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Abstract

We develop a Bayrewriting the error term esian vector autoregressive (VAR)
model with multivariate stochastic volatility that is capable of handling
vast dimensional information sets. Three features are introduced to permit
reliable estimation of the model. First, we assume that the reduced-form
errors in the VAR feature a factor stochastic volatility structure, allowing
for conditional equation-by-equation estimation. Second, we apply recently
developed global–local shrinkage priors to the VAR coefficients to cure the
curse of dimensionality. Third, we utilize recent innovations to sample effi-
ciently from high-dimensional multivariate Gaussian distributions. This makes
simulation-based fully Bayesian inference feasible when the dimensionality is
large but the time series length is moderate. We demonstrate the merits of
our approach in an extensive simulation study and apply the model to US
macroeconomic data to evaluate its forecasting capabilities.
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1 INTRODUCTION

Previous research has identified two important features
that macroeconometric models should possess: the abil-
ity to exploit high-dimensional information sets (Bańbura
et al., 2010; Koop et al., 2019; Rockova & McAlinn,
2017; Stock & Watson, 2011) and the possibility to cap-
ture nonlinear features of the underlying time series
(Bitto & Frühwirth-Schnatter, 2019; Clark, 2011; Clark &
Ravazzolo, 2015; Cogley & Sargent, 2001; Huber et al.,
2019; Primiceri, 2005). While the literature suggests sev-
eral paths to estimate large models, the majority of
such approaches imply that once nonlinearities are taken
into account analytical solutions are no longer avail-
able and the computational burden becomes prohibitive.
This implies that high-dimensional nonlinear models can
practically be estimated only under strong (and often
unrealistic) restrictions on the dynamics of the model.

However, especially in forecasting applications or in struc-
tural analysis, successful models should generally be able
to exploit much information and also control for breaks
in the autoregressive parameters or, more importantly,
changes in the volatility of economic shocks (Koop et al.,
2009; Primiceri, 2005; Sims & Zha, 2006).

Two reasons limit the use of large (or even huge) non-
linear models. The first reason is statistical. Since the
number of parameters in a standard vector autoregression
rises quadratically with the number of time series included
and commonly used macroeconomic time series are rather
short, in-sample overfitting turns out to be a serious issue.
As a solution, the Bayesian literature on vector autoregres-
sive (VAR) modeling (e.g., Ankargren et al., 2019; Bańbura
et al., 2010; Clark, 2011; Clark & Ravazzolo, 2015; Doan
et al., 1984; Follett & Yu, 2019; George et al., 2008; Huber
& Feldkircher, 2019; Koop, 2013; Korobilis & Pettenuzzo,
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2019; Litterman, 1986; Sims & Zha, 1998) suggests shrink-
age priors that push the parameter space towards some
stylized prior model like a multivariate random walk. On
the other hand, Ahelegbey et al. (2016) suggest viewing
VARs as graphical models and perform model selection
drawing from the literature on sparse directed acyclic
graphs. This typically leads to much improved forecast-
ing properties and more meaningful structural inference.
Moreover, the majority of the literature on Bayesian VARs
imposes conjugate priors on the autoregressive parame-
ters, allowing for analytical posterior solutions and thus
avoiding simulation-based techniques such as Markov
chain Monte Carlo (MCMC). Frequentist approaches often
consider multistep approaches (e.g., Davis et al., 2016).

The second reason is computational. Nonlinear
Bayesian models typically have to be estimated by means
of MCMC, and computational intensity increases vastly
when the number of component series becomes large.
This increase stems from the fact that standard algorithms
for multivariate regression models call for the inversion
of large covariance matrices. Especially for sizable sys-
tems, this can quickly turn prohibitive since the inverse
of the posterior variance–covariance matrix on the coeffi-
cients has to be computed for each sweep of the MCMC
algorithm. For natural conjugate models, this step can be
vastly simplified because the likelihood possesses a con-
venient Kronecker structure, implying that all equations
in the VAR feature the same set of explanatory vari-
ables. This speeds up computation by large margins but
restricts the flexibility of the model. Carriero et al. (2016),
for instance, exploit this fact and introduce a simplified
stochastic volatility specification. Another strand of the lit-
erature augments each equation of the VAR by including
the residuals of the preceding equations (Carriero et al.,
2019), which also provides significant improvements in
terms of computational speed. Finally, in a recent contri-
bution, Koop et al. (2019) reduce the dimensionality of
the problem at hand by randomly compressing the lagged
endogenous variables in the VAR.

All papers mentioned hitherto focus on capturing
cross-variable correlation in the conditional mean through
the VAR part, and the comovement in volatilities is cap-
tured by a rich specification of the error variance (Prim-
iceri, 2005) or by a single factor (Carriero et al., 2016).
Another strand of the literature, typically used in financial
econometrics, utilizes factor models to provide a parsi-
monious representation of a covariance matrix, focusing
exclusively on the second moment of the predictive den-
sity. For instance, Pitt and Shephard (1999) and Aguilar
and West (2000) assume that the variance–covariance
matrix of a broad panel of time series might be described
by a lower dimensional matrix of latent factors featuring

stochastic volatility and a variable-specific idiosyncratic
stochastic volatility process.1

The present paper combines the virtues of exploiting
large information sets and allowing for movements in the
error variance. The overfitting issue mentioned above is
solved as follows. First, we use a Dirichlet–Laplace (DL)
prior specification (see Bhattacharya et al., 2015) on the
VAR coefficients. This prior is a global–local shrinkage
prior in the spirit of Polson and Scott (2011) that enables us
to heavily shrink the parameter space but at the same time
provides enough flexibility to allow for nonzero regression
coefficients if necessary. Second, a factor stochastic volatil-
ity model on the VAR errors grants a parsimonious rep-
resentation of the time-varying error variance–covariance
matrix of the VAR. To deal with the computational com-
plexity, we exploit the fact that, conditionally on the
latent factors and their loadings, equation-by-equation
estimation becomes possible within each MCMC itera-
tion. Moreover, we apply recent advances for fast sam-
pling from high-dimensional multivariate Gaussian distri-
butions (Bhattacharya et al., 2016) that permit estimation
of models with hundreds of thousands of autoregressive
parameters and an error covariance matrix with tens of
thousands of nontrivial time-varying elements on a quar-
terly US data set in a reasonable amount of time. In a
careful analysis, we show to what extent our proposed
method improves upon a set of standard algorithms typi-
cally used to simulate from the joint posterior distribution
of large-dimensional Bayesian VARs.

We first assess the merits of our approach in an exten-
sive simulation study based on a range of different
data-generating processes (DGPs). Relative to a set of com-
peting benchmark specifications we show that, in terms
of point estimates, the proposed global–local shrinkage
prior yields precise parameter estimates and successfully
introduces shrinkage in the modeling framework, without
overshrinking significant signals.

In an empirical application, we adopt a modified ver-
sion of the quarterly data set proposed by Stock and Wat-
son (2011) and McCracken and Ng (2016). To illustrate
the out-of-sample performance of our model, we forecast
important economic indicators such as output, consumer
price inflation, and short-term interest rates, amongst oth-
ers. The proposed model is benchmarked against sev-
eral alternatives. Our findings suggest that it performs
well in terms of one-step-ahead predictive likelihoods. In
addition, investigating the time profile of the cumulative
log-predictive likelihood reveals that allowing for large
information sets in combination with the factor structure
especially pays off in times of economic stress.

