
Detection and Classification of Acoustic Scenes and Events 2019 25–26 October 2019, New York, NY, USA

HIERARCHICAL SOUND EVENT CLASSIFICATION

Daniel Tompkins1, Eric Nichols1, Jianyu Fan1,2

1 Microsoft, Dynamics 365 AI Research, Redmond, WA, 98052, USA
2 Simon Fraser University, Metacreation Lab, Surrey, BC, V3T 0A3, Canada

{daniel.tompkins, eric.nichols, t-jiafan}@microsoft.com

ABSTRACT
Task 5 of the Detection and Classification of Acoustic Scenes and
Events (DCASE) 2019 challenge is “urban sound tagging”. Given a
set of known sound categories and sub-categories, the goal is to
build a multi-label audio classification model to predict whether
each sound category is present or absent in an audio recording.
We developed a model composed of a preprocessing layer that
converts audio to a log-mel spectrogram, a VGG-inspired Convo-
lutional Neural Network (CNN) that generates an embedding for
the spectrogram, a pre-trained VGGish network that generates a
separate audio embedding, and finally a series of fully-connected
layers that converts these two embeddings (concatenated) into a
multi-label classification. This model directly outputs both fine and
coarse labels; it treats the task as a 37-way multi-label classification
problem. One version of this network did better at the coarse la-
bels CNN+VGGish1); another did better with fine labels on Micro
AUPRC CNN+VGGish2). A separate family of CNN models was
also trained to take into account the hierarchical nature of the labels
(Hierarchical1, Hierarchical2, and Hierarchical3).
The hierarchical models perform better on Micro AUPRC with fine-
level classification.

Index Terms— Sound Event Classification, CNN, Hierarchy

1. INTRODUCTION

A soundscape recording is a “recording of sounds at a given loca-
tion at a given time, obtained with one or more fixed or moving
microphones” [1]. Automatic sound event classification has many
applications, such as abnormal event detection [2], acoustic ecol-
ogy [3] and urban noise pollution monitoring [4]. SONYC (Sounds
of New York City) is a research project for mitigating urban noise
pollution [4]. Because the SONYC sensor network collects mil-
lions of audio recordings, it is important to automatically detect and
classify the collected audio recordings for noise pollution monitor-
ing. Therefore, researchers designed the urban sound tagging task,
which is to predict whether each of 23 sources of noise pollution
is present or absent in the 10-second scene recorded. Researchers
recruited individuals on Zooniverse, a web platform for citizen sci-
ence, to provide weak labels for collected audio recordings based
on a taxonomy involving both coarse- and fine-grained classes [4].

The relationship between coarse-grained and fine-grained tags
is hierarchical. Therefore, we designed a hierarchical sound event
classification model. Previous studies demonstrate that convolu-
tional neural networks (CNNs) can achieve state-of-the-art perfor-
mance in sound event classification tasks[5]. Thus, we adopt the
CNNs structure for our model design. In our approach to audio
event classification, we assessed two categories of methods: 1) cre-
ating and training a new model trained only on the DCASE Task

5 Challenge dataset, and 2) building a model that uses as input
an embedding vector generated by an external model trained on
a larger, different dataset. Both approaches have various advan-
tages and disadvantages. Creating a new model results in a model
trained for the specific sounds, environments, and sensors from the
dataset, which can potentially offer better precision, yet the limited
size of the dataset can reduce training success. Re-purposing a pre-
trained model such as VGGish, trained on AudioSet [5], has the
advantage of starting with a model that was trained on a large and
diverse dataset, but the disadvantage of disregarding input features
that might have been discarded by the VGGish model, reducing the
ability to capture nuanced distinctions between specific classes in
the DCASE Task 5 dataset.

Our approach combined the two approaches, in an attempt to
benefit from both AudioSet’s large dataset and the task-specific na-
ture of a custom model trained on raw input data. We created
several variants of the model in terms of the output classes pre-
dicted: a) all 37 labels; b) 29 “fine” labels from which we infer the
8 “coarse” labels; or c) 8 “coarse” labels. We trained two VGG-
inspired CNN models (CNN+VGGish1 and CNN+VGGish2) for
the 37-way multi-label classification. We also created three hi-
erarchical models (Hierarchical1, Hierarchical2, and
Hierarchical3) to attempt to make use of the extra informa-
tion encapsulated in the known hierarchical nature of the labels.

