

to inhaler devices as compared to airway specimen (n=89), a finding consistent with the greater 

diversity of microbes seen on inhalers, while 53 resistance genes were overlapping between 

inhalers and sputum (Figure 5E). Among overlapping resistance genes between the airway-

inhaler device, 86.8% (46 resistance genes) co-occurred in paired airway-inhaler device 

specimens illustrated for the most abundant resistance genes in Figure 5F. A subset of 

identified resistance genes was associated with inhaler devices without detectable levels in the 

sputum of any patient or non-diseased control. These genes may reflect potential environmental 

sources of resistance gene diversity, 12 of which were independently observed on at least two 

inhaler devices (Supplementary Table E2). 

Co-occurrence analysis of gene-microbe associations in sputum and inhaler devices: We 

next sought to further assess microbial correlates of resistance among the subset of microbes 

(n = 63) and resistance genes (n = 46) with confirmed co-occurrence detected across the paired 

airway-inhaler devices (Figures 5C and 5F). Consistent with resistance gene abundance, the 

most highly correlated gene-microbe pairs included genes conferring resistance to macrolides 

(n=4), tetracyclines (n=4), -lactams (n=1) and fluoroquinolones (n=1). Several species exhibit 

significant correlation with co-occurring resistance genes and predominantly comprise of 

Firmicutes (Carnobacterium, Granulicatella, Prevotella and Streptococcus) and 
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Actinobacteria (Actinomyces, Corynebacterium and Rothia) (Figure 6A). Correlation analysis 

reveals significant association for all four macrolide genes (msrD, ermF, ermB and ermX) as 

well as fluoroquinolone (pmrA), tetracycline (tetA_46 and tetB_46) and -lactam (cfxA2) 

resistance determinants. The most highly correlated species associated with msrD was 

Carnobacterium maltaromanticum; a lactic acid bacterium frequently found in food products 

including fish, meat, and some dairy. Prevotella intermedia was most closely correlated with 

ermF while Actinomyces ICM47 was associated with ermF and ermX gene abundance. 

Streptococci associated with the presence of fluoroquinolone and tetracycline resistance 

determinants while Prevotella pallens was identifiable as the most likely microbial source of 

cfxA2 -lactamase based on maximal correlation coefficients and significance compared to 

other taxa. The abundance of these putative microbial resistance vehicles and their associated 

resistance genes are illustrated in Figure 6B. 

DISCUSSION

We describe the largest airway clinical metagenomics analyses performed to date linking the 

antimicrobial resistome to host microbiomes in chronic respiratory disease. Our work 

highlights the versatility and usefulness of metagenomics in assessing functional aspects of the 

human microbiome, including antibiotic resistance. The airway metagenome exhibits 

functional metabolic dysbiosis including increased antibiotic resistance, predominant in COPD 

and bronchiectasis. Variability exists in antibiotic-associated functional pathways in healthy 

and diseased airways, mirrored by a presence and high abundance of resistance genes. 

Critically, we uncover, even in a healthy state, the presence of a ‘core’ resistome; dominated 

by genes from common antibiotic classes including macrolides, β-lactams and fluroquinolones 

unrelated to antibiotic exposure. By assessing host microbiomes with increased robustness 

provided by metagenomics, we link the presence of specific bacterial taxa to the ‘core’ 

resistome and specifically genes conferring macrolide resistance. Analysis of paired patient-
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inhaler metagenomes illustrates significant overlap suggesting the latter as a surrogate for the 

host microbiome. Patient-inhaler overlap confirms our identified resistance gene-microbe 

associations as well as identifies resistance determinants unique to inhaler devices aligning 

with the concept of the wider environment as source of resistance determinants linked to 

microbial, and, therefore resistance transfer between environment and host. 

A key observation from this work is the high abundance of resistance genes within the 

Macrolide-Lincosamide-Streptogramin (MLS) axis which dominates the airway resistome. 

This is important given the widespread and increasing use of macrolides across a variety of 

clinical respiratory diseases (4, 29-31). Prior work illustrates that macrolide resistance is 

amongst the most prevalent in the wider environment, representing a rich source of resistance 

determinants with strong potential for horizontal transfer (32). Our detection of a ‘core’ airway 

resistome dominated by macrolide resistance is therefore of particular concern considering the 

selective pressure exerted by macrolides toward resistance in both the airway and wider 

environment (30, 33, 34). Recent work focused on environmental resistomes illustrates their 

distinct core and discriminatory elements (35). We, in similar fashion, detected core and 

discriminatory elements within the airway metagenome, where discriminant resistance genes 

had higher occurrence in diseased states (e.g multidrug resistance in COPD and bronchiectasis) 

which associated with their microbiomes. A core airway resistome is also evident comprising 

of genes from the macrolide, fluoroquinolone,  -lactam and tetracycline antibiotic classes. 

