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Abstract

Incomplete-markets models with heterogeneous agents are increasingly used for policy 

analysis. We propose a novel methodology for solving fully dynamic optimal policy problems 

in models of this kind, both under discretion and commitment, based on optimization 

techniques in function spaces. We illustrate our methodology by studying optimal monetary 

policy in an incomplete-markets model with long-term nominal debt and costly infl ation. 

Under discretion, an infl ationary bias arises from the central bank’s attempt to redistribute 

wealth from creditors to debtors, who have a higher marginal utility of consumption. Under 

commitment, this infl ationary force is counteracted over time by the incentive to prevent 

expected future infl ation from lowering the price at which issuers of new bonds do so; under 

certain conditions, long-run infl ation is zero as both effects cancel out asymptotically. We 

fi nd numerically that the optimal commitment features fi rst-order initial infl ation followed by 

a gradual decline towards its (near zero) long-run value.

Keywords: optimal monetary policy, commitment and discretion, incomplete markets, 

Gateaux derivative, nominal debt, infl ation, redistributive effects, continuous time.

JEL classifi cation: E5, E62, F34.



Resumen

Los modelos de mercados incompletos con agentes heterogéneos están cobrando especial 

relevancia en los análisis de políticas económicas. En este documento proponemos una 

nueva metodología para resolver problemas de políticas dinámicas óptimas en este tipo de 

modelos, tanto discrecionales como con compromiso, basada en técnicas de optimización 

en espacios funcionales. Ilustramos nuestra metodología analizando la política monetaria 

óptima en un modelo de mercados incompletos con deuda nominal de largo plazo y costes 

de infl ación. En el caso bajo discreción, aparece un sesgo infl acionario, debido a que el 

banco central desea redistribuir riqueza de acreedores a deudores, los cuales tienen una 

mayor utilidad marginal del consumo. Bajo compromiso, este sesgo infl acionario se ve 

compensado en el tiempo por el incentivo a evitar que las expectativas de infl ación futura 

reduzcan el precio al que los emisores de nueva deuda realizan dichas emisiones; bajo 

ciertas condiciones, la infl ación de largo plazo es cero, ya que ambos efectos se cancelan 

asintóticamente. Numéricamente, encontramos que el compromiso óptimo genera una 

infl ación inicial de primer orden seguida por un descenso gradual hasta su valor de largo 

plazo cercano a cero.

Palabras clave: Política monetaria óptima, discreción y compromiso, mercados incompletos, 

derivada de Gateaux, deuda nominal, infl ación, efectos redistributivos, tiempo continuo.

Códigos JEL: E5, E62, F34.
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1 Introduction

Ever since the seminal work of Bewley (1983), Huggett (1993) and Aiyagari (1994),

incomplete markets models with uninsurable idiosyncratic risk have become a work-

horse for policy analysis in macro models with heterogeneous agents.1 Among the

different areas spawned by this literature, the analysis of the dynamic aggregate ef-

fects of fiscal and monetary policy has begun to receive considerable attention in

recent years.2

As is well known, one difficulty when working with incomplete markets models

is that the state of the economy at each point in time includes the cross-household

wealth distribution, which is an infinite-dimensional, endogenously-evolving object.3

The development of numerical methods for computing equilibrium in these models

has made it possible to study the effects of aggregate shocks and of particular policy

rules. However, the infinite-dimensional nature of the wealth distribution has made

it difficult to make progress in the analysis of optimal policy problems in this class of

models.

In this paper, we propose a novel methodology for solving fully dynamic optimal

policy problems in incomplete markets models with uninsurable idiosyncratic risk,

both under discretion and commitment. The methodology relies on the use of calculus

techniques in infinite-dimensional Hilbert spaces to compute the first order conditions.

In particular, we employ a generalized version of the classical derivative known as

Gateaux derivative.

1For a survey of this literature, see e.g. Heathcote, Storesletten and Violante (2009).
2See our discussion of the related literature below.
3See e.g. Ríos-Rull (1995).

