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Abstract

This paper discusses likelihood-based estimation of linear panel data models with general 

predetermined variables and individual-specifi c effects. The resulting (pseudo) maximum 

likelihood estimator is asymptotically equivalent to standard GMM but tends to have smaller 

fi nite-sample biases as illustrated in simulation experiments. Moreover, the availability of 

such a likelihood function allows applying the Bayesian apparatus to this class of panel data 

models. Combining the aforementioned estimator with Bayesian model averaging methods 

we estimate empirical growth models simultaneously considering endogenous regressors 

and model uncertainty. Empirical results indicate that only the investment ratio seems to 

robustly cause long-run economic growth. Moreover, the estimated rate of convergence is 

not signifi cantly different from zero.

Keywords: Dynamic panel estimation, maximum likelihood, weak instruments, growth 

regressions, bayesian model averaging. 

JEL classifi cation: C11, C33, O40.



Resumen

En este documento se analiza la estimación por máxima verosimilitud de modelos lineales 

de datos de panel con efectos fi jos y regresores endógenos. El estimador máximo verosímil 

resultante es asintóticamente equivalente a estimadores de panel por el Método Generalizado 

de Momentos (Arellano y Bond, 1991) pero tiene menores sesgos en muestras fi nitas como 

se ilustra en las simulaciones. Por otra parte, la disponibilidad de una función de verosimilitud 

permite aplicar métodos Bayesianos a esta clase de modelos de datos de panel. En 

concreto, combinando el estimador propuesto con métodos Bayesianos de promediado de 

modelos se estiman ecuaciones de crecimiento atajando simultáneamente los problemas 

de endogeneidad e incertidumbre del modelo. Los resultados empíricos obtenidos indican 

que sólo la inversión parece ser causante robusto del crecimiento económico a largo plazo. 

Por otra parte, la tasa de convergencia estimada no es signifi cativamente diferente de cero.

Palabras claves: Datos de panel, Máxima verosimilitud, Instrumentos débiles, Regresiones 

de crecimiento, Promediado Bayesiano de modelos. 

Códigos JEL: C11, C33, O40.
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1 Introduction

In this paper we consider a linear (dynamic) panel data model with general predetermined

explanatory variables and unobservable individual effects. Such a model is typically estimated

by panel IV techniques like first-differenced GMM, e.g. Holtz-Eakin et al. (1988), Arellano and

Bond (1991). However, in practice the application of GMM often entails finite sample biases,

especially when the instruments are weak (i.e. lagged levels of the variables are weakly correlated

with subsequent first-differences). A number of alternative methods have been considered to

address this issue from a method-of-moments perspective (e.g. Hansen et al. (1996); Alonso-

Borrego and Arellano (1999); Arellano and Bover (1995)). In contrast, in this paper we focus

on likelihood-based estimation of this class of models. The aim is twofold: on the one hand, the

likelihood counterpart of first-differenced GMM estimators is expected to alleviate finite sample

biases due to weak instruments; on the other hand, the availability of such a likelihood function

allows applying Bayesian methods such as Bayesian model averaging to panel data models with

general predetermined variables.

In the single equation case, it is well documented in the literature that the effect of weak-

instruments on the distribution of two-stage least squares (2SLS) and limited information maxi-

mum likelihood (LIML) differs substantially in finite samples despite the fact that both estimators

have the same asymptotic distribution. Although the distribution of LIML is centered at the pa-

rameter value, 2SLS is biased toward ordinary least squares (OLS). On the other hand, since

LIML has no finite moments regardless of the sample size, its distribution has thicker tails than

that of 2SLS. In terms of numerical comparisons of median bias, interquartile ranges, and rates of

approach to normality, Anderson et al. (1982) concluded that LIML was to be strongly preferred

to 2SLS, particularly if the number of instruments is large.

In the panel setting considered in this paper, the number of instruments increases with the

time series dimension (T ). Thus, method-of-moments estimators (like first-differenced GMM)

exploit many overidentifying restrictions, although the quality of the instruments is often poor.

In order to consider the LIML counterpart for this kind of panel IV estimators, we construct

the likelihood function of a dynamic panel data model with general predetermined variables and

individual effects correlated with the regressors. Hansen et al. (1996) and Akashi and Kunitomo

(2010) among others have also considered LIML estimators for such a panel model. However, these

are only LIML analog estimators in the sense of the minimax instrumental-variable interpretation

given by Sargan (1958) to the original LIML estimator; therefore they do not provide suitable

likelihood functions.

Proper likelihood-based approaches for dynamic panel models with unobservable individual

effects have been discussed in the literature (e.g. Bhargava and Sargan (1983); Alvarez and

Arellano (2003)). The focus in these approaches is on the distribution of the dependent variable
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conditional on a set of exgoneous regressors. In this paper we construct the joint likelihood func-

tion of the dependent variable and a set of predetermined (or partially endogenous) regressors

conditional on the initial observations, and optionally, on additional exogenous variables. Intu-

itively, we complete the model with an unrestricted feedback process which is specified in the form

of period-specific linear projections of the non-exogenous variables on all available lags. Moreover,

the analysis is marginal on the individual effects which can be correlated with the regressors.

The resulting (pseudo) maximum likelihood estimator is asymptotically equivalent to one-step

first-differenced GMM augmented with moments implied by the serial correlation properties of

the errors.1 Simulation experiments serve to evaluate the finite-sample behavior of the proposed

estimator. Our simulation results show that the estimator has negligible biases in contrast to the

commonly-used Arellano and Bond’s (1991) GMM estimator, which has large biases, especially

when the generated series are persistent over time. Therefore, we conclude that the proposed

likelihood-based estimator is preferred to standard GMM estimators in terms of finite-sample

performance.

Researchers interested in “not large N , small T” panels might often face this weak-instruments

problem. Panel growth regressions are probably the best example: the right-hand side variables

are typically endogenous and measured with error. Omitted variable bias also arises because of

the presence of unobservable time-invariant country-specific characteristics correlated with one or

more regressors. Moreover, given the variables considered in empirical growth models, the time

series are persistent and the number of observations in the cross-section dimension is typically

small. Under these conditions, the commonly-used first-differenced GMM estimator is poorly

behaved in the growth framework (e.g. Bond et al. (2001)). The likelihood-based estimator

discussed in this paper provides a promising alternative.

Model uncertainty represents also a challenge to empirical growth researchers. It emerges be-

cause theory does not provide enough guidance to select the proper empirical model, and results

in a total of more than 140 variables proposed as growth determinants (see for instance Durlauf

et al. (2005)). One commonly-used alternative to address model uncertainty is Bayesian model

averaging — henceforth BMA — methods which construct parameter estimates that formally

address the dependence of model-specific estimates on a given model. Fernández et al. (2001)

and Sala-i-Martin et al. (2004) popularized the use of BMA in the growth context under the

assumption of exogenous growth determinants. In order to simultaneously address model un-

certainty and different forms of endogeneity, the combination of BMA with IV and panel data

models is an interesting line of open research (e.g. Moral-Benito (2011); Durlauf et al. (2008);

Eicher et al. (2009a)). The availability of the suitable likelihood function derived in this paper

allows us to combine BMA methods (or the Bayesian apparatus in general) with panel models

1The additional moments are quadratic restrictions of the type discussed in Ahn and Schmidt (1995). On the

other hand, we refer here to fixed T , large N asymptotics.
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under the assumption of endogenous regressors. The possibility to simultaneously address the

problems of model uncertainty and endogeneity seems of paramount importance for empirical

growth researchers.2

Empirical results cast doubt on previous consensus in the growth regressions literature. On

the one hand, we do not find evidence of conditional convergence across the countries in the

sample. In particular, the estimated speed of convergence is 0.73%, but it is not significantly

different from zero. On the other hand, only the investment ratio can be labeled as a robust

determinant of economic growth accordingly to the Bayesian robustness check used in the paper.

The remainder of the paper is organized as follows. Section 2 describes the construction of the

likelihood function in the context of a dynamic panel data model with feedback (i.e. predetermined

regressors). Monte Carlo evidence on the finite-sample behavior of the estimator is provided in

Section 3. Results from combining the estimator and model averaging techniques are presented

in Section 4. Finally, Section 5 concludes and auxiliary results are gathered in the Appendix.

2 Dynamic Panel Data with Feedback:

Likelihood-Based Estimation

Consider the following panel data model:

yit = αyit−1 + x′itβ + w′iδ + ηi + ζt + vit (1)

E
(
vit | yt−1

i , xt
i, wi, ηi

)
= 0 (t = 1, ..., T )(i = 1, ..., N) (2)

where xit and wi are vectors of variables of orders k and m respectively, and xt
i denotes a vector

of observations of x accumulated up to t: xt
i = (x′i1, . . . , x

′
it)
′.

The predetermined nature of the lagged dependent variable given the dynamics of the model

is considered in assumption (2).3 The model also relaxes the strict exogeneity assumption for the

x variables that are also considered as predetermined (this is why we refer to the model as having

general predetermined variables) allowing for feedback from lagged values of y to the current value

for x. More precisely, assumption (2) implies that the x variables in period t are correlated with

past shocks (vi0, ..., vit−1) but uncorrelated with present and future shocks (vit, ..., viT ). Other

intermediate configurations can be accommodated in this framework. For instance, we might

be interested in allowing for non-zero correlations between the partially endogenous regressors

2From a time series perspective, a similar situation is also present in the BMA forecasting literature where the

predictors are typically assumed to be strictly exogenous (see Stock and Watson (2006), page 541)
3Assumption (2) also implies lack of autocorrelation in vit since lagged vs are linear combinations of the

variables in the conditioning set.
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(xit) and contemporaneous shocks (vit). We label the x variables as predetermined or partially

endogenous4 as opposed to the other two possible configurations, namely, strict exogeneity (if xit

is uncorrelated with the full path of shocks vi0, ..., viT ) and strict endogeneity (if xit is correlated

with all the shocks from t = 0 to t = T ). A static (i.e. without lagged dependent variable)

version of this panel data model with partially endogenous regressors and its likelihood function

are discussed in Appendix A.1.

The model also incorporates m strictly exogenous regressors that may or may not have tem-

poral variation. In the remaining of the exposition we assume that all the w variables have no

variation within time. While allowing for time varying strictly exogenous w variables is straightfor-

ward in this context, in the spirit of Hausman and Taylor (1981) we prefer to stress the possibility

of identifying the effect of time-invariant variables in addition to the unobservable time-invariant

fixed effect. This is possible by assuming lack of correlation between the w variables and the

unobservable fixed effects ηi. The term ζt in (1) captures unobserved common factors across units

in the panel and, therefore, this particular form of cross-sectional dependence is allowed.5

Models like the one presented in equations (1)-(2) are typically estimated by first-differenced

generalized method-of-moments. However, the conclusion from a sizeable Monte Carlo literature

on the finite-sample properties of this GMM estimators is that they can be severely biased when

weak instruments (persistent series) are present (e.g. Arellano and Bond (1991); Blundell and

Bond (1998); Alonso-Borrego and Arellano (1999)). In order to alleviate this problem, several

alternatives have been proposed in the literature from a method-of-moments perspective (see for

example Arellano and Bover (1995), Hansen et al. (1996), Blundell and Bond (1998), Alonso-

Borrego and Arellano (1999) and Akashi and Kunitomo (2010)). The alternatives discussed in

Hansen et al. (1996) and Akashi and Kunitomo (2010) are usually labeled as LIML approaches.

However, they are method-of-moments estimators which can be interpreted as LIML analog es-

timators given the minimax instrumental-variable interpretation to the original LIML estimator

discussed in Sargan (1958).

Given the available evidence in the single equation case, in this paper we adopt a likelihood-

based perspective which is expected to be a good candidate in the face of the weak-instruments

problem in this panel setting. Moreover, the availability of such a suitable likelihood function

allows combining the apparatus of likelihood-based inference and the Bayesian framework with

dynamic panel data models with general predetermined variables and fixed effects.

Previous likelihood-based approaches in dynamic panel data models only consider the case

of strictly exogenous regressors (see for example Bhargava and Sargan (1983) or Alvarez and

Arellano (2003)). Therefore, the focus was on the distribution of yT
i conditional on the regressors

and, sometimes on the initial observation yi0. On the other hand, it is possible to either condition

4This configuration is sometimes denominated weakly exogeneity in the panel growth regressions literature.
5In practice, this is done by simply working with cross-sectional de-meaned data. In the remaining of the

exposition, we assume that all the variables are in deviations from their cross-sectional mean.
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on the fixed effect ηi or work with the distribution marginal on the effects (see Arellano (2003)

for more details). In any case, the distribution of the regressors is not specified since they

are considered as strictly exogenous. If this assumption is not true, as it is the case in many

applications such as growth regressions or the macro forecasting literature, the likelihood will

be fundamentally misspecified. Here instead we specify the distribution of the regressors and

present the proper likelihood function for dynamic panel data models with general predetermined

variables and fixed effects.