This core resistome demonstrates stability across all respiratory diseases including healthy 

individuals, and, therefore explains the detected relative microbiome stability during 

exacerbations despite antibiotic pressure (30, 36, 37). Our description of the ‘core’ airway 

resistome also provides a novel perspective on reasons why pathogens, expected to exhibit in-

vivo susceptibility to a particular antibiotic, are not necessarily eradicated by appropriate 

antimicrobial therapy (38).
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Predominance of macrolide resistance within the core resistome is of relevance in respiratory 

disease. Macrolide use is advocated in severe asthma, COPD and more recently bronchiectasis, 

particularly for patients demonstrating recurrent and persistent exacerbations (27, 28, 39). The 

‘core’ macrolide resistome includes msrD (mel), ermB, ermX and ermF genes which 

incorporates efflux (msrD) and rRNA methylases (erm),  mechanisms previously established 

in the human gut and sewage effluent (32, 34, 40). Of all macrolide resistance genes identified, 

ermX exhibits greatest abundance in respiratory disease, and, presents as a highly connected 

node in our co-occurrence analysis, its presence relating to several resident airway bacteria. 

Interestingly, ermF and mstD exhibit association with low abundance gut microbiota including 

Clostridiodes difficile and Bacteroides thetaiotaomicron which are reported to harbour these 

genes in association with mobile genetic elements (41, 42). This suggests seeding of the airway 

resistome may occur, through aspiration of gut microbes, in the case of ermF and msrD, 

contrasting ermX which strongly associates more directly with the respiratory microbiota. 

Silent aspiration and/or gastroesophageal reflux is proposed to occur in chronic respiratory 

disease including asthma, COPD and bronchiectasis and therefore should be considered as a 

contributor to the airway resistome (43-46).

To better understand direct relationships and potential transfer between host and environmental 

resistomes, we next assessed metagenomes in paired patient-inhaler specimens in individual 

patients. We demonstrate that an inhaler swab, when subjected to metagenomics, may act as a 

surrogate of the airway microbiome and/or resistome: a feature of relevance in dry non-

productive patients commonly seen in severe asthma but also COPD and bronchiectasis (47). 

Co-occurrence of microbe-resistance gene combinations was evident, strongly indicative of 

environmental contributors and microbial sources of the airway resistome. By generating 

comparable microbiome and resistome profiles between airway and inhalers, we confirm the 

potential for such therapeutic devices to act as resistance reservoirs, allowing trafficking of 
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pathogenic microbes and resistance determinants between the environment and airway. Recent 

work illustrates the COPD airway to be an important reservoir for antibiotic resistance genes, 

linking their abundance to bacterial colonization (11). Interestingly, existing data further 

proposes that macrolide resistance genes, including ermX may be aerosolised and associate 

with COPD patient filter masks in the hospital setting (48). Our work further builds on such 

concepts demonstrating the potential of clinical metagenomics in inhaler devices to uncover 

microbe-resistance gene associations through gene-species co-occurrence in environmental 

and airway specimens. We identify a subset of microbes and genes co-occurring between the 

airway and inhaler surface when integrated into a co-occurrence network leading to the 

identification of bacteria highly correlated to genes conferring macrolide, tetracycline,  -

lactam and fluoroquinolone resistance. Interestingly, this reveals taxa previously associated 

with antimicrobial resistance including Actinomyces, Streptococcus and Prevotella species, 

implicating them as potential key vehicles for resistance (36, 49). Prevotella is known to 

exhibit reduced susceptibility to -lactams in the CF lung, findings consistent with our 

observed association between P. pallens and the -lactamase-encoding cfxA2 gene, while the 

presence of tet genes in Streptococcus is also previously described (50). Association between 

Carnobacterium maltaromaticum and msrD is not previously described although the clinical 

relevance of Carnobacterium species remains to be fully established. Our detected relationship 

between Actinomyces species and resistance genes appears in contradiction to its described 

macrolide sensitivity however it should be noted that molecular (sequence) data related to 

Actinomyces spp. ICM47 has yet to be taxonomically confirmed, and, therefore potentially 

represents an exception to the general trend in this genera favouring macrolide susceptibility 

(30). 