We illustrate our methodology by analyzing optimal monetary policy in an in-

complete markets economy. Our framework is close to Huggett’s (1993) standard

formulation. As in the latter, households trade non-contingent claims, subject to

an exogenous borrowing limit, in order to smooth consumption in the face of idio-

syncratic income shocks. We depart from Huggett’s real framework by considering

nominal non-contingent bonds with an arbitrarily long maturity, which allows mon-

etary policy to have an effect on equilibrium allocations. In particular, our model

features a classic Fisherian channel (Fisher, 1933), by which realized inflation redis-

tributes wealth from lending to indebted households.4 In order to have a meaningful

trade-off in the choice of the inflation path, we also assume that inflation is costly,

which can be rationalized on the basis of price adjustment costs. Moreover, expected

future inflation lowers the price of the long-term bond through higher inflation premia.

4See Doepke and Schneider (2006a) for an influential study documenting net nominal asset posi-
tions across US household groups and estimating the potential for inflation-led redistribution. See
Auclert (2016) for a recent analysis of the Fisherian redistributive channel in an incomplete-markets
general equilibrium model that allows for additional redistributive mechanisms.
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We also depart from the standard closed-economy setup by considering a small open

economy, with the aforementioned bonds being also held (and priced) by risk-neutral

foreign investors; this makes the analysis somewhat more tractable.5 Finally, we

cast the model in continuous time, which offers important computational advantages

relative to the (standard) discrete-time specification.6

On the analytical front, we show that discretionary optimal policy features a

’redistributive inflationary bias’, whereby the utilitarian central bank uses current

inflation so as to try and redistribute wealth from lenders to indebted households. In

particular, we show that optimal discretionary inflation is determined by the following

simple expression,

5We restrict our attention to equilibria in which the domestic economy is always a net debtor vis-
à-vis the rest of the World, such that domestic bonds are always in positive net supply. As a result,
the usual bond market clearing condition in closed-economy models is replaced by a no-arbitrage
condition for foreign investors that effectively prices the nominal bond. This allows us to reduce
the number of constraints in the policy-maker’s problem featuring the infinite-dimensional wealth
distribution.

6We show however how our methodology can also be applied in a discrete-time environment.
7Our assumption that the country is always a net debtor vis-à-vis the rest of the World, i.e.

Eft(a,·) (−a) ≥ 0, implies an additional (cross-border) redistributive motive to inflate: from foreign
investors to indebted domestic households. Our simulations show that both motives are quanti-
tatively relevant for optimal inflation. Importantly, the domestic redistributive motive to inflate
illustrated in equation (1) is preserved even with a zero net foreign asset position, due the concavity
of preferences. Hence it would also go through in a closed-economy setup.

where Eft(a,y) [·] denotes the average across real net wealth (a) and income (y) levels
at time t, with joint distribution ft (·), u� (x�) is the marginal (dis)utility of consump-
tion (inflation), with x�� > 0 > u��, and Qt is the price of the long-term bond. That

is, optimal discretionary inflation increases with the average cross-household net lia-

bility position weighted by each household’s marginal utility of consumption. Under

market incompleteness and standard concave preferences for consumption, indebted

households (those with a < 0) have a higher marginal consumption utility than lend-

ing ones (a > 0). As a result, they receive a higher effective weight in the optimal

inflation decision, giving the central bank an incentive to redistribute wealth from

lending to indebted households. To the best of our knowledge, this redistributive

inflationary bias is a novel insight in the literature on incomplete markets models

with uninsurable idiosyncratic risk. Moreover, while our model is deliberately simple

—with the aim of illustrating our methodology as transparently as possible—, such in-

flationary bias would carry over to normative analyses in more fully-fledged models

of this kind that incorporate a Fisherian channel.7

marginal inflation cost* -, +
x� (πt) = Eft(a,y)

⎡⎣market value net liabilities* -, +
Qt (−a)

marginal consumption utility* -, +
u� (ct (a, y))

⎤⎦ , (1)
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Under commitment, the same redistributive motive to inflate exists, but it is

counteracted by an opposing force: the central bank internalizes how expectations of

future inflation affect the price at which households issue new bonds from the time

the optimal commitment plan is formulated (’time zero’) onwards. Indeed, optimal

inflation under commitment is driven by the same right-hand-side term in equation

(1) plus a costate with zero initial value that increases with

Eft(a,y) [anewt (a, y) u� (ct (a, y))] ,

i.e. the average purchase of new bonds across households anewt (·) weighted again by
marginal consumption utilities. In the model, the households that issue new bonds