2.1 Completing the General Predetermined Variables Model

with an Unrestricted Feedback Process

In contrast to a model with only strictly exogenous explanatory variables, the specification of

the model in (1) with predetermined variables is incomplete in the sense that in itself it does not

lead to a likelihood once we add an error distributional assumption. To complete the model in a

way that is not restrictive, we specify the feedback process in the form of cross-sectional linear

projections of the partially endogenous x variables on all available lags, having period-specific

coefficients. The complete model is therefore as follows:6

yi0 = w′iδy + cyηi + vi0 (3a)

xi1 = Δ1wi + γ10yi0 + c1ηi + ui1 (3b)

yi1 = αyi0 + x′i1β + w′iδ + ηi + vi1 (3c)

and for t = 2, ..., T :

xit = Δtwi + γt0yi0 + ... + γt,t−1yi,t−1 + Λt1xi1 + ... + Λt,t−1xi,t−1 + ctηi + uit (3d)

yit = αyi,t−1 + x′itβ + w′iδ + ηi + vit (3e)

Remark: Note that by writing the system as in (3a)-(3e) we are implicitly

assuming that Cov(ηi, wi) = 0, since otherwise we should have added the

equation ηi = w′iδη + ei in order to complete the system. Therefore, assuming

that δη = 0 is enough to guarantee identification of δ in (1).

This is a system of T (k + 1) + 1 equations where δy and ct are vectors of parameters of order m

and k respectively, cy is a scalar, and γth is the k × 1 vector:

γth = (γ1
th, . . . , γ

k
th)
′ (t = 1, . . . , T ) (h = 0, . . . , T − 1)

6Note that the model is written in such a way that the initial observation for y is yi0 and for the xs the initial

observation is xi1. Both are observed and, in any case, this is just a matter of notation.
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Moreover, Δt and Λth are matrices of parameters of orders k ×m and k × k, respectively, and

uit is a k × 1 vector of prediction errors.

On the other hand, we also define the T (k + 1) + 2 column vector of errors:

Ξi = (ηi, vi0, u
′
i1, vi1, . . . , u

′
iT , viT )′

and the T (k + 1) + 1 × 1 vector of data for individual i:

Ri = (yi0, xi1, yi1, . . . , xiT , yiT )′

Finally, in order to rewrite the system in matrix form, we define the T (k + 1) + 1× T (k + 1) + 1

lower triangular matrix of coefficients B as:

B =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 . . . 0 0 0

−γ10 Ik 0 0 0 . . . 0 0 0

−α −β′ 1 0 0 . . . 0 0 0

−γ20 −Λ21 −γ21 Ik 0 . . . 0 0 0

0 0 −α −β′ 1 . . . 0 0 0
...

...
...

...
...

. . . 0 0 0

−γT0 −ΛT1 −γT1 −ΛT2 −γT2 . . . −γT,T−1 Ik 0

0 0 0 0 0 . . . −α −β′ 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
And the matrices D and C of orders T (k+1)+1×T (k+1)+2 and T (k+1)+1×m respectively:

D =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

cy 1 0 0 0 0 . . . 0

c1 0 Ik 0 0 0 . . . 0

1 0 0 1 0 0 . . . 0

c2 0 0 0 Ik 0 . . . 0

1 0 0 0 0 1 . . . 0
...

...
...

...
...

...
. . .

...

cT 0 0 0 0 0 Ik 0

1 0 0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
C =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

δ′y
Δ1

δ′
...

ΔT

δ′

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Given the above, we are now able to write the system in matrix form as follows:

BRi = Cwi + DΞi (4)
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where:

V ar (Ξi) = Ω =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ση 0 0 0 0 0 0

0 σv0 0 0 0 0 0

0 0 Σu1 0 0 0 0

0 0 0 σv1 0 0 0
. . .

0 0 0 0 0 ΣuT
0

0 0 0 0 0 0 σvT

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
T (k+1)+2×T (k+1)+2

and Σut is a k × k matrix. Note that the block-diagonal variance-covariance matrix Ω allows for

time-series heteroskedasticity.

Finally, under normal errors the log-likelihood of the model given by (4) can be written as:

L = −N

2
ln det

(
B−1DΩD′B′−1

)
(5)

− 1

2
tr

{(
B−1DΩD′B′−1

)−1 [
R − W (B−1C)′

]′ [
R − W (B−1C)′

]}
where R and Xt are the following matrices:

R =
(

Y0 X1 Y1 . . . XT YT

)
N×T (k+1)+1

Xt =
(
X1

t , . . . , Xk
t

)
NXk

and W is the N × m matrix W = (w1, w2, . . . , wN)′.

It is important to remark here that the maximizer of L is a consistent and asymptotically

normal estimator regardless of non-normality. In particular, the resulting (pseudo) maximum

likelihood estimator is asymptotically equivalent to standard GMM estimators because the resul-

tant first order conditions correspond to a GMM problem with a convenient choice of weighting

matrix (see Arellano (2003) pp.71-73). More specifically, it corresponds to the Arellano and Bond’s

(1991) GMM estimator augmented with the moments discussed in Ahn and Schmidt (1995) and

employing the optimal weighting matrix under normality and conditional homoskedasticity.

This parametrization of the complete model is labeled as Full Covariance Structure (FCS)

representation. In this parametrization, the coefficients matrix B includes γth and Λth that are

the vector and matrix that gather all the feedback process from lagged ys to current xs and

the dynamic relationships between the x variables respectively. The parameters corresponding

to the dynamic relationships between the xs are not of central interest for our model, but in

principle, they also need to be estimated. In practice this represents a concern since the number

of parameters to be estimated becomes intractable.

An interesting feature of this model is that there is a one-to-one mapping between the param-

eters in B and the elements of Ω. More specifically, any coefficient in γth or Λth restricted to be

zero in B will automatically be translated into an additional non-zero element in Ω in order to
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satisfy the same number of restrictions imposed by the model. Further developing this feature,

we present in the the next section another parametrization (labeled as Simultaneous Equation

Model (SEM) representation) that captures the feedback process and the dynamic relationships

between the xs in the variance-covariance matrix of the system. This SEM parametrization turns

out to be useful in practice because it allows us to concentrate out all the parameters of the

dynamic relationships between the xs which are not of central interest. This concentration (de-

scribed in Appendix A.2) drastically reduces the number of parameters to be estimated so that

the optimization problem becomes feasible and computationally affordable.

2.2 Simultaneous Equations Model (SEM) Representation

In this section we present the Simultaneous Equations Model (SEM) representation that al-

lows us to concentrate some reduced form parameters of the resulting log-likelihood in order

to make its maximization feasible and computationally affordable. The key idea is to translate

into the variance-covariance matrix some of the reduced form parameters given the one-to-one

mapping between the matrix of coefficients B and the variance-covariance matrix Ω in the FCS

representation.

We first define:

ηi = γ0yi0 + x′i1γ1 + εi (6)

Note that, again, in (6) we are implicitly assuming that Cov(ηi, wi) = 0 in order to ensure

identification of δ.

Moreover, by substituing (6) in (1) the whole model can be written as follows:

yi1 = (α + γ0)yi0 + x′i1(β + γ1) + w′iδ + εi + vi1 (7a)

and for t = 2, ..., T :

yit = αyi,t−1 + x′itβ + γ0yi0 + x′i1γ1 + w′iδ + εi + vit (7b)

xit = πt0yi0 + πt1xi1 + πw
t wi + ξit (7c)

where ξit, γ1 and πt0 are k × 1 vectors, πt1 is a k × k matrix and πw
t a k × m matrix.

In order to rewrite the system in matrix form, we define the following T +(T −1)k×1 vectors

of data and errors for individual i:

RS
i = (yi1, yi2, . . . , yiT , x′i2, x

′
i3, . . . , x

′
iT )′

Ui = (εi + vi1, . . . , εi + viT , ξ′i2, . . . , ξ
′
iT )′

Therefore we are now able to rewrite the model in matrix form as follows:

BSRS
i = Πzi + Ui (8)
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where BS and Π are matrices of coefficients defined below and zi is the (1 + k + m)× 1 vector of

strictly exogenous variables:

zi = (yi0, x
′
i1, w

′
i)
′

Moreover, if we additionally define the following vectors:

RS
i1 = (yi1, yi2, . . . , yiT )′

RS
i2 = (x′i2, x

′
i3, . . . , x

′
iT )′

Ui1 = (εi + vi1, . . . , εi + viT )′

Ui2 = (ξ′i2, . . . , ξ
′
iT )′

it is then possible to rewrite:(
BS

11 BS
12

0 Ik−1

) (
RS

i1

RS
i2

)
=

(
Π1

Π2

)
zi +

(
Ui1

Ui2

)
(9)

where:

BS
11 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 . . . 0

−α 1 0 . . . 0

0 −α 1 . . . 0
...

...
. . . . . .

...

0 . . . 0 −α 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
T×T

BS
12 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 . . . 0

−β′ 0 . . . 0

0 −β′ . . . 0
...

...
. . .

...

0 . . . 0 −β′

⎞⎟⎟⎟⎟⎟⎟⎟⎠
T×k(T−1)

Π1 =

⎛⎜⎜⎜⎜⎜⎝
α + γ0 β′ + γ′1 δ′

γ0 γ′1 δ′
...

...
...

γ0 γ′1 δ′

⎞⎟⎟⎟⎟⎟⎠
T×(1+k+m)

Π2 =

⎛⎜⎜⎝
π20 π21 πw

2
...

...
...

πT0 πT1 πw
T

⎞⎟⎟⎠
k(T−1)×(1+k+m)

In contrast to the FCS representation, considering the SEM parametrization we can see that

the number of non-zero coefficients in the matrix BS is only k+1. This is so because they have been

“translated” into the variance-covariance matrix of the model that is no longer block-diagonal.

In particular:

ΩS = V ar(Ui) = V ar

(
Ui1

Ui2

)
=

(
ΩS

11 ΩS
12

ΩS
21 ΩS

22

)
(10)

where:

• ΩS
11 has the classical error-component form but allowing for time-series heteroskedasticity:

ΩS
11 = σ2

ε ιι
′ +

⎛⎜⎜⎝
σ2

v1
. . . 0

...
. . .

...

0 . . . σ2
vT

⎞⎟⎟⎠
where ι is a T × 1 vector of ones.
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• ΩS
22 is the (T − 1)k × (T − 1)k covariance matrix that gathers all the contemporaneous and

dynamic relationships between the x variables:

ΩS
22 =

⎛⎜⎜⎜⎜⎜⎝
Σ2,2

Σ2,3 Σ3,3

...
...

. . .

Σ2,T Σ3,T . . . ΣT,T

⎞⎟⎟⎟⎟⎟⎠
where Σf,g is the k × k covariance matrix between xif and xig.

• ΩS
12 captures the feedback process. In particular, given the assumptions above we can write:

cov(εi, ξit) = φt ∀t = 2, ..., T (11a)

cov(vih, ξit) =

{
ψh,t if h < t

0 otherwise
(11b)

where φt, ψh,t and 0 are k × 1 vectors. Therefore:

ΩS
12 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

φ′2 + ψ′1,2 φ′3 + ψ′1,3 . . . φ′T + ψ′1,T

φ′2 φ′3 + ψ′2,3 . . . φ′T + ψ′2,T

φ′2 φ′3 . . . φ′T + ψ′3,T
...

...
. . .

...

φ′2 φ′3 . . . φ′T + ψ′T−1,T

φ′2 φ′3 . . . φ′T

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
T×(T−1)k

In view of matrix ΩS
12 and equations (11a)-(11b) is illustrative to describe how to accommo-

date other partial endogeneity configurations in addition to the baseline assumption presented in

equation (2). For example, allowing for non-zero correlations between xit and contemporaneous

shocks (vit) is straightforward by incorporating additional non-zero elements in the ΩS
12 matrix.

More specifically, if we substitute assumption (2) by the alternative E
(
vit | yt−1

i , xt−1
i , wi, ηi

)
= 0

we shall substitute (11a)-(11b) by:

cov(εi, ξit) = φt ∀t = 2, ..., T

cov(vih, ξit) =

{
ψh,t if h ≤ t

0 otherwise

Under normal errors the log-likelihood for the model can be written as:7

LS ∝ −N

2
ln det(ΩS) − 1

2
tr

(
(ΩS)−1U ′U

)
(12)

7Note that det(BS) = 1.
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where U ′ is a T + (T − 1)k × N matrix that consists of the Ui column vectors of each of the N

individuals. Note that this is an integrated likelihood that is marginal on ηi but conditional on

zi = (yi0, x
′
i1, wi)

′:

f(yT
i , xT

i |zi) =

∫ T∏
t=1

f(yit|yt−1
i , xt

i, wi, ηi)
T∏

t=2

f(xit|yt−1
i , xt−1

i , wi, ηi)dG(ηi|zi) (13)

As in the case of the FCS representation in the previous section, the maximizer of LS is

a consistent and asymptotically normal estimator regardless of non-normality. The resulting

(pseudo) maximum likelihood estimator is asymptotically equivalent to the Arellano and Bond’s

(1991) one-step GMM estimator augmented with the moments discussed in Ahn and Schmidt

(1995). This is so because the (pseudo) likelihood function discussed here can be interpreted as

the resulting GMM objective function when we combine the moment conditions in Arellano and

Bond (1991) and Ahn and Schmidt (1995) using the optimal weighting matrix under normality

and conditional homoskedasticity.8

Finally, the number of parameters to be estimated in (12) is the same as in the corresponding

log-likelihood for the FCS parametrization (see equation (5)). This number might be intractable

in practice and therefore, in order to make the problem feasible we consider the concentrated

log-likelihood with respect to the unrestricted parameters in the matrices Π2 and ΩS
22 (i.e. the

parameters that capture the dynamic and contemporaneous relationships between the explanatory

variables). See Appendix A.2 for more details on the concentration of the SEM log-likelihood.

3 Monte Carlo Simulation

In this section, we provide some Monte Carlo evidence on the finite-sample behavior of the

likelihood-based estimator proposed in the previous section. The purpose is to study its finite-

sample properties in relation to the commonly used first-differenced GMM and Within-Group

estimators.

3.1 Model and Estimators

Let us consider a dynamic panel data model with feedback and fixed effects as follows:

yit = αyit−1 + β1x
1
it + β2x

2
it + ηi + vit (14)

E
(
vit | yit−1, ..., yi0, x

1
it, ..., x

1
i1, x

2
it, ..., x

2
i1, ηi

)
= 0 (15)

8The first order conditions of the (pseudo) maximum likelihood estimator are true regardless of the normality

and conditional homoskedasticity assumptions.
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Suppose we have a random sample of individual time series of size T : (Θ′i1, ..., Θ
′
iT )′ where

Θit = (yit−1, x
1
it, x

2
it)
′ and (i = 1, ..., N). On the other hand, we assume that initial observations

Θi1 = (yi0, x
1
i1, x

2
i1)
′ are observed. We further assume that the initial observations and the fixed

effect are jointly normally distributed9 with unrestricted mean vector and covariance matrix. In

other words: (i) feedback is allowed from lagged y to current x’s. (ii) Stationarity assumptions

of any type are avoided. (iii) Individual fixed effects correlated with the regressors are included.

Since empirical growth regressions is probably the most common situation in which general

predetermined regressors arise, the baseline Monte Carlo design tries to mimic as close as possible

the Solow model environment. For this purpose, parameter values are fixed according to the

results obtained in the estimation of a VAR process for the variables GDP (y), investment ratio

(x1) and population growth (x2) over the period 1960-2000. Using these parameter estimates we

simulate random samples according to a structural VAR data generating process. Specifically,

the employed parameter values correspond to the estimates obtained when estimating the VAR

process using ten-year periods data, the baseline specification in the empirical exercises of this

paper. On the other hand, since five-year periods are also commonly considered in empirical

panel growth regressions, for the purpose of robustness, we also conduct a set of Monte Carlo

simulations using parameter values calibrated to five-year periods data. These additional results

and more details on the Monte Carlo design can be found in Appendix A.3.

Three alternative estimators are applied to the simulated samples. We first consider the

Within-Group (WG) estimator of (α, β1, β2)
′. This is given by the slope coefficients in an OLS

regression of y on Θ and a full set of individual dummy variables, or equivalently by the OLS

estimate in deviations from time means or orthogonal deviations. Assumptions required for

consistency of the WG estimator (i.e. strict exogeneity of the right-hand-side variables) are

not satisfied in our setting. However WG is considered in order to make comparisons with

first-differenced GMM (diff-GMM) since similarities between both are typically considered as

indication of the presence of weak instruments in the diff-GMM estimates (see Bond et al. (2001)).

Secondly, we consider the diff-GMM estimator commonly employed in panel growth regressions

since Caselli et al. (1996). The assumption in equation (15) implies a set of linear moment

conditions of the form:

E[Θt−1
i (Δyit − αΔyit−1 − β1Δx1

it − β2Δx2
it)] = 0 (16)

In our case, this moment conditions are exploited using the optimal one-step GMM estimator

under “classical” errors and it is labeled as diff-GMM. This estimator is consistent under the same

assumptions as the likelihood-based estimator proposed in this paper. Given the persistence of

9Note that the consistency of the estimators we consider in the Monte Carlo exercise is unaffected by the

normality assumption (see Arellano (2003) pp.71-73). Moreover, in Appendix A.4 you can find additional Monte

Carlo results under non-normality. These results illustrate that the finite sample behavior of the estimators remains

the same under non-normality.
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the series considered in the growth context, the diff-GMM estimator is expected to suffer from

weak instruments in finite samples.

The maximum likelihood estimator proposed in the previous section is expected to alleviate

the weak-instruments problem in finite samples. Therefore it is also considered in our experiment

in order to study its finite-sample performance in relation to diff-GMM. This estimator is labeled

as sub-sys LIML since it can be interpreted as a sub-system LIML estimator because it includes

a set of structural-form equations and a set of reduced-form equations.

Under homoskedasticity, sub-system LIML is asymptotically equivalent to a GMM estimator

that in addition to (16) uses the following moments implied by lack of serial correlation:

E[Δvi,t−1uit] = 0 (t = 3, ..., T )

where uit = ηi + vit. Thus, in the comparison between sub-system LIML and diff-GMM there

are two sources for different performance. First, the extra moments and second the finite-sample

differences.

3.2 Results

Table 1 reports sample medians, percentage median bias, interquartile ranges, and median

absolute errors (MAE’s) for WG, diff-GMM and sub-sys LIML estimators for the model in equa-

tions (14)-(15) (means and standard deviations are not reported because the sub-system LIML

estimators can be expected to have infinite moments).

In the baseline specification in Panel A, N is fixed to 100 since it is the number of cross-section

observations we find in a typical growth regression. On the other hand, given the main focus of

this paper is on ten-year periods over the years 1960-2000, T = 4 is the number of available

time series observations. This sample size in the within time dimension (T = 4) is also common

in typical micro panels. In this baseline experiment, which replicates as close as possible the

situation in empirical panel growth regressions, sub-sys LIML clearly outperforms diff-GMM. In

terms of median bias, diff-GMM is badly biased in all the three coefficients while sub-system LIML

has always much smaller biases that are almost negligible in the cases of α and β2. Note here

that the percentage of median bias is not informative when comparing estimates across different

coefficients since it depends on the magnitude of the true coefficient. However it is illustrative

for comparisons between different estimates of the same coefficient. For example, the percentage

of bias in α for sub-system LIML is only 5.2% while for WG and diff-GMM this percentage is

huge, 55.2% and 53.7% respectively. An additional remark, is that diff-GMM estimates are more

similar to WG estimates than to the true values in the case of the autorregresive parameter, and

this is an indication of weak instruments in the diff-GMM estimator. On the other hand, looking

at the interquartile range (iqr), WG has always less dispersion than diff-GMM and sub-sys LIML
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Table 1: Monte Carlo Results

α = 0.95 β1 = 0.20 β2 = −0.10

WG
diff sub-sys

WG
diff sub-sys

WG
diff sub-sys

GMM LIML GMM LIML GMM LIML

Panel A: T = 4, N = 100

median .426 .440 .900 .084 −.118 .154 −.097 −.155 −.107

% bias 55.2% 53.7% 5.2% 57.8% 159.0% 23.2% 2.6% 55.0% 6.6%

iqr .079 .319 .157 .100 .265 .205 .096 .172 .161

MAE .524 .510 .070 .116 .320 .113 .047 .091 .081

Panel B: T = 4, N = 500

median .432 .691 .929 .083 .022 .173 −.096 −.133 −.102

% bias 54.5% 27.2% 2.2% 58.4% 88.8% 13.4% 4.4% 32.9% 2.3%

iqr .033 .238 .104 .046 .172 .108 .046 .071 .070

MAE .518 .260 .038 .117 .181 .056 .023 .042 .035

Panel C: T = 4, N = 1000

median .432 .789 .932 .084 .089 .179 −.096 −.120 −.103

% bias 54.6% 16.9% 1.9% 57.9% 55.5% 10.6% 4.0% 20.4% 3.4%

iqr .025 .176 .092 .035 .135 .080 .034 .052 .049

MAE .518 .164 .032 .116 .116 .042 .017 .028 .024

Panel D: T = 8, N = 100

median .685 .730 .935 .154 .074 .184 −.112 −.151 −.102

% bias 27.8% 23.1% 1.5% 23.2% 63.0% 7.8% 11.5% 51.0% 2.3%

iqr .044 .111 .073 .062 .114 .124 .069 .086 .090

MAE .265 .220 .035 .049 .126 .061 .035 .058 .045

Panel E: T = 8, N = 500

median .687 .867 .947 .150 .143 .194 −.114 −.124 −.102

% bias 27.7% 8.7% .4% 25.2% 28.6% 3.0% 14.5% 23.9% 2.3%

iqr .021 .057 .046 .031 .057 .054 .028 .040 .039

MAE .263 .083 .021 .050 .057 .027 .018 .028 .019

Panel F: T = 8, N = 1000

median .687 .903 .949 .152 .169 .197 −.116 −.115 −.102

% bias 27.7% 4.9% .1% 23.8% 15.7% 1.4% 16.0% 14.6% 2.3%

iqr .014 .043 .036 .021 .044 .041 .020 .028 .026

MAE .263 .047 .017 .048 .033 .021 .016 .018 .013

Notes: 1,000 replications. % bias gives the percentage median bias for all the estimates; iqr is the

75th-25th interquartile range; MAE denotes the median absolute error.

as expected. However, the dispersion of sub-sytem LIML is very similar to that of diff-GMM and

even smaller for the α parameter. This means that the higher probability of outliers in LIML

estimators is not a big concern in this particular application. Finally, attending to MAE’s, sub-

sys LIML always performs clearly better than diff-GMM. MAE summarizes information on the
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performance of the estimator in terms of both bias and dispersion. Summing up, the conclusion

from Panel A in Table 1 is that sub-system LIML clearly ourtperforms diff-GMM in the typical

situation that an empirical growth researcher faces when using ten-year periods over the post-war

sample 1960-2000.

In Panels B and C of Table 1, the results with N = 500 and N = 1000 are presented for

illustrating the performance of the estimators in larger samples. In principle this is not a realistic

situation in the cross-country growth context since there are not so many countries in the world.

However, one could use regional data and have a sample size of a magnitude similar to 500 in

the cross-section dimension. In any case, the purpose of this experiment is to investigate the

relative performance of diff-GMM and sub-sys LIML in larger samples (larger in the cross-section

dimension) since both estimators are consistent as N → ∞ and T remains fixed. The performance

of WG is not affected by increasing N since the WG bias comes from the small sample size in

the time series dimension. Therefore, in terms of median bias, the WG results are practically the

same in Panels A, B, and C. However, as expected, diff-GMM performance substantially improves

as N increases in terms of median bias and dispersion. This improvement is not so substantial for

sub-sys LIML since its performance is already reasonably satisfactory with N = 100 as shown in

Panel A. However, looking at MAE’s as a summary measure, sub-system LIML is still considerably

better than diff-GMM in all cases. In any event, while sub-sys LIML biases become insignificant

for moderate values of N , the diff-GMM biases are not negligible even with N = 1000. This

would lead us to the conclusion that, with four time series observations, in order to consider the

consistency results valid in this application, diff-GMM requires sample sizes larger than 1000 in

the cross-section dimension, which seems clearly implausible in the growth context.

Three additional experiments based on T = 8 are presented in the three bottom panels of

Table 1. I also consider these experiments because five-year periods are commonly considered

in the panel growth literature, and, if we consider the post-war period 1960-2000, we would end

up with eight time series observations. Panels D, E, and F present the results with N = 100,

N = 500, and N = 1000 respectively. These results confirm the patterns previously described (i.e.

sub-sys LIML clearly outperforms diff-GMM for all sample sizes in the cross-section dimension)

but now, with T = 8, the biases and interquartile ranges for both diff-GMM and sub-sys LIML

are always smaller for a given value of N . This means that the performance of both estimators

clearly improves as the number of time series observations increases. As expected, this is also

true in the case of WG.

On the other hand, all the experiments previously described are conducted again but using

different parameter values for the purpose of robustness. Both the employed parameter values

and the results are available in Appendix A.3. These additional results confirm the patterns that

emerge from Table 1. Given the above, the main conclusion from our Monte Carlo study is that,

in the growth context, the likelihood-based estimator (sub-sys LIML) presented in this paper
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clearly outperforms the commonly used diff-GMM estimators in finite samples. This is true even

when the number of available cross-section observations is around 1000.