Our work is novel and represents the largest clinical metagenomics study performed on airway 

specimens using robust state-of-the-art methodologies effectively applied to low biomass 
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samples such as outdoor air (23). Using this approach, we uncover a core airway resistome 

dominated by macrolide resistance linked to the host microbiome. We further illustrate that 

inhaler devices may act as a surrogate of the host airway microbiome and remain a key 

resistance reservoir. Despite our study’s strengths and novelty, we acknowledge its limitations. 

First, despite being the largest clinical metagenomics study to date, we include only n=85 

individuals which are further nested into healthy and diseased groups, within a cross-sectional 

study design requiring validation in larger longitudinal studies given the myriad of confounders 

that could possibly influence microbiome profiles. For instance, while diseased patients were 

relatively well matched for age, the healthy cohort were significantly younger. Even with a 

limited sample size, we could identify microbiome perturbation characteristic of respiratory 

disease (e.g. COPD and bronchiectasis). Heterogeneity and relationships between the resistome, 

microbiome and specific disease phenotypes (e.g. very frequent exacerbators) within the 

diseased cohorts, most prominent for the bronchiectasis group, could not be fully resolved by 

this work because of the limited sample size. Recently, Taylor and colleagues have 

demonstrated the effect of macrolide exposure on the resistome in a longitudinal study of 

patients with severe asthma. Following azithromycin exposure, the abundance of several 

macrolide genes (including those observed in our analysis) ermB, ermF, mef and mel (msrD) 

were detected, supporting the functional importance of these genes to the resistome in response 

to antibiotic exposure (30). Interestingly, shifts in the resistome in response to therapy were 

accompanied by clinical resistance in H. influenzea isolates suggesting metagenomic resistome 

profiling may reflect clinically observed resistance that warrants further analysis in terms of 

diagnostic implications in the context of the findings from our study. Next, while metagenomic 

shotgun sequencing is a powerful tool, it remains relatively expensive with slower turnaround 

times compared to other sequencing approaches. This poses challenges for real-time diagnostic 

or therapeutic use and translation into everyday clinical practice (51). Though challenging due 
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to the nature of sample variability in particular conditions such as asthma or (dry) 

bronchiectasis compared to non-diseased controls, as a matrix, sputum is advantageous in terms 

of accessibility and scope for broad application in large studies across a range of clinical 

settings. This clearly contrasts with more invasive BAL or tissue biopsy sampling where 

sample acquisition and control subject recruitment are major limiting factors. Our study 

recruited several non-diseased participants from which airway specimens were readily obtained 

by applying the ‘huff cough’ technique in a protocol applied previously to non-diseased control 

samples in assessment of their airway microbiomes (21).  Though clearly important, the degree 

to which sputum reflects the true microbial ecosystem of the lower airway has been the subject 

of debate, and, its accessibility likely comes at a cost of reduced resolution of lower airway 

taxa which may be particularly relevant in diseased states (52). Consistency of sputum 

sampling in terms of the relative proportions of upper and lower airway biomass in a given 

sample, variability in sampling during acquisition and also changes with respect to disease 

severity are all likely to influence clinical association and remain important areas for future 

exploration. In our assessment of patient inhalers, we included rigorous swab-sampling 

contamination controls but lacked the additional experimental control of a swab taken from an 

unused inhaler device – an important consideration given the sensitivity of metagenomics to 

detect minute levels of background contamination. The high abundance of human DNA in 

sputum is an additional hurdle with implications for adequate and unbiased detection of 

resistance genes, as sequencing depth will influence detection. However, recent work in the 

area of host DNA removal may address this issue, allowing for greater microbial read depth 

and scalability of sputum metagenomics in this field (53). Furthermore, metagenomic data 

processing requires specialised personnel with bioinformatic skills and a facility with the 

capability to perform high-performance computing, both significant barriers to clinical 

implementation. The use of short read sequencing also largely precludes a definitive 
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assessment of mobile genetic elements associated with resistance genes and long-read 

metagenomic workflows currently being developed may offer better insights going forward. 

Finally, our study detected change to genes controlling lipid metabolism across a range of 

chronic respiratory disease states. Alterations in lipid metabolism are identified in COPD and 

bronchiectasis, and, potentially contribute to their pathogenesis through initiation and 

resolution of inflammation. Emerging data suggests that microbial dysbiosis associates with 

such metabolic change and remains an important avenue for future study particularly in regard 

to effect on host immune function (26, 54, 55).