(those with anewt < 0) have lower net wealth and hence higher marginal utility than

bond-purchasing ones (anewt > 0), so they receive a larger weight in the above expres-

sion. This gives the central bank an incentive to promise lower and lower inflation

in the future so as to prevent bond issuers from doing so at very low prices.8 This

disinflationary force has too a redistributive motive, but unlike the aforementioned

inflationary bias —which uses current inflation in order to favor indebted household—

it relies on future inflation and bond prices so as to favor bond-issuing households

(who largely coincide with the indebted ones). Moreover, we find that under certain

conditions both forces —the inflationary and deflationary one— cancel each other out

in the long-run, such that steady-state inflation under the optimal commitment is

zero.9

We then solve numerically for the full transition path under commitment and

discretion. We calibrate our model to match a number of features of a prototypical

European small open economy, such as the size of gross household debt or the net

international position.10 We find that optimal inflation at time zero —which is very

similar under commitment and discretion due to the absence of pre-commitments in

the former case— is first-order in magnitude, reflecting the above mentioned redistrib-

utive motive. From time zero onwards, inflation remains high under discretion due

to the redistributive inflationary bias. Under commitment, by contrast, inflation falls

gradually towards its long-run level (essentially zero, under our calibration), reflecting

the central bank’s concern with preventing expectations of future inflation from being

priced into new bond issuances; in other words, the central bank front-loads inflation

8This incentive to commit to low future inflation has again an additional, cross-border dimension,
because the domestic economy as a whole is a net issuer of new bonds.

9In particular, in the limiting case in which households’ (and hence the benevolent central bank’s)
discount rate is arbitrarily close to that of foreign investors, optimal steady-state inflation under
commitment is arbitrarily close to zero.
10These targets are used to inform the calibration of the gap between the central bank’s and

foreign investors’ discount rates, which as explained before is a key determinant of long-run inflation
under commitment.
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so as to transitorily redistribute existing wealth from lenders to indebted households,

but commits to gradually undo such initial inflation.

We also analyze the redistributive effects of optimal policy. We show that, rel-

ative to a zero-inflation scenario, inflationary policies (whether under discretion or

commitment) redistribute consumption from lending to indebted households. A key

channel through which this redistribution takes place is the fact that future inflation

reduces the price of the long-term bond, which reduces the real market value of bond

holdings for lending households and that of liabilities for indebted ones. These ef-

fects find an echo in the welfare analysis. The discretionary policy implies sizable

(first-order) losses relative to the optimal commitment. Such losses are suffered by

lending households, but also by indebted ones, because the welfare costs of permanent

inflation dominate the gains from increased consumption.

Finally, we compute the optimal monetary policy response to an aggregate shock,

such as an increase in the World real interest rate.11 We find that inflation rises

slightly on impact, as the central bank tries to partially counteract the negative effect

of the shock on household consumption. However, the inflation reaction is an order

of magnitude smaller than that of the shock itself. Intuitively, the value of sticking

to past commitments to keep inflation near zero weighs more in the central bank’s

decision than the value of using inflation transitorily so as to stabilize consumption

in response to an unforeseen event.

Overall, our findings shed some light on current policy and academic debates

regarding the appropriate conduct of monetary policy once household heterogeneity

is taken into account. In particular, our results suggest that, while some inflation may

be justified in the short-run so as to redistribute resources to households with higher

marginal utilities, a central bank with the ability to commit should not sustain such

an inflationary stance —as it would if it acted under discretion—, but should instead

promise to undo it over time, precisely in order to favor the same households.

Finally, we stress that our results are not meant to suggest that monetary policy

is the best tool to address redistributive issues, as there are probably more direct

policy instruments. What our results indicate is that, in the context of economies

with uninsurable idiosyncratic risk, the optimal design of monetary policy will to

some extent reflect redistributive motives, the more so the less other policies (e.g.

fiscal policy) are able to achieve optimal redistributive outcomes.