1Two recent exceptions are Koop and Korobilis (2013) and Carriero et al.
(2016).
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The remainder of this paper is structured as follows.
Section 2 introduces the econometric framework. Section
3 details the Bayesian estimation approach, including an
elaborated account of the (shrinkage) prior setup adopted
and the corresponding conditional posterior distributions.
Section 4 provides an analysis of the computational gains
of our algorithm relative to a set of established algo-
rithms. Section 5 presents the results of an extensive
simulation study comparing the performance of carefully
selected shrinkage priors for different time series lengths
and model dimensions within various (sparse and dense)
data-generating scenarios. Section 6, after giving a brief
overview of the data set used along with the model spec-
ification, illustrates our modeling approach by fitting a
single-factor model to 215-dimensional quarterly US data.
Moreover, we perform a forecasting exercise to assess the
predictive performance of our approach and discuss the
choice of the number of latent factors. Finally, Section 7
concludes.

2 ECONOMETRIC FRAMEWORK

Suppose interest centers on modeling an m × 1 vector of
time series denoted by yt with t = 1, … ,T. We assume that
yt follows a heteroskedastic VAR(p) process:2

yt = A1yt−1 + … + Apyt−p + 𝜺t, 𝜺t ∼ m(0,𝛀t). (1)

Each Aj (j = 1, … , p) is an m × m matrix of autore-
gressive coefficients. The error term is assumed to fol-
low a multivariate Gaussian distribution with time-varying
variance–covariance matrix 𝛀t. To permit reliable and par-
simonious estimation when m is large, we decompose the
residual covariance matrix into

𝛀t = 𝚲V t𝚲 + 𝚺t, (2)

where both 𝚺t = diag(𝜎2
1t, … , 𝜎2

mt) and V t =
diag(eh1t , … , ehqt ) are diagonal matrices with dimension
m and q, respectively, and 𝚲 denotes an m × q matrix
of factor loadings with typical element 𝜆ij (i = 1, … ,m;
j = 1, … , q). The logarithms of the diagonal elements of
𝚺t and Vt follow AR(1) processes:

h𝑗t = 𝜌h𝑗h𝑗,t−1 + eh𝑗,t, 𝑗 = 1, … , q, (3)

log 𝜎2
it = 𝜇𝜎i+𝜌𝜎i(log 𝜎2

i,t−1−𝜇𝜎i)+e𝜎i,t, i = 1, … ,m. (4)
To identify the scaling of the elements of 𝚲, the process
specified in Equation (3) is assumed to have mean zero,
while 𝜇𝜎j in Equation (4) is the unconditional mean of the
log-elements of 𝚺t to be estimated from the data (cf. Kast-
ner et al., 2017). The parameters 𝜌hj and 𝜌𝜎i are a priori

2For simplicity of exposition we omit the intercept term in the following
discussion (which we nonetheless include in the empirical application).

restricted to the interval (−1, 1) and denote the persistence
of the latent log variances. The error terms ehj,t and e𝜎i,t

constitute independent zero mean innovations with vari-
ances 𝜍2

h𝑗 and 𝜍2
𝜎i, respectively. This specification implies

that the volatilities are mean reverting and thus bounded
in the limit.

This error structure is known as the factor stochastic
volatility model (see, e.g., Aguilar & West, 2000; Pitt &
Shephard, 1999). It can be equivalently written by intro-
ducing q conditionally independent latent factors f t ∼
q(0,V t) and rewriting the error term in Equation (1) as

𝜺𝑡 = 𝚲ft + 𝛈t, 𝛈t ∼ m(0,𝚺t). (5)

Note that off-diagonal entries of 𝛀t exclusively stem
from the volatilities of the q factors, while the diagonal
entries of𝛀t are allowed to feature idiosyncratic deviations
driven by the elements of𝚺t. This specification reduces the
number of free elements in 𝛀t from m(m + 1)∕2 to mq,
where the latter quantity is typically much smaller than the
former. In addition, by conditioning on the latent factors,
this representation enables us to derive an efficient Gibbs
sampler that allows for conditional equation-by-equation
estimation. As will be discussed in more detail in Section
3.2, this constitutes a key feature for computationally
feasible Bayesian inference when the dimensionality m
becomes large.

The model described by Equations (1) and (2) is related
to several alternative specifications commonly used in the
literature. For instance, assuming that Vt = I and 𝚺t ≡ 𝜮

for all t leads to the specification adopted in Stock and Wat-
son (2005). Setting q = 1 and 𝚺t ≡ 𝜮 yields a specification
that is similar to the one stipulated in Carriero et al. (2016),
with the difference that our model imposes restrictions
on the covariances whereas Carriero et al. (2016) estimate
a full (but constant) covariance matrix. In addition, our
model implies that the stochastic volatility enters 𝛀t in an
additive fashion.

Before proceeding to the next subsection it is worth
summarizing the key features of the model given by
Equations (1)–(5). First, we capture cross-variable move-
ments in the conditional mean through the VAR block of
the model and assume that comovement in conditional
variances is captured by a factor structure. Second, the
model introduces stochastic volatility by assuming that a
large panel of volatilities may be efficiently summarized
through a set of latent heteroskedastic factors. This choice
is more flexible than a single-factor model for the volatility,
effectively providing a parsimonious representation of 𝛀t

that is flexible enough to replicate the dynamic behavior of
the variances of a broad set of macroeconomic quantities.
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3 INFERENCE IN
LARGE-DIMENSIONAL VAR
MODELS

Our approach to estimation and inference is Bayesian. This
implies that, after specifying a suitable prior distribution
on the model parameters, we can combine this prior with
the likelihood implied by the data and the model to obtain
the corresponding posterior distribution.

3.1 A global–local shrinkage prior
For prior implementation, it proves to be convenient to
define a k×1 vector of predictors xt = (y′

t−1, … , y′
t−p)

′ and
an m × k coefficient matrix B = (A1, … ,Ap) with k = mp
to rewrite the model in Equation (1) more compactly as
yt = Bxt + 𝜺t. Stacking the rows of yt, xt, and 𝜺t yields

Y = XB′ + E, (6)

where Y = (y1, … , yT)′, X = (x1, … , xT)′, and E =
(𝜺1, … , 𝜺T)′ denote the corresponding full data matrices.

Typically, the matrix B is a sparse matrix with nonzero
elements mainly located on the main diagonal of A1.
In fact, existing priors in the Minnesota tradition tend
to strongly push the system towards the prior model in
high dimensions. However, especially in large models,
an extremely tight prior on B might lead to severe over-
shrinking, effectively zeroing out coefficients that might be
important to explain yt. If the matrix B is characterized by a
relatively low number of nonzero regression coefficients, a
possible solution is a global–local shrinkage prior (Polson
& Scott, 2011).