Despite economic, analytical and resource related challenges to the application of clinical 

metagenomics into respiratory practice, its ability to concurrently capture individual microbial 

taxonomy, function and resistance in an unbiased robust manner using a single specimen makes 

it an attractive tool for the delivery of precision respiratory medicine. This is important in the 

current era of patient endo-phenotyping including disease overlap. Our identification of a core 

airway resistome, dominated by macrolide resistance, is an important cautionary warning 

worthy of clinical consideration. Despite advances in the use of antimicrobials to improve 

clinical outcomes across a range of chronic respiratory diseases, we must be cognisant of their 

potential long-term resistance implications and weigh this against the perceived short-term 

clinical benefit in individual respiratory patients.   
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FIGURE LEGENDS

Figure 1. Airway shotgun metagenomics reveals functional metabolic dysbiosis and an 

increased antibiotic resistance gene abundance across chronic respiratory disease states. (A) 

Heatmap illustrating the relative abundance of functionally classified sequence reads assigned 

to functional categories (KEGG) in each microbiome profile. Values are expressed as Z-scores 

(calculated based on the deviation from the mean abundance in each group and scaled to the 

standard deviation). Higher abundance (indicated in red) associated with specific functional 

pathways including lipid metabolism, xenobiotic biodegradation and antibiotic-associated 

biosynthetic pathways. These are highest in patients with COPD and bronchiectasis. (B) 

Heatmap illustrating specific antibiotic-resistance gene abundance (by class) based on read 

alignment to the CARD antibiotic resistance database. -lactam, fluoroquinolone, macrolide 

and tetracycline resistance genes are detectable in diseased and non-diseased subjects. Patients 

with COPD and bronchiectasis have the highest load of antibiotic resistance determinants. (C) 

Patient antibiotic usage and respective class (in the preceding six months preceding airway 

sampling) is indicated by black dots (). COPD: Chronic Obstructive Pulmonary Disease.

Figure 2. A core airway resistome exists across respiratory disease states including antibiotic-

naïve and non-diseased (healthy) individuals. (A) Venn diagram illustrating the number of 

individual antibiotic resistance genes among the study cohorts and their intersections; ND: 

Non-Diseased, SA: Severe Asthma, COPD: Chronic Obstructive Pulmonary Disease and BE: 

Bronchiectasis. (B) An Upset plot, corresponding to the presented Venn diagram (2A) 

illustrating the antibiotic resistance gene composition across individual cohorts and their 

intersections. Stacked bar charts reflect the detected antibiotic resistance genes coloured 

according to antibiotic class. Individual groups and their intersections are indicated for each 

cohort separately (ND; SA; COPD and BE) followed by their respective intersection by a 

matrix (located below stacked bars). Set size, i.e. the number of resistance genes detected per 
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group is indicated by horizontal bars (ND<SA<COPD<BE). Black dots () indicate sets and 

connecting lines indicate relevant intersections related to each stacked bar chart. An 18-gene 

‘core’ resistome was identified (across all four cohorts) and largely comprises of genes 

conferring macrolide, tetracycline, -lactam and aminoglycoside resistance, while the 32 genes 

shared by COPD and bronchiectasis patients are predominantly multi-drug and triclosan 

resistance classes. (C) Heatmap illustrating specific antibiotic resistance genes by class and 

individual cohort.  Specific antibiotic resistance genes grouped by coloured class (x-axis) are 

plotted against individual cohorts (ND; SA; COPD and BE) (y-axis). Genes are presented in 

order of detected abundance with msrD (mel), ErmB, ErmF, and ErmX macrolide resistance 

genes most frequently observed across all four cohorts followed by genes encoding tetracycline, 

-lactam and fluoroquinolone resistance.

Figure 3. Metagenomic microbiome taxonomic composition exhibits disease-associated 

signatures with greatest heterogeneity in COPD and bronchiectasis. (A) Bubble chart 

illustrating microbial abundance of discriminant taxa in non-diseased vs diseased cohorts based 

on species-level classification. Bubble size corresponds to read count and phylum membership 

is colour-coded. Rothia mucilaginosa was consistently increased in diseased versus non-

diseased subjects (Dunn’s test, p = 0.01) while Pseudomonas aeruginosa was also increased, 

most notably among bronchiectasis patients (Dunne test’s, p = 0.02) (B)  A non-metric multi-

dimensional scaling plot (NMDS) illustrating -diversity between the study groups including 

ND: Non-Diseased (dark blue), SA: Severe Asthma (light blue), COPD: Chronic Obstructive 

Pulmonary Disease (purple) and BE: Bronchiectasis (red), each highlighted by a coloured 

ellipse (C) The average distances to centroid from the NMDS plot was measured using the 

PERMDISP test of homogeneity and  plotted for each respective study group illustrating the 

heterogeneity of their respective microbiome profiles (error bars reflect standard deviation). 
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Difference in average distance to centroid was formally confirmed by ANOVA and Tukey 

post-hoc analysis; ***p <0.001.