Related literature. Our first main contribution is methodological. To the best
of our knowledge, ours is the first paper to solve for a fully dynamic optimal policy

problem, both under commitment and discretion, in a general equilibrium model with

uninsurable idiosyncratic risk in which the cross-sectional net wealth distribution

11In the analysis of aggregate shocks we focus on the commitment case, and in particular on the
optimal commitment plan ‘from a timeless perspective.’
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(an infinite-dimensional, endogenously evolving object) is a state in the planner’s

optimization problem. Different papers have analyzed Ramsey problems in similar

setups. Dyrda and Pedroni (2014) study the optimal dynamic Ramsey taxation in an

Aiyagari economy. They assume that the paths for the optimal taxes follow splines

with nodes set at a few exogenously selected periods, and perform a numerical search

of the optimal node values. Acikgoz (2014), instead, follows the work of Dávila et

al. (2012) in employing calculus of variations to characterize the optimal Ramsey

taxation in a similar setting. However, after having shown that the optimal long-

run solution is independent of the initial conditions, he analyzes quantitatively the

steady state but does not solve the full dynamic optimal path.12 Other papers, such

as Gottardi, Kajii, and Nakajima (2011), Itskhoki and Moll (2015), Bilbiie and Ragot

(2017), Le Grand and Ragot (2017) or Challe (2017), analyze optimal Ramsey policies

in incomplete-market models in which the policy-maker does not need to keep track

of the wealth distribution.13 In contrast to these papers, we introduce a methodology

for computing the fully dynamic, nonlinear optimal policy under commitment in an

incomplete markets setting where the policy-maker needs to keep track of the entire

wealth distribution. Regarding discretion, we are not aware of any previous paper

that has quantitatively analyzed it in models with uninsurable idiosyncratic risk.

A recent paper by Bhandari et al. (2017), released after the first draft of this paper

was circulated, analyzes optimal fiscal and monetary policy with commitment in a

heterogeneous agents New Keynesian environment with aggregate uncertainty. Their

methodology differs from ours in two main dimensions. First, they employ a local

method (second-order perturbations), in contrast to the global method presented here.

Second, their methodology cannot address problems with exogenous, occasionally

binding borrowing limits such as those used in models à la Aiyagari-Bewley-Huggett,

which are precisely the focus of our paper.

The use of infinite-dimensional calculus in problems with non-degenerate distrib-

utions is employed in Lucas and Moll (2014) and Nuño and Moll (2017) to find the

first-best and the constrained-efficient allocation in heterogeneous-agents models. In

these papers a social planner directly decides on individual policies in order to control

a distribution of agents subject to idiosyncratic shocks. Here, by contrast, we show

how these techniques may be extended to game-theoretical settings involving several

12Werning (2007) studies optimal fiscal policy in a heterogeneous-agents economy in which agent
types are permanently fixed. Park (2014) extends this approach to a setting of complete markets
with limited commitment in which agent types are stochastically evolving. Both papers provide
a theoretical characterization of the optimal policies based on the primal approach introduced by
Lucas and Stokey (1983). Aditionally, Park (2014) analyzes numerically the steady state but not the
transitional dynamics, due to the complexity of solving the latter problem with that methodology.
13This is due either to particular assumptions that facilitate aggregation or to the fact that the

equilibrium net wealth distribution is degenerate at zero.
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agents who are moreover forward-looking.14 Under commitment, as is well known,

this requires the policy-maker to internalize how her promised future decisions affect

private agents’ expectations; the problem is then augmented by introducing costates

that reflect the value of deviating from the promises made at time zero.15

The second main contribution of the paper relates to our normative insights on

monetary policy. A recent literature addresses, from a positive perspective, the re-

distributive channels of monetary policy transmission in the context of general equi-

librium models with incomplete markets and household heterogeneity. In terms of

modelling, our paper is closest to Auclert (2016), Kaplan, Moll and Violante (2016),

Gornemann, Kuester and Nakajima (2012), McKay, Nakamura and Steinsson (2016)

or Luetticke (2015), who also employ different versions of the incomplete markets

model with uninsurable idiosyncratic risk.16 Other contributions, such as Doepke and

Schneider (2006b), Meh, Ríos-Rull and Terajima (2010), Sheedy (2014), Challe et al.