A recent variant that falls within the class of global–local
shrinkage priors is the Dirichlet–Laplace (DL) prior put
forward in Bhattacharya et al. (2015). This prior possesses
convenient shrinkage properties in the presence of a large
degree of sparsity of the parameter vector b = vec(B).
In what follows, we impose the DL prior on each of the
K = mk elements of b, denoted by bj, for j = 1, … ,K:

b𝑗 ∼ (𝜗𝑗𝜁 ) ⇔ b𝑗 ∼  (0, 𝜓𝑗𝜗2
𝑗 𝜁

2), 𝜓𝑗 ∼ (1∕2),
(7)

where  denotes the double exponential (Laplace) and
 the exponential distribution, 𝜓 j is an auxiliary scaling
parameter to achieve conditional normality, and the ele-
ments of 𝝑 = (𝜗1, … , 𝜗K)′ are local auxiliary scaling
parameters that are bounded to the (K − 1)-dimensional
simplex K−1 = {𝝑 ∶ 𝜗𝑗 ≥ 0,

∑n
𝑗=1 𝜗𝑗 = 1}. A nat-

ural prior choice for 𝜗j is the (symmetric) Dirichlet dis-
tribution with hyperparameter a: 𝜗𝑗 ∼ (a, … , a). In
addition, 𝜁 is a global shrinkage parameter that pushes
all elements in B towards zero and exhibits an important
role in determining the tail behavior of the marginal prior
distribution on bj, obtained after integrating out the 𝜗js.

Thus we follow Bhattacharya et al. (2015) and adopt a
fully Bayesian approach by specifying a gamma distributed
prior on 𝜁 ∼ (Ka, 1∕2). It is noteworthy that this prior
setup has at least two convenient features that appear to
be of prime importance for VAR modeling. First, it exerts
a strong degree of shrinkage on all elements of B but still
provides additional flexibility such that nonzero regres-
sion coefficients are permitted. This critical property is a
feature which a large class of global–local shrinkage pri-
ors share (Griffin & Brown, 2010; Carvalho et al., 2010;
Polson & Scott, 2011) and has been recently adopted in
a VAR framework by Huber and Feldkircher (2019) and
within the general context of state-space models by Bitto
and Frühwirth-Schnatter (2019). Second, implementation
is simple and requires relatively little additional input from
the researcher. In fact, the prior heavily relies on a sin-
gle structural hyperparameter that has to be specified with
care, namely a.

The hyperparameter a influences the empirical proper-
ties of the proposed shrinkage prior along several impor-
tant dimensions. Smaller values of a lead to heavy shrink-
age on all elements of B. To see this, note that lower values
of a imply that more prior mass is placed on small val-
ues of 𝜁 a priori. Similarly, when a is small, the Dirichlet
prior places more mass on values of 𝜗j close to zero. Since
lower values of 𝜁 translate into thicker tails of the marginal
prior on bj, the specific choice of a not only influences
the overall degree of shrinkage but also the tail behavior
of the prior. Letting p̃ denote the number of predictors,
Bhattacharya et al. (2015) show that if a is specified as
p̃−(1+Δ) for any Δ > 0 to be small, the DL prior displays
excellent posterior contraction rates, and Pati et al. (2014),
discuss the shrinkage properties of the proposed prior
within the context of factor models. In our application,
p̃ = K (when considering the total number of predictors)
or p̃ = k (when considering the number or predictors per
equation).

For the factor loadings we independently use a standard
normally distributed prior on each element 𝜆i𝑗 ∼  (0, 1)
for i = 1, … ,m and j = 1, … , q. In the empirical appli-
cation (Section 6), we consider in addition the row-wise
normal-gamma (NG Griffin & Brown, 2010) shrinkage
prior discussed in Kastner (2019); that is𝜆i𝑗|𝜏2

i𝑗 ∼  (0, 𝜏2
i𝑗),

𝜏2
i𝑗|𝜐2

i ∼ (a𝜆, a𝜆𝜐2
i𝑗∕2), 𝜆2

i𝑗 ∼ (c𝜆, d𝜆). Furthermore, we
impose a normally distributed prior on the mean of the
log-volatility 𝜇𝜎𝑗 ∼  (0,M𝜇) with M𝜇 denoting the prior
variance, and the commonly employed beta distributed
prior on the transformed persistence parameter of the
log-volatility 𝜌s𝑗+1

2
∼ (a0, b0) for s ∈ {h, 𝜎} and a0, b0 ∈

R+ to ensure stationarity. Finally, we use a restricted
gamma prior on the innovation variances in Equations (3)
and (4), 𝜍2

s𝑗 ∼ ( 1
2
,

1
2𝜉
). Here, 𝜉 is a hyperparameter used
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to control the tightness of the prior. This choice, motivated
in Frühwirth-Schnatter and Wagner (2010), implies that if
the data are not informative on the degree of time variation
of the log-volatilities then we do not bound 𝜍2

s𝑗 artificially
away from zero, effectively applying more shrinkage than
the standard inverted gamma prior.

3.2 Full conditional posterior
distributions
Conditional on the latent factors and the corresponding
loadings, the model in Equation (1) can be cast as a sys-
tem of m unrelated regression models for the elements in
zt = yt −𝜦ft, labeled zit, with heteroskedastic errors:

zit = Bi•xt + 𝜂it, i = 1, … ,m. (8)

Here we let Bi• denote the ith row of B and 𝜂it is the ith
element of 𝜼t. The corresponding posterior distribution of
B′

i• is k-variate Gaussian:

B′
i•|• ∼  (bi,Qi), (9)

with • indicating that we condition on the remaining
parameters and latent quantities of the model. The poste-
rior variance and mean are given by

Qi = (X̃ ′
iX̃ i +𝚽−1

i )−1, (10)

bi = Qi(X̃
′
i z̃i). (11)

The diagonal prior covariance matrix of the coefficients
related to the ith equation is given by 𝜱i, the respective
k×k diagonal submatrix of 𝚽 = 𝜁 ×diag(𝜓1𝜗

2
1, … , 𝜓K𝜗

2
K).

Moreover, X̃ i is a T × k matrix with typical row t given by
Xt∕𝜎it and z̃i is a T-dimensional vector with the tth element
given by zit∕𝜎it. This normalization renders Equation (8)
conditionally homoskedastic with standard normally dis-
tributed white noise errors.

The full conditional posterior distribution of𝜓 j is inverse
Gaussian:

𝜓𝑗|• ∼ iG(𝜗𝑗𝜁∕|b𝑗|, 1), 𝑗 = 1, … ,K. (12)

The conditional posterior of the global shrinkage parame-
ter 𝜁 follows a generalized inverse Gaussian (GIG) distri-
bution:

𝜁 |• ∼ 

(
K(a − 1), 1, 2

K∑
𝑗=1

|b𝑗|∕𝜗𝑗
)
. (13)

To draw from this distribution, we use the efficient
algorithm of Hörmann and Leydold (2013). Moreover,
we sample the scaling parameters 𝜗j by first sampling Lj
from L𝑗|• ∼ (a − 1, 1, 2|b𝑗|), and then setting 𝜗𝑗 =
L𝑗∕

∑K
i=1 Li.

The conditional posterior distributions of the factors are
Gaussian and thus straightforward to draw from. The fac-
tor loadings are sampled using “deep interweaving” (see

Kastner et al., 2017), and the parameters in Equations (3)
and (4) along the full histories of the latent log-volatilities
are sampled as in Kastner and Frühwirth-Schnatter (2014)
using the R-packages factorstochvol (Hosszejni &
Kastner, 2019) and stochvol (Kastner, 2016).

Our MCMC algorithm iteratively draws from the con-
ditional posterior distributions outlined above and dis-
cards the first J draws as burn-in. In terms of compu-
tational requirements, the single most intensive step is
the simulation from the joint posterior of the autoregres-
sive coefficients in B. Because this step is implemented
on an equation-by-equation basis, speed improvements
relative to the standard approach are already quite sub-
stantial. However, note that if k is large (i.e., of the
order of several thousands), even the commonly employed
equation-by-equation sampling fails to deliver a sufficient
amount of draws within a reasonable time window. Con-
sequently, we outline an alternative algorithm to draw
from a high-dimensional multivariate Gaussian distribu-
tion under a Bayesian prior that features a diagonal prior
variance–covariance matrix in the upcoming section.