Figure 4. Network inference through co-occurrence analysis reveals gene-microbe 

associations of the ‘core’ macrolide resistome.  (A) Antibiotic resistance genes within the co-

occurrence network are colour-coded with respect to antibiotic class while microbes are 

coloured black. Grey lines denote interactions between nodes (representing both microbes and 

resistance genes) with line thickness reflecting their observed interaction strength respectively. 

Interactions between resistance genes are highlighted by red lines. (B) Microbes within the co-

occurrence network are colour-coded with respect to their species while antibiotic resistance 

genes are coloured black. Grey lines denote interactions between nodes (microbes or resistance 

genes) with thickness reflecting interaction strength. Interactions between species are 

highlighted by red lines. (C-E) Identified nodes of the macrolide resistome are highlighted 

indicating the specific microbes (by species) that associate with (C) ermX, (D) ermF and (E) 

msrD. Line thickness reflects the observed interaction strength between microbial nodes and 

the central resistance gene while arrow heads depict directionality of the co-occurrence 

prediction.

Figure 5. Metagenomics assessment of inhaler devices as potential antibiotic resistance 

reservoirs. Metagenomics shotgun analyses was performed on paired (airway-inhaler) 

specimens obtained through sputum collection and swabbing of mouthpieces of patient inhaler 

devices (n=total 31 pairs consisting of n=16 (severe asthma); n=11 (COPD) and n=4 

(bronchiectasis). (A) Microbiome profiles of paired airway-inhaler devices exhibits a 

comparable overall pattern illustrated by stacked bar plots of a species-level relative abundance. 

(B) Venn diagram illustrating the observed metagenomics-derived microbial taxa present in 

the airway (green set, ‘A’, n = 116) and inhaler device (grey set, ‘I’, n = 207) and the co-

occurrence of microbial species that are detectable in both groups (intersect, n = 80). Thirty-
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six and 127 species were therefore unique to the airway sputum and inhaler metagenomics 

profiles respectively. (C) Horizontal bar plot indicating microbial species confirmed to co-

occur in paired specimens, i.e. species found in both the airway and inhaler device of the same 

patient (n = 63 species). (D) Resistance gene profiles for paired airway-inhaler devices 

demonstrate comparability with a higher abundance of resistance genes (measured in RPKM - 

Reads Per Kilobase Million) detected in airway specimens. (E) Venn diagram illustrating the 

observed diversity of resistance genes detected in airway specimens (green set, ‘A’, n = 89) 

and inhaler devices (grey set, ‘I’, n = 98) by metagenomics. Co-occurrence of a significant 

number of microbial species were detected (intersect, n = 53 species). Thirty-six and 45 

resistance genes were unique to the airway sputum and inhaler metagenomics profiles 

respectively. (F) Horizontal bar plot indicating resistance genes confirmed to co-occur in paired 

specimens, i.e. genes found in both the airway and inhaler device of the same patient (n = 46 

genes). Genes co-occurrences observed in n ≥ 2 subjects are plotted.

Figure 6. Metagenomic derivation of microbe-gene associations highlighting a potential 

source of resistance implicated in airway-inhaler device cross-over. (A) Correlation plot of 

microbes and resistance genes co-identified in metagenomic profiles from paired patient 

airway and inhaler device specimens. The presence of a circle indicates significant association 

(p<0.05) while circle size and colour intensity reflect observed Pearson’s correlation for all 

pairwise comparisons indicating the strong positive correlations detected between microbes 

and resistance genes. The antibiotic resistance genes are colour coded according to their 

respective antibiotic class (B) Bubble chart illustrating the co-occurrence of the most highly 

correlated microbe (empty circle) and resistance gene (filled circle) combinations illustrated 

by disease i.e. Severe Asthma (SA), COPD and bronchiectasis (BE). Bubble size represents 

the number of classified reads while colour indicates the antibiotic class. Black bars along x-
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axis indicate each individual paired airway and inhaler specimen respectively (from left to 

right).
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Table 1. Patient Demographics

Demographic Diseased (D) p-valueNon-diseased 
(ND)

Severe Asthma COPD Bronchiectasis ND vs D D v D

N 13 11 15 15

Age 34±8 70±17 70±9 64±15 <0.001 0.472

Gender 0.528 0.012

     Male 62% (8) 73% (8) 100% (15) 53% (8)

     Female 38% (5) 27% (3) 0% (0) 47% (7)

BMI 23±3 27.9±8 21.7±8 18.4±6 0.237 0.009

FEV1 predicted 109±14 72±14 45±13 65±20 <0.001 0.005

Disease severity †

     Mild - 0% (0) 7% (1) 6% (1) - 0.797

     Moderate - 27% (3) 40% (6) 27% (4)

     Severe - 73% (8) 53% (8) 67% (10)

Exacerbations in 
year preceding 
study recruitment

0±0 0±1.5 3±3 2±1 0.032 0.013

Smoking status <0.001 <0.001

     Never smoker 100% (13) 91% (10) 0% (0) 67% (10)

     Ex-smoker 0% (0) 0% (0) 47% (7) 27% (4)

     Current smoker 0% (0) 9% (1) 53% (8) 7% (1)

Antibiotic use in 6 
months preceding 
recruitment 0.050 <0.001

     Yes 0% (0) 0% (0) 67% (10) 20% (3)

     No 100% (13) 100% (11) 33% (5) 80% (12)   

Inhaled 
corticosteroid use

Yes - 100% (11) 53% (8) 53% (8) - 0.064

No - 0% (0) 47% (7) 47% (7)

Inhaled 
bronchodilator use

Yes - 100% (11) 100% (15) 53% (8) - 0.009

No - 0% (0) 0% (0) 47% (7)
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† Defined according to disease-specific criteria. Severe asthma: ACT score;  20 = “mild”, 
19-15 = “moderate”, <15 = “severe”. COPD: GOLD stage; 1 = “mild”, 2 = “moderate”,  3 = 
“severe”. Bronchiectasis: Bronchiectasis Severity Index (BSI); 0-4 = “mild”, 5-8 = 
“moderate”,  9 = “severe”. 
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Table 2. Genes of the core ‘resistome’ (n =18) identified across study cohorts.

Gene name Drug class Resistance mechanism
aac(3)-VIIa aminoglycoside antibiotic inactivation
aph(3)-IIIa aminoglycoside antibiotic inactivation
oxa-255 cephalosporin, penam (β-lactam) antibiotic inactivation
cfxA2 cephamycin (β-lactam) antibiotic inactivation
dfrA1 diaminopyrimidine antibiotic target replacement
pmrA fluoroquinolone antibiotic efflux
mel (msrD) macrolide, lincosamide, streptogramin, tetracycline, 

phenicol, oxazolidinone, pleuromutilin
antibiotic target protection

ermB macrolide, lincosamide, streptogramin antibiotic target alteration
ermF macrolide, lincosamide, streptogramin antibiotic target alteration
ermX macrolide, lincosamide, streptogramin antibiotic target alteration
lnuC lincosamide antibiotic inactivation
efrB rifamycin, macrolide, fluoroquinolone antibiotic efflux
catS phenicol antibiotic inactivation
tetA(46) tetracycline antibiotic efflux
tetW tetracycline antibiotic target protection
tetB(46) tetracycline antibiotic efflux
tet(D) tetracycline antibiotic efflux
tetO tetracycline antibiotic target protection
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Figure 1
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Figure 2 (a-b)
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Figure 2 (c)
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Figure 3 (a)
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Figure 3 (b-c)
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Figure 6a
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Figure 6b
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SUPPLEMENTARY MATERIALS AND METHODS

Ethical approval: This study was approved by the institutional review boards of all 

participating sites as follows and all included participants provided written informed consent: 

CIRB 2016/2628 (severe asthma), CIRB 2016/2715, CIRB 2016/2549 (COPD), CIRB 

2016/2073 (bronchiectasis) (all mutually recognised by DSRB) and NTU IRB-2016-01-031 

and IRB-2017-12-010 (healthy individuals and diseased patients).

DNA extraction and sequencing

Spontaneously expectorated and representative sputum was obtained from all study 

participants according to established, standardised and published collection and assessment 

protocols (1, 2). DNA was extracted from representative sputum using the Roche High-pure 

PCR Template Preparation Kit (Roche) as previously described (3-5). To assess the 

environmental metagenome present on the mouthpieces of patient inhalers, 4N6Floq swabs 

(Copan, USA) pre-moistened in phosphate buffered saline (PBS) with 0.1% Triton-X100 

(Sigma-Aldrich, USA) were used and the inhaler used most frequently sampled. After sampling, 

the swabs were snapped into a DNeasy PowerWater kit (Qiagen, Germany) bead tube. DNA 

was extracted and processed according to the manufacturer’s protocol with the addition of 

proteinase K (Sigma-Aldrich, USA) and sonication at 65ºC (6). Sterile swabs and reagents 

were processed simultaneously as extraction controls to assess the levels of background 

contamination and subjected to metagenomic analysis which confirmed lower-level 

background contamination in sputum (11428-59428 reads, n =4) and swab (1175-4487 reads, 

n =6) extraction controls (Supplementary Figure E2). Extracted DNA was quantitated using 

the Qubit dsDNA High Sensitivity (HS) Assay Kit (Invitrogen, USA) and sequenced on a 

HiSeq 2500 platform (Illumina, USA) according to library preparation and DNA sequencing 

methods described by Gusareva, et al. (7).  All sequence data from this study has been uploaded 
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to the National Center for Biotechnology Information (NCBI) Sequence read archives (SRA) 

under project accession PRJNA595703.