(2017) or Sterk and Tenreyro (2015), analyze the redistributive effects of monetary

policy in environments where heterogeneity is kept finite-dimensional. We contribute

to this literature by analyzing optimal monetary policy, both under commitment and

discretion, in an economy with uninsurable idiosyncratic risk.17

As explained before, our analysis assigns an important role to the Fisherian re-

distributive channel of monetary policy, a long-standing topic that has experienced

a revival in recent years. Doepke and Schneider (2006a) document net nominal as-

set positions across US sectors and household groups and estimate empirically the

redistributive effects of different inflation scenarios; Adam and Zhu (2014) perform a

similar analysis for Euro Area countries. Auclert (2016) analyzes several redistribu-

14This relates to the literature on mean-field games in mathematics. The name, introduced by
Lasry and Lions (2006a,b), is borrowed from the mean-field approximation in statistical physics,
in which the effect on any given individual of all the other individuals is approximated by a single
averaged effect. In particular, the case under commitment is loosely related to Bensoussan, Chau
and Yam (2015), who analyze a model of a major player and a distribution of atomistic agents.
15In the commitment case, we construct a Lagrangian in a suitable function space and obtain the

corresponding first-order conditions. The resulting optimal policy is time inconsistent (reflecting the
effect of investors’ inflation expectations on bond pricing), depending only on time and the initial
wealth distribution.
16For work studying the effects of different aggregate shocks in related environments, see e.g.

Guerrieri and Lorenzoni (2017), Ravn and Sterk (2013), and Bayer et al. (2015).
17Although this paper focuses on monetary policy, the techniques developed here lend themselves

naturally to the analysis of other policy problems, e.g. optimal fiscal policy, in this class of mod-
els. Recent work analyzing fiscal policy issues in incomplete-markets, heterogeneous-agent models
includes Heathcote (2005), Oh and Reis (2012), Kaplan and Violante (2014) and McKay and Reis
(2016).

tive channels, including the Fisherian one, using both a sufficient statistics approach

and an incomplete-markets model. We show how, in a model with uninsurable idio-

syncratic risk featuring long-term nominal debt and costly inflation, a utilitarian

central bank would want to exploit the Fisherian channel to improve aggregate wel-
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fare. In doing so, we uncover a ‘redistributive inflationary bias’, as the central bank

attempts to redistribute wealth from lending to indebted households, who have a

higher marginal utility of consumption. We also find that, under commitment, such

bias is counteracted by a disinflationary force that has too a redistributive motive:

the central bank promises lower inflation going forward in order to favor bond-issuing

households, who largely coincide with the indebted ones. We argue that these re-

distributive forces would carry over to more fully-fledged incomplete-markets models

that incorporate the above channels.

2 Model

We extend the basic Huggett framework to an open-economy setting with nominal,

non-contingent, long-term debt and disutility costs of inflation. Let (Ω,F , {Ft} ,P) be
a filtered probability space. Time is continuous: t ∈ [0,∞). The domestic economy
is composed of a measure-one continuum of households. There is a single, freely

traded consumption good, the World price of which is normalized to 1. The domestic

price (equivalently, the nominal exchange rate) at time t is denoted by Pt and evolves

according to

dPt = πtPtdt, (2)

where πt is the domestic inflation rate (equivalently, the rate of nominal exchange

rate depreciation).

2.1 Households

2.1.1 Income and net assets

Household k ∈ [0, 1] is endowed at time t with ykt units of the good, where ykt follows
a two-state Poisson process: ykt ∈ {y1, y2} , with y1 < y2. The process jumps from

state 1 to state 2 with intensity λ1 and vice versa with intensity λ2.

Households trade nominal, noncontingent, long-term bonds (denominated in do-

mestic currency) with one another and with foreign investors. Following standard

practice in the literature, we model long-term debt in a tractable way by assuming

that bonds pay exponentially decaying coupons.18 In particular, a bond issued at

time t promises a stream of nominal payments
�
δe−δ(s−t)

�
s∈(t,∞), totalling 1 unit of

domestic currency over the (infinite) life of the bond. Thus, from the point of view

of time t, a bond issued at t̃ < t is equivalent to e−δ(t−t̃) newly issued bonds. This

18Ever since Woodford (2001), bonds with exponentially decaying coupons have become common
as a tractable way of modelling long-term debt in macroeconomic analyses. For a recent example,
see e.g. Auclert (2016).
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implies that a household’s entire bond portfolio can be summarized by the current

total nominal coupon payment, which we denote by δAkt. One can then interpret δ

as the ’amortization rate’ and Akt as the nominal face value of the bond portfolio.