In addition to experimenting with model variants, we aug-
mented the dataset by adding background noise, pitch shifting, and
changing the volume. We also tried several approaches to learning
rate decays and warm restarts.

2. RELATED WORK

The general problem of machine listening is discussed in [6]. Much
existing work focuses on human speech, but this task focuses on
primarily non-speech audio. A large weakly-labeled dataset called
AudioSet [5] was created to facilitate research in this domain.

The authors of AudioSet also built an audio classification model
called VGGish, based on log-mel spectrogram and CNNs [5]. Sim-
ilarly, separate work used CNNs for classification of audio events,
along with data augmentation to improve training. The work in [7]
uses synthetic recordings involving multiple sound sources, where
multiple recordings have been combined algorithmically and pro-
cessed further via frequency band amplification or attenuation.

This task involves hierarchical category labels. The general
problem of hierarchical classification is reviewed in [8].

https://doi.org/10.33682/v0ns-1352

248



Detection and Classification of Acoustic Scenes and Events 2019 25–26 October 2019, New York, NY, USA

Figure 1: Input features for a sample input file. X-axis is time. a)
Log-mel spectrogram: 128 mel bins, 862 time bins. b) VGGish
embedding: 128 dimensions, 10 time bins.

3. FEATURE EXTRACTION

3.1. Data augmentation and spectrogram generation

To help the model generalize and to augment the dataset, each file
was subjected to pitch shifting, volume changing, and an addition
of background noise. After augmentation, each audio file was con-
verted into a log-mel spectrogram with 128 mel bins. The original
sample rate of 44.1 kHz was retained, resulting in each spectrogram
having 862 time bins. The VGGish features (128x10) from the pre-
trained AudioSet model were also generated for each input file. See
Figure 1 for a visualization.

3.2. Label choice

To assign labels to each example, we tried several configurations
that take into account the disagreement among human annotators.
We tried several different thresholds of agreement from 25 percent
to 75 percent agreement yielding a positive value. We also tried
assigning labels as a float that represents the agreement among an-
notators. We achieved the best results when we restricted positive
labels to only classes that had over 50 percent agreement from peo-
ple who voted on that particular class.

4. MODELS

To build our model, we began by feeding log-mel spectrogram val-
ues into a VGGish architecture, and then modified the architec-
ture parameters based on training results from the Task 5 dataset.
The VGGish architecture failed to improve past the first epoch—
possibly the model was overfitting due to the large number of lay-
ers and the relatively small size of the dataset. By removing some
convolutional layers and maxpooling layers, the model would learn
more gradually and continue to improve after the first epoch.

In addition to removing layers, we found that altering the ker-
nel sizes improved training. Details of the convolution layers are
given in Table 1 and Table 2, where each row describes a ”con-
volution block” of the following sequence of layers: convolution,
maxpool, batch normalization, and dropout. In a given block, some

Figure 2: Hierarchical model.

of the layers may not be present, as specified in those tables. The
first convolution block has a kernel size of 1x1, which was bor-
rowed from ConvNet configurations, although the 1x1 layers oc-
cur in later layers rather than the first in [9]. For CNN+VGGish1,
CNN+VGGish2, both fine- and coarse-level classification mod-
els used in Hierarchical1, and the coarse-level classification
model used in Hierarchical2 and Hierarchical3, the third
convolution block features a large and rectangular (16x128) kernel
size with a large stride and padding. We modified the configuration
for the fine-level classification model used in Hierarchical2
and Hierarchical3 to reduce this to a smaller kernel – Table 2
gives the kernel size, stride, and padding used in those models.

Each convolution block contains batch normalization and
dropout at a rate of 0.5. One maxpooling layer follows the third
convolution block.

4.1. CNN + VGGish

The results of our CNN model were unable to surpass the baseline
results, so we decided to merge the AudioSet-based VGGish em-
beddings into our trained model at the fully-connected layer level
(see Table 3). The output of our CNN model was 256 channels of
1 value (256x1) while the VGGish embedding output was 128x10.
These outputs were flattened (to vectors of length 256 and 1280,
respectively) and concatenated to yield a 1536-dimensional vector
which was followed by three fully-connected layers that reduce the
dimensionality to 512, 256, and finally the desired number of out-
put classes. Batch normalization is applied to each fully-connected
layer, as is a dropout rate of 0.2. Adding the VGGish embeddings
improved our training results and allowed us to surpass the baseline
results for some metrics.

4.2. Hierarchical

Because the class labels are given in terms of a known two-level
hierarchy, we built an alternative model that takes the label hier-
archy into account. Our model is similar to the ”Local classifier
per parent node” approach in [8]. A top-level model MC was built
that would predict probabilities for each of the eight “coarse” la-
bels. Two of the “coarse” labels (non-machinery-impact and
dog-barking-whining) only had a single associated “fine” la-
bel, so a prediction from the top-level model of one of these two
classes was hard-coded to generate the same probability of predic-
tion for the associated fine-label class. To handle fine-label predic-
tions for sound events in the other coarse categories, six individual
low-level models {MFi | COARSE = i}, 1 ≤ i ≤ 6 were trained
to classify the probability for each of the fine labels i, conditioned
on knowledge of the coarse class label for a particular example.
This resulted in a total of seven models; see Figure 2. Each of these
models had essentially the same structure, with the exception of the
number of nodes in the output layer.

249



Detection and Classification of Acoustic Scenes and Events 2019 25–26 October 2019, New York, NY, USA

Each fine-label classifier MFi was trained in the same way as
the coarse classifier MC (see Section 5). The dataset for each clas-
sifier was generated by simply extracting the subset of training data
where the coarse label was that expected for the fine-label classifier.
E.g., for the engine classifier, the data used for training consisted of
solely those examples where the coarse label was identified in the
ground truth as engine.

We constructed a working classification system from these
models as follows. First an unknown input example would be given
to the coarse-level classifier MC . Then, the coarse category with
the maximum output value would determine which model MFi to
run to determine the fine label output values. Finally, if any other
coarse categories were output with value > 0.5, the corresponding
models MFi would be run as well to generate additional possible
fine label classifications.

5. TRAINING TECHNIQUES

For CNN+VGGish1, CNN+VGGish2, Hierarchical1, and
the coarse-level classification model of Hierarchical2 and
Hierarchical3, we used an Adam optimizer [10] with a learn-
ing rate of 0.001. Regarding the fine-level classification model for
Hierarchical2 and Hierarchical3, we found that using
an RMSProp optimizer [11] with a learning rate of 0.01 performed
better. For the loss function, we used binary cross entropy with log-
its, which combines the sigmoid function with binary cross entropy.
The loss function is defined as:

ln,c = −wn,c[pcyn,c · log f(xn,c)+(1−yn,c)·log(1−f(xn,c))]
(1)

where f(xn,c)∈ [0, 1]c predicts the presence probabilities of sound
categories. c is the class number, n is the index of the sample in the
batch, and p is the weight of the positive answer for the class c.

We also experimented with modifying the loss function to give
weight to classes based on their representation in the dataset. While
fully weighting classes to offset the dataset imbalance decreased
the micro AUPRC scores, smoothing the weights—such taking the
tenth root of each value—helped under-represented classes perform
better and made a slight overall improvement to the micro AUPRC
scores (results of these experiments not shown here).

When training the coarse-level models, we implemented a mod-
ified form of warm restarts[12]. We monitored the micro AUPRC
scores of coarse classes on the validation set, and when coarse mi-
cro AUPRC scores had not improved by a specified ”stagnation”
threshold, the learning rate was reduced. This process was repeated
until a minimum learning-rate threshold was reached. The model
then would be reset to the original learning rate and made to cycle
through again, with the rate of learning rate reduction set to be less
severe. We saved a new best model at the end of any epoch that
resulted in a new highest micro AUPRC score.

Training of the ”branch” models for fine-grained classification
in the three Hierarchical models proceeded differently, with-
out warm restarts. For each fine-grained classifier, we reduced the
learning rate by multiplying it by a factor γ after a certain number of
epochs p (for ”patience”) passed with no improvement to the loss.
For the Hierarchical1 model we set γ = 0.1 and p = 5, while
for the Hierarchical2 and Hierarchical3 variants we set
γ = 0.2 and p = 6. We saved a new best model at the end of any
epoch that resulted in a new lowest validation loss.

6. RESULTS

Our results can be found in Table 4. Our method was able to sur-
pass the Micro AUPRC and Macro AUPRC baseline scores in the
coarse-level evaluation. However, our method was unable to beat
the baseline in fine-level evaluation. Both CNN+VGGish models
are checkpoints from different points of a single training session;
the best fine-level score was achieved before the best coarse-level
score.

We adopted the CNN+VGGish1 model as the coarse-level
classifier for the Hierarchical1 and Hierarchical2 mod-
els. For Hierarchical3 the coarse-level classifier was the
CNN+VGGish2 model. For all the Hierarchical models, the
results were worse than those of the best single model trained to
jointly output fine and coarse labels (CNN+VGGish1), except for
one metric: Micro F1 for the fine-level evaluation. Notice that
we were able to increase the fine-level Micro F1 score from 0.490
(Hierarchical1) to 0.524 (Hierarchical3) via the modi-
fications noted above to the optimization parameters. Notably, the
latter score of 0.524 was better than the baseline system result of
0.502. However, this Micro F1 optimization also lead to a decrease
in the Micro AUPRC and Macro AUPRC scores in the fine-level
evaluation.

The inferior results of the three Hierarchical models for
Micro and Macro AUPRC were a surprise, but they seem to indi-
cate that the single model has more than enough parameters to do
both fine and coarse tasks simultaneously. A possible explanation is
that the fine-level models MFi were only trained on a strict subset
of the dataset. An improvement might be to use the entire dataset,
but to assign a new dummy output label in the ground truth for all
examples where the coarse label 6= i, in order to provide more neg-
ative examples.

7. CONCLUSIONS

Our results show how fusing a custom CNN model with VGGish
embeddings can impact scores. Furthermore, creating a hierar-
chical model has the potential to fine-tune subset classes of indi-
vidual coarse classes. Further hyper-parameter tuning may yield
better results, as may further experimentation with data augmen-
tation. For more details please refer to our GitHub repository at
https://github.com/microsoft/dcase-2019.

As future work, we plan to perform segmentation on the time-
frequency domain to obtain background and foreground segments
and adopt classification models on them to further improve the per-
formance.

250



Detection and Classification of Acoustic Scenes and Events 2019 25–26 October 2019, New York, NY, USA

Conv Block In Channels Out Channels Kernel Size Stride Padding Batch Norm Max Pooling Dropout
1 1 8 (1,1) (1,1) (0,0) True False .5
2 8 16 (3,3) (1,1) (1,1) True False .5
3 16 32 (16,128) (4,16) (8,16) True (4,4) .5
4 32 64 (5,5) (2,2) (1,1) True False .5
5 64 128 (5,5) (2,2) (1,1) True False .5
6 128 256 (3,3) (2,2) (1,1) True False .5

Table 1: Convolution blocks of CNN+VGGish1, CNN+VGGish2, both fine- and coarse-level classification models in Hierarchical1,
and the coarse-level classification model used in Hierarchical2 and Hierarchical3.

Conv Block In Channels Out Channels Kernel Size Stride Padding Batch Norm Max Pooling Dropout
1 1 8 (1,1) (2,2) (0,0) True False .5
2 8 16 (3,3) (2,2) (1,1) True False .5
3 16 32 (3,3) (4,4) (1,1) True (4,4) .5
4 32 64 (5,5) (2,2) (1,1) True False .5
5 64 128 (3,3) (3,3) (1,1) True False .5
6 128 256 (3,3) (3,3) (1,1) True False .5

Table 2: Convolution blocks of the fine-level classification model used in Hierarchical2 and Hierarchical3.

FC-Layer In Channels Out Channels Batch Norm Dropout
Bilinear (256,1280) 512 True .2
Linear 512 256 True .2
Linear 256 number of classes False None

Table 3: Combining VGGish embeddings with spectrogram convolution output in fully-connected layers.

Micro AUPRC Micro F1 Macro AUPRC Micro AUPRC Micro F1 Macro AUPRC
System Fine-level evaluation Coarse-level evaluation

Baseline (Fine-level) 0.671 0.502 0.427 0.742 0.507 0.530
Baseline (Coarse-level) - - - 0.762 0.674 0.542

CNN+VGGish1 0.646 0.483 0.425 0.787 0.609 0.579
CNN+VGGish2 0.656 0.398 0.401 0.768 0.533 0.555

Hierarchical1 0.643 0.490 0.414 0.787 0.609 0.579
Hierarchical2 0.643 0.516 0.412 0.787 0.609 0.579
Hierarchical3 0.623 0.524 0.386 0.768 0.533 0.555

Table 4: Results: metrics computed on validation set. Best results for each metric indicated in bold.

251



Detection and Classification of Acoustic Scenes and Events 2019 25–26 October 2019, New York, NY, USA

8. REFERENCES

[1] M. Thorogood, J. Fan, and P. Pasquier, “Soundscape audio
signal classification and segmentation using listeners percep-
tion of background and foreground sound,” Journal of the Au-
dio Engineering Society, vol. 64, no. 7/8, pp. 484–492, 2016.

[2] D. Conte, P. Foggia, G. Percannella, A. Saggese, and
M. Vento, “An ensemble of rejecting classifiers for anomaly
detection of audio events,” pp. 76–81, 2012.

[3] A. Farina and P. Salutari, “Applying the ecoacoustic event
detection and identification (EEDI) model to the analysis of
acoustic complexity,” vol. 14, pp. 13–42, 2016.

[4] P. J. Bello, C. Silva, O. Nov, R. L. Dubois, A. Arora, J. Sala-
mon, C. Mydlarz, and H. Doraiswamy, “Sonyc: A system for
monitoring, analyzing, and mitigating urban noise pollution,”
Communications of the ACM, vol. 62, no. 2, pp. 68–77, 2019.

[5] S. Hershey, S. Chaudhuri, D. P. W. Ellis, J. F. Gemmeke,
A. Jansen, C. Moore, M. Plakal, D. Platt, R. A.
Saurous, B. Seybold, M. Slaney, R. Weiss, and K. Wilson,
“CNN architectures for large-scale audio classification,”
in International Conference on Acoustics, Speech and
Signal Processing (ICASSP), 2017. [Online]. Available:
https://arxiv.org/abs/1609.09430

[6] R. F. Lyon, Human and Machine Hearing: Extracting Mean-
ing from Sound. Cambridge University Press, 2017.

[7] N. Takahashi, M. Gygli, B. Pfister, and L. V. Gool, “Deep
convolutional neural networks and data augmentation for
acoustic event detection,” CoRR, vol. abs/1604.07160, 2016.
[Online]. Available: http://arxiv.org/abs/1604.07160

[8] C. N. Silla and A. A. Freitas, “A survey of hierarchical
classification across different application domains,” Data
Mining and Knowledge Discovery, vol. 22, no. 1, pp.
31–72, Jan 2011. [Online]. Available: https://doi.org/10.1007/
s10618-010-0175-9

[9] K. Simonyan and A. Zisserman, “Very deep convolutional
networks for large-scale image recognition,” arXiv preprint
arXiv:1409.1556, 2014.

[10] D. P. Kingma and J. Ba, “Adam: A method for stochastic op-
timization,” arXiv preprint arXiv:1412.6980, 2014.

[11] T. Tieleman and G. Hinton, “Rmsprop, coursera: Neural net-
works for machine learning,” Technical report, 2012.

[12] I. Loshchilov and F. Hutter, “SGDR: Stochastic gradient de-
scent with warm restarts,” arXiv preprint arXiv:1608.03983,
2016.

252