Functional and taxonomic assignment of metagenomic sequence reads

Raw sequencing reads with a minimum Phred score 20 and >30 bp in length were selected and 

adapter-trimmed using Cutadapt (version 1.14) (8). Trimmed reads were then mapped against 

the GRCh38 human reference genome with bowtie2 (version 2.3.2) (9). Unmapped non-host 

reads were separated for further analysis and aligned against the NCBI non-redundant protein 

database (7 August 2017) with Diamond (version 0.9.9) (10). Based on these alignments, 

microbial taxonomical classification was generated using the Lowest Common Ancestor (LCA) 

algorithm implemented in MetaGenome Analyzer (MEGAN, v6.8.18) with a minimum score 

of 100 and a support of ≥25 (11). Functional annotation according to the Kyoto Encyclopedia 

of Genes and Genomes (KEGG) was performed in MEGAN based on the ‘acc2kegg-Dec2017’ 

database visualizing metabolism-associated functions. Resistance genes present among non-

host reads were identified using ShortBRED (12). Unique protein markers were created by 

applying the ‘shortbred_identify.py’ script with a 95% cluster identity using antimicrobial 

resistance (AMR) protein sequences from Comprehensive Antibiotic Resistance Database 

(CARD) and Uniref90 database as a reference (13, 14). The abundance of unique protein 

markers was determined using the shortbred_quantify.py script based on average read length 

of 200 bp. Drug class assignments were manually validated against the CARD database. 

Normalized gene abundances were expressed in reads per kilobase million mapped reads 

(RPKM) relative to each AMR gene.

Data analysis, visualisation and statistical analysis

All continuous data was tested for normality by the Kolmogorov-Smirnoff test. Categorical 

data was assessed by Chi-squared or Fisher’s exact test as appropriate. For non-normal data, 
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Mann-Whitney U-testing was used for group comparisons. For comparison of three or more 

groups of non-normal measures, the Kruskal-Wallis test was employed with Dunn’s post hoc 

test and Benjamini-Hochberg correction for multiple comparisons. Differences were 

considered significant at p <0.05. 

Read functional assignments were visualised using heatmaps with abundance coloured 

according to Z-scores in MEGAN while the RPKM values of AMR genes were plotted using 

the ‘heatmap.2’ function from the R package ‘gplots’ (15). A list of AMR genes was extracted 

and plotted in a Venn diagram using both the ‘venndiagram’ and ‘upsetR’ packages to examine 

the similarities in AMR profiles across healthy and diseased groups (16, 17). Principal 

coordinate analysis (PCoA) plots of taxonomic data were generated using ‘vegan’ and 

‘phyloseq’ packages to observe clustering patterns among the four studied groups (18, 19). The 

average distance to centroid of each group was determined using PERMDISP tests of 

homogeneity of dispersions by the ‘betadisper’ function in ‘vegan’. The significance of 

distances to centroid differences obtained between groups was assessed by analysis of variance 

(ANOVA) with Tukey’s post hoc analysis. Linear discriminant analysis between cohorts was 

performed with lefse (version 1.0) with default parameters (20). Assigned reads were visualised 

in MEGAN as bubble charts representing normalised read counts. Co-occurrence networks 

were generated by combining normalised AMR and taxonomic data and assessed several 

network metrics using generalized boosted linear models (GBLMs) as described by Faust et 

al. (21). Pearson’s correlation for co-occurring taxa and resistance genes were visualised in R 

using the ‘rcorr’ function from the ‘Hmisc’ package, with consideration of correlation strength 

and significance (p > 0.05)  (22). 
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SUPPLEMENTARY FIGURE LEGEND

Supplementary Figure E1. Bar plot of metagenomic read assignments across cohorts. The 

abundance of non-human reads assigned to bacterial (purple), fungal (red) and viral taxa 

(yellow) is illustrated. Dark and light grey coloration denotes non-human reads with non-

deterministic or no hits in the reference database. 