The latter evolves according to

dAkt = (A
new
kt − δAkt) dt,

where Anewkt represents the face value of the flow of new bonds purchased at time

t. For households with a negative net position, (−)Akt represents the face value of
outstanding net liabilities (‘debt’ for short). Our formulation also implies that at each

t one need only consider the price of one bond cohort, e.g. newly issued bonds. Let

Qt denote the nominal market price of bonds issued at time t. The budget constraint

of household k is then

QtA
new
kt = Pt (ykt − ckt) + δAkt,

where ckt is the household’s consumption. Combining the last two equations, we

obtain the following dynamics for the nominal face value of net wealth,

dAkt =

�
δAkt + Pt (ykt − ckt)

Qt
− δAkt

�
dt. (3)

We define the real face value of net wealth as akt ≡ Akt/Pt. Its dynamics are obtained
by applying Itô’s lemma to equations (2) and (3),

dakt =

�
δakt + ykt − ckt

Qt
− (δ + πt) akt

�
dt, (4)

where δakt+ykt−ckt
Qt

= Anewkt /Pt ≡ anewkt is the real face value of new bonds acquired at

t. We assume that each household faces the following exogenous borrowing limit,

akt ≥ φ. (5)

where φ ≤ 0.

2.1.2 Preferences

Household have preferences over paths for consumption ckt and domestic inflation πt
discounted at rate ρ > 0,

E0
�' ∞

0

e−ρt [u(ckt)− x (πt)] dt
�
.
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The consumption utility function u is bounded and continuous, with u� > 0, u�� < 0

for c > 0. The inflation disutility function x satisfies x� > 0 for π > 0, x� < 0

for π < 0, x�� > 0 for all π, and x (0) = x� (0) = 0.19 From now onwards we drop

subscripts k for ease of exposition. The household chooses consumption at each point

in time in order to maximize its welfare. The value function of the household at time

t can be expressed as

vt(a, y) = max
{cs}s∈[t,∞)

Et
�' ∞

t

e−ρ(s−t) [u(cs)− x (πs)] ds
�
,

subject to the law of motion of net wealth (4) and the borrowing limit (5). We

use the shorthand notation vit(a) ≡ v(a, yi) for the value function when household

income is low (i = 1) and high (i = 2). The Hamilton-Jacobi-Bellman (HJB) equation

corresponding to the problem above is

ρvit(a) =
∂vit
∂t

+max
c

�
u(c)− x (πt) + sit (a, c)

∂vit
∂a

�
+ λi [vjt(a)− vit(a)] , (6)

for i, j = 1, 2, and j �= i, where sit (a, c) is the drift function, given by

sit (a, c) ≡
δa+ yi − c

Qt
− (δ + πt) a, (7)

19This specification of disutility costs of inflation nests the case of quadratic costly price adjust-
ments à la Rotemberg (1982). See Section 4.1 for further discussion.

i = 1, 2. The first order condition for consumption is

u�(cit (a)) =
1

Qt

∂vit(a)

∂a
, (8)

where cit (a) ≡ c(a, yi). Therefore, household consumption increases with nominal

bond prices and falls with the slope of the value function. Intuitively, a higher bond

price (equivalently, a lower yield) gives the household an incentive to save less and

consume more. A steeper value function, on the contrary, makes it more attractive

to save so as to increase net bond holdings.

We close this section by establishing the following result.

Lemma 1 The household value function vit(a) is strictly concave.

The proofs of all lemmas and propositions can be found in Appendix A. Lemma 1,

together with equation (8), imply that ∂u�/∂a < 0, i.e. marginal consumption utility

falls with net wealth.
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2.2 Foreign investors

Households trade bonds with competitive risk-neutral foreign investors that can invest

elsewhere at the risk-free real rate r̄. As explained before, bonds are amortized at

rate δ. Foreign investors also discount future nominal payoffs with the accumulated

domestic inflation (i.e. exchange rate depreciation) between the time of the bond

purchase and the time such payoffs accrue. Therefore, the nominal price of the bond

at time t is given by

Qt =

' ∞

t

δe−(r̄+δ)(s−t)−
% s
t
πududs. (9)

Taking the derivative with respect to time, we obtain

Qt (r̄ + δ + πt) = δ + Q̇t, (10)

where Q̇t ≡ dQt/dt. The partial differential equation (10) provides the risk-neutral

pricing of the nominal bond. The boundary condition is limT→∞ e
−(r̄+δ)T−

% T
0

πuduQT =

0. The steady state bond price is Q∞ = δ
r̄+δ+π∞ , where π∞ is the inflation level in

the steady state.20

20Given the nominal bond priceQt, the bond yield rt implicit in that price is defined as the discount
rate for which the discounted future promised cash flows equal the bond price. The discounted future
promised payments are

%∞
0
e−(rt+δ)sδds = δ/ (rt + δ). Therefore, the bond yield is rt = δ/Qt − δ.