4 COMPUTATIONAL ASPECTS

The typical approach to sampling from Equation (9)
is based on the full system and simultaneously sam-
ples from the full conditional posterior of B, imply-
ing that the corresponding posterior distribution is a
K-dimensional Gaussian distribution with a K × K dimen-
sional variance–covariance matrix. Under a nonconjugate
prior, the computational difficulties arise from the need
to invert the K × K variance–covariance matrix, which
requires operations of order O(m6p3) under Gaussian elim-
ination.

If a conjugate prior in combination with a constant
(or vastly simplified heteroskedastic; see Carriero et al.,
2016) specification of 𝛀t is used, the corresponding
variance–covariance features a Kronecker structure which
is computationally cheaper to invert and scales better in
large dimensions. Specifically, the manipulations of the
corresponding covariance matrix are of order O(m3 + k3),
a significant gain relative to the standard approach. How-
ever, this comes at a cost since all equations have to feature
the same set of variables, the prior on the VAR coeffi-
cients has to be symmetric, and any stochastic volatility
specification that preserves conjugacy is necessarily overly
simplistic.

By contrast, recent studies emphasize the computational
gains that arise from utilizing a framework that is based
on equation-by-equation estimation. Carriero et al. (2019)
and Koop et al. (2019) augment each equation of the
system by either contemporaneous values of the endoge-
nous variables of the preceding equations or the resid-
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uals from the previous equations. Here, our approach
renders the equations of the system conditionally inde-
pendent by conditioning on the factors. From a computa-
tional perspective, the differences between using a factor
model to disentangle the equations and an approach based
on augmenting specific equations by quantities that aim
to approximate covariance parameters are negligible. If
we sample from Equation (9) directly, the computations
involved are of order O(mk3) = O(m4p3). This already
poses significant improvements relative to full system
estimation.

One contribution of the present paper is the application
of the algorithm proposed by Bhattacharya et al. (2016)
and developed for univariate regression models under a
global–local shrinkage prior. This algorithm is applied to
each equation in the system and cycles through the follow-
ing steps:

1. Sample independently ui ∼  (0k,𝚽i) and 𝛅i ∼
 (0T , IT).

2. Use ui and 𝛅i to construct vi = X̃ iui + 𝛅i.
3. Solve (X̃ i𝚽iX̃

′
i + IT)wi = (z̃i − vi) for wi.

4. Set B′
i• = ui +𝚽iX̃

′
iwi.

This algorithm outperforms all competing variants dis-
cussed previously in situations where k ≫ T, a situ-
ation commonly encountered when dealing with large
VAR models. In such cases, steps 1–4 can be carried out
using O(pm2T2) floating point operations. In situations
where k ≈ T, the computational advantages relative to
the standard equation-by-equation algorithm mentioned
above are modest or even negative. However, note that
the cost is quadratic in m and linear in p and thus scales
much better when the number of endogenous variables
and/or lags thereof is increased. More information on the
empirical performance of our algorithm can be found in
Section 6.4.

5 SIMULATION STUDY

This section aims at comparing the performance of the
DL prior with a range of commonly used alternatives. We
investigate sparse, intermediate, and dense DGPs, where
T ∈ {50, 100, 150, 200, 250} and m ∈ {10, 20, 50, 100}.
The probability of an off-diagonal entry to be nonzero is
0.01, 0.1, and 0.8 in each of the respective scenarios. In
all scenarios, each intercept entry has a 0.1 probability
of being nonzero and all diagonal elements are nonzero
with probability 0.8. The nonzero elements are randomly
generated from Gaussian distributions roughly tuned to
yield stable VARs. More concretely, both the mean 𝜇I
and the standard deviation 𝜎I of the intercept are set to
0.01, whereas mean and standard deviation of the diago-

nal (D) and the off-diagonal (O) elements are chosen as
follows:

• Dense: 80% off-diagonal density level, 𝜇D = 𝜎D = 0.15
and 𝜇O = 𝜎O = 0.01.

• Intermediate: 10% off-diagonal density level, 𝜇D = 𝜎D =
0.15 and 𝜇O = 𝜎O = 0.1.

• Sparse: 1% off-diagonal density level, 𝜇D = 𝜎D = 𝜇O =
𝜎O = 0.3.

Concerning the errors, we use a single-factor SV
specification. The factor loadings are generated from
 (0.001, 0.0012) to roughly match the above scaling. The
AR(1) processes driving the idiosyncratic log-variances are
assumed to have mean 𝜇𝜎i = −12 with persistences 𝜌𝜎i
ranging from 0.85 to 0.98 and innovation standard devi-
ations 𝜍𝜎i from 0.3 to 0.1. The process driving the factor
log-variance is assumed to be highly persistent, with 𝜌h1 =
0.99 and 𝜍h1 = 0.1.

For each of the 60 settings, we simulate 10 data sets. For
each of these, we run our MCMC algorithm to obtain 2,000
posterior draws after a burn-in of 1,000. Consequently, the
posterior means are compared to the true values and root
mean squared errors (RMSEs) are computed. Finally, the
median of each of these is reported in Table 1. Alongside
the DL prior with weak (aDL = a = 1∕2) and strong (aDL =
a = 1∕k and aDL = a = 1∕K) shrinkage, we also consider
the NG prior with a single global shrinkage parameter
(see Huber & Feldkircher, 2019, for the exact specification)
and a standard conjugate Minnesota prior with a single
shrinkage parameter aM, implemented by using dummy
observations. For the NG prior we specify the prior on the
global shrinkage parameter to induce heavy shrinkage (by
setting both hyperparameters of the gamma prior equal to
0.01) and the prior controlling the excess kurtosis aNG is set
equal to 1, corresponding to the Bayesian Lasso (see Park
& Casella, 2008), and aNG = 0.1. The latter choice places
significant prior mass around zero but at the same time
leads to a heavy tailed marginal prior. Finally, we report
RMSEs of the ordinary least squares (OLS) estimator
(if it exists).

As is to be expected, Table 1 reveals strong to severe
overfitting of OLS (corresponding to the posterior mode
under a flat prior), which can be mitigated to a cer-
tain extent when the Minnesota prior with aM = 0.001
is employed instead. Similarly, the DL prior with weak
shrinkage (aDL = 1∕2) displays a tendency to over-
fit, in particular when T is small. By contrast, the more
aggressive DL and NG shrinkage priors show superior
performance. Overall, DL(1∕k) and NG(0.1) exhibit low-
est RMSEs, where DL(1∕k) performs best in the sparse
scenarios, NG(0.1) performs best in the intermediate set-
tings, and no clear winner is to be found in the dense
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T m Sparse Intermediate Dense
10 20 50 100 10 20 50 100 10 20 50 100

DL (aDL=1/2)
50 0.079 0.081 0.085 0.088 0.083 0.084 0.086 0.089 0.077 0.082 0.087 0.091

100 0.056 0.056 0.056 0.058 0.060 0.060 0.059 0.061 0.056 0.056 0.058 0.060
150 0.043 0.047 0.045 0.046 0.045 0.050 0.048 0.048 0.044 0.049 0.047 0.049
200 0.040 0.040 0.039 0.038 0.043 0.042 0.042 0.041 0.041 0.040 0.040 0.041
250 0.038 0.034 0.034 0.034 0.039 0.038 0.037 0.036 0.038 0.036 0.036 0.037