Finally, Appendix A.4 presents additional Monte Carlo results under non-normality of the true

Data Generating Process (DGP). Since the results remain virtually unchanged for distributional

assumptions far from normal, we can conclude that the better finite sample performance of the

sub-system LIML estimator is true regardless of the normality assumption in the Monte Carlo

design.

4 Application to Cross-Country Growth

As pointed out by Durlauf et al. (2005), the stylized facts of economic growth have led to two

major issues in the development of formal econometric analyses of growth. The first one revolves

around the question of convergence: are contemporary differences in growth rates across countries

transient over sufficiently long time horizons? The second issue concerns the identification of

growth determinants: which factors seem to explain observed differences in aggregate economies?

These two questions have been addressed by a huge literature on empirical growth regressions.

The canonical cross-country growth regression in its panel version takes the form:10

yit = αyit−1 + βxit + ηi + ζt + vit (17)

where yit is the GDP per capita for country i in period t, xit is a k × 1 vector of growth deter-

minants, ηi is a country-specific fixed effect, ζt represents a set of time dummies and vit is the

random disturbance term. Appendix A.6 provides an overview of the growth determinants we

consider in this paper.

Problems with estimating such an empirical growth model are well known. The x variables are

in general (partially) endogenous, and omitted variable bias arises due to the presence of country-

specific effects (ηi) correlated with the regressors (assumption (2) summarizes this situation).

In order to address these issues, first-differenced GMM estimators applied to dynamic panel

data models has been commonly-used in empirical growth research. Given the persistence of

series such as GDP or investment, these GMM estimators are expected to suffer from weak

instruments so that the likelihood-based estimator discussed in this paper represents a promising

alternative. In Appendix A.5 we provide a more detailed discussion about the estimation of

empirical growth models as well as empirical evidence on the performance of competing estimators

in this framework.

Another relevant challenge in the growth regressions literature is the issue of model uncer-

tainty. This problem arises due to the lack of clear theoretical guidance on the choice of growth

regressors to include in the vector xit that results in a wide set of possible specifications. There-

10This specification corresponds to the model in equation (1) but without time-invariant regressors.
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fore, researcher’s uncertainty about the value of the parameter of interest in a growth regression

exists at distinct two levels. The first one is the uncertainty associated with the parameter con-

ditional on a given empirical growth model. This level of uncertainty is of course assessed in

virtually every empirical study. What is not fully assessed is the uncertainty associated with the

specification of the empirical growth model. It is typical for a given paper that the specification

of the growth regression is taken as essentially known; while some variations of a baseline model

are often reported, via different choices of control variables, standard empirical practice does

not systematically account for the sensitivity of claims about the parameter of interest to model

choice. Bayesian model averaging (BMA) represents an alternative to incorporate the uncertainty

at the two levels described above.

The availability of the likelihood function discussed in Section 2 allows us to combine the

resulting maximum likelihood estimator with BMA techniques in order to simultaneously address

endogeneity and model uncertainty.

4.1 Model Averaging and Growth Empirics

A promising approach to account for model uncertainty is to employ Bayesian model averaging

techniques to construct parameter estimates that formally address the dependence of model-

specific estimates on a given model.11 The fundamental principle of BMA is to treat both models

and parameters as unobservable, and to estimate their distributions based on the observable

data.12 The basics of Bayesian model averaging are presented in Appendix A.7.

Sala-i-Martin et al. (2004) and Fernández et al. (2001) popularized the use of BMA in

the growth regressions literature. More concretely, following techniques advanced by Raftery

(1995), Sala-i-Martin et al. (2004) employ the so-called Bayesian Averaging of Classical Esti-

mates (BACE) to determine which growth regressors should be included in linear cross-country

growth regressions. In a pure Bayesian spirit, Fernández et al. (2001) consider alternative priors

with the same objective. However, both studies rely on the exogeneity assumption of the regres-

11An alternative approach is based on model selection, i.e. the task of selecting a statistical model from a set

of potential models given data. Given this approach, after the model selection step, both the inference and the

conclusions of the analysis are typically based on the single model selected, and thus the uncertainty associated

with the specification of the empirical model is somehow ignored. A good overview of this literature can be found

in Claeskens and Hjort (2008).
12There also exists a frequentist approach to model averaging (e.g. Claeskens and Hjort (2003), Hansen (2007),

Hansen and Racine (2010)); the main differences between frequentist and Bayesian model averaging arise from

how model weights are selected and how inference is carried out. Compared with the frequentist approach, there

has been an enormous literature on the use of BMA in statistics and more recently in economics. Thus, the BMA

toolkit is larger than that of its frequentist counterpart.
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sors and focus on cross-sectional data.13 Moral-Benito (2011) extends the approach to a panel

data setting simultaneously considering country-specific effects and partial endogeneity of the

lagged dependent variable. In particular, Moral-Benito (2011) combines BMA with the likelihood

function presented in Alvarez and Arellano (2003) for dynamic panels with exogenous regres-

sors. Other studies such as Tsangarides (2004), Durlauf et al. (2008), Mirestean and Tsangarides

(2009), Eicher et al. (2009a), and Durlauf et al. (2009) incorporate endogenous regressors and

combine method-of-moments estimates with model averaging techniques.14 In this section we

combine the proper likelihood function previously introduced with BMA techniques in order to

simultaneously address partial endogeneity of the regressors and model uncertainty in the context

of (panel) growth empirics.

4.2 Empirical Results

Table 2 presents the results when combining the panel likelihood-based estimator presented

in Section 2 with the Bayesian model averaging techniques described in Appendix A.7. In the

context of empirical growth regressions, this combination represents an attempt to simultaneously

consider model uncertainty and endogeneity of growth regressors (see Appendix A.6 for more

details on the growth data considered in the paper).

Regarding the issue of convergence, the point estimate of the rate of convergence15 of an

economy to its steady state is 0.73%, much lower than previous panel studies such as Caselli

et al. (1996) who estimated a convergence rate of around 12%. Moreover, the estimate of the rate

of convergence is not significantly different from zero once we consider both levels of uncertainty

described above (i.e. looking at the posterior s.d. resultant from the BMA approach). Therefore

we cannot reject the null hypothesis of no conditional convergence across the countries in the

sample.16 This finding casts doubt on the conventional wisdom of conditional convergence as a

strong empirical regularity in the country-level data (e.g. Barro and Sala-i Martin (1992), Caselli

et al. (1996)).17 For illustrative purposes we plot in Figure 1 the BMA posterior distribution of

13Magnus et al. (2010) and Masanjala and Papageorgiou (2008) also consider BMA methods in the framework

of growth regressions with exogenous regressors.
14More specifically, these approaches consider pseudo likelihood functions, and hence the statistical justification

of averaging method-of-moments estimates remains an open debate. Heuristically, these papers replace the fully

specified likelihood by the adjusted method-of-moments objective function. Moral-Benito (2010) provides a more

detailed discussion on the combination of model averaging with endogenous regressors.
15We estimate the rate of convergence as λ = ln α

−τ where τ = 10 and α is the coefficient on ln(yt−1). Moreover,

note that initial GDP (ln(yt−1)) is included in all the models under consideration since theory offers strong guidance

for this variable (see Durlauf et al. (2005)).
16This result was previously found in Moral-Benito (2011), where model uncertainty and the endogeneity of

the lagged dependent variable were considered.
17For example, early versions of endogenous growth theories (e.g. Romer (1987, 1990) and Aghion and Howitt

(1992)) were criticized because in contrast to the neoclassical growth model, they no longer predicted conditional
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Table 2: BAMLE Results

Posterior mean Posterior s.d. Fraction of Posterior

conditional on conditional on models with Inclusion

inclusion inclusion |tstat| > 2 Probability

(1) (2) (3) (4)

Dependent variable is ln(yt)

ln(yt−1) 0.930 0.091 100.0% -

I/GDP 0.949 0.284 98.8% 63.4%

Education 0.033 0.058 4.3% 56.1%

Pop. Growth −0.566 2.897 17.6% 55.3%

Population 0.0006 0.0010 14.1% 98.0%

Inv. Price −0.0005 0.0006 31.3% 47.9%

Trade Openness 0.038 0.052 64.1% 60.7%

G/GDP 0.048 0.204 25.0% 60.3%

ln(life expect) 0.078 0.222 60.9% 75.7%

Polity −0.125 0.128 46.9% 50.4%

Notes: In this table, the sub-system LIML estimator introduced in Section 2 is combined with the BMA methodology

as described in Appendix A.7. The sample covers the period 1960 to 2000 divided in 10-years subperiods. Column (1)

reports the weighted average of the sub-system LIML estimates across all the possible models containing each particular

variable. Column (2) refers to the square root of the posterior variance which incorporates model-specific uncertainty

as well as uncertainty across alternative models. Column (3) presents the percentage of models in which the coefficient

is significantly different from zero (either positive or negative). Finally, column (4) presents the Bayesian posterior

inclusion probability of a given variable which is calculated as the sum of the posterior model probabilities of all the

models containing that variable. Finally, while the results on the table are based on the assumption of a prior expected

model size equal to K/2 (i.e. uniform model prior), results with different prior expected model sizes are very similar

and available upon request. Replication material can be found in http://www.moralbenito.com.

the convergence coefficient which presents a substantial amount of probability mass on both sides

of one.18

convergence.
18Analogously to the posterior mean, BMA posterior distributions are weighted averages of marginal poste-

rior distributions conditional on each individual model. More concretely, these posteriors are mixture normal

distributions because model-specific posteriors are normal. This is so because we make use of the Bernstein-von

Mises theorem, also known as the Bayesian CLT (Berger (1985) provides an in-depth analysis and an excellent

illustration.), which basically states that a Bayesian posterior distribution is well approximated by a normal dis-

tribution with mean at the MLE and dispersion matrix equal to the inverse of the Fisher information. BMA

marginal posterior distributions consist of two parts, a continuous distribution on the real line and a point mass at

zero. Therefore, in addition to the continuous mixture normal distribution a gauge that represents the Posterior

Inclusion Probability (PIP) of the variables is also plotted.
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Figure 1: Posterior Distribution of the Convergence Coefficient

Figure 1 presents the marginal posterior distribution of the coefficient on the lagged dependent

variable (i.e. the convergence coefficient). The graph consists of two parts: a gauge on top of

the graph that indicates the Posterior Inclusion Probability (PIP) of the variable (which is 1 by

definition since we include the lagged dependent variable in all the models under consideration)

and the normal mixture density for the coefficient’s posterior distribution. A dashed vertical line

indicates the posterior mean conditional on inclusion presented in column 1 of Table 2. The

equivalent to a classical 95% confidence interval is represented by two vertical dotted lines. Note

that in this case, a coefficient equal to 1 means that there is no evidence of conditional convergence.

The empirical evidence on growth determinants seems to be conclusive for only one variable,

the investment ratio. This is so because its posterior mean is three times its posterior standard

deviation.19 For the rest of the growth determinants, their corresponding posterior standard de-

viations are high enough to preclude them from having a significant effect on economic growth

(note that these posterior variances incorporate not only the uncertainty conditional on a given

model as usual, but also the uncertainty across different models). On the other hand, the invest-

ment ratio is only a proximate determinant of economic growth according to Rodrik (2003) and

Acemoglu (2009). Indeed, to the extent that growth might be driven by other fundamental deter-

minants (e.g. institutions), the causality may well run backwards despite our efforts to account

for feedback effects in this paper.

For further insights we can see in Figure 2 the full BMA posterior distributions of the co-

efficients that correspond to the variables investment share and population. In particular, we

observe that the estimated effect of investment on growth is unambiguously positive. The pos-

terior distribution cumulates more than 99% of its density on the right of zero. On the other

hand, zero is clearly outside the classical 95% confidence interval. However, the opposite is true

for the population variable, its marginal posterior distribution presents probability mass on both

sides of zero, indicating that its effect on growth could be either positive or negative. As shown

in Table 2, this is also the case for all the remaining candidate growth determinants considered

19While the ratio of posterior mean to posterior standard deviation is not distributed according to the usual

t-distribution, Sala-i-Martin et al. (2004) note that in most cases, having a ratio around two in absolute value

indicates an approximate 95-percent Bayesian coverage region that excludes zero. This ’pseudo-t’ statistic indicates

that in the case of the investment ratio, its positive effect on growth is significantly different from zero. Moreover,

in 98.8% of the individual models its coefficient was estimated to be significant at the 95% level.



BANCO DE ESPAÑA 29 DOCUMENTO DE TRABAJO N.º 1109

in the paper (see Appendix A.6).

This result is in contrast to previous findings in the literature.20 In particular, previous

BMA studies applied to growth regressions always find that several regressors (not necessarily

coincident) are robustly related to economic growth (e.g. Sala-i-Martin et al. (2004), Fernández

et al. (2001), Durlauf et al. (2008), Mirestean and Tsangarides (2009), Moral-Benito (2011)).

Two conclusions are drawn from this lack of robustness result; first, that the fragility of cross-

country growth regressions is such that casts doubt on the validity of this approach to shed light

on the issue of long-run growth determinants; secondly, that there may not be universal rules

about what makes countries grow.

Figure 2: Posterior Distributions of Selected Coefficients

Figure 2 presents the marginal posterior distributions of the investment share and population

coefficients. In particular, each graph consists of two parts: a gauge on top of the graphs that

indicates the Posterior Inclusion Probability (PIP) of the variables and the normal mixture density

for each coefficient’s posterior distribution. A dashed vertical line indicates the posterior mean

conditional on inclusion presented in column 1 of Table 2. The equivalent to a classical 95%

confidence interval is represented by two vertical dotted lines.

20Note that single-model results considering a panel likelihood function with partially endogenous regressors but

ignoring model uncertainty provide evidence in favor of several variables robustly related to economic growth (see

Appendix A.5). On the other hand, BMA results considering model uncertainty and a panel likelihood function

with exogenous regressors also provide evidence of a (different) set of variables robustly related to growth (see

Moral-Benito (2011))
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5 Concluding Remarks

In this paper we discuss likelihood-based estimation of a linear (dynamic) panel data model

with general predetermined explanatory variables and unobservable individual effects. The re-

sulting (pseudo) maximum likelihood estimator is asymptotically equivalent to one-step first-

differenced GMM augmented with moments implied by the serial correlation properties of the

errors (e.g. Holtz-Eakin et al. (1988), Arellano and Bond (1991), Ahn and Schmidt (1995)).

Since the application of first-differenced GMM often entails finite sample biases, especially when

the instruments are weak, simulation experiments are conducted to evaluate the finite-sample be-

havior of competing estimators. The simulation results show that the proposed likelihood-based

estimator has negligible biases in contrast to the commonly-used Arellano and Bond’s (1991)

GMM estimator, which has large biases, especially when the generated series are persistent over

time. Therefore, we conclude that the proposed likelihood-based estimator is preferred to stan-

dard GMM estimators in terms of finite-sample performance. This result can be interpreted as a

generalization of the single equation case (see for example Anderson et al. (1982)).

The availability of a proper likelihood function allows us to combine the aforementioned esti-

mator with Bayesian model averaging methods (or the Bayesian apparatus in general) in order to

simultaneously address endogeneity and model uncertainty in the context of growth regressions.

Once both issues are accounted for, the empirical results indicate that the hypothesis of lack of

conditional convergence cannot be rejected. This result casts doubt on one of the main predic-

tions of the neoclassical model of growth that has been traditionally accepted, the existence of

convergence of national economies towards a steady state. On the other hand, in contrast to pre-

vious consensus in the BMA and growth literature, only the investment ratio can be labeled as a

robust determinant of economic growth accordingly to the Bayesian robustness check considered

in the paper.
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A Appendix

A.1 Static Panels with Predetermined Regressors

Static panels with individual-specific effects and partially endogenous regressors are also of

interest in practice. One prominent example is the estimation of production functions in which we

typically face two problems: (i) the regressors (employment and stock of capital) are potentially

correlated with firm-specific fixed effects and past productivity shocks, and, (ii) both employ-

ment and capital are highly persistent processes. Not surprisingly, first-differenced GMM has

poor finite-sample properties in this context. Some authors have proposed to incorporate station-

arity assumptions to the model and employ the denominated system-GMM estimator in order to

alleviate the weak-instruments problem (see for example Blundell and Bond (2000)). Again, as

in the growth context, the likelihood-based estimator proposed in this paper is a good candidate

to address the weak-instruments problem present in the estimation of production functions. By

the same token, there are many other situations in which the econometric issues just described

are also present.

In this Appendix we present the likelihood function for such a model. In particular, given

the likelihood concentration procedure described in Appendix A.2 based on the Simultaneous

Equations Model (SEM) parametrization, we discuss here this representation for a static panel

data model with partially endogenous regressors and fixed effects.

Let us consider a static panel data model as follows:

yit = x′itβ + w′iδ + ηi + ζt + vit (18)

E
(
vit | xt

i, wi, ηi

)
= 0 (t = 1, ..., T )(i = 1, ..., N) (19)

where xit and wi are vectors of variables of orders k and m respectively, and xt
i denotes a vector

of observations of x accumulated up to t: xt
i = (x′i1, . . . , x

′
it)
′. In the remaining of the exposition,

we assume that all the variables are in deviations from their cross-sectional mean in order to rule

out the common factors ζt. Assumption (19) accommodates partially endogenous regressors (xs)

correlated with the fixed effects (ηs), and also strictly exogenous regressors ws.

Analogously to the dynamic case discussed in Section 2.2, we can rewrite the model in matrix

form as follows:

BSRS
i = Πzi + Ui (20)

where RS
i and Ui are the vectors of data and errors defined in Section 2.2.

The differences in this static version of the model arise in the coefficient matrices BS and Π,



BANCO DE ESPAÑA 32 DOCUMENTO DE TRABAJO N.º 1109

and the (k + m) × 1 vector of strictly exogenous variables zi given now by:

zi = (x′i1, w
′
i)
′

The new matrices of structural coefficients BS and reduced form coefficients Π are as follows:

BS =

(
IT BS

12

0 Ik−1

)

Π =

(
Π1

Π2

)
where:

BS
12 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 . . . 0

−β′ 0 . . . 0

0 −β′ . . . 0
...

...
. . .

...

0 . . . 0 −β′

⎞⎟⎟⎟⎟⎟⎟⎟⎠
T×k(T−1)

Π1 =

⎛⎜⎜⎜⎜⎜⎝
β′ + γ′1 δ′

γ′1 δ′
...

...

γ′1 δ′

⎞⎟⎟⎟⎟⎟⎠
T×(k+m)

Π2 =

⎛⎜⎜⎝
π21 πw

2
...

...

πT1 πw
T

⎞⎟⎟⎠
k(T−1)×(k+m)

Given the new matrices of coefficients (together with the normality assumption) the log-

likelihood for the static model is analogous to the dynamic case:

LS ∝ −N

2
ln det(ΩS) − 1

2
tr

(
(ΩS)−1U ′U

)
(21)

where U ′ is a T + (T − 1)k × N matrix that consists of the Ui column vectors of each of the N

individuals.

The maximizer of LS is a consistent and asymptotically normal estimator regardless of non-

normality. In particular, the resulting (pseudo) maximum likelihood estimator is asymptotically

equivalent to one-step first-differenced GMM estimators discussed in Arellano and Bond (1991).

In contrast to the dynamic case, note that assumption (19) does not imply lack of autocorrelation

in the errors so that additional GMM moment conditions (e.g. Ahn and Schmidt (1995)) are

not necessary for the asymptotic equivalence. However, the likelihood concentration procedure

presented in Appendix A.2 for the dynamic case is also valid in this static setting.

A.2 Concentrated Likelihood using the SEM Parametrization

Maximizing the log-likelihood in (12) may be cumbersome (or even impossible) since the

dimension of the numerical optimization problem is enormous. In particular, the number of
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parameters to be estimated (p) in (12) is determined by the following expression:

p = 3 + 2k + T + (T − 1)(2 + k + m)k +
(T − 1)k[(T − 1)k + 1]

2
+

T−1∑
r=1

rk

As an illustrative example, suppose we have a panel with T = 5, k = 7 and m = 4, then

p = 862. This number is huge and may cause the problem to be intractable, but it can be

drastically reduced by concentrating some free parameters of the model. In particular, for this

illustrative example, the number of parameters after concentrating the log-likelihood is reduced

from p = 862 to p = 120.

The log-likelihood function in (12) will be concentrated with respect to ΩS
22 and Π2 under

the assumption that both terms are unconstrained. The concentrated log-likelihood will then be

maximized by means of numerical optimization with relation to BS
11, BS

12, Π1, ΩS
11 and ΩS

12 that

are all restricted. In what follows, we refer to ΩS
22, BS

11, BS
12, ΩS

11 and ΩS
12 as Ω22, B11, B12, Ω11

and Ω12 for the sake of notational simplicity.

By grouping the observations for all individuals in columns, the model can be written as

follows: (
B11 B12

0 Ik−1

) (
R′1
R′2

)
=

(
Π1

Π2

)
Z ′ +

(
U ′1
U ′2

)
First of all, we define:

Ω−1 =

(
Ω11 Ω12

Ω21 Ω22

)−1

=

(
G11 G12

G21 G22

)
F12 = G12G

−1
22

F21 = F ′12

and then rewrite:

det Ω = det Ω11/ det G22

tr(Ω−1U ′U) = tr(Ω−1
11 U ′1U1) + 2tr(G12U

′
2U1) + tr(G22U

′
2U2) + tr(G12G

−1
22 G21U

′
1U1)

Therefore, (12) can be written as follows:

L ∝ −N

2
ln det Ω11 +

N

2
ln det G22 − 1

2
tr(Ω−1

11 U ′1U1) − tr(F12G22U
′
2U1) (22)

− 1

2
tr(G22U

′
2U2) − 1

2
tr(F12G22F21U

′
1U1)

Note that we can also write Ω−1
11 = G11 − G12G

−1
22 G21 and we have added and subtracted the

term tr(G12G
−1
22 G21U

′
1U1).
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Step 1: Concentrating out Π2

Noting that U ′2 = R′2 − Π2Z
′, we can maximize the likelihood in (22) with respect to Π2 and

obtain its ML estimate:

Π̂2 = R′2Z(Z ′Z)−1 + F21U
′
1Z(Z ′Z)−1

Given Π̂2 we can write:

Û ′2U1 = R′2QU1 − F21U
′
1MU1

Û ′2Û2 = R′2QR2 + F21U
′
1MU1F12

where M is the projection matrix on the exogenous variables of the system and Q the annihilator:

M = Z(Z ′Z)−1Z ′

Q = IN − M

Replacing in (22), we obtain L2, the log-likelihood concentrated with respect to Π2:

L2 ∝ −N

2
ln det Ω11 +

N

2
ln det G22 − 1

2
tr(Ω−1

11 U ′1U1) (23)

− 1

2
tr{(R2 + U1F12)

′Q(R2 + U1F12)G22}

Step 2: Concentrating out Ω22

We now turn to the concentration of L2 with relation to Ω22. Note that the log-likelihood is

now written in terms of G22 and therefore, in practice we will obtain the concentrated likelihood

with respect to G22 instead of Ω22. However, since they are unconstrained, this is simply a matter

of notation.

First, we define:

H = (R2 + U1F12)
′Q(R2 + U1F12)

Therefore:

L2 ∝ −N

2
ln det Ω11 +

N

2
ln det G22 − 1

2
tr(Ω−1

11 U ′1U1) − 1

2
tr{HG22}

By differentiating the log-likelihood function, we obtain:

dL2 =
N

2
tr(G−1

22 dG22) − 1

2
tr(HdG22)

= tr[(
N

2
G−1

22 − 1

2
H)dG22] = 0

This implies that:

Ĝ−1
22 =

1

N
H

and so the final concentrated log-likelihood is:

L3 ∝ −N

2
ln det Ω11 − 1

2
tr(Ω−1

11 U ′1U1) − N

2
ln det(

1

N
H) (24)
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A.3 Monte Carlo Details

For simulating the data in the Monte Carlo experiment, we first estimate a tri-variate VAR

process for GDP21 (y), investment ratio (x1) and population growth (x2). In particular, we

consider the following VAR process:

Θit = ΓΘit−1 + ζi + ϑit

where:

Θit = (yit−1, x
1
it, x

2
it)
′

ζi = (ζy
i , ζ1

i , ζ
2
i )′

ϑit = (εy
it, ε

1
it, ε

2
it)
′

V ar ((Θ′i1, ζ
′
i)
′) = ΩMC

V ar (ϑit) = ΣMC

Once we get the estimates Γ̂, Ω̂MC and Σ̂MC , the procedure for generating the data is as

follows:

1. Generate Θi1 and ζi according to (Θ′i1, ζ
′
i)
′ ∼ N(0, Ω̂MC).

2. For t = 2, ..., T :

(a) Generate ϑit according to ϑit ∼ N(0, Σ̂MC)

(b) Then generate Θit according to Θit = Γ̂Θit−1 + ζi + ϑit

More concretely, the employed parameter values when considering ten-year periods in the

baseline Monte Carlo simulations are as follows:

Γ̂ =

⎛⎜⎜⎝
.95 .20 −.10

.10 .70 0

−.20 0 .60

⎞⎟⎟⎠ Σ̂MC =

⎛⎜⎜⎝
.167

−.002 .071

−.002 .002 .077

⎞⎟⎟⎠

Ω̂MC =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

.913

.367 .602

−.061 −.039 .021

−.095 −.088 .007 .019

−.010 .051 −.002 −.007 .017

.161 .072 −.004 −.018 .0005 .034

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
21In the estimation of the VAR all variables are expressed in logs.
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As mentioned in the main text, additional Monte Carlo experiments were carried out con-

sidering five-year periods data for the calibration. In this case we obtain and use the following

parameter values:

Γ̂ =

⎛⎜⎜⎝
.98 .10 −.05

.05 .80 0

.10 0 .40

⎞⎟⎟⎠ Σ̂MC =

⎛⎜⎜⎝
.125

−.001 .109

−.001 .0003 .085

⎞⎟⎟⎠

Ω̂MC =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

.913

.400 .657

−.049 −.029 .019

−.089 −.119 .009 .027

−.132 −.031 .007 .005 .024

.166 .086 −.007 −.019 −.023 .032

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Moreover, the Monte Carlo results of the five-year periods experiments are represented in the

following table:

Table A1: Additional Monte Carlo Results

α = 0.98 β1 = 0.10 β2 = −0.05

WG
diff sub-sys

WG
diff sub-sys

WG
diff sub-sys

GMM LIML GMM LIML GMM LIML

Panel A: T = 4, N = 100

median .453 .357 .952 .064 −.096 .075 −.059 −.017 −.052

iqr .078 .342 .169 .082 .231 .194 .096 .160 .173

MAE .527 .623 .076 .048 .198 .102 .047 .082 .086

Panel B: T = 4, N = 500

median .454 .508 .970 .063 −.076 .087 −.061 −.023 −.051

iqr .034 .317 .122 .036 .147 .099 .042 .075 .073

MAE .526 .472 .052 .037 .176 .049 .022 .041 .037

Panel C: T = 4, N = 1000

median .454 .609 .973 .062 −.039 .091 −.061 −.029 −.054

iqr .024 .288 .108 .027 .116 .067 .031 .057 .058

MAE .526 .371 .048 .038 .139 .034 .017 .032 .029

Panel D: T = 8, N = 100

median .712 .650 .982 .081 .013 .098 −.055 −.025 −.050

iqr .043 .145 .089 .046 .101 .096 .065 .080 .088

MAE .268 .330 .043 .027 .088 .048 .031 .044 .044

Panel E: T = 8, N = 500

median .714 .761 .982 .079 .029 .099 −.059 −.028 −.051

iqr .019 .112 .067 .024 .052 .041 .028 .038 .036

MAE .266 .219 .034 .021 .071 .021 .016 .025 .018

Panel F: T = 8, N = 1000

median .714 .826 .979 .081 .050 .101 −.060 −.035 −.051

iqr .013 .084 .056 .016 .039 .032 .019 .025 .025

MAE .266 .154 .027 .019 .050 .016 .012 .018 .013

Notes: 1,000 replications. iqr is the 75th-25th interquartile range; MAE denotes

the median absolute error. Parameter values calibrated to five-year periods data.
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A.4 Monte Carlo under Non-Normality

As discussed in the main text, neither the asymptotic distribution nor the finite sample be-

havior of the sub-system LIML estimator proposed in this paper are affected by the normality

assumption. The reason is that in the linear case, the log-likelihood resulting from the normal-

ity assumption can be interpreted as a GMM objective function under a particular choice of

weighting matrix (see Arellano (2003) pp.71-73). However, in order to illustrate that the finite

sample performance of the estimator remains the same under non gaussian errors, this Appendix

presents some additional Monte Carlo results in which the data generating process is not normally

distributed.

In the Monte Carlo results presented so far, the true Data Generating Process (DGP) was

always normally distributed and thus the performance of the Gaussian LIML estimator introduced

in this paper could be driven by this assumption. In the following Table we can see the results of

different Monte Carlo exercises in which the true DGP is non-normal. Six different non-normal

cases are considered.

In the first three panels we present the Monte Carlo results under DGPs with tail behavior

different from the normal case. In particular, in Panel A the DGP distribution is a mixture of

normals with excess kurtosis κ = 0.23 instead of the 0 excess kurtosis of the normal distribution.22

In order to further explore the robustness of the results with respect to different excess kurtosis

in the true DGP distribution, in Panel B we simulate the data according to a mixture of two

normals with a higher excess kurtosis (κ = 1.99). Finally, in Panel C, we assume that the true

DGP is distributed as a t-student with 4 degrees of freedom that implies an infinite kurtosis so

that the tails of this distribution are much more thicker that the tails of a normal distribution.

In all the three cases the results are virtually the same as in the normal case presented in Table

1.

We depart from symmetric distributions in panels D and E. In Panel D, we simulate the

true DGP according to a mixture of normals with 0 excess of kurtosis (κ = 0) as the normal

distribution but with a non-symmetric shape. More concretely, we use a mixture of two different

normal distributions with different means (δ = 5 indicates that the difference between both

means is 5) so that the resulting distribution is non-symmetric. An alternative non-symmetric

distribution is considered in Panel E in which the difference between the means is larger, δ = 50.

The results remain practically unchanged in both non-symmetric cases.

Finally, in order to explore the robustness of the results to non-symmetric distributions with

thicker than normal tails, we consider in Panel E a mixture of normals with excess kurtosis

κ = 1.99 and difference in means δ = 50. This means that we are departing from the normal dis-

22See Mardia (1970) for more details on the generation of multivariate mixtures of normal distributions with

different excess kurtosis.
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tributions in two aspects at the same time, we have a distribution which is clearly non-symmetric

and has much thicker tails that the normal distribution. The Monte Carlo results show the

same conclusion, the sub-system LIML estimator presented in this paper is strongly preferred to

diff-GMM under errors that are far from normal.

Table A2: Monte Carlo Results under non-normality

α = 0.95 β1 = 0.20 β2 = −0.10

WG
diff sub-sys

WG
diff sub-sys

WG
diff sub-sys

GMM LIML GMM LIML GMM LIML

Panel A: Mixture of normals κ = 0.23 and δ = 0

median .428 .433 .893 .082 −.110 .143 −.095 −.152 −.096

iqr .081 .323 .164 .107 .259 .194 .092 .157 .157

MAE .522 .517 .077 .118 .312 .106 .047 .085 .078

Panel B: Mixture of normals κ = 1.99 and δ = 0

median .423 .437 .892 .084 −.102 .143 −.097 −.145 −.096

iqr .090 .308 .167 .115 .262 .195 .100 .167 .156

MAE .527 .513 .074 .116 .303 .108 .050 .088 .078

Panel C: t-student with 4 degrees of freedom

median .433 .443 .901 .079 −.119 .141 −.096 −.151 −.103

iqr .092 .303 .160 .111 .263 .190 .103 .164 .157

MAE .517 .507 .069 .121 .319 .107 .052 .087 .079

Panel D: Mixture of normals κ = 0 and δ = 5

median .401 .648 .910 .190 .051 .159 −.234 −.253 −.129

iqr .077 .234 .140 .125 .306 .321 .092 .172 .148

MAE .549 .303 .066 .064 .185 .160 .134 .157 .077

Panel E: Mixture of normals κ = 0 and δ = 50

median .382 .661 .910 .232 .136 .196 −.260 −.253 −.124

iqr .077 .241 .137 .132 .374 .457 .093 .168 .153

MAE .568 .289 .069 .069 .190 .227 .160 .156 .076

Panel F: Mixture of normals κ = 1.99 and δ = 50

median .383 .656 .906 .232 .138 .187 −.265 −.249 −.123

iqr .090 .257 .129 .140 .364 .434 .093 .174 .150

MAE .567 .295 .067 .074 .192 .215 .165 .158 .077

Notes: 1,000 replications. iqr is the 75th-25th interquartile range; MAE denotes the median absolute error. κ

indicates the excess of kurtosis, being κ = 0 the one corresponding to the normal distribution. δ refers to the

difference in means of the normal distributions in the mixture. If δ = 0 the mixture distribution is symmetric,

otherwise is non-symmetric. Parameter values calibrated to ten-year periods data. In all panels the sample size

is T = 4, N = 100.
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A.5 Growth Empirics: Revisiting the Evidence

The bulk of the growth empirics literature is based on single model regressions (e.g. Barro

(1991); Islam (1995); Caselli et al. (1996)). In this Appendix we put the sub-system LIML

estimator discussed in this paper at work in comparison with other commonly-used estimators in

the “single model” growth regressions industry. The aim is twofold: on the one hand we revisit

the evidence on the Solow model and Barro regressions estimates; and, on the other hand, we

check the differences which arise between alternative estimators.

The neoclassical framework is the basis for most empirical growth research. Departing from

a generic one-sector growth model, in either its Solow-Swan or Ramsey-Cass-Koopmans variant,

it is usual to assume that aggregate output obeys a Cobb-Douglas production function and then

obtain a canonical cross-country growth regression of the form:

Υi = c ln yi0 + βXi + εi (25)

where Υi = t−1(ln yit − ln yi0) represents the growth rate of output per worker between 0 and

t. On the other hand, Xi is a vector of variables that might include not only the growth deter-

minants suggested by the the Solow-Swan growth model but also additional determinants that

allow for predictable heterogeneity in the steady state. These regressions are sometimes called

Barro regressions, given Barro’s extensive use of such regressions to study alternative growth de-

terminants starting with Barro (1991). These kind of regressions have been widely used trying to

address two major themes in the formal empirical analysis of growth: the identification of growth

determinants and the question of convergence.

There is an important variant of the baseline empirical growth regression in (25) that can be

called the canonical panel growth regression:

ln yit = (1 + c) ln yit−1 + βXit + ηi + ζt + vit (i = 1, ..., N)(t = 1, ..., T ) (26)

where ηi is a country-specific fixed effect that allows considering unobservable heterogeneity across

countries (since this term is country specific, we can interpret it as allowing for some kind of pa-

rameter heterogeneity across countries), and ζt is a period-specific shock common to all countries.

The use of panel data in empirical growth regressions has many advantages with respect to cross-

sectional regressions. First of all, the prospects for reliable generalizations in cross-country growth

regressions are often constrained by the limited number of countries available, therefore, the use

of within-country variation to multiply the number of observations is a natural response to this

constraint. On the other hand, the use of panel data methods allows solving the inconsistency

of empirical estimates which typically arises with omitted country specific effects which, if not

uncorrelated with other regressors, lead to a misspecification of the underlying dynamic structure,

or with endogenous variables which may be incorrectly treated as exogenous.
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There are several issues to be treated in the panel growth regressions literature. Firstly,

dependence of the lagged dependent variable and the regressors in Xit with the country-specific

fixed effect is allowed in virtually all previous panel studies. In this manner, the country-specific

fixed effects are treated as parameters to be estimated and we condition on them, so, their

distribution plays no role. This is the so-called fixed effects approach in contrast to the random

effects approach that invokes a distribution for η and considers the effects independent of all

the regressors in the model. Secondly, Knight et al. (1992) and Islam (1995) among others,

have also consider the predetermined nature of the lagged dependent variable with respect to

the transitory component of the error term vit.
23 However, in these studies all the variables in

the X vector are considered as strictly exogenous, i.e. all leads and lags of the variables are

assumed to be uncorrelated with vit. This consideration rules out the possibility of feedback

from lagged income (i.e. ln y) to current growth determinants such as the rate of investment or

the rate of population growth (i.e. the x variables), which seems to be plausible in the growth

context. Finally, Caselli et al. (1996) and Benhabib and Spiegel (2000) among others, take into

consideration the predetermined nature24 of the x variables allowing for the mentioned feedback

process. In particular, in order to estimate the model, Caselli et al. (1996) and Benhabib and

Spiegel (2000) use generalized method of moments (GMM) following techniques advanced by

Holtz-Eakin et al. (1988) and Arellano and Bond (1991). The assumption that the explanatory

variables are predetermined implies a set of moment restrictions that can be used in the context of

GMM to generate consistent and efficient estimates of the parameters of interest. More concretely,

the employed moment restrictions can be interpreted as an instrumental variables model where

lagged levels of the variables are used as instruments for their first-differences. As Blundell and

Bond (1998) pointed out, with persistent series such as GDP, lagged levels may be only weak

instruments for the equation in first-differences. Thus, in spite of being consistent as N goes to

infinity, this estimator is poorly behaved in finite samples. For this reason, these GMM estimates

have not received too much credit in the empirical growth literature. In order to solve this weak-

instruments problem, Bond et al. (2001) proposed, in the context of growth regressions, the use

of the so-called system-GMM estimator introduced by Arellano and Bover (1995). However, this

estimator requires the additional assumption of mean stationarity of the variables.

The likelihood-based estimator presented in the main text of this paper is a good candidate

for solving the problems described above. First of all, it considers the presence of country-specific

fixed effects that may be correlated with both lagged income and growth determinants. Secondly,

it also takes into consideration the predetermined nature not only of the lagged dependent vari-

23This point refers to the fact that, by construction, all leads of yit−1 are correlated with vit and, therefore, the

within-groups estimator will produce biased estimates in the typical small-T growth panel. In order to address

this issue, these studies employ the Π-matrix method discussed in Chamberlain (1984).
24This predetermined nature is also labeled as partial endogeneity in the main text of this paper, and it is

sometimes denominated weakly exogeneity in the growth literature.



BANCO DE ESPAÑA 41 DOCUMENTO DE TRABAJO N.º 1109

able but also of the growth determinants (i.e. feedback from lagged income to current growth

determinants is allowed). Thirdly, LIML estimators might alleviate the problem of finite-sample

biases caused by weak instruments. Moreover, measurement error considerations can be easily

accommodated through additional restrictions on the variance-covariance matrix.

Given the above, the model to be estimated is given by the following equation and assumption:

yit = αyit−1 + βxit + ηi + ζt + vit (27a)

E
(
vit | yt−1

i , xt
i, ηi

)
= 0 (i = 1, ..., N)(t = 1, ..., T ) (27b)

where α = 1+c, yi,t is the GDP per capita for country i in period t, xit is a k×1 vector of growth

determinants, ηi is a country-specific fixed effect, ζt represents a set of time dummies and vit is

the random disturbance term.

Given current data availability, it is now possible to use 10-year periods in panel growth

regressions. This is so because typical sources of “growth data” such as Penn World Tables,

cover a broad range of countries over the period 1960 to 2000. By using 10-year periods we aim

to avoid the effect of business-cycle fluctuations and, therefore, focus on the long-term growth

process. However, we also present some estimations using 5-year periods data.

A.5.1 The Solow-Swan Model

The baseline empirical growth regression is given by the basic neoclassical growth model,

developed by Solow (1956) and Swan (1956). In the empirical counterpart of this model, the

vector xit in (27a) includes proxies for the population growth rate (n), the rate of technological

progress (g), the rate of depreciation of physical capital (d), and the saving rate (s). In particular,

in our regressions, output is measured by GDP per capita at constant 2000 international prices

from Penn World Tables 6.2 (PWT62). The saving rate (s) is proxied by the ratio of real domestic

investment to GDP from PWT62. Finally, following Mankiw et al. (1992) and Caselli et al. (1996)

among others, we choose 0.05 as a reasonable assessment of the value of g + d. Appendix A.6

contains more details about the employed data.

We have applied different estimation methods to the Solow-Swan model in two different panel

settings, five-year periods and ten-year periods data. The results are presented in Table A3. The

bulk of the empirical growth regressions literature in based on cross-country OLS regressions as

presented in columns (1) and (5). The within-groups (WG) estimator is an OLS variant where

given the availability of a panel dataset, country dummies can be included in order to allow

for the presence of unobserved heterogeneity correlated with the regressors (i.e. country-specific

fixed effects). The results when employing both OLS and WG estimators are in line with previous

literature. Columns (3) and (6) report first-differenced GMM estimates in the spirit of Caselli

et al. (1996). The similarity between WG and diff-GMM estimates of the convergence parameter
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Table A3: Solow-Swan Model Estimation Results

Five-year data (T = 8) Ten-year data (T = 4)

OLS WG
diff sub-sys

OLS WG
diff sub-sys

GMM LIML GMM LIML

(1) (2) (3) (4) (5) (6) (7) (8)

Dependent variable is ln(yi,t)

ln(yi,t−1) 0.963 0.843 0.830 1.012 0.927 0.718 0.717 1.025

(0.007) (0.025) (0.050) (0.037) (0.014) (0.050) (0.112) (0.091)

ln(si,t−1) 0.088 0.091 0.035 0.095 0.167 0.166 0.009 0.222

(0.010) (0.018) (0.034) (0.025) (0.019) (0.036) (0.085) (0.066)

ln(ni,t−1+g+d) −0.204 −0.137 0.128 0.020 −0.441 −0.327 0.557 −0.102

(0.041) (0.071) (0.108) (0.100) (0.085) (0.163) (0.325) (0.309)

Implied λ 0.007 0.034 0.037 −0.002 0.008 0.033 0.033 −0.003

(0.001) (0.006) (0.012) (0.007) (0.002) (0.007) (0.016) (0.009)

Observations 584 584 511 584 292 292 219 292

Countries 73 73 73 73 73 73 73 73

Notes: In all columns a set of time dummies is included in the regressions. Columns (1) and (5) refer to the OLS

estimation without country-specific fixed effects and all regressors considered as exogenous. In columns (2) and (6) the

within-group estimator is employed and therefore fixed effects are included. However all regressors are assumed to be

strictly exogenous. Finally, columns (3)-(4) and (7)-(8) present different estimates of the Solow-Swan version of the

model in (27a)-(27b), where both fixed effects and (partial) endogeneity are considered. In particular, columns (3) and

(7) refer to the differenced GMM estimation and columns (4) and (8) present the estimation results when using the

sub-system LIML estimator presented in Section 2. Standard errors are in parenthesis. Replication material can be

found in http://www.moralbenito.com.

is interpreted as an indication of the presence of a weak-instruments problem. This has been

previously documented in Bond et al. (2001). As a result, in spite of accounting for potential

endogeneity of the regressors, the diff-GMM estimates might not be reliable because they suffer

from finite-sample biases.

The sub-system LIML estimation procedure presented in this paper is applied to the basic

Solow-Swan model25 and the results are shown in columns (4) and (8) of Table A3. Inspection

of these columns points to the importance of the finite-sample biases in previous first-differenced

GMM estimates of this model. In contrast to previous panel estimates of the rate of convergence

using the Solow-Swan framework, we obtain here that the speed of convergence is either low or

zero across the countries in the sample. This is true when considering both five-year and ten-year

periods. In particular, the point estimate for the convergence rate26 is roughly zero in both cases.

25A STATA command called xtmoralb that implements this estimator is available from my website

http://www.moralbenito.com
26The convergence rate λ is obtained as follows: λ = ln α

−τ where τ is either 5 or 10. On the other hand, its
standard error is calculated by the delta method.
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However, the 95% confidence intervals are consistent with convergence rates that vary from −1.7%

to 1.2% in the case of five-year periods data and from −2.0% to 1.5% in the case of ten-year data.

This result suggests that previous panel studies such as Caselli et al. (1996), where the estimated

rate of convergence was surprisingly high, were driven by finite-sample biases. This conclusion

is reinforced using alternative specifications in this Appendix, and in the main text when model

uncertainty is also taken into consideration.

By the same token, some differences also arise with respect to other parameter estimates.

More concretely, the estimate for ln(ni,t−1 + g + d) is similar in both diff-GMM and sub-system

LIML in the sense that they are not significantly different from zero. However, the point estimate

is negative in the case of sub-system LIML and positive when using diff-GMM. On the other

hand, the estimate of the savings rate coefficient is positive, larger and significant in the case of

sub-system LIML but insignificant when using diff-GMM.

A.5.2 Barro Regressions

Since Barro (1991), most of empirical growth regressions are based on a wide variety of specifi-

cations given by different variables included in the vector xit in (27a). In this subsection we apply

the sub-system LIML estimator together with OLS, WG and diff-GMM to two distinct panel

cross-country growth regressions a la Barro. In particular, we focus on the baseline specification

of Barro and Lee (1994) as well as an alternative specification explained below.

The basic empirical framework of Barro regressions with panel data is given by equation (27a).

Two kind of variables are included in theses regressions, first, initial levels of state variables

measured at the beginning of the period (we now focus on ten-year periods); and second, control

or environmental variables, some of which are chosen by governments or private agents. For the

baseline specification, as in Barro and Lee (1994), among the state variables we include the initial

level of per capita GDP, the average number of years of secondary education, and the logarithm of

life expectancy. The first is used to proxy the initial stock of physical capital, while the others are

proxies for the initial level of human capital in the forms of educational attainment and health.

Among the control variables, we include the domestic investment ratio (I/GDP) and the ratio of

government consumption to GDP (G/GDP) as in Barro and Lee (1994). Given data availability

in our sample period, the other two control variables are slightly different from those employed

in the original specification but they capture similar effects. We consider the price of investment

as a measure market prices distortions that exists in the economy and a polity composite index

as a proxy of political freedom and stability. GDP, investment share, government consumption,

and investment price are taken from PWT62. Secondary education is from Barro and Lee (2000),

life expectancy from World Development Indicators 2005 and the polity index from the Polity IV

project.27

27A more detailed description of the data sources and variables can be found in Appendix A.6.
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Table A4: Barro Regressions Estimation Results

Baseline Specification Alternative Specification

Ten-year data (T = 4) Ten-year data (T = 4)

OLS WG
diff sub-sys

OLS WG
diff sub-sys

GMM LIML GMM LIML

(1) (2) (3) (4) (5) (6) (7) (8)

Dependent variable is ln(yt)

ln(yt−1) 0.845 0.683 0.842 0.977 0.971 0.624 0.438 0.899

(0.021) (0.052) (0.075) (0.077) (0.019) (0.051) (0.107) (0.088)

Education 0.040 0.039 0.055 0.030 0.016 0.036 0.076 0.030

(0.015) (0.036) (0.081) (0.066) (0.017) (0.032) (0.046) (0.054)

ln (life expect) 0.829 0.478 0.709 0.862

(0.108) (0.224) (0.488) (0.356)

I/GDP 0.588 0.781 0.857 1.114 0.891 0.797 0.351 1.268

(0.133) (0.213) (0.279) (0.298) (0.132) (0.193) (0.284) (0.321)

G/GDP −0.246 −0.465 −0.314 −0.546

(0.115) (0.284) (0.534) (0.496)

Inv. Price −0.0004 −0.0007 −0.0008 −0.0010

(0.0002) (0.0003) (0.0006) (0.0004)

Polity −0.042 −0.201 −0.260 −0.256 0.054 −0.167 −0.338 −0.169

(0.041) (0.061) (0.083) (0.087) (0.042) (0.058) (0.082) (0.095)

Population 0.0003 0.0017 0.002 0.0012

(0.0001) (0.0003) (0.0003) (0.0003)

Implied λ 0.017 0.038 0.017 0.002 0.003 0.047 0.082 0.011

(0.003) (0.008) (0.009) (0.008) (0.002) (0.008) (0.024) (0.010)

Observations 292 292 219 292 292 292 219 292

Countries 73 73 73 73 73 73 73 73

Notes: The baseline specification is the same as in Barro and Lee (1994) and the alternative specification is explained

in the text. In all columns a set of time dummies is included in the regressions. Columns (1) and (5) refer to the OLS

estimation without country-specific fixed effects and all regressors considered as exogenous. In columns (2) and (6)

the within-group estimator is employed and therefore fixed effects are included. However all regressors are assumed to

be strictly exogenous. Finally, columns (3)-(4) and (7)-(8) present different estimates of two versions of the model in

(27a)-(27b) where both fixed effects and (partial) endogeneity are considered. In particular, columns (3) and (7) refer

to the differenced GMM estimation and columns (4) and (8) present the estimation results when using the sub-system

LIML estimator presented in Section 2. Standard errors are in parenthesis. Replication material can be found in

http://www.moralbenito.com.

Table A4 shows the results. Columns (1)-(4) refer to the baseline specificacion previously

described. In line with Solow-Swan estimation results, the main conclusion from these columns

is that the rate of convergence is either very low or zero according to the sub-system LIML
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estimates. The 95% sub-system LIML confidence interval goes from −1.3% to 1.8%. On the

other hand, the conclusions with respect to other explanatory variables may change depending

on the estimation method. For instance, investment price has a negative and significative effect

on growth according to the sub-system LIML estimates but not according to diff-GMM.

In columns (5)-(8) we present the results from an alternative specification. Imagine a re-

searcher who is testing the effect of democracy on growth. For this purpose, she estimates a

growth regression using as state variables the initial level of per capita GDP, the average years of

secondary education and the country’s population (in millions of people), and as a control variable

she decides to only include the domestic investment ratio (I/GDP). Given this specification, the

sub-system LIML 95% confidence interval for the convergence rate estimate goes from −0.9% to

3.0%. However, diff GMM provides convergence rate estimates in the range from 3.5% to 12.9%

which might be upward biased due to weak instruments. Moreover, while the effect of investment

(I/GDP) is estimated to be not significantly different from zero according to diff GMM, it is

much larger in magnitude and significant according to sub-sys LIML. We thus conclude that the

consideration of the estimator discussed in this paper might be of interest for empirical growth

researchers as an alternative to first-differenced GMM.

On the other hand, there are now some results that are different depending not only on

the estimation method but also on the specification. For example, in the baseline specification,

the effect of the polity index is estimated to be negative and significant while in the alternative

specification it is 34% smaller in magnitude and not significant according to the sub-system LIML

estimates. It is easy to imagine thousands of Barro regressions in which the convergence parameter

estimate will be different across specifications and in which the effects of the explanatory variables

will also be different. This might lead us to misleading conclusions even if we consider appropriate

estimation techniques for a given model because we can not be sure whether this is the correct

empirical model or not. To some extent, this fact might serve as an illustration of the need to

take into account model uncertainty in empirical growth regressions.

A.6 Growth Determinants

The augmented Solow-Swan model can be taken as the baseline empirical growth model. It

consists of four determinants of economic growth, initial income, rates of physical and human

capital accumulation, and population growth. In addition to those four determinants, Durlauf

et al. (2005)’s survey of the empirical growth literature identifies 43 distinct growth theories and

145 proposed regressors as proxies; each of these theories is found to be statistically significant

in at least one study. The set of growth determinants considered in this paper is only a subset

of that identified by Durlauf et al. (2005). This is so because of three main reasons: (i) Data

availability in the panel data context for the postwar period 1960-2000 is smaller than in the
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cross-sectional case. (ii) Since number of models to be estimated increases exponentially with the

number of regressors considered and it is necessary to resort to numerical optimization methods

for each model estimation, the problem would be computationally intractable if we include too

many candidates. (iii) Finally, as found by Ciccone and Jarocinski (2010) and Moral-Benito

(2011), the fewer the potential growth determinants considered, the smaller the sensivity of the

results.

In this paper we consider the following candidate growth determinants:28

• Initial GDP: One of the main features of the neoclassical growth model is the prediction of

a low (less than one) coefficient on initial GDP (i.e. it predicts conditional convergence). If

the other explanatory variables are held constant, then the economy tends to approach (or

not) its long-run position at the rate indicated by the magnitude of the coefficient.

• Investment Ratio: The ratio of investment to output represents the saving rate in the

neoclassical growth model. In this model, a higher saving rate raises the steady-state level

of output per effective worker and therefore increases the growth rate for a given starting

value of GDP. Many empirical studies such as DeLong and Summers (1991) have found an

important positive effect of the investment ratio on economic growth.

• Education: In the neoclassical growth model, since the seminal work of Lucas (1988), the

concept of capital is usually broadened from physical capital to include human capital.

Education is the form of human capital that has generated most of the empirical work. In

spite of the positive theoretical effect, many empirical studies have failed in finding such an

effect. In particular we consider here the years of secondary education from Barro and Lee

(2000).

• Life Expectancy: Another commonly-considered form of human capital is health. In par-

ticular, the log of life expectancy at birth at the start of each period is typically used as

an indicator of health status. There is a growing consensus that improving health can have

a large positive impact on economic growth. For example, Gallup and Sachs (2001) argue

that wiping out malaria in sub-Saharan Africa could increase per capita GDP growth by

2.6% a year.

• Population Growth: The steady-state level of output per effective worker in the neoclassical

growth model is negatively affected by a higher rate of population growth because a portion

of the investment is devoted to new workers rather than to raise capital per worker. However,

this implication is not always confirmed when estimating empirical growth models.

• Investment Price: Since the seminal work of Agarwala (1983), it is often argued that distor-

tions of market prices impact negatively on economic growth. Given the connection between

28Table A5 presents more details on these variables and their sources.
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investment and growth, such market interferences would be especially important if they ap-

ply to capital goods. Therefore, following Barro (1991) and Easterly (1993) among others,

we consider the investment price level as a proxy for the level of distortions of market prices

that exists in the economy.

• Trade Openness: The trade regime/external environment is captured by the degree of open-

ness measured by the trade openness, imports plus exports as a share of GDP. It is often

argued that a higher degree of trade openness increases the opportunity set of profitable

investments and therefore promotes economic growth. Many authors such as Levine and

Renelt (1992) and Frankel and Romer (1999) have considered this ratio.

• Government Consumption: Since the seminal work of Barro (1991), many authors have

considered the ratio of government consumption to GDP as a measure of distortions in the

economy. The argument is that government consumption has no direct effect on private

productivity but lower saving and growth through the distorting effects from taxation or

government-expenditure programs.

• Polity Measure: The role of democracy in the process of economic growth has been the

source of considerable research effort. However, there is no consensus about how the level

of democracy in a country affects economic growth. Some researchers believe that an ex-

pansion of political rights (i.e. more democracy) fosters economic rights and tends thereby

to stimulate growth. Others think that the growth-retarding aspects of democracy such as

the heightened concern with social programs and income redistribution may be the dom-

inant effect. Many authors such as Barro (1996) and Tavares and Wacziarg (2001) have

empirically investigated this issue. In this paper we consider the Polity IV index of democ-

racy/autocracy for analyzing the overall effect of democracy on growth.

• Population: Romer (1987, 1990) and Aghion and Howitt (1992) among others, developed

theories of endogenous growth that imply some benefits from larger scale. In particular, if

there are significant setup costs at the country level for inventing or adapting new products

or production techniques, then the larger economies would, on this ground, perform better.

This countrywide scale effect is tested by considering country’s population in millions of

people.
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Table A5: Variable Definitions and Sources

Variable Source Definition

GDP PWT 6.2 Logarithm of GDP per capita (2000 US dollars at PP)

I/GDP PWT 6.2 Ratio of real domestic investment to GDP

Education Barro and Lee (2000) Stock of years of secondary education in the total population

Pop. Growth PWT 6.2 Average growth rate of population

Population PWT 6.2 Population in millions of people

Inv. Price PWT 6.2 Purchasing-power-parity numbers for investment goods

Trade Openness PWT 6.2 Exports plus imports as a share of GDP

G/GDP PWT 6.2 Ratio of government consumption to GDP

ln (life expect) WDI 2005 Logarithm of the life expectancy at birth

Polity Polity IV Project
Composite index given by the democracy score minus the autocracy score.

Original range -10,-9,...,10, normalized 0-1.

Notes: All variables are available for all the countries in the sample (see table below) and for the whole pe-

riod 1960-2000. PWT 6.2 refers to Penn World Tables 6.2 and it can be fount at http://pwt.econ.upenn.edu/.

WDI 2005 refers to World Development Indicators 2005. Data from Barro and Lee (2000) is available at

http://www.cid.harvard.edu/ciddata/ciddata.html. Finally, data from the Polity IV Project can be downloaded from

http://www.systemicpeace.org/polity/polity4.htm.

Table A6: List of Countries

Algeria France Mali Singapore

Argentina Ghana Mauritius South Africa

Australia Greece Mexico Spain

Austria Guatemala Mozambique Sri Lanka

Belgium Honduras Nepal Sweden

Benin India Netherlands Switzerland

Bolivia Indonesia New Zealand Syria

Brazil Iran Nicaragua Thailand

Cameroon Ireland Niger Togo

Canada Israel Norway Trinidad & Tobago

Chile Italy Pakistan Turkey

China Jamaica Panama Uganda

Colombia Japan Paraguay United Kingdom

Costa Rica Jordan Peru United States

Denmark Kenya Philippines Uruguay

Dom. Republic Lesotho Portugal Venezuela

Ecuador Malawi Rwanda Zambia

El Salvador Malaysia Senegal Zimbabwe

Finland
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A.7 Bayesian Model Averaging

This Appendix presents a brief overview of the BMA techniques considered to obtain the

empirical results in Section 4 of the main text. Formally, consider a generic representation of an

empirical model of the form:

Ψ = θX + υ (28)

where Ψ is the dependent variable of interest, and X represents a set of covariates. Imagine

that there exist potentially very many empirical models, each given by a different combination of

explanatory variables (i.e. different vectors X), and each with some probability of being the ’true’

model. Suppose we have K possible explanatory variables. We will have 2K possible combinations

of regressors, that is to say, 2K different models - indexed by Mj for j = 1, ..., 2K- which all seek

to explain the data.

In order to obtain parameter estimates that formally consider the dependence of model-specific

estimates on a given model, BMA techniques construct point estimates from the posterior distri-

bution of the parameters. This posterior distribution is calculated as a weighted average of all

the 2K model specific posterior distributions. The weights are given by the posterior probability

of the model to be the ’true’ model.29 To be more precise, the point estimate of interest will be

the mean of the posterior distribution of the parameters given the data:

E(θ|data) =
2K∑
j=1

P (Mj|data) E(θ|data, Mj)

Moreover, if we assume diffuse priors on the parameter space for any given sample size, or, if

we have a large sample for any given prior on the parameter space we can write:30

E(θ|data) =
2K∑
j=1

P (Mj|data) E(θ|data, Mj) =
2K∑
j=1

P (Mj|data) θ̂j
ML (29)

where θ̂j
ML is the ML estimate for model j. In particular, we can consider the sub-system LIML

estimator presented in Section 2 or any other likelihood-based estimator emerging from a proper

likelihood function.

Given the endogenous regressors setting considered in the paper, each of the models being

considered here comprise the same set of simultaneous equations (i.e. each model is given by

a set of structural form equations for the dependent variable in each time period and the same

29A more detailed discussion of the BMA methodology can be found in Hoeting et al. (1999), Koop (2003) or

Moral-Benito (2010) among others.
30The equivalence of classical inference and Bayesian inference under diffuse priors is well-known in the classical

normal regression model. For the LIML case, Kleibergen and Zivot (2003) show this equivalence for a particular

choice of non-informative priors.
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set of reduced form equations for the endogenous regressors). Therefore, model-specific sub-

system LIML estimators maximize the joint density of the dependent variable and all the partially

endogenous regressors. In order to guarantee comparability of the likelihoods, this is so even when

some of the regressors are not “included” in the model, i.e. a given regressor is excluded from

a particular model by simply restricting to zero its coefficient in the structural form equation.

However, the key issue is that all the reduced form equations comprise the full set of endogenous

regressors and thus are the same for all the models under consideration. By doing so, the densities

of the different models are comparable.31

Similarly to the posterior mean, following Leamer (1978) we can also compute the posterior

variance:

V (θ|data) =
∑2K

j=1
P (Mj|data) V (θ|data, Mj) (30)

+
∑2K

j=1
P (Mj|data) (E(θ|data, Mj) − E(θ|data))2

Inspection of (30) shows that the variance incorporates both the estimated variances of the

individual models as well as the variance in estimates of the coefficients across different models.

Hence, the uncertainty at the two different levels mentioned in the main text is taken into account.

It is important to note that the posterior mean and the posterior variance considered here are

both conditional on the inclusion of a particular regressor in the model.32

Moreover, in this paper we consider model weights (i.e. the posterior model probabilities

P (Mj|data)) based on the Schwarz asymptotic approximation to the Bayes Factor, and therefore:

P (Mj|data) =
P (Mj) (NT )

−kj
2 f(data|θ̂j, Mj)∑2K

i=1 P (Mi) (NT )
−ki
2 f(data|θ̂i, Mi)

(31)

where f(data|θ̂j, Mj) is the maximized likelihood function for model j. Kass and Wasserman

(1995) show that the Schwarz asymptotic approximation formula in (31) could also be obtained

with a reasonable prior on the parameter space33 that is known as Unit Information Prior (UIP).

Moreover, Eicher et al. (2009b) conclude that this UIP combined with the uniform model prior

(i.e. all models are equally probable a priori so that P (Mj) = 1/2K∀j) we consider in the paper

outperforms any other possible combination of priors previously considered in the BMA literature

31See Moral-Benito (2010) for more details on the combination of Bayesian model averaging and endogenous

regressors.
32This means that when computing both of them from the posterior distribution we only consider the models

in which the coefficient of the regressor in the structural equation is not restricted to be zero. However, the

unconditional posterior mean can be easily obtained by multiplying the conditional posterior mean (column (1)

in Table 2) times the Posterior Inclusion Probability (PIP) in column 5 of Table 2. Similarly, the unconditional

posterior variance can be computed according to V (θ|data)uncond = [V (θ|data)cond + E2(θ|data)cond] × PIP −
E2(θ|data)uncond.

33A prior on the parameter space that is a multivariate normal with mean the MLE of the parameters and

variance the inverse of the expected Fisher information matrix for one observation.
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in terms of cross-validated predictive performance. This combination of priors also identifies the

largest set of growth determinants.

Finally, BMA also considers the posterior probability (PIP) that a particular variable h is

included in the regression. In particular, this probability is an indicator of the weighted average

goodness-of-fit of models containing a particular variable relative to models not containing that

variable. The PIP of variable h is calculated as the sum of the posterior model probabilities for

all of the models including that particular variable:

PIP = P (θh �= 0|data) =
∑

θh �=0
P (Mj|data) . (32)
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