2.3 Central Bank

There is a central bank that chooses monetary policy. We assume that there are no

monetary frictions so that the only role of money is that of a unit of account. The

monetary authority chooses the inflation rate πt. This could be done, for example, by

setting the nominal interest rate on a lending (or deposit) short-term nominal facility

with foreign investors. In Section 3, we will study in detail the optimal inflationary

policy of the central bank.

2.4 Competitive equilibrium

The state of the economy at time t is the joint density of net wealth and income,

ft(a, y) ≡ {ft(a, yi)}2i=1 ≡ {fit(a)}2i=1. Let sit (a, cit(a)) ≡ sit (a) be the drift of

individual real net wealth evaluated at the optimal consumption policy. The dynamics

of the net wealth-income density are given by theKolmogorov Forward (KF) equation,

∂fit(a)

∂t
= − ∂

∂a
[sit (a) fit(a)]− λifit(a) + λjfjt(a), (11)
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a ∈ [φ,∞), i, j = 1, 2, j �= i. The density satisfies the normalization

2&
i=1

' ∞

φ

fit (a) da = 1. (12)

We define a competitive equilibrium in this economy.

Definition 1 (Competitive equilibrium) Given a sequence of inflation rates πt
and an initial net wealth-income density f0(a, y), a competitive equilibrium is com-

posed of a household value function vt(a, y), a consumption policy ct(a, y), a bond

price function Qt and a density ft(a, y) such that:

1. Given π, the price of bonds in (10) is Q.

2. Given Q and π, v is the solution of the households’ problem (6) and c is the

optimal consumption policy.

3. Given Q, π, and c, f is the solution of the KF equation (11).

Notice that, given π, the problem of foreign investors can be solved independently

of that of the household, which in turn only depends on π and Q but not on the

aggregate distribution.

We henceforth use the notation

Eft(a,y) [gt (a, y)] ≡
2&
i=1

' ∞

φ

gt (a, yi) ft (a, yi) da

to denote the cross-household average at time t of any function gt of individual net

wealth and income levels, or equivalently the aggregate value of such a function (given

that the household population is normalized to 1). We can define some aggregate

variables of interest. The aggregate real face value of net wealth in the economy is āt ≡
Eft(a,y) [a]. Aggregate consumption is c̄t ≡ Eft(a,y) [ct (a, y)], and aggregate income is
ȳt ≡ Eft(a,y) [y]. These quantities are linked by the current account identity,21

dāt
dt
=
δāt + ȳt − c̄t

Qt
− (δ + πt) āt ≡ ānewt − (δ + πt) āt, (13)

For future reference, we may also define the real face value of gross household debt,

b̄t ≡
$2

i=1

% 0
φ
(−a) fit (a) da.

We make the following assumption.

21The derivation of equation (13) is available upon request.
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Assumption 1 The value of parameters is such that in equilibrium the economy is

always a net debtor against the rest of the World: āt ≤ 0 for all t.

This condition is imposed for tractability. We have restricted domestic households

to save only in bonds issued by other domestic households, and this would not be

possible if the country was a net creditor vis-à-vis the rest of the World. In addition

to this, we have assumed that the bonds issued by the households are priced by foreign

investors, which requires that there should be a positive net supply of bonds to the

rest of the World to be priced. In any case, this assumption is consistent with the

experience of the small open economies that we target for calibration purposes, as we

explain in Section 4.

3 Optimal monetary policy

We now turn to the design of the optimal monetary policy. Following standard

practice, we assume that the central bank is utilitarian, i.e. it gives the same Pareto

weight to each household. In order to illustrate the role of commitment vs. discretion

in our framework, we will consider both the case in which the central bank can credibly

commit to a future inflation path (the Ramsey problem), and the time-consistent case

in which the central bank decides optimal current inflation given the current state of

the economy (the Markov Stackelberg equilibrium).

Before starting the formal analysis, it is worthwhile to emphasize the two key

transmission channels of inflation in our model. First, as shown in equation (7),

current inflation πt erodes the real face value of households’ net bond holdings through

a classic Fisherian effