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Abstract

This paper proposes two models in which price stickiness arises endogenously even though 

fi rms are free to change their prices at zero physical cost. Firms are subject to idiosyncratic 

and aggregate shocks, and they also face a risk of making errors when they set their prices. 

In our fi rst specifi cation, fi rms are assumed to play a dynamic logit equilibrium, which implies 

that big mistakes are less likely than small ones. The second specifi cation derives logit 

behavior from an assumption that precision is costly. The empirical implications of the two 

versions of our model are very similar. Since fi rms making suffi ciently large errors choose to 

adjust, both versions generate a strong “selection effect” in response to a nominal shock 

that eliminates most of the monetary nonneutrality found in the Calvo model. Thus the 

model implies that money shocks have little impact on the real economy, as in Golosov and 

Lucas (2007), but fi ts microdata better than their specifi cation.

Keywords: Nominal rigidity, logit equilibrium, state-dependent pricing, (S,s) adjustment, 

near-rational behavior.

JEL classifi cation: E31, D81, C72.



Resumen

Este trabajo propone dos modelos donde las empresas pueden cambiar sus precios 

libremente en cualquier momento sin ningún coste físico, pero donde, no obstante, 

los precios son rígidos por razones endógenas. Las empresas se enfrentan a shocks 

idiosincrásicos y agregados, y también corren el riesgo de cometer errores a la hora de 

fi jar sus precios. En la primera especifi cación, las empresas juegan un equilibrio dinámico 

logit, lo cual implica que la probabilidad de cometer errores grandes es menor que la de 

cometer errores pequeños. La segunda especifi cación demuestra que es óptimo cometer 

errores según una distribución logit, si tomar decisiones cuesta más cuanto más precisa 

sea la decisión. Las dos versiones tienen implicaciones empíricas muy similares. Dado 

que las empresas siempre eligen ajustar sus precios cuando su error es sufi cientemente 

grande, ambas versiones generan un fuerte «efecto de selección» tras un shock nominal, 

que elimina la mayor parte de los efectos reales vistos en el modelo de Calvo. Así, nuestro 

modelo implica que los shocks monetarios son casi neutrales, como en Golosov y Lucas 

(2007), pero con un mejor ajuste a los datos microeconómicos.

Palabras Clave: Rigidez nominal, equilibrio logit, precios rígidos contingentes, ajustes (S,s), 

comportamiento cuasi-racional.

Códigos JEL: E31, D81, C72.



BANCO DE ESPAÑA 9 DOCUMENTO DE TRABAJO N.º 1122

1 Introduction1

Economic conditions change continually. A firm that attempts to maintain an optimal price
in response to these changes faces at least two costly managerial challenges. First, it must
repeatedly decide when to post new prices. Second, for each price update, it must choose what
new price to post. Since both decisions are costly, managers may suffer errors or frictions along
either margin. The most familiar models of nominal rigidity have studied frictions in the first
decision, assuming that price adjustments can only occur intermittently, either with exogenous
frequency (as in Calvo, 1983) or with endogenous frequency (e.g. Golosov and Lucas, 2007;
Dotsey et al. 2009; Costain and Nakov 2011A, B). This paper instead explores the implications
of frictions in the second decision. In other words, we assume that firms can adjust their prices
costlessly in any period, but that whenever they adjust, their price choice is subject to errors. We
study the implications of frictions along this margin both for microeconomic price adjustment
data and for macroeconomic dynamics.

Our key assumption is that the probability of setting any given price is a smoothly increas-
ing function of the expected present discounted value of setting that price. Our model nests
full frictionless rationality as the limiting case in which the firm sets the optimal price with
probability one every period. More specifically, we impose our main assumption in two slightly
different ways. In the first version of our model, we assume the probability distribution over
price choices is a logit function. The general equilibrium of this version of the model is therefore
a logit equilibrium (McKelvey and Palfrey 1995, 1998): the probability of each firm’s choice is
a logit function which depends on the value of each choice; moreover, the value of each choice is
determined, in equilibrium, by the logit choice probabilities of other firms.

While this version of the model does not impose price stickiness directly, the risk of errors
gives rise to a certain degree of endogenous price stickiness. Because they fear they may “trem-
ble” when choosing a new price, firms may refrain from adjusting, on precautionary grounds,
even when their current price is not exactly optimal. Whenever the firm’s price is sufficiently
close to the optimum, it prefers to “leave well enough alone”, thus avoiding the risk of making
a costly mistake. Hence behavior has an (S,s) band structure, in which adjustment occurs only
if the current price is sufficiently far from the optimum.

In a second version of our model, we derive logit behavior from an assumption that precision
is costly. We show that the distribution of price adjustments takes logit form if decision costs are
proportional to entropy reduction. Thus, this specification involves a cost of price adjustment,
but it is not a “menu cost” in the sense of labor time devoted to the physical task of adjusting
posted prices. Instead, the cost of price adjustment can be understood as a cost of managerial
control, consistent with the evidence of Zbaracki et al. (2004).

The logit framework for modeling bounded rationality has been widely applied in experi-
mental game theory, where it has successfully explained play in a number of games where Nash
equilibrium performs poorly, such as the centipede game and Bertrand competition games (McK-
elvey and Palfrey 1998; Anderson, Goeree, and Holt 2002). It has been much less frequently

1For their helpful comments, we thank Fernando Álvarez, Jordi Gaĺı, Kevin Lansing, John Leahy, Bartosz
Mackowiak, Filip Matejka, Antonella Tutino, Mirko Wiederholt, Jonathan Willis, and seminar participants at the
Bank of Spain, the San Francisco Fed, the ECB, HEC Paris, the Federal Reserve Board, SNDE 2010, Zeuthen
Macroeconomics 2010, the 11th CeNDEF workshop, SED 2010, CEF 2010, the 2010 Econometric Society World
Congress, and ASSA 2011. Views expressed here are those of the authors and do not necessarily coincide with
those of the Bank of Spain, the European Central Bank, the Eurosystem, or the Federal Reserve Board.
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applied in other areas of economics; we are unaware of any application of logit equilibrium in-
side a dynamic general equilibrium macroeconomic model.2 The absence of logit modeling in
macroeconomics may be due, in part, to discomfort with the many potential degrees of freedom
opened up by moving away from the benchmark of full rationality. However, since logit equilib-
rium is just a one-parameter generalization of fully rational choice, it actually imposes much of
the discipline of rationality on the model.

Another possible reason why macroeconomists have so rarely considered error-prone choice
is that errors imply heterogeneity; the computational simplicity of a representative agent model
may be lost if agents differ because of small, random mistakes. However, when applied to
state-dependent pricing, this problem is less relevant, since it has long been argued that it is
important to allow for heterogeneity in order to understand the dynamics of “sticky” adjustment
models (see for example Caballero 1992, and Golosov and Lucas 2007). Moreover, we have
shown (Costain and Nakov 2008B) how distributional dynamics can be tractably characterized
in general equilibrium, without relying on special functional forms or questionable numerical
aggregation assumptions. The same numerical method we used in that paper (Reiter 2009) can
be applied to a logit equilibrium model; in fact, the smoothness of the logit case makes it even
easier to compute than the fully rational case. We therefore find that logit equilibrium opens
the door to tractable models with implications both for macroeconomic and for microeconomic
data.

Summarizing our main findings, both versions of our model are consistent with several “puz-
zling” stylized facts from micro price adjustment data. Our model implies that many large and
small price changes coexist (see Fig. 2), in contrast to the implications of the standard fixed
menu cost model (Midrigan, 2011; Klenow and Kryvtsov, 2008; Klenow and Malin, 2009). It
also implies that the probability of price adjustment decreases rapidly over the first few months,
and then remains essentially flat (Nakamura and Steinsson, 2008; Klenow and Malin, 2009).
Third, we find that the standard deviation of price changes is approximately constant, inde-
pendent of the time since last adjustment (Klenow and Malin, 2009). The Calvo model implies
instead that price changes are increasing in the time since last adjustment. Fourth, “extreme”
prices are more likely to have been recently set than are prices near the center of the distribution
(Campbell and Eden, 2010). While a variety of explanations have been offered for some of these
observations (including sales, economies of scope in price setting, and heterogeneity among price
setters), our framework matches all these facts in a very simple way, using only one degree of
freedom in the parameterization.

Finally, we calculate the effects of money supply shocks in our framework. Given the degree
of rationality that best fits microdata, the effect of money shocks on consumption is similar to
that in the Golosov-Lucas (2007) fixed menu cost setup. The impact on consumption is much
weaker than the Calvo model implies because of a selection effect: all the firms that require the
largest price adjustments do in fact adjust. Thus, a model in which price adjustment is slowed
down by the risk of mistakes fits microdata better than a fixed menu cost model, but implies
that the macroeconomy is relatively close to monetary neutrality.

2The logit choice function is probably the most standard econometric framework for discrete choice, and has
been applied to a huge number of microeconometric contexts. But logit equilibrium, in which each player makes
logit decisions, based on payoff values which depend on other players’ logit decisions, has to the best of our
knowledge rarely been applied outside of experimental game theory.
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1.1 Related literature

Early sticky price frameworks based on “menu costs” were studied by Barro (1972), Sheshinski
and Weiss (1977), and Mankiw (1985). General equilibrium solutions of these models have
only been attempted more recently, at first by ignoring idiosyncratic shocks (Dotsey, King, and
Wolman 1999), or by strongly restricting the distribution of such shocks (Danziger 1999; Gertler
and Leahy 2006). Golosov and Lucas (2007) were the first to include frequent large idiosyncratic
shocks in a quantitative model of state-dependent pricing, and approximately calculated the
resulting equilibrium dynamics. However, while menu costs have been an influential idea in
macroeconomics, the fact that price changes come in a wide variety of sizes, including some very
small ones, is hard for the menu cost framework to explain.