Supplementary Figure E2. Metagenomic sequence analysis of control samples to assess 

background DNA contamination profiles of DNA extraction blanks. Four negative ‘blank’ 

DNA extractions, using only PBS and following our sputum extraction protocol (“sputum”) 

and six DNA extractions from sterile swabs following our swab extraction protocol (“Swab”) 

were performed and subjected to metagenomic sequencing. Assigned taxonomy for the most 

abundant species is colour-indicated in the legend provided within the figure. 

Supplementary Figure E3. Box and whisker plots illustrating the -diversity of the 

respiratory microbiome in Non-diseased (ND), Severe asthma (SA), Chronic obstructive 

pulmonary disease (COPD) and bronchiectasis (BE) patients included in this study. Plots 

indicating calculated (A) Shannon, (B) Simpson and (C) Chao1diversity indices for each group 

are analysed by ANOVA with Tukey post-hoc analysis; *p<0.05, **p<0.01 (D) Identification 

of discriminant taxa based on linear discriminant analysis (LDA) effect size (LEfSe). The 

observed effect sizes of discriminant taxa identified among diseased patients (‘D’) are indicated 

by the upper right-facing bars while those discriminant for non-diseased subjects (‘ND’) are 

indicated by lower left-facing bars. Colour represents phylum membership. (E) Bubble chart 

summarizing the taxonomic profiles of all four study groups, classified to genus level. Bubble 

size reflects read abundance and colour indicates phylum-level association. 
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SUPPLEMENTARY TABLES

Supplementary Table E1: Demographics for paired patient-inhaler metagenomes 

Demographic Disease
Severe Asthma COPD Bronchiectasis

N 16 11 4

Age 64±19 68±5 65+11

Gender
     Male 19% (3) 100% (11) 25% (1)
     Female 81% (13) 0% (0) 75% (3)

BMI 24.7±9 22.3±3 19.4±5

FEV1 % predicted 78±18 58±33 66±14

Disease severity †
     Mild 32% (5) 0% (0) 50% (2)
     Moderate 32% (5) 55% (6) 0% (0)
     Severe 36% (6) 45% (5) 50% (2)

Exacerbations in year 
preceding study 
recruitment 2±5 0±0.3 2±0.1

Smoking status
     Never smoker 75% (12) 0% (0) 75% (3)
     Ex-smoker 19% (3) 55% (6) 25% (1)
     Current smoker 6% (1) 45% (5) 0% (0)

Antibiotic use in 6 months 
preceding recruitment
     Yes 0% (0) 0% (0) 0% (0)
     No

100% (16) 100% (11) 100% (4)

Inhaled corticosteroid use
Yes 100% (16) 36% (4) 25% (1)
No 0% (0) 64% (7) 75% (3)

Inhaled Bronchodilator use
Yes 100% (16) 100% (11) 75% (3)
No 0% (0) 0% (0) 25% (1)

† Defined according to disease-specific criteria. Severe asthma: ACT score;  20 = “mild”, 19-
15 = “moderate”, <15 = “severe”. COPD: GOLD stage; 1 = “mild”, 2 = “moderate”,  3 = 
“severe”. Bronchiectasis: Bronchiectasis Severity Index (BSI); 0-4 = “mild”, 5-8 = “moderate”, 
 9 = “severe”. 
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Supplementary Table E2: Putative environmental resistance genes found in association with 

inhaler devices but absent in sputum. 

Gene name Drug class Resistance mechanisms 

aac(3)-VIIa aminoglycoside antibiotic inactivation

aph(3'')-Ib aminoglycoside antibiotic inactivation

BUT-1 cephalosporin (β-lactam) antibiotic inactivation

qacA fluoroquinolone antibiotic efflux

lfrA fluoroquinolone antibiotic efflux

lnuA lincosamide antibiotic inactivation

mgrA antibiotic peptide, fluoroquinolone, tetracycline, penam, 
cephalosporin, acridine dye

antibiotic efflux

vgaALC streptogramin, pleuromutilin, oxazolidinone, macrolide, 
tetracycline, lincosamide, phenicol

antibiotic target protection

msrA streptogramin, pleuromutilin, oxazolidinone, macrolide, 
tetracycline, lincosamide, phenicol

antibiotic target protection

sdiA tetracycline, penam, phenicol, rifamycin, cephalosporin, 
glycylcycline, triclosan, fluoroquinolone

antibiotic efflux

cmx phenicol antibiotic efflux

tet(38) tetracycline antibiotic efflux
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Supplementary Figure E1
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Supplementary Figure E3 (a-d)

A. B. C. D.
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Supplementary Figure E3 (e)

E.
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