DL (aDL=1/k)
50 0.055 0.043 0.037 0.033 0.069 0.053 0.049 0.046 0.057 0.041 0.029 0.026

100 0.042 0.035 0.028 0.025 0.050 0.047 0.044 0.041 0.042 0.033 0.026 0.023
150 0.032 0.032 0.023 0.020 0.042 0.040 0.040 0.038 0.036 0.028 0.023 0.021
200 0.031 0.026 0.020 0.017 0.041 0.038 0.036 0.034 0.032 0.027 0.022 0.020
250 0.030 0.022 0.018 0.015 0.036 0.035 0.033 0.032 0.029 0.025 0.020 0.019

DL (aDL=1/K)
50 0.062 0.043 0.038 0.033 0.072 0.054 0.050 0.047 0.063 0.038 0.028 0.027

100 0.050 0.038 0.028 0.025 0.059 0.049 0.046 0.043 0.047 0.035 0.026 0.024
150 0.044 0.033 0.025 0.021 0.054 0.044 0.041 0.039 0.038 0.033 0.024 0.022
200 0.040 0.031 0.022 0.018 0.051 0.041 0.039 0.036 0.039 0.029 0.022 0.021
250 0.037 0.026 0.019 0.016 0.043 0.039 0.036 0.033 0.039 0.027 0.020 0.020

NG (aNG=1)
50 0.063 0.049 0.044 0.042 0.069 0.053 0.049 0.047 0.060 0.042 0.031 0.027

100 0.051 0.042 0.036 0.033 0.054 0.048 0.042 0.039 0.048 0.037 0.027 0.023
150 0.043 0.037 0.031 0.028 0.046 0.042 0.038 0.036 0.040 0.034 0.026 0.021
200 0.039 0.033 0.028 0.025 0.044 0.039 0.036 0.032 0.038 0.031 0.024 0.020
250 0.037 0.029 0.025 0.023 0.039 0.035 0.032 0.031 0.038 0.029 0.022 0.019

NG (aNG=0.1)
50 0.058 0.043 0.038 0.034 0.066 0.052 0.048 0.045 0.055 0.042 0.029 0.026

100 0.043 0.035 0.028 0.024 0.050 0.045 0.039 0.037 0.044 0.034 0.026 0.022
150 0.035 0.031 0.024 0.020 0.040 0.039 0.034 0.032 0.037 0.031 0.023 0.020
200 0.031 0.026 0.021 0.018 0.038 0.034 0.031 0.028 0.031 0.027 0.022 0.019
250 0.030 0.023 0.018 0.016 0.034 0.030 0.028 0.026 0.031 0.024 0.020 0.018

Minnesota (aM=0.001)
50 0.135 0.137 0.164 0.105 0.134 0.140 0.153 0.102 0.131 0.143 0.165 0.107

100 0.092 0.105 0.112 0.136 0.094 0.104 0.109 0.119 0.094 0.105 0.116 0.129
150 0.079 0.083 0.088 0.102 0.077 0.082 0.086 0.094 0.080 0.084 0.090 0.102
200 0.070 0.071 0.075 0.082 0.069 0.070 0.073 0.077 0.070 0.072 0.077 0.085
250 0.058 0.063 0.065 0.070 0.059 0.063 0.064 0.067 0.060 0.064 0.068 0.071

Minnesota (aM=0.0001)
50 0.067 0.052 0.048 0.046 0.073 0.054 0.049 0.045 0.062 0.037 0.028 0.022

100 0.063 0.050 0.047 0.045 0.069 0.052 0.047 0.044 0.059 0.036 0.028 0.022
150 0.061 0.049 0.045 0.044 0.066 0.049 0.045 0.042 0.056 0.035 0.028 0.021
200 0.061 0.047 0.044 0.043 0.065 0.048 0.044 0.041 0.054 0.034 0.027 0.022
250 0.058 0.046 0.042 0.041 0.059 0.046 0.042 0.040 0.053 0.033 0.027 0.021

OLS (if exists)
50 0.158 0.205 DNE DNE 0.158 0.211 DNE DNE 0.160 0.211 DNE DNE

100 0.106 0.128 0.163 DNE 0.107 0.126 0.157 DNE 0.110 0.128 0.165 DNE
150 0.088 0.099 0.112 0.155 0.087 0.098 0.109 0.155 0.090 0.101 0.115 0.167
200 0.080 0.078 0.087 0.104 0.079 0.078 0.085 0.106 0.080 0.080 0.091 0.114
250 0.065 0.071 0.078 0.092 0.066 0.070 0.077 0.086 0.067 0.071 0.081 0.096

TABLE 1 Median RMSEs
stemming from 10 simulations
per setting

context. Turning towards NG(1) and DL(1∕K) we tend
to observe acceptable but slightly inferior overall perfor-
mance. The Minnesota prior with aM = 0.0001 yields
an extreme degree of shrinkage, translating into esti-
mates of autoregressive coefficients that are very close
to zero, irrespectively of the contribution from the like-

lihood. In that sense, it overshrinks most of the nonzero

coefficients. Nevertheless, in scenarios with extremely low

signal-to-noise ratios (such as the dense scenario with T =

50 and m = 100), this can be beneficial for the overall

performance.
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For further illustration, we showcase four exemplary
scenarios in Figures A1–A4 in the Appendix.

6 EMPIRICAL FORECASTING
APPLICATION

In Section 6.1 we first summarize the data set adopted
and present the model specification choices made. Section
6.2 estimates a simple one-factor model to outline the
virtues of our proposed framework. Section 6.3 presents
the main findings of our forecasting exercise and discusses
the choice of the number of factors used for modeling the
error covariance structure.

6.1 Data, model specification
and selection issues
The aim of the empirical application is to forecast a set of
key US macroeconomic quantities. To this end, we use the
quarterly data set provided by McCracken and Ng (2016),
a variant of the well-known Stock and Watson (2011) data
set for the USA.3 The data span the period ranging from
1959:Q1 to 2015:Q4. We include m = 215 quarterly time
series, capturing information on 14 important segments of
the economy and follow McCracken and Ng in transform-
ing the data to be approximately stationary. Furthermore,
we standardize each component series to have zero mean
and variance one. In the empirical examples we include
p = 1 lags of the endogenous variables.4 The hyperparam-
eters are chosen as follows: M𝜇 = 10, a0 = 20, b0 = 1.5,
𝜉 = 1, a𝜆 = 0.1, c𝜆 = d𝜆 = 1.

6.2 Some empirical key features of the
model
To provide some intuition on how our modeling approach
works in practice, we first estimate a simple one-factor
model (i.e., q = 1) and investigate several features of
our empirical model. In the next section we will perform
an extensive forecasting exercise and discuss the optimal
number of factors in terms of forecasting accuracy.

We start by inspecting the posterior distribution of 𝚲
and assess what variables load heavily on the latent factor.

3In addition to quarterly observations, McCracken and Ng (2016) also
provide a subset of the data which is observed monthly. Of course, our
method is analogously applicable to higher frequency observations. How-
ever, given that the computational cost of the Bhattacharya et al. (2016)
approach is quadratic in T, the run-time gains of their approach in
comparison to equation-by-equation estimation is then smaller and can,
depending on the number of lags, even become be negative.
4We have also experimented with higher lag orders and also found some
evidence of signals at lag two for the data set at hand; see Figures A5–A7
in the Appendix for an illustration. However, out-of-sample predictive
studies favored one lag only (cf. Section 6.3).