In particular, Klenow and Kryvtsov (2008) have shown that the distribution of price changes
remains puzzling even if we allow for many sectors with different menu costs. As a possible
explanation for the presence of small adjustments, Lach and Tsiddon (2007) and Midrigan (2010)
proposed economies of scope in the pricing of multiple goods: a firm that pays to correct one
large price misalignment might get to change other, less misaligned, prices on the same menu
costlessly. An extensive empirical literature has recently taken advantage of scanner data to
document other microeconomic facts about retail price adjustment, many of which are puzzling
when viewed through the lenses of the Calvo model or the menu cost model; references include
Nakamura and Steinsson (2008), Klenow and Malin (2009), and Campbell and Eden (2010).

Rather that assuming a menu cost, our model delivers price stickiness as the result of near-
rational behavior. In this it is similar in spirit to Akerlof and Yellen (1985), who assume firms
sometimes make mistakes if they are not very costly. Our setup is also closely related to the
“rational inattention” literature (e.g. Sims, 2003; Mackowiak and Wiederholt, 2009). Whereas
that literature imposes an entropy constraint on the flow of information from the economic
environment to the decision-maker, we instead use changes in entropy as a measure of the cost
of precise decisions. A number of game-theoretic papers have modeled near-rational behavior in
the same way, including Stahl (1990) and Mattsson and Weibull (2002).

Technically, the only difference between using entropy to measure the cost of precision and
using entropy to measure information flow is that in the former case, the firm’s decisions are
a function of its true state (its productivity and price) at time t, whereas in the latter the
firm’s decisions depend on its prior about the state of the world. One possible interpretation of
our environment, which features full information but imperfect decisions, is that the decision-
maker (e.g. the CEO of a large corporation) is fully rational and has complete information
about the environment, but acts subject to an implementation constraint which prevents him
from perfectly communicating and enforcing his decisions throughout the organization. Given
this imperfect implementation, the decisionmaker sometimes rationally prefers “not to call a
meeting” and leave prices as they are, as long as the firm is doing reasonably well.

2 Sticky prices in partial equilibrium

In subsection 2.1, we describe the partial equilibrium decision of a monopolistically competitive
firm that sometimes makes small errors when it adjusts its price. Concretely, we assume the price
probabilities are governed by a multinomial logit. Subsection 2.2 discusses how our framework
differs from the Calvo and menu cost approaches. In subsection 2.3, we take a more structural
approach, and show how the multinomial logit can be derived from a cost function for error
avoidance. We postpone discussion of general equilibrium until Section 3.
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2.1 The monopolistic competitor’s decision

Suppose that each firm i produces output Yit under a constant returns technology, with labor
Nit as the only input, and faces idiosyncratic productivity shocks Ait:

Yit = AitNit

The idiosyncratic shocks Ait are given by a time-invariant Markov process, iid across firms.
Thus Ait is correlated with Ai,t−1 but is uncorrelated with other firms’ shocks. For numerical
purposes, we assume Ait is drawn from a finite grid of possible values Γa ≡ {

a1, a2, ..., a#a
}
.3

Firms are monopolistic competitors, facing the demand curve Yit = ϑtP
−ε
it , where ϑt rep-

resents aggregate demand. A firm’s only control variable is its price; that is, we assume firms
must fulfill all demand at the price they set. They hire in competitive labor markets at wage
rate Wt, so period t profits are

PitYit −WtNit =

(
Pit − Wt

Ait

)
Yit =

(
Pit − Wt

Ait

)
ϑtP

−ε
it

Likewise, a firm that produces with price Pit and productivity Ait at time t has some discounted
present value, which we write as Vt(Pit, Ait). The time subscript on the value function denotes
all dependence on aggregate conditions, such as aggregate shocks or deterministic trends.4

At each point in time, a firm must decide whether or not to adjust its price. To make this
decision, it compares the value of maintaining its previous price with the value of choosing a
new one. A firm that begins period t with some inital price P̃it receives value Vt(P̃it, Ait) if it
chooses not to adjust its price. If it instead chooses to adjust, it faces a risk of error in the
new price it sets. Note that since we regard decisions as error-prone, the firm’s decision process
determines a distribution across its possible actions, rather than picking out a single optimal
value. We assume a distribution such that the probability of choosing any given price is a
smoothly increasing function of the value of choosing that price. This is the key assumption of
our model.

As is common in microeconometrics and experimental game theory, we assume the distribu-
tion of errors is given by a multinomial logit. In order to treat the logit function as a primitive
of the model, we define its argument in units of labor time. That is, since the costs of decision-
making are presumably related to the labor effort (in particular, managerial labor) required to
calculate and communicate the chosen price, we divide the values in the logit function by the
wage rate, to convert them to time units. Hence, the probability πt(P

j |Ait) of choosing price
P j ∈ ΓP at time t, conditional on productivity Ait, is given by

πt(P
j |Ait) ≡

exp
(
Vt(P j ,Ait)

κWt

)
∑#P

k=1 exp
(
Vt(Pk,Ait)

κWt

) (1)

3Theoretically, our model would be well-defined with a continuum of possible values of productivity Ait and
also a continuum of possible prices Pit. However, our numerical solution method requires us to approximate the
continuous case by a finite grid of possible productivities and prices. Therefore, for notational convenience, we
define the model on a discrete grid from the start.

4We could instead write Vt(Pit, Ait) as V (Pit, Ait,Ωt), where Ωt represents the aggregate state of the economy.
For more concise notation we just write V with a time subscript.
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For numerical purposes, we constrain the price to a finite discrete grid ΓP ≡ {
P 1, P 2, ...P#P

}
.

The parameter κ in the logit function can be interpreted as representing the degree of noise in
the decision; in the limit as κ → 0 it converges to the policy function under full rationality, in
which the optimal price is chosen with probability one.5

We will use the notation Eπ
t to indicate an expectation taken under the logit probability (1).

The firm’s expected value, conditional on adjusting to a new price P ′ ∈ ΓP , is then

Eπ
t Vt(P

′, Ait) ≡
#P∑
j=1

πt(P
j |Ait)V (P j , Ait) =

#P∑
j=1

exp
(
Vt(P j ,Ait)

κWt

)
V (P j , Ait)∑#P

k=1 exp
(
Vt(Pk,Ait)

κWt

) (2)

The expected value of adjustment is

Dt(Pit, Ait) ≡ Eπ
t Vt(P

′, Ait)− Vt(Pit, Ait) (3)

We assume the firm adjusts its price if and only if the expected gain from adjustment is non-
negative. That is, the probability of adjustment can be written as

λ(Dt(Pit, Ait)) = 1 (Dt(Pit, Ait) ≥ 0) (4)

where 1(x) is an indicator function taking the value 1 if statement x is true, and zero otherwise.
We can now state the Bellman equation that governs a firm’s value of producing at any given

price P . The Bellman equation in this case is:
Bellman equation in partial equilibrium :

Vt(P,A) =

(
P − Wt

A

)
ϑtP

−ε+Et

{
Qt,t+1

[(
1− λ

(
Dt+1(P,A

′)
))

Vt+1(P,A
′) +

λ
(
Dt+1(P,A

′)
)
EπVt+1(P

′, A′)
]∣∣A} (5)

where Qt,t+1 is the firm’s stochastic discount factor. Note that the aggregate price level is absent
from the above expression; it is subsumed into ϑt, as we show in Section 3. On the left-hand side
and in the current profits term, P refers to a given firm i’s price Pit at the time of production. In
the expectation on the right, P represents the price P̃i,t+1 at the beginning of period t+1, which
is the same as Pit, and subsequently may (with probability λ) or may not (with probability
1− λ) be adjusted prior to time t+ 1 production.

We can simplify substantially by noticing that the value on the right-hand side of the equation
is just the value of continuing without adjustment, plus the expected gains from adjustment,
which we call G:

Vt(P,A) =

(
P − Wt

A

)
ϑtP

−ε + Et

{
Qt,t+1

[
Vt+1(P,A

′) +Gt+1(P,A
′)
]∣∣A} (6)

where

Gt+1(P,A
′) ≡ λ

(
Dt+1(P,A

′)
)
Dt+1(P,A

′) = 1
(
Dt+1(P,A

′) ≥ 0
)
Dt+1(P,A

′) (7)

5Alternatively, logit models are often written in terms of the inverse parameter ξ ≡ κ−1, which can be
interpreted as a measure of rationality rather than a measure of noise.
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2.2 Alternative models of sticky prices

To better interpret our results, we will compare simulations of our framework with simulations
of two standard models of nominal rigidity: the Calvo model and the fixed menu cost (FMC)
model. Both these models are consistent with Bellman equation (6) if we redefine the expected
gains function G appropriately.

In the Calvo model, adjustment occurs with a constant, exogenous probability λ̄, and con-
ditional on adjustment, the firm sets the optimal price. This means λ (Dt+1(P,A

′)) = λ̄ and
Dt+1(P,A

′) = V ∗t+1(A
′)− Vt+1(P,A

′), where

V ∗t+1(A
′) = max

P ′
Vt+1(P

′, A′). (8)

Therefore (7) is replaced by

Gt+1(P,A
′) ≡ λ̄

(
V ∗t+1(A

′)− Vt+1(P,A
′)
)
. (9)

In the FMC model, the firm adjusts if and only if the gains from adjustment are at least as
large as the menu cost α, which is a fixed, exogenous quantity of labor. If the firm adjusts, it pays
the menu cost and sets the optimal price. So the probability of adjustment is λ (Dt+1(P,A

′)) =
1 (Dt+1(P,A

′) ≥ αWt+1), where Dt+1(P,A
′) = V ∗t+1(A

′)−Vt+1(P,A
′). Therefore (7) is replaced

by
Gt+1(P,A

′) ≡ 1
(
Dt+1(P,A

′) ≥ αWt+1

) (
Dt+1(P,A

′)− αWt+1

)
. (10)

2.3 Deriving logit choice from a control cost function

The logit assumption (1) has the desirable property that the probability of choosing any given
price is a smoothly increasing function of the value of that price. However, many other distri-
butions have the same property. Is there any good reason for assuming a logit, other than its
prominence in game theory and econometrics?

One way to derive a logit error distribution is to assume that managerial decision-making is
costly. Thus, let us suppose that greater precision in the price choice (equivalently, a decrease in
errors) requires greater managerial time. In particular, following Stahl (1990) and Mattsson and
Weibull (2002), we will assume that the time cost of more precise choice is proportional to the
reduction in the entropy of the choice variable, normalizing the cost of perfectly random decisions
(a uniform distribution) to zero.6 Then the cost of choosing a price distribution −→π ≡ {πj}#P

j=1

is given by7

C(−→π ) = κ

⎛
⎝ln(#P ) +

#P∑
j=1

πj ln(πj)

⎞
⎠ (11)

Here κ is the marginal cost of entropy reduction in units of labor time. This cost function is
nonnegative and convex. It takes its maximum value, κ ln(#P ) > 0, for any distribution that

6See also Marsili (1999), Baron et al. (2002), or Matejka and McKay (2011).
7Our normalization of the level of costs is equivalent to defining the cost function in terms of relative entropy

(also known as Kullback-Leibler divergence). That is, by setting the cost of choosing a uniform distribution to
zero, we are making the cost function proportional to the Kullback-Leibler divergence D(p||q) between the price
variable p and a random variable q that is uniform over the support of p. See Mattsson and Weibull (2002) for
details.
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places all probability on a single price p ∈ ΓP . It takes its minimum value, zero, for a uniform
distribution.8

While this version of our framework involves a cost of price adjustment, it should not be
interpreted as the “menu cost” of the physical task of altering the posted price, but rather
as a cost of managerial effort. We now show how to derive a logit distribution from this cost
function. Consider a firm that has chosen to update its price at time t, and is now deciding which
new price P j to set, on the finite grid ΓP ≡ {

P 1, P 2, ...P#P
}
. The optimal price distribution−→π maximizes firm value, net of computational costs (which we convert to nominal terms by

multiplying by the wage):

max
πj

∑
j

πjVt(P
j , A)− κWt

⎛
⎝ln(#P ) +

#P∑
j=1

πj ln(πj)

⎞
⎠ s.t.

∑
j

πj = 1 (12)

The first-order condition for πj is

V j − κWt(1 + lnπj)− μ = 0,

where μ is the multiplier on the constraint. Some rearrangement yields:

πj = exp

(
V j

κWt
− 1− μ

κWt

)
. (13)

Since the probabilities sum to one, we have exp
(
1 + μ

κWt

)
=

∑
j exp

(
V j

κWt

)
. Therefore the

optimal probabilities (13) reduce to the logit formula (1). Thus the noise parameter in the logit
function corresponds to the marginal cost of entropy reduction in the control cost problem.

Taking logs in the first-order condition (13), we can calculate a simple analytical formula for

the value of problem (12). Using lnπj = V j

κWt
− constant, the value of (12) equals:

κWt ln

⎛
⎝ 1

#P

#P∑
j=1

exp

(
Vt(P

j , A)

κWt

)⎞⎠
Of course, if we interpret the logit choice distribution as the result of costly managerial time,
these costs need to be subtracted out of the value function. The description of the firm’s problem
in subsection 2.1 remains valid, except for the expected value of adjustment. Equation (3) is
replaced by

Dt(Pit, Ait) ≡ Eπ
t Vt(P

′, Ait)−WtC(−→π )− Vt(Pit, Ait) (14)

= κWt ln

⎛
⎝ 1

#P

#P∑
j=1

exp

(
Vt(P

j , A)

κWt

)⎞⎠− Vt(Pit, Ait). (15)

The Bellman equation is then given by (6)-(7) as before.
Therefore, in our simulations below, we will report two specifications of our model. One

specification, abbreviated as ‘PPS’, is defined by (3), (6), and (7), so that logit choice is simply
interpreted as a decision process near to, but varying around, the optimal choice. The second
specification, indicated by ‘ENT’, is defined by (14), (6), and (7), so logit choice is interpreted
as the result of optimal decision-making constrained by entropy reduction costs.

8If π is uniform, then π(p) = 1/#P for all p ∈ ΓP , which implies
∑

j∈ΓP π(p) ln(π(p)) = − ln(#P ).
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2.4 Relation to information-theoretic models

Before leaving this section we discuss the relationship between our framework and the “rational
inattention” papers like Sims (2003), Woodford (2009), and more recently Matejka and McKay
(2011), that are explicitly based on information theory. Note that by imposing a cost function
on error reduction we are emphasizing the managerial costs of evaluating information, choosing
an optimal policy, and communicating it within the firm, but by treating (12) as a decision under
full information we are ignoring the costs of receiving information. The information-theoretic
approach instead takes account of all four of these stages of information processing.

Thus, our setup could be interpreted as the problem of a manager who costlessly absorbs the
content of all the world’s newspapers (and other data sources) with her morning coffee, but who
faces costs of using that information. The information-theoretic approach allows for costs of
receiving the morning’s information too. Thus while the information-theoretic approach imposes
a Shannon entropy constraint on the whole flow of information from reception to communicating
choices, our approach imposes a Shannon entropy constraint only on the flow of information
inside the manager’s head and then within her firm.

Intuitively, we believe all these stages of information flow imply important costs. Our only
reason for ignoring the first stage of the information flow is that by doing so we dramatically
reduce the dimension of the calculations required to solve our model. Since the rational inat-
tention approach assumes the firm acts under uncertainty, it implies the firm conditions on a
prior over its possible productivity levels (which is a high-dimensional object that complicates
solution of the model). In our setup, the firm just conditions on its true productivity level.
Moreover, once one knows that entropy reduction costs imply logit, one can simply impose a
logit function directly (and then subtract off the implied costs) rather than explicitly solving for
the form of the error distribution. These facts make our approach entirely tractable in a DSGE
context, as we show in the next two sections.

Given the similarity between our approach and that of the rational inattention literature,
it is likely that the two approaches will have many similar implications. Rational inattention
may have policy-relevant empirical implications which our model does not capture; this is a
relevant question for future research. But if the implications of the two approaches turn out to
be essentially the same, our setup may be preferred for its greater tractability.

3 General equilibrium

We next embed this partial equilibrium framework into a dynamic New Keynesian general
equilibrium model. For comparability, we use the same structure as Golosov and Lucas (2007).
Besides the firms, there is a representative household and a central bank that sets the money
supply.

3.1 Households

The household’s period utility function is

u(Ct)− x(Nt) + v (Mt/Pt) ;
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payoffs are discounted by factor β per period. Consumption Ct is a Spence-Dixit-Stiglitz aggre-
gate of differentiated products:

Ct =

[∫ 1

0
C

ε−1
ε

it di

] ε
ε−1

.

Nt is labor supply, and Mt/Pt is real money balances. The household’s period budget constraint
is ∫ 1

0
PitCitdi+Mt +R−1t Bt = WtNt +Mt−1 + Tt +Bt−1 +Divt,

where
∫ 1
0 PitCitdi is total nominal spending on the differentiated goods. Bt represents nominal

bond holdings, with interest rate Rt − 1; Tt represents lump sum transfers received from the
monetary authority, and Divt represents dividend payments received from the firms. In this con-
text, optimal allocation of consumption across the differentiated goods implies Cit = (Pt/Pit)

εCt,

where Pt is the price index Pt ≡
{∫ 1

0 P 1−ε
it di

} 1
1−ε

.

3.2 Monetary policy and aggregate consistency

For simplicity, we assume the central bank follows an exogenous stochastic money growth rule:

Mt = μtMt−1, (16)

where μt = μ exp(zt), and zt is AR(1):

zt = φzzt−1 + εzt . (17)

Here 0 ≤ φz < 1 and εzt ∼ i.i.d.N(0, σ2
z) is a money growth shock. Thus the money supply

trends upward by approximately factor μ ≥ 1 per period on average. Seigniorage revenues are
paid to the household as a lump sum transfer, and the public budget is balanced each period.
Therefore the public budget constraint is

Mt = Mt−1 + Tt.

Bond market clearing is simply Bt = 0. Market clearing for good i implies the following
demand and supply relations for firm i:

Yit = AitNit = Cit = P ε
t CtP

−ε
it . (18)

Also, total labor supply must equal total labor demand:

Nt =

∫ 1

0

Cit

Ait
di = P ε

t Ct

∫ 1

0
P−εit a−1it di ≡ ΔtCt. (19)

The labor market clearing condition (19) also defines a weighted measure of price dispersion,
Δt ≡ P ε

t

∫ 1
0 P−εit a−1it di. which generalizes the dispersion measure in Yun (2005) to allow for

heterogeneous productivity. An increase in Δt decreases the consumption goods produced per
unit of labor, effectively acting like a negative shock to aggregate productivity.