It is worth emphasizing that most quantities5 associated
with real activity (i.e., industrial production and its compo-
nents, gross domestic product (GDP) growth, employment
measures) load heavily on the factor. Moreover, expecta-
tion measures, housing markets, equity prices, and spreads
also load heavily on the joint factor.

To assess whether spikes in the volatility associated with
the factor coincide with major economic events, the bot-
tom panel of Figure 1 depicts the evolution of the posterior
distribution of factor volatility over time. A few findings
are worth mentioning. First, volatility spikes sharply dur-
ing the mid-1970s, a period characterized by the first oil
price shock and the bankruptcy of Franklin National Bank
in 1974. After declining markedly during the second half of
the 1970s, the shift in US monetary policy towards aggres-
sively fighting inflation and the second oil price shock
again translate into higher macroeconomic uncertainty.
Note that from the mid-1980s onward we observe a gen-
eral decline in macroeconomic volatility that lasts until the
beginning of the 1990s. There we observe a slight increase
in volatility possibly caused by the events surrounding the
first Gulf War. The remaining years up to the beginning of
the 2000s have been relatively unspectacular, with volatil-
ity levels being muted most of the time. In 2000/2001,
volatility again increases due to the burst of the dot-com
bubble and the 9/11 terrorist attacks. Finally, we observe
marked spikes in volatility during recessionary episodes
like the recent financial crisis in 2008.

Finally, we assess how well the DL prior with a = 1∕k
performs in shrinking the coefficients in B to zero. The top
panel of Figure 2 depicts a heat map that gives a rough feel-
ing of the size of each regression coefficient based on the
posterior median of B. The bottom panel of Figure 2 depicts
the posterior interquartile range, providing some evidence
on posterior uncertainty.6 The DL prior apparently suc-
ceeds in shrinking the vast majority of the approximately
50,000 coefficients towards zero. Even though not dis-
cussed in detail to conserve space, we note that at higher
lag orders this very strong shrinkage effect is even more
pronounced; see also Figures A5–A7 in the Appendix.

The top panel of Figure 3 displays the posterior median
estimates when the shrinkage parameter a is chosen to be
1/2 (cf. Bhattacharya et al., 2015, for a discussion of this
choice). While a = 1∕2 appears to provide a fair amount of
shrinkage in other applications, for our huge dimensional
example this prior exerts only relatively little shrinkage
and tends to lead to overfitting. The diagonal pattern in the
first lag appears here as well, but there is a considerable

5Hereby we refer to the one-step-ahead forecast error related to a given
time series.
6Since the corresponding posterior distribution is quite heavy tailed,
using posterior standard deviations, while providing a qualitatively sim-
ilar picture, tends to be slightly exaggerated.
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FIGURE 1 5th, 50th, and 95th posterior percentiles of factor loadings (upper panel) and factor volatility (lower panel)

amount of nonzero medians elsewhere. Correspondingly,
the interquartile ranges visualized in the bottom panel of
Figure 3 are also very large compared to those obtained
with a = 1∕k.

Interestingly, for selected time series measuring infla-
tion (both consumer and producer price inflation) we find
that lags of monetary aggregates are allowed to load on the
respective inflation series. This result points towards a big
advantage of our proposed prior relative to standard VAR
priors in the Minnesota tradition: While these priors have
been shown to work relatively well in huge dimensions
(see Bańbura et al., 2010), they also display a tendency to
overshrink when the overall tightness of the prior is inte-
grated out in a Bayesian framework, effectively pushing
the posterior distribution of B towards the prior mean and
thus ruling out patterns observed under the DL prior.

Inspection of the interquartile range also indicates that
the proposed shrinkage prior succeeds in reducing poste-
rior uncertainty markedly. Note that the pattern found for
the posterior median of B can also be found in terms of
the posterior dispersion. We again observe that the coeffi-
cients associated with the first, own lag of a given variable
are allowed to be nonzero whereas in most other cases the
associated posterior is strongly concentrated around zero.

6.3 Predictive evidence
We focus on forecasting gross domestic product (GDPC96),
industrial production (INPRO), total nonfarm payroll
(PAYEMS), civilian unemployment rate (UNRATE), new

privately owned housing units started (HOUST), con-
sumer price index inflation (CPIAUCSL), producer price
index for finished goods inflation (PPIFGS), effective fed-
eral funds rate (FEDFUNDS), 10-year Treasury constant
maturity rate (GS10), US/UK exchange rate (EXUSUKx),
and the S&P 500 (SP500). This choice includes the vari-
ables investigated by Koop et al. (2019) and some addi-
tional important macroeconomic indicators that are com-
monly monitored by practitioners, resulting in a total of 11
series.

To assess the forecasting performance of our model,
we conduct a pseudo out-of-sample forecasting exercise
with initial estimation sample ranging from 1959:Q3 to
1990:Q2. Based on this estimation period, we compute
one-quarter-ahead predictive densities for the first period
in the hold-out (i.e., 1990:Q3). After obtaining the cor-
responding predictive densities and evaluating the corre-
sponding log-predictive likelihoods, we expand the estima-
tion period and reestimate the model. This procedure is
repeated 100 times until the final point of the full sample
is reached. The quarterly scores obtained this way are then
accumulated.

Our model with q ∈ {0, 1,… , 4} factors is benchmarked
against the prior model, a pure factor stochastic volatil-
ity (FSV) model with conditional mean equal to zero (i.e.,
B = 0m×k). In what follows we label this specification FSV
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FIGURE 2 Posterior medians (top) and posterior interquartile ranges (bottom) of VAR coefficients, a = 1∕k = 1∕216 [Colour figure can be
viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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FIGURE 3 Posterior medians (top) and posterior interquartile ranges (bottom) of VAR coefficients, a = 1∕2 [Colour figure can be viewed
at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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0. To assess the merits of the proposed shrinkage prior
vis-à-vis a Minnesota prior and an NG shrinkage prior we
also include the models described in Section 5. Moreover,
we include two models that impose the restriction that
A1 = Im and A1 = 0.8 × Im, while Aj for j > 1 are
set equal to zero matrices in both cases. The first model,
labeled FSV 1, assumes that the conditional mean of yt fol-
lows a random walk process, and the second specification,
denoted by FSV 0.8, imposes the restriction that the vari-
ables in yt feature a rather strong degree of persistence but
are stationary. The exercise serves to evaluate whether it
pays to impose a VAR structure on the first moment of the
joint density of our data and to assess how many factors are
needed to obtain precise multivariate density predictions
for our 11 variables of interest.

Overall log-predictive scores (LPSs) are summarized in
Table 2. An immediate finding is that ignoring the error
covariance structure (using zero factors) produces rather
inaccurate forecasts for all models considered. While a sin-
gle factor model improves predictive accuracy by a large
margin, allowing for more factors (i.e., even more flexi-
ble modeling of the covariance structure) further increases
the forecasting performance. For this specific exercise, we
identify two or three factors to be a reasonable choice for
most models when the joint log-predictive scores of the
aforementioned variables are considered. We would like

to stress that this choice critically depends on the number
of variables we include in our prediction set. If we focus
attention on the marginal predictive densities (i.e., the uni-
variate predictive densities obtained after integrating out
the remaining elements in yt), we find that fewer or even
no factors receive more support (see Table 3), whereas in
the case of higher dimensional prediction sets more than
two factors lead to more accurate density predictions (cf.
Kastner et al., 2017, for an investigation of this issue in the
context of a standard FSV model). As a general remark,
we note that identifying the optimal number of factors in
high-dimensional FSV models is a challenging problem in
practice. Using the deviance information criterion (DIC;
cf. Chan & Grant, 2016) may be an option but is likely
to be unstable in very high dimensions. The approach
adopted in the paper at hand, namely the decomposition
of the marginal likelihood into predictive likelihoods (cf.
Geweke & Amisano, 2010) tends to be more stable, in par-
ticular when interest is placed on predicting subsets only.
Moreover, it can be trivially parallelized, thus becoming
computationally feasible on high-performance computing
infrastructures.

Considering forecasting accuracy across models reveals
that our proposed VAR(1)-FSV with a DL(1∕k) prior dis-
plays excellent forecasting capabilities, outperforming all
competitors. Among the VAR(1) models, DL(1∕K) and

TABLE 2 Average log-predictive scores for the
number of factors q ∈ {0, 1, … , 5} in various VAR-FSV
specifications as well as pure FSV models

0 1 2 3 4 5
VAR(1)-FSV DL(1∕2) -14.79 -13.45 -12.74 -12.53 -11.85 -11.44
VAR(1)-FSV DL(1∕k) -10.51 -9.75 -9.15 -9.15 -9.17 -9.43
VAR(1)-FSV DL(1∕K) -10.54 -9.63 -9.22 -9.26 -9.22 -9.38
VAR(1)-FSV NG(1) -10.76 -10.26 -9.72 -9.60 -9.68 -9.86
VAR(1)-FSV NG(0.1) -10.55 -9.95 -9.31 -9.26 -9.47 -9.46
VAR(1)-FSV Min(0.01) -10.99 -10.37 -9.89 -9.88 -9.98 -10.24
VAR(1)-FSV Min(0.001) -12.15 -11.21 -11.08 -10.62 -10.56 -10.83
VAR(2)-FSV DL(1∕k) -10.50 -9.88 -9.22 -9.38 -9.28 -9.43
VAR(2)-FSV NG(0.1) -10.47 -10.04 -9.44 -9.29 -9.40 -9.49
VAR(5)-FSV DL(1∕k) -10.70 -9.97 -9.78 -9.21 -9.44 -9.53
VAR(5)-FSV NG(0.1) -10.61 -10.01 -9.64 -9.51 -9.50 -9.52
FSV 0 -12.08 -11.08 -11.02 -10.66 -10.61 -10.71
FSV 0.8 -11.78 -11.32 -11.06 -10.87 -10.96 -11.25
FSV 1 -11.71 -11.28 -10.95 -10.95 -11.07 -11.18

Note. Estimation and prediction are conducted on all m = 215 component series; the predic-
tive density is then evaluated on the set of 11 variables of interest. Larger numbers indicate
better joint predictive density performance.

TABLE 3 Average univariate
log-predictive scores for inflation
(CPIAUCSL), short-term interest rates
(FEDFUNDS), and output growth
(GDPC96) with q ∈ {0, 1, 2} factors

CPIAUCSL FEDFUNDS GDPC96
0 1 2 0 1 2 0 1 2

VAR(1)-FSV DL(1∕k) -1.03 -1.11 -1.13 -1.26 -1.26 -1.24 0.08 0.05 0.03
VAR(1)-FSV NG(0.1) -1.00 -1.07 -1.10 -1.28 -1.26 -1.22 -0.10 -0.12 -0.15
VAR(2)-FSV DL(1∕k) -1.02 -1.12 -1.14 -1.25 -1.27 -1.22 0.04 -0.01 -0.01
VAR(2)-FSV NG(0.1) -1.00 -1.11 -1.12 -1.26 -1.23 -1.25 -0.14 -0.16 -0.14
VAR(5)-FSV DL(1∕k) -1.05 -1.16 -1.16 -1.29 -1.26 -1.26 -0.02 -0.10 -0.13
VAR(5)-FSV NG(0.1) -1.00 -1.09 -1.13 -1.29 -1.27 -1.25 -0.19 -0.18 -0.21



KASTNER AND HUBER 13

NG(0.1) also do well, and the Bayesian Lasso (NG(1))
as well as the Minnesota prior with medium shrinkage
(Min(0.01)) show decent performance. Clearly, DL(1/2)
overfits and Min(0.001) overshrinks. Note that higher lag
orders seem rarely to increase predictive accuracy. How-
ever, comparing the differences between the benchmark
pure FSV models and the VAR-FSV models considered,
we find that explicitly modeling the conditional mean
improves the forecasting accuracy in practically all cases.

To investigate whether forecasting performance is
homogeneous over time, Figure 4 visualizes the cumula-
tive LPSs relative to the zero-factor FSV model over time.
The benefit of the flexible SV structure in the VAR resid-
uals is particularly pronounced during the 2008 financial
crisis which can be seen by comparing the solid lines to
the broken lines. During this period, time-varying covari-
ance modeling appears to be of great importance and
the performance of models that ignore contemporaneous
dependence deteriorates. This finding is in line with Kast-
ner (2019), who reports analogous results for US asset
returns. The increase in predictive accuracy can be traced
back to the fact that within an economic downturn the
correlation structure of our data set changes markedly,
with most indicators that measure real activity sharply
declining in lockstep. A model that takes contemporane-
ous cross-variable linkages seriously is thus able to fully
exploit such behavior, which in turn improves predictions.

Up to this point, we have focused exclusively on the joint
performance of our model for the specific set of variables
considered. To gain a deeper understanding on how our
model performs for relevant selected quantities, Table 3
displays marginal LPSs for the two most promising prior
specifications with one, two, and five lags. The variables
we consider are inflation (CPIAUCSL), short-term interest
rates (FEDFUNDS), and output growth (GDPC96).

In contrast to the findings based on joint LPSs, we
observe that models without a factor structure tend to
perform better than models that set q > 0, with the excep-
tion of interest rates where all models predict more or
less equally badly. This finding corroborates our conjecture
stated above, implying that if the set of focus variables
is subsequently enlarged, more factors are necessary in
order to obtain precise density predictions. Here, we only
focus on marginal model performance, implying that for
each variable, contemporaneous relations between the ele-
ments in yt are integrated out. This, in turn, implies that
the additional gain in model flexibility is offset by the com-
paratively larger number of parameters. Concerning the
difference between VAR priors, it appears that NG slightly
outperforms DL for inflation, whereas DL is superior when
it comes to predicting output growth.

6.4 A note on the computational burden
Even though the efficient sampling schemes outlined in
this paper help to overcome absolutely prohibitive com-

FIGURE 4 Cumulative log predictive scores, relative to a zero-mean model with independent stochastic volatility components for all
component series. Higher values correspond to better one-quarter-ahead density predictions up to the corresponding point in time [Colour
figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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FIGURE 5 Empirical CPU
times for each MCMC iteration
on a standard laptop computer
using one core. Time series
lengths: T ∈ {124, 174, 224};
numbers of latent factors:
q ∈ {0, 50} [Colour figure can be
viewed at
wileyonlinelibrary.com]

putational burdens, the CPU time needed to perform fully
Bayesian inference in a model of this size can still be con-
sidered substantial. In what follows we shed light on the
estimation time required and how it is related to the length
of the time series T, the lag length p, and the number of
latent factors q ∈ {0, 50}. Figure 5 shows the time needed
to perform a single draw from the joint posterior distribu-
tion of the 215+2152p coefficients and their corresponding
2(215+2152p)+1 auxiliary shrinkage quantities, the qT fac-
tor realizations and the associated 215q loadings, alongside
(T + 1)(215 + q) latent volatilities with their correspond-
ing 645+ 2q parameters. This amounts to 166,841 random
draws for the smallest model considered (one lag, no fac-
tors, T = 124) and 776,341 random draws for the largest
model (5 lags, 50 factors, T = 224) at each MCMC iteration.

As mentioned above, the computation time rises approx-
imately linearly with the number of lags included. Dot-
ted lines indicate the time in seconds needed to perform
a single draw from a model with 50 factors included,
while solid lines refer to the time needed to estimate
a model without factors and a diagonal time-varying
variance–covariance matrix 𝛀t. Interestingly, the addi-
tional complexity when moving from a model without
factors to a highly parametrized model with 50 factors
appears to be negligible, increasing the time needed by
a fraction of a second on average. The important role of
the length of the sample can be seen by comparing the
green, red, and black lines. The time necessary to perform
a simple MCMC draw quickly rises with the length of our
sample, consistent with the statements made in Section 4.
This feature of our algorithm, however, is convenient espe-
cially when researchers are interested in combining many
short time series or performing recursive forecasting based
on a tiny initial estimation sample.

7 CLOSING REMARKS

In this paper we propose an alternative route to estimate
huge-dimensional VAR models that allow for time varia-
tion in the error variances. The Dirichlet–Laplace prior, a
recent variant of a global–local shrinkage prior, enables us
to heavily shrink the parameter space towards the prior
model while providing enough flexibility that individual
regression coefficients are allowed to be unrestricted. This
prior setup alleviates overfitting issues generally associ-
ated with large VAR models. To cope with computational
issues we assume that the one-step-ahead forecast errors of
the VAR feature a factor stochastic volatility structure that
enables us to perform equation-by-equation estimation,
conditional on the loadings and the factors. Since poste-
rior simulation of each equation's autoregressive parame-
ters involves manipulating large matrices, we implement
an alternative recent algorithm that improves upon exist-
ing methods by large margins, rendering a fully fledged
Bayesian estimation of truly huge systems possible.

In an empirical application we first present various key
features of our approach based on a single-factor model.
This single factor, which summarizes the joint dynamics
of the VAR errors, can be interpreted as an uncertainty
measure that closely tracks observed factors such as the
volatility index. The question whether such a simplistic
structure proves to be an adequate representation of the
time-varying covariance matrix naturally arises, and we
therefore provide a detailed forecasting exercise to evalu-
ate the merits of our approach relative to the prior model
and a set of competing models with a different number of
latent factors in the errors.

Finally, three potential extensions are worth mention-
ing. First, given the fact that systematic and in-depth

http://wileyonlinelibrary.com


KASTNER AND HUBER 15

empirical comparisons of the various recently devel-
oped roads towards handling high-dimensional VARs
with time-varying contemporaneous covariance in a
Bayesian framework (VAR-FSV, VAR-Cholesky-SV, com-
pressed VAR-SV, etc.) are still missing and it is not clear
whether one of these models turns out to dominate the
others for all points in time, one could consider averag-
ing/selecting dynamically. Second, note that it is trivial to
relax the assumption of symmetry for the DL components.
In the context of VARs, this might be of particular inter-
est for distinguishing diagonal (aD large) from off-diagonal
(aO small) elements in the spirit of the Minnesota prior
or increasing the amount of shrinkage with increasing lag
order (cf. Huber & Feldkircher, 2019, for a similar setup in
the context of the normal-gamma shrinkage prior). Third,
we would like to stress that our approach could also be
used to estimate huge-dimensional time-varying param-
eter VAR models with stochastic volatility. To cope with
the computational difficulties associated with the vast state
space, a possible approach could be to rely on an addi-
tional layer of hierarchy that imposes a (dynamic) factor
structure on the time-varying autoregressive coefficients
in the spirit of Eisenstat et al. (2018) and thus reduce the
computational burden considerably.
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APPENDIX A: FURTHER ILLUSTRATIONS

First, we showcase four selected data-generating scenar-
ios (small + sparse, small + dense, large + sparse, large
+ dense) and visualize the posterior distribution of the
VAR coefficients under seven different prior choices in
Figures A1–A4. For a comprehensive overview, see Table 1
in the main part of the paper.

Second, we illustrate results from a VAR(2)-FSV DL(1∕k)
and a VAR(5)-FSV DL(1∕k) model for the US data in
Figures A5–A7.

https://doi.org/10.1002/for.2680


18 KASTNER AND HUBER

FIGURE A1 Exemplary visualization of the true and estimated VAR coefficients in the sparse scenario where T = 250 and m = 10. Top
left: DGP. Top right: OLS estimates. Second row: DL prior with aDL = 1∕2 (left) and aDL = 1∕k = 1∕11 (right). Third row: NG prior with
aNG = 1 (left) and aNG = 1∕10 (right). Fourth row: Minnesota prior with aM = 1∕1, 000 (left) and aM = 1∕10, 000 (right)
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FIGURE A2 Exemplary visualization of the true and estimated VAR coefficients in the dense scenario where T = 250 and m = 10. Top left:
DGP. Top right: OLS estimates. Second row: DL prior with aDL = 1∕2 (left) and aDL = 1∕k = 1∕11 (right). Third row: NG prior with aNG = 1
(left) and aNG = 1∕10 (right). Fourth row: Minnesota prior with aM = 1∕1, 000 (left) and aM = 1∕10, 000 (right) [Colour figure can be viewed
at wileyonlinelibrary.com]
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FIGURE A3 Exemplary visualization of the true and estimated VAR coefficients in the sparse scenario where T = 250 and m = 100. Top
left: DGP. Top right: OLS estimates. Second row: DL prior with aDL = 1∕2 (left) and aDL = 1∕k = 1∕101 (right). Third row: NG prior with
aNG = 1 (left) and aNG = 1∕10 (right). Fourth row: Minnesota prior with aM = 1∕1, 000 (left) and aM = 1∕10, 000 (right) [Colour figure can be
viewed at wileyonlinelibrary.com]
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FIGURE A4 Exemplary visualization of the true and estimated VAR coefficients in the dense scenario where T = 250 and m = 100. Top
left: DGP. Top right: OLS estimates. Second row: DL prior with aDL = 1∕2 (left) and aDL = 1∕k = 1∕101 (right). Third row: NG prior with
aNG = 1 (left) and aNG = 1∕10 (right). Fourth row: Minnesota prior with aM = 1∕1, 000 (left) and aM = 1∕10, 000 (right) [Colour figure can be
viewed at wileyonlinelibrary.com]
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FIGURE A5 Posterior medians (top) and posterior interquartile ranges (bottom) of VAR(2) coefficients, a = 1∕k = 1∕431 [Colour figure
can be viewed at wileyonlinelibrary.com]
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FIGURE A6 Posterior medians of VAR(5) coefficients, a = 1∕k = 1∕1076 [Colour figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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FIGURE A7 Posterior interquartile ranges of VAR(5) coefficients, a = 1∕k = 1∕1, 076 [Colour figure can be viewed at
wileyonlinelibrary.com]
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