Aggregate consistency also requires that the demand curve and the discount factor that
appear in the firm’s problem be consistent with the household’s problem. In particular, to make
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the firm’s problem (6) consistent with the goods market clearing conditions (18), the aggregate
demand shift factor must be

ϑt = CtP
ε
t . (20)

Also, we assume that the representative household owns the firms, so the stochastic discount
factor in the firm’s problem must be consistent with the household’s Euler equation. This implies
that the appropriate stochastic discount factor is

Qt,t+1 = β
Ptu

′(Ct+1)

Pt+1u′(Ct)
. (21)

To write the firm’s problem in general equilibrium, we simply plug (20) and (21) into the firm’s
problem (6). Then the value of producing with price Pit = P and productivity Ait = A is
Bellman equation in general equilibrium :

Vt(P,A) =

(
P − Wt

A

)
CtP

ε
t P

−ε + βEt

{
Ptu

′(Ct+1)

Pt+1u′(Ct)

[
Vt+1(P,A

′) +Gt+1(P,A
′)
]∣∣∣∣A

}
, (22)

where Gt+1(P,A
′) has the form described in equation (7). G in turn depends on the adjustment

gain D, which takes the form (3) if we impose a logit choice distribution directly, or the form
(14) if we derive logit choice by imposing entropy control costs.

3.3 State variable

At this point, we have spelled out all equilibrium conditions: household and monetary authority
behavior has been described in this section, and the firms’ decision was stated in Section 2. Thus
can now identify the aggregate state variable Ωt. Aggregate uncertainty in the model relates
only to the money supply Mt. But since the growth rate of Mt is AR(1) over time, the latest
deviation in growth rates, zt, is a state variable too. There is also a continuum of idiosyncratic
productivity shocks Ait, i ∈ [0, 1]. Finally, since firms cannot instantly adjust their prices, they
are state variables too. More precisely, the state includes the joint distribution of prices and
productivity shocks at the beginning of the period, prior to adjustment.

We will use the notation P̃it to refer to firm i’s price at the beginning of period t, prior to
adjustment; this may of course differ from the price Pit at which it produces, because the price
may be adjusted before production. Therefore we will distinguish the distribution of production
prices and productivity at the time of production, which we write as Φt(Pit, Ait), from the
distribution of beginning-of-period prices and productivity, Φ̃t(P̃it, Ait). Since beginning-of-
period prices and productivities determine all equilibrium decisions at t, we can define the state
at time t as Ωt ≡ (Mt, zt, Φ̃t).

It is helpful here to compare the dimension of the general equilibrium calculation our model
requires with the calculation implied by a rational inattention model like Sims (2003). In our
model, the firm’s idiosyncratic state has two dimensions (P and A), and the value function is
also contingent on the aggregate state Ω. Since the possible values of prices and productivities
are constrained to a grid, the distribution Φ̃ is an object of dimension #P#a, and thus Ω has
dimension #P#a + 2. In contrast, if we were to attempt to compute a rational inattention
model on the same grid, the firm’s idiosyncratic state would have at least dimension #a: one
dimension for its price P and #a − 1 dimensions for its prior over possible values of A. The
true aggregate state of the economy Ω would then include at least Mt, zt, and a distribution
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over prices and priors. Moreover, in general equilibrium firms might hold nondegenerate priors
over Ω itself, which would blow up the dimension of the problem exponentially again. In prac-
tice, therefore, some rational inattention models, like Mackowiak and Wiederholt (2011), have
restricted attention to a linear-quadratic-Gaussian framework where all distributions collapse to
a known form, whereas papers that have allowed for non-Gaussian shocks, like Tutino (2009)
and Matejka (2010), have studied partial equilibrium problems only.

3.4 Detrending

So far we have written the value function and all prices in nominal terms, but we can rewrite

the model in real terms by deflating all prices by the nominal price level Pt ≡
{∫ 1

0 Pit
1−εdi

} 1
1−ε

.

Thus, define mt ≡ Mt/Pt and wt ≡ Wt/Pt. Given the nominal distribution Φt(Pit, Ait), let us
denote by Ψt(pit, Ait) the distribution over real transaction prices pit ≡ Pit/Pt. Rewriting the
definition of the price index in terms of these deflated prices, we have the following restriction:∫ 1

0
pit

1−εdi = 1.

Notice however that the beginning-of-period real price is not predetermined: if we define p̃it ≡
P̃it/Pt, then p̃it is a jump variable, and so is the distribution of real beginning-of-period prices
Ψ̃t(p̃i, Ai). Therefore we cannot define the real state of the economy at the beginning of t in
terms of the distribution Ψ̃t.

To write the model in real terms, the level of the money supply, Mt, and the aggregate price
level, Pt, must be irrelevant for determining real quantities; and we must condition on a real state
variable that is predetermined at the beginning of period. Therefore, we define the real state at
time t as Ξt ≡ (zt,Ψt−1), where Ψt−1 is the distribution of lagged prices and productivities. Note
that the distribution Ψt−1, together with the shocks zt, is sufficient to determine all equilibrium
quantities at time t: in particular, it will determine the distributions Ψ̃t(p̃i, Ai) and Ψt(pi, Ai).
Therefore Ξt is a correct time t real state variable.

This also makes it possible to define a real value function v, meaning the nominal value
function, divided by the current price level, depending on real variables only. That is,

Vt(Pit, Ait) = V (Pit, Ait,Ωt) = Ptv

(
Pit

Pt
, Ait,Ξt

)
= Ptvt (pit, Ait) .

Deflating in this way, the Bellman equation can be rewritten as follows:
Detrended Bellman equation, general equilibrium :

vt(p,A) =
(
p− wt

A

)
Ctp

−ε + βEt

{
u′(Ct+1)

u′(Ct)

[
vt+1

(
π−1t+1p,A

′)+ gt+1

(
π−1t+1p,A

′)]∣∣∣∣A
}
, (23)

where
gt+1

(
π−1t+1p,A

′) ≡ λ
(
w−1t+1dt+1

(
π−1t+1p,A

′)) dt+1

(
π−1t+1p,A

′) ,
dt+1

(
π−1t+1p,A

′) ≡ Eπ
t+1vt+1(p

′, A′)− vt+1

(
π−1t+1p,A

′) .
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4 Computation

4.1 Outline of algorithm

Computing this model is challenging due to heterogeneity: at any time t, firms will face different
idiosyncratic shocks Ait and will be stuck at different prices Pit. The reason for the popularity
of the Calvo model is that even though firms have many different prices, up to a first-order
approximation only the average price matters for equilibrium. Unfortunately, this property
does not hold in general, and in the current context, we need to treat all equilibrium quantities
explicitly as functions of the distribution of prices and productivity across the economy, and we
must calculate the dynamics of this distribution over time.

We address this problem by implementing Reiter’s (2009) solution method for dynamic
general equilibrium models with heterogeneous agents and aggregate shocks. As a first step,
Reiter’s algorithm calculates the steady state general equilibrium that obtains in the absence of
aggregate shocks. Idiosyncratic shocks are still active, but are assumed to have converged to their
ergodic distribution, so an aggregate steady state means that z = 0, and Ψ, π, C, R, N , and w
are all constant. To solve for this steady state, we will assume that real prices and productivities
always lie on a fixed grid Γ ≡ ΓP × Γa, where Γp ≡ {p1, p2, ...p#p} and Γa ≡ {a1, a2, ...a#a}
are logarithmically-spaced grids of possible values of pit and Ait, respectively. We can then
think of the steady state value function as a matrix V of size #p × #a comprising the values
vjk ≡ v(pj , ak) associated with the prices and productivities

(
pj , ak

) ∈ Γ. Likewise, the price
distribution can be viewed as a #p ×#a matrix Ψ in which the row j, column k element Ψjk

represents the fraction of firms in state (pj , ak) at the time of transactions. Given this discretized
representation, we can calculate steady state general equilibrium by guessing the aggregate wage
level, then solving the firm’s problem by backwards induction on the grid Γ, then updating the
conjectured wage, and iterating to convergence.

In a second step, Reiter’s method constructs a linear approximation to the dynamics of the
discretized model, by perturbing it around the steady state general equilibrium on a point-by-
point basis. The method recognizes that the Bellman equation and the distributional dynamics
can be interpreted as a large system of nonlinear first-order autonomous difference equations
that define the aggregate dynamics. For example, away from steady state, the Bellman equation
relates the #p×#a matrices Vt and Vt+1 that represent the value function at times t and t+1.
The row j, column k element of Vt is vjkt ≡ vt(p

j , ak) ≡ v(pj , ak,Ξt), for
(
pj , ak

) ∈ Γ. Given
this representation, we no longer need to think of the Bellman equation as a functional equation
that defines v(p, a,Ξ) for all possible idiosyncratic and aggregate states p, a, and Ξ; instead,
we simply treat it as a system of #p#a expectational difference equations that determine the
dynamics of the #p#a variables vjkt . We linearize this large system of difference equations
numerically, and then solve for the saddle-path stable solution of our linearized model using the
QZ decomposition, following Klein (2000).

The beauty of Reiter’s method is that it combines linearity and nonlinearity in a way ap-
propriate for the model at hand. In the context of price setting, aggregate shocks are likely to
be less relevant for individual firms’ decisions than idiosyncratic shocks; Klenow and Kryvstov
(2008), Golosov and Lucas (2007), and Midrigan (2008) all argue that firms’ prices are driven
primarily by idiosyncratic shocks. To deal with these big firm-specific shocks, we treat functions
of idiosyncratic states in a fully nonlinear way, by calculating them on a grid. But this grid-
based solution can also be regarded as a large system of nonlinear equations, with equations
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specific to each of the grid points. When we linearize each of these equations with respect to
the aggregate dynamics, we recognize that aggregate changes are unlikely to affect individual
value functions in a strongly nonlinear way. That is, we are implicitly assuming that aggregate
shocks zt and changes in the distribution Ψt have sufficiently smooth impacts on individual
values that a linear treatment of these effects suffices. On the other hand, we need not start
from any assumption of approximate aggregation like that required for the Krusell and Smith
(1998) method, nor do we need to impose any particular functional form on the distribution Ψ.

Describing the distributional dynamics involves defining various matrices related to quantities
on the grid Γ. From here on, we use bold face to identify matrices, and superscripts to identify
notation related to grids. Matrices associated with the grid Γ are defined so that row j relates to
the price pj ∈ Γp, and column k relates to the productivity ak ∈ Γa. Besides the value function
matrixVt, we also define matrices Dt, Gt, and Λt, to represent the functions dt, gt, and λ(dt/wt)
at points on the grid Γ. The distribution at the time of transactions is given byΨt, with elements
Ψjk

t representing the fraction of firms with real price pit ≡ Pit/Pt = pj and productivity Ait = ak

at the time of transactions. We also define the beginning-of-period distribution Ψ̃t, with elements
Ψ̃jk

t representing the fraction of firms with real price p̃it ≡ P̃it/Pt = pj and productivity Ait = ak

at the beginning of the period. Shortly we will define the transition matrices that govern the
relationships between all these objects.

4.2 The discretized model

In the discretized model, the value function Vt is a matrix of size #p × #a with elements
vjkt ≡ vt(p

j , ak) ≡ v(pj , ak,Ξt) for
(
pj , ak

) ∈ Γ. Other relevant #p × #a matrices include the
adjustment values Dt, the adjustment probabilities Λt, and the expected gains Gt, with (j, k)
elements given by

djkt ≡ dt(p
j , ak) ≡ Eπ

t vt(p, a
k)− vt(p

j , ak), (24)

λjk
t ≡ λ

(
djkt /wt

)
, (25)

gjkt ≡ λjk
t djkt . (26)

Finally, we also define a matrix of logit probabilities Πt, which has its (j, k) element given by

πjk
t = πt(p

j |ak) ≡
exp

(
vjkt /(κwt)

)
∑#p

n=1 exp
(
vjnt /(κwt)

) ,
which is the probability of choosing real price pj conditional on productivity ak if the firm
decides to adjust its price at time t.

We can now write the discrete Bellman equation and the discrete distributional dynamics in
a precise way. First, consider how the beginning-of-period distribution Ψ̃t is derived from the
lagged distribution Ψt−1. Idiosyncratic productivities Ai are driven by an exogenous Markov
process, which can be defined in terms of a matrix S of size #a × #a. The row m, column k
element of S represents the probability

Smk = prob(Ait = am|Ai,t−1 = ak).

Also, beginning-of-period real prices are, by definition, adjusted for inflation. Ignoring grids,
the time t− 1 real price pi,t−1 would deflated to p̃it ≡ pi,t−1/πt ≡ pi,t−1Pt−1/Pt at the beginning
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of t. To keep prices on the grid, we define a #p ×#p Markov matrix Rt in which the row m,
column l element is

Rml
t ≡ prob(p̃it = pm|pi,t−1 = pl).

When the deflated price pi,t−1/πt falls between two grid points, matrix Rt must round up or
down stochastically. Also, if pi,t−1/πt lies outside the smallest and largest element of the grid,
then Rt must round up or down to keep prices on the grid.9 Therefore we construct Rt according
to

Rml
t = prob(p̃it = pm|pi,t−1 = pl, πt) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 if π−1t pl ≤ p1 = pm

π−1
t pl−pn−1

pn−pn−1 if p1 < pm = min{p ∈ Γp : p ≥ π−1t pl}
pn+1−π−1

t pl

pn+1−pn if p1 ≤ pm = max{p ∈ Γp : p < π−1t pl}
1 if π−1t pl > p#

p
= pm

0 otherwise

.

(27)
Combining the adjustments of prices and productivities, we can calculate the beginning-of-

period distribution Ψ̃t as a function of the lagged distribution of transaction prices Ψt−1:

Ψ̃t = Rt ∗Ψt−1 ∗ S′,

where ∗ represents ordinary matrix multiplication. The simplicity of this equation comes partly
from the fact that the exogenous shocks to Ait are independent of the inflation adjustment that
links p̃it with pit−1. Also, exogenous shocks are represented from left to right in the matrix Ψt,
so that their transitions can be treated by right multiplication, while policies are represented
vertically, so that transitions related to policies can be treated by left multiplication.

To calculate the effects of price adjustment on the distribution, let Epp and Epa be matrices
of ones of size #P×#P and #P×#a, respectively. Now suppose a firm has beginning-of-t price
p̃it ≡ P̃it/Pt = pj ∈ Γp and productivity Ait = ak ∈ Γa. This firm will adjust its production

price with probability λjk
t , or will leave it unchanged (pit = p̃it = pj) with probability 1−λjk

t . If
adjustment occurs, the probabilities of choosing all possible prices are given by the matrix Πt.
Therefore we can calculate distribution Ψt from Ψ̃t as follows:

Ψt = (Epa−Λt) . ∗ Ψ̃t +Πt . ∗ (Epp ∗ (Λt . ∗ Ψ̃t)), (28)

where (as in MATLAB) the operator .∗ represents element-by-element multiplication, and ∗
represents ordinary matrix multiplication.

The same transition matrices R and S show up when we write the Bellman equation in
matrix form. Let Ut be the #p ×#a matrix of current payoffs, with elements

ujkt ≡
(
pj − wt

ak

)
(pj)−εCt, (29)

for
(
pj , ak

) ∈ Γ. Then the Bellman equation is

9In other words, we assume that any nominal price that would have a real value less than p1 after inflation
is automatically adjusted upwards so that its real value is p1. This assumption is made for numerical purposes
only, and has a negligible impact on the equilibrium as long as we choose a sufficiently wide grid Γp. If we were to
compute examples with trend deflation, we would need to make an analogous adjustment to prevent real prices
from exceding the maximum grid point p#

p

.
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Dynamic general equilibrium Bellman equation, matrix version :

Vt = Ut + βEt

{
u′(Ct+1)

u′(Ct)

[
R′t+1 ∗ (Vt+1 +Gt+1) ∗ S

]}
. (30)

The expectation Et in the Bellman equation refers only to the effects of the time t+1 aggregate
shock zt+1, because the shocks and dynamics of the idiosyncratic state (pj , ak) ∈ Γ are completely
described by the matrices R′t+1 and S. Note that since the Bellman equation iterates backwards
in time, its transitions are represented by R′ and S, whereas the distributional dynamics iterate
forward in time and therefore contain R and S′.

While equilibrium seems to involve a complicated system of equations, the steady state is
easy to solve because it reduces to a small scalar fixed-point problem, which is the first step of
Reiter’s (2009) method, to be discussed in the next subsection. The second step of the method,
in which we linearize all equilibrium equations, is discussed in subsection 4.4.

4.3 Step 1: steady state

In the aggregate steady state, the shocks are zero, and the distribution takes some unchanging
value Ψ, so the state of the economy is constant: Ξt ≡ (zt,Ψt−1) = (0,Ψ) ≡ Ξ. We indicate
the steady state of all equilibrium objects by dropping the time subscript t, so the steady state
value function V has elements vjk ≡ v(pj , ak,Ξ) ≡ v(pj , ak).

Long run monetary neutrality in steady state implies that the rate of nominal money growth
equals the rate of inflation:

μ = π.

Morever, the Euler equation reduces to

π = βR.

Since the interest rate and inflation rate are observable, together they determine the required
parameterization of β. The steady-state transition matrix R is known, since it depends only on
steady state inflation π.

We can then calculate general equilibrium as a one-dimensional root-finding problem: guess-
ing the wage w, we have enough information to solve the Bellman equation and the distributional
dynamics.10 Knowing the steady state aggregate distribution, we can construct the real price
level, which must be one. Thus finding a value of w at which the real price level is one amounts
to finding a steady state general equilibrium.

More precisely, for any w, we can calculate

C =
(χ

w

)1/γ
, (31)

and then construct the matrix U with elements

ujk ≡
(
pj − w

ak

)
(pj)−εC. (32)

10There are other, equivalent ways of describing the root-finding problem: for example, we could begin by
guessing C. Guessing w is convenient since we know that in a representative-agent, flexible-price model, we have
w = ε−1

ε
. This suggests a good starting value for the heterogeneous-agent, sticky-price calculation.
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We then find the fixed point of the value function:

V = U+ βR′ ∗ (V +G) ∗ S, (33)

together with the logit probability function Π, with elements

πjk = πt(p
j |ak) ≡ exp

(
vjk/(κw)

)
∑#p

n=1 exp (v
jn/(κw))

.

We can then find the steady state distribution as the fixed point of

Ψ = (Epa−Λ) . ∗ Ψ̃+Π . ∗ (Epp ∗ (Λ . ∗ Ψ̃)), (34)

Ψ̃ = R ∗Ψ ∗ S′. (35)

Finally, we check whether

1 =

#p∑
j=1

#a∑
k=1

Ψjk
(
pj
)1−ε ≡ p(w). (36)

If so, an equilibrium value of w has been found.

4.4 Step 2: linearized dynamics

Given the steady state, the general equilibrium dynamics can be calculated by linearization.
To do so, we eliminate as many variables from the equation system as we can. For additional
simplicity, we assume linear labor disutility, x(N) = χN . Thus the first-order condition for
labor reduces to χ = wtu

′(Ct), so we don’t actually need to solve for Nt in order to calculate
the rest of the equilibrium.11 We can then summarize the general equilibrium equation system
in terms of the exogenous shock process zt, the lagged distribution of idiosyncratic states Ψt−1,
which is the endogenous component of the time t aggregate state; and finally the endogenous
jump variables including Vt, Πt, Ct, and πt. The equation system reduces to

zt = φzzt−1 + εzt , (37)

Mt = μeztMt−1, (38)

Ψt = (Epa −Λt) . ∗ Ψ̃t +Πt . ∗ (Epp ∗ (Λt . ∗ Ψ̃t)), (39)

Vt = Ut + βEt

{
u′(Ct+1)

u′(Ct)

[
R′t+1 ∗ (Vt+1 +Gt+1) ∗ S

]}
, (40)

1 =

#p∑
j=1

#a∑
k=1

Ψjk
t

(
pj
)1−ε

. (41)

If we now collapse all the endogenous variables into a single vector

−→
X t ≡

(
vec (Ψt−1)′ , vec (Vt)

′ , Ct, Mt−1, πt

)′
,

11The assumption x(N) = ξN is not essential; the more general case with nonlinear labor disutility simply
requires us to simulate a larger equation system that includes Nt.
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then the whole set of expectational difference equations (37)-(41) governing the dynamic equi-
librium becomes a first-order system of the following form:

EtF
(−→
X t+1,

−→
X t, zt+1, zt

)
= 0, (42)

where Et is an expectation conditional on zt and all previous shocks.

To see that the variables in vector
−→
X t are in fact the only variables we need, note that given

πt and πt+1we can construct Rt and Rt+1. Given Rt, we can construct Ψ̃t = Rt ∗ Ψt−1 ∗ S′
from Ψt−1. Under linear labor disutility, we can calculate wt = χ/u′(Ct), which gives us all

the information needed to construct Ut, with (j, k) element equal to ujkt ≡ (
pj − wt

ak

)
(pj)−εCt.

Finally, givenVt andVt+1 we can constructΠt, Dt, andDt+1, and thusΛt andGt+1. Therefore

the variables in
−→
X t and zt are indeed sufficient to evaluate the system (37)-(41).

Finally, if we linearize system F numerically with respect to all its arguments to construct
the Jacobian matrices A ≡ D−→

X t+1
F , B ≡ D−→

X t
F , C ≡ Dzt+1F , and D ≡ DztF , then we obtain

the following first-order linear expectational difference equation system:

EtAΔ−→X t+1 + BΔ−→X t + EtCzt+1 +Dzt = 0, (43)

where Δ represents a deviation from steady state. This system has the form considered by Klein
(2000), so we solve our model using his QZ decomposition method.12

5 Results

5.1 Parameterization

We calibrate our model to match the monthly frequency of price changes in US microdata. We
set the steady state growth rate of money to 0%. This is consistent with the zero average price
change in the AC Nielsen data of household product purchases (Midrigan, 2008), which we use
to test our model’s ability to replicate salient features of price adjustment behavior. The model,
like the data, addresses “regular” price changes, excluding temporary “sales”.

As in Costain and Nakov (2008A, B), we take most of our parameterization directly from
Golosov and Lucas (2007). Thus we set the discount factor to β = 1.04−1/12. Consumption
utility is CRRA, u(C) = 1

1−γC
1−γ , with γ = 2. Labor disutility is linear, x(N) = χN , with

χ = 6. The elasticity of substitution in the consumption aggregator is ε = 7. Finally, the utility
of real money holdings is logarithmic, v(m) = ν log(m), with ν = 1.

We assume productivity is AR(1) in logs: logAit = ρ logAit−1+ εat , where ε
a
t is a mean-zero,

normal, iid shock. We take the autocorrelation parameter from Blundell and Bond (2000) who
estimate it from a panel of 509 US manufacturing companies over 8 years, 1982-1989. Their
preferred estimate is 0.565 on an annual basis, which implies ρ around 0.95 in monthly frequency.

The variance of log productivity is σ2
a = (1−ρ2)σ2

ε, where σ
2
ε is the variance of the innovation

εat . We set the standard deviation of log productivity to σa = 0.06, which is the standard
deviation of “reference costs” estimated by Eichenbaum, Jaimovich, and Rebelo (2008). Given
our grid-based approximation, this implies a maximum absolute log price change of 0.48, which

12Alternatively, the equation system can be rewritten in the form of Sims (2001). We chose to implement the
Klein method because it is especially simple and transparent to program.
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covers, with an extra margin of 7%, the maximum absolute log price change of 0.45 observed in
the AC Nielsen dataset.13

The same technology and preferences are assumed for all adjustment models. Thus, for each
adjustment model we are left with one free parameter to calibrate. In the PPS and ENT cases,
this is the the logit noise parameter κ; for the other specifications we must either set the Calvo
adjustment rate λ or the menu cost α. In all three cases, we choose the parameter to match the
10% median monthly frequency of price changes estimated by Nakamura and Steinsson (2008).
All three cases are well identified because κ and α both strongly affect the frequency of price
changes (as does λ, of course).

5.2 Steady state microeconomic results

Table 1 and Figure 1 summarize our main estimation results. The estimated noise parameter
for the PPS specification is κ = 0.0428, implying a relatively small deviation from fully rational
behavior (i.e. low probabilities of large errors). Table 1 reports the losses implied by the errors
in our model: we report the mean loss suffered relative to a fully rational firm, as a percentage
of average revenues of a fully rational firm. In the baseline estimate, firms lose half a percent of
revenues due to imperfect rationality. Losses are of a similar order of magnitude in all the other
specifications too, being largest in the Calvo case and smallest under fixed menu costs. The
distribution of losses can also be seen in the last panel of Figure 1, which shows the distribution
both before and after firms decide whether or not to adjust. In addition, Figure 1 illustrates
other equilibrium objects, such as the logit probability function π (first panel), the adjustment
gains function D (second panel), and the adjustment probability λ (third panel).14

The first column of Table 1 also shows the main statistics of price adjustment implied by our
estimate of the PPS specification. With a single free parameter, we hit our single calibration
target, the 10% monthly frequency of price changes estimated by Nakamura and Steinsson (2008)
(the last three columns of the table show data from several sources). The remaining moments
also appear quite consistent with the distribution of price adjustments in the data, which is
illustrated in Figure 2 (where it is compared to the fixed menu cost and Calvo specifications).
The histogram of price changes shows 51 equally-spaced bins representing log price changes from
-0.5 to 0.5. The blue shaded bars in the figure represent the AC Nielsen data, and the black
line represents the results of our estimated model; the PPS specification generates a widely
dispersed and mildly bimodal distribution like that seen in the data. The standard deviation
of price adjustments is matched relatively well by the PPS specification: 14.5% in our model
versus 13.2% in the data. As in the data, half of the price adjustments in our baseline model
are price increases. Kurtosis is somewhat lower in our model (2.6) than in the data (3.5), as can
be seen from the relatively fat tails in the blue shaded data in the figure.

Notably, in Figure 2 we see that the PPS framework reproduces one of the puzzling obser-
vations in the context of the fixed menu cost model: the coexistence of large and small price
changes. While typical price adjustments are large in our model, well over 10%, nonetheless

13The aggregate steady state is projected on a price-productivity grid Γ of 25 by 25 points. The 25 log
productivity steps of 0.02 cover four standard deviations of productivity above and below the average. Likewise,
25 log price steps of 0.02 cover the distance from the minimum to the maximum flexible price associated with the
maximum and minimum productivities, respectively. In calculations with trend inflation extra points are added
in the price dimension to ensure that the ergodic distribution remains on the grid

14Figure 1a illustrates the PPS specification, while Figure 1b shows the same equilibrium objects under the
ENT specification.
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around 20% (10%) of all adjustments are less than 5% (2.5%) in absolute value. All these
statistics are close to those the data. The Calvo and the fixed menu cost models imply more
concentrated distributions,15 so both imply many absolute adjustments of less than 5%. How-
ever, the fixed menu cost model concentrates the distribution of adjustment on two sharp spikes
around an empty center, with no adjustments smaller than 2.5%, whereas in the Calvo model
more than half of all changes are that small. Like the menu cost model, the PPS framework also
exhibits (S,s) behavior, as illustrated by the second-to-last panel of Figure 1; inside the (S,s)
bands firms choose not to adjust because the expected value of adjustment is not high enough to
justify the risk of an error. Nonetheless, since the actual size of price adjustment is determined
stochastically, a wide range of price adjustments is observed, including many small ones.

Another striking finding relates to the behavior of the adjustment hazard, that is, the prob-
ability of a price change as a function of the time since last adjustment. Figure 3 illustrates this
hazard, comparing two empirical data sets with our model and with the fixed menu cost and
Calvo specifications. In our model, error-prone decisions imply that firms sometimes readjust
quickly after making a change, when their decision turns out to have been a mistake. This
accounts for the spike in the adjustment hazard at one month. The adjustment hazard remains
mildly decreasing over the next few months, driven by small errors subsequently compounded by
unfavorable shocks; it is thereafter largely flat. This pattern is quite consistent with microdata;
it fails by construction in the Calvo model and also contrasts with the increasing hazard observed
in the FMC model. Many studies have suggested that decreasing hazards in the data may be
caused by heterogeneity in adjustment frequencies across different types of products. However,
Nakamura and Steinsson (2008) find decreasing hazards even after controlling for heterogeneity
(see the blue dotted line in the figure). Likewise, Campbell and Eden (2010) find that for a
given product (as defined by the UPC code), recently-set prices are more likely to be adjusted
than “older” prices.

Figures 4 and 5 illustrate our model’s implications for two other stylized facts from microdata.
In Figure 4, we see that in Klenow and Kryvtsov’s (2008) microdata, the average size of the
price adjustment is essentially invariant with the time since last price adjustment. The fixed
menu cost model is strongly consistent with these data; the precautionary price stickiness model
also does fairly well, except at a horizon of one month. The Calvo model is strongly rejected
on this score, since it implies that the size of the price adjustment increases with the time since
last adjustment. Figure 5 illustrates Campbell and Eden’s (2010) finding that for any given
product, prices far from the time average are likely to have been set recently. The Calvo model
is again inconsistent with this observation. Both the fixed menu cost and precautionary price
stickiness models generate a U-shaped relation between the percentage of “young” prices (those
set within the last month) and the deviation from the average price; the former understates the
relationship whereas the latter overstates it.

5.3 Effects of changes in monetary policy

Figure 6 investigates the effects of large changes in steady state inflation, compared with empiri-
cal observations from Mexican data reported by Gagnon (2007) for periods with annual inflation
rates of 5%, 29%, and 63%. The Calvo model is not shown, since the initial Calvo specification

15To understand this result, note that conditional on a given productivity process, the PPS and ENT models
generate greater price variability than the Calvo and FMC models do, since price adjustments in the PPS and
ENT cases partially reflect errors, instead of being reactions to productivity shocks only.
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with adjustment rate λ = 0.1 is incompatible with the rise in inflation shown in the figure (it
generates negative firm values at all inflation rates shown in the figure except for the lowest
one). The first panel shows how the probability of adjustment rises with the steady state in-
flation rate. The FMC, PPS, and ENT specifications all generate increases in the adjustment
frequency very similar to that observed in the data (the level of the adjustment frequency is
higher in the data than in the models, but this simply reflects the fact that we are comparing
US model calibrations with Mexican data).

The second panel shows how the standard deviation of price adjustments changes with the
inflation rate. The Mexican data show a small, nonmonotonic change in the standard deviation
as inflation rises. The PPS and ENT models both generate a standard deviation fairly close
to that in the data, and there is little change in this standard deviation as inflation rises. The
FMC model instead has a much smaller standard deviation of price adjustments; moreover,
this standard deviation drops dramatically (by more than half) as inflation rises to the levels
observed in Gagnon’s data. Finally, the third panel reports the fraction of price adjustments
that are increases; all three models somewhat exaggerate the rise in the percentage of price
increases, as compared with Gagnon’s data.

Figures 7-9 illustrate the implications of our estimated model for macroeconomic dynamics.
The figures show impulse responses of inflation and consumption to money supply shocks εzt ,
comparing the PPS and ENT specifications with the Calvo and FMC models. The AR(1)
persistence is set to φz = 0.8 monthly, implying quarterly persistence of 0.5. Under the baseline
parameterization, both the PPS and ENT versions of our model imply real effects of monetary
shocks much smaller than those in the Calvo case. In fact, the consumption response for the ENT
specification is almost identical to that associated with FMC; the initial impact on consumption
under PPS is similar, though in this case the response is more persistent. The same conclusions
can be drawn from Table 2, which quantifies the real effects of money shocks across models
following Golosov and Lucas (2007). The table reports the percentage of output variation that
can be explained by money shocks alone (assuming the money shock is sufficiently variable to
explain 100% of inflation variation); it also reports the slope coefficient of a “Phillips curve”
regression of output on inflation. Under both of these measures, the ENT and FMC models
have imply nearly identical degrees of monetary nonneutrality, whereas PPS implies real effects
roughly twice as strong. Under the Calvo specification, money shocks have real effects roughly
four times stronger than they do in the PPS case.

The explanation for the weak response of consumption in our model is the same one Golosov
and Lucas (2007) identified in the FMC context: a strong “selection” effect. In our model,
as in the case of FMC, adjustment occurs if and only if it is sufficiently valuable. Therefore
all the most important price misalignments are eliminated after a money shock, which makes
money approximately neutral. To measure this effect precisely, define the productivity-specific
optimal price level p∗kt ≡ argmaxpvt(p, a

k), and also x∗jkt ≡ log(p∗kt /pj), the desired log price

adjustment of a firm at time t with productivity ak and real price pj . The actual log price
adjustment of such a firm (call it i) can thus be decomposed as xit = x∗jkt + εit, where εit is

an error, in logs. We can then write the average desired adjustment as x∗t =
∑

j,k x
∗jk
t Ψ̃jk

t , and

write the fraction of firms adjusting as λt =
∑

j,k λ
jk
t Ψ̃jk

t , and write the average log error as

εt =
∑

j,k,l π
lk
t log(pl/p∗kt )λjk

t Ψ̃jk
t .
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Then inflation can be written as

πt =
∑
j,k

x∗jkt λjk
t Ψ̃jk

t + εt. (44)

To a first-order approximation, we can decompose the deviation in inflation at time t as

Δπt = logΠt − log Π = λΔx∗t + x∗Δλt +Δ
∑
j,k

xjkt (λjk
t − λt)Ψ̃

jk
t +Δεt, (45)

where terms without time subscripts represent steady states, and Δ represents a change relative
to steady state.16

The first term, It ≡ λΔx∗t , can be called the “intensive margin”; it is the part of inflation due
to changes in the average desired adjustment, holding fixed the fraction of firms adjusting. The
second term, Et ≡ x∗Δλt, can be called the “extensive margin”; it is the part of inflation due
to changes in the fraction of firms adjusting, assuming the average desired adjustment among
those who adjust equals the steady-state average in the whole population. The third effect,
St ≡ Δ

∑
j,k x

jk
t (λjk

t − λt)Ψ̃
jk
t , represents the part of inflation due to redistributing adjustment

opportunities from firms desiring small price adjustments to firms desiring large adjustments,
while fixing the total number adjusting. Finally, there is a fourth term, Δεt, which is the change
in the average log error.

The inflation impulse responses associated with all the specifications considered are decom-
posed in Figure 9. By construction, all variation in inflation in the Calvo model is caused by
the intensive margin, since the probability of adjustment never varies in that specification. The
PPS, ENT, and FMC specifications also show a rise in inflation due to the intensive margin,
since the money supply shock increases the average desired price adjustment. But in these cases
there is a much more important rise in inflation that goes through the selection effect. The
money supply shock leaves some firms with an especially low real price; some of these firms then
decide to adjust their prices, which is the selection effect. The larger price increase in these
specifications explains the small consumption impact seen in Figure 7.

Note finally that under all specifications the extensive margin effect is negligible. This occurs
whenever we start from an inflation rate near zero: changing the fraction adjusting while holding
the mean adjustment fixed must have a negligible impact since the mean adjustment must be
roughly zero when inflation is roughly zero. Likewise, the change in the average log error
(not shown) has a negligible impact on inflation. Instead, it is the reallocation of adjustment
opportunities to those that desire a large price increase, which is classified as the selection effect,
that really matters for the inflation response.

5.4 Changing the risk of errors

Tables 1-2 and Figure 8 also show how the behavior of the PPS model varies with the parameter
κ that controls the amount of noise in the decision process. In Table 1, cutting noise in half
causes the frequency of price adjustment to rise from 10% to 12.3% per month, and the average
price change becomes smaller. This makes sense— with greater rationality, price adjustment is
less risky, so firms become willing to adjust even when their prices are not so far out of line.
Moreover, the elimination of errors also reduces the size of price changes directly by cutting out
one component of the price adjustment process.

16See Costain and Nakov (2011B) for further discussion of this decomposition.
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Likewise, in Figure 8, cutting noise in half increases the initial spike in inflation, so that
the real effect of the nominal shock is smaller than in the baseline calibration. In other words,
as rationality increases the PPS model eventually converges to a fully flexible setup in which
money is essentially neutral.

5.5 Logit equilibrium versus control costs

Finally, it is interesting to contrast the behavior of the baseline logit equilibrium version of our
model, which we called ‘PPS’, with the version based on control costs, called ‘ENT’. The main
conclusion is that the implications of the two versions of the model are very similar, though
calibrating the ENT specification results in somewhat lower frictions than PPS.

In terms of microeconomic implications, Table 1 and Figure 2 show that ENT implies a more
concentrated distribution, with smaller adjustments, than PPS. While PPS and ENT are both
quite consistent with the histogram of price adjustments, the ENT specification is somewhat
more sharply bimodal than the data, whereas PPS is more weakly bimodal and more spread
out. Figures 3-5 show that PPS and ENT have qualitatively similar implications for several
other micro facts. In terms of impulse responses, Figures 7-9 show that ENT is even closer to
monetary neutrality than PPS, behaving almost identically to the fixed menu cost model.

These findings can be understood by noting that we must recalibrate the noise parameter
κ when going from PPS to the ENT setup. In the PPS specification, adjustment occurs if and
only if the value of adjustment D is nonnegative; we calibrate κ = 0.0478 in order to match
a 10% monthly adjustment frequency. Moving to the ENT specification implies that firms are
less likely to adjust, ceteris paribus : adjustment does not occur unless the value of adjustment
(in labor units) exceeds the control cost C(−→π ). Therefore matching the same 10% adjustment
frequency requires a substantially lower degree of noise; the required calibration for the ENT
specification is κ = 0.0050.

Since the ENT model combines a substantially lower noise parameter with a nonzero cost of
adjustment, it behaves more like the FMC model than PPS does. This is especially true in terms
of impulse responses. The lower noise parameter also explains why ENT exhibits smaller price
adjustments than PPS. Nonetheless, the presence of errors means that ENT generates a much
more realistic distribution of price changes than FMC does, with a smoother histogram that
includes some very small adjustments. The presence of errors also implies that ENT exhibits
price adjustment hazard that declines (slightly) with the time since last adjustment, in contrast
with the FMC model. The lower noise in the ENT calibration also explains why the mean loss
reported in Table 1 is lower for ENT than it is for PPS, in spite of the fact that no adjustment
costs are deducted from the value function under the PPS specification.

6 Conclusions

We have analyzed the pricing behavior of near-rational firms subject to idiosyncratic and ag-
gregate shocks which can adjust their prices at any time, but may make mistakes. We model
error-prone behavior by assuming firms play a dynamic logit equilibrium. Prices are therefore
endogenously sticky: when a firm’s current price is sufficiently close to the optimum, it prefers
to leave well enough alone, avoiding the risk of accidentally choosing a worse price.

This way of modeling price stickiness is consistent with several observations from microdata
that are hard to explain in most existing frameworks. Even though the decision to adjust prices
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has an (S,s) structure, nonetheless many small price changes coexist with larger ones. Moreover,
the price adjustment hazard exhibits negative duration dependence; the size of price changes is
largely independent of the time elapsed since the last adjustment; and extreme prices tend to
have been set recently.

When we estimate the logit rationality parameter, our model matches both the frequency of
adjustment and the size distribution of price changes quite successfully. This is especially true
for the PPS speci cation. Since our setup guarantees that rms making su ciently large errors
will choose to adjust, it generates a "selection e ect" in response to nominal shocks that largely
mitigates the strong real e ects of money shocks found in the Calvo model.

While the Calvo model o ers one way to explain the presence of small price changes, it fails
to generate many other prominent micro facts. Our model performs considerably better than
Calvo in matching microdata, but because of its strong selection e ect, it generates far less
stickiness of the aggregate price level than the Calvo model does. Thus, resolving the “puzzle”
of small price adjustments need not, by itself, alter Golosov and Lucas’ conclusion that money
shocks have small real e ects.

As we hinted in the introduction, thinking of nominal rigidity as a near-rational phenomenon
makes it natural to consider mistakes both in the size and timing of price adjustment. We are
studying a model of this type in ongoing work (Costain and Nakov 2011C). It would also be
interesting to apply logit decision-making in many macroeconomic contexts other than price
setting.
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Table 1. Model-Simulated Statistics and Evidence (zero trend inflation)

Model PPS Model ENT Calvo MC Evidence
κ = 0.0428 2× κ 1

2 × κ κ = 0.0050 MAC NS KK

Freq. of price changes 10 7.4 12.3 10 10 10 20.5 10 21.9

Mean absolute price change 11.9 13.5 10.1 6.5 2.8 5.5 10.4 11.3
Std of price changes 14.5 16.5 12.3 7.3 3.7 5.6 13.2
Kurtosis of price changes 2.6 2.5 2.7 2.3 4.2 1.2 3.5

Percent of price increases 50 50.2 49.7 50 48 50.7 50 66 56
% of abs price changes ≤ 5% 19.5 17.1 23.2 32.2 83.6 42.4 25 44
% of abs price changes ≤ 2.5% 9.4 8.4 10.9 10.1 55 0 11

Mean loss (% flex. revenue) 0.55 0.70 0.40 0.34 0.61 0.31

Note: All statistics refer to regular consumer price changes excluding sales, and are stated in percent.

The last three columns reproduce the statistics reported by Midrigan (2011) for AC Nielsen (MAC),

Nakamura and Steinsson (2008) (NS), and Klenow and Kryvtsov (2008) (KK).

Last row reports the mean difference between profits under flexible and rigid prices, as a percentage of

the mean revenues of a flexible-price firm, for each model of rigidity.
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Table 2. Variance decomposition and Phillips curves

Correlated money growth shock Data Model PPS Model ENT Calvo FMC
(φz = 0.8) κ = 0.0428 2× κ 1

2 × κ κ = 0.0050

Frequency of non-zero price changes (%) 10 7.4 12.3 10 10 10
Std of money shock (x100) 0.153 0.192 0.134 0.120 0.331 0.122

Std of quarterly inflation (x100) 0.246 0.246 0.246 0.246 0.246 0.246 0.246
% explained by μ shock alone 100 100 100 100 100 100

Std of quarterly output growth (x100) 0.510 0.310 0.460 0.220 0.174 1.08 0.195
% explained by μ shock alone 60.7 90.3 43.2 34.1 212 38.3

Slope coeff. of Phillips curve* 0.273 0.429 0.191 0.136 1.100 0.149
Standard error 0.006 0.009 0.008 0.011 0.070 0.012
R2 of regression 0.987 0.987 0.949 0.834 0.892 0.832

*The “slope coefficients” are 2SLS estimates of the effect of inflation on consumption.

First stage: πq
t = α1 + α2μ

q
t + εt; second stage: cqt = β1 + β2π̂

q
t + εt, where the instrument

μq
t is the exogenous growth rate of the money supply and the superscript q indicates quarterly averages.
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Fig. 1a. Properties of the steady state distribution: PPS specification1

Note: first five panels show real prices p and costs 1/a as log deviations from mean.2

First panel: Probability π of choosing real price p, conditional on cost 1/a.3

Second panel: Adjustment value D, expressed as fraction of median firm value.4

Third panel: Adjustment probability λ.5

Fourth panel: Contour plot of beginning-of-period density of firms, Ψ̃.6

Fifth panel: Contour plot of density of adjusting firms.7

Sixth panel: Densities of adjustment values before adjustment (D, blue shading), and after8

adjustment (solid line).
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Fig. 1b. Properties of the steady state distribution: ENT specification1

Note: first five panels show real prices p and costs 1/a as log deviations from mean.2

First panel: Probability π of choosing real price p, conditional on cost 1/a.3

Second panel: Adjustment value D, expressed as fraction of median firm value.4

Third panel: Adjustment probability λ.5

Fourth panel: Contour plot of beginning-of-period density of firms, Ψ̃.6

Fifth panel: Contour plot of density of adjusting firms.7

Sixth panel: Densities of adjustment values before adjustment (D, blue shading), and after8

adjustment (solid line).
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Fig. 2. Distribution of nonzero price adjustents: comparing models1

Shaded blue area: Nonzero price adjustments in AC Nielsen data of Midrigan (2011), controlling for sales.2

Black lines: model simulations under fixed menu costs (left), Calvo model (middle), and ’PPS’ (right, solid)3

and ’ENT’

(right, dotted) specifications of our model.4
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Fig. 3. Price adjustment hazard: comparing models1

Red and blue dotted lines: price adjustment hazard as function of time since last adjustment,2

in data of Nakamura and

Steinsson (2008) and Klenow and Kryvstov (2008).3

Black lines: model simulations under fixed menu costs (left), Calvo model (middle), and ’PPS’4

(right, solid) and ’ENT’

(right, dotted) specifications of our model.5
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Fig. 4. Mean adjustment and price duration: comparing models1

Blue dotted line: average absolute nonzero price change, in percent, as function of time since2

adjustment, in data

of Klenow and Kryvstov (2008).3

Black lines: model simulations under fixed menu costs (left), Calvo model (middle), and ’PPS’4

(right, solid) and ’ENT’

(right, dotted) specifications of our model.5
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Fig. 5. Extreme prices tend to be young: comparing models1

Blue dotted line: fraction of prices set no more than two months previously, as function of log deviation2

product-

specific mean price, in data of Campbell and Eden (2010).3

Black lines: model simulations under fixed menu costs (left), Calvo model (middle), and ’PPS’4

(right, solid) and ’ENT’

(right, dotted) specifications of our model.5
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Fig. 6. Effects of trend money growth: comparing models1

Black line with checks: Mexican data of Gagnon (2008), at annual inflation rates of 5%, 29%, and 63%.2

Other lines: simulations of FMC (green with circles), PPS (red with dots), ENT (dotted pink).3

First panel: average frequency of price adjustments, as function of inflation rate.4

Second panel: standard deviation of nonzero price adjustments, as function of inflation rate.5

Third panel: fraction of nonzero price adjustments which are increases, as function of inflation rate.6
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Fig. 7. Impulse responses to money growth shock: comparing models1

Simulated responses of inflation and consumption to a money growth shock, monthly autocorrelation 0.8.2

Green squares: Calvo model; blue circles: fixed menu costs; red line: ’PPS’ model; dotte pink:3

’ENT’ model.
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Fig. 8. Impulse responses to money growth shock: effects of noise parameter1

Simulated responses of inflation and consumption to a money growth shock, monthly autocorrelation 0.8.2

Red line: ’PPS’ model with baseline noise parameter, κ = 0.0428; green squares: ’PPS’ model with3

higher noise,

κ = 0.0856; blue circles: ’PPS’ model with lower noise, κ = 0.0214.4

Fig. 9. Inflation decomposition after money shock: comparing models1

Intensive, extensive, and selection margins of inflation response to a money growth shock, monthly2

autocorrelation 0.8.

Green squares: Calvo model; blue circles: fixed menu costs; red line: ’PPS’ model; dotted pink:3

’ENT’ model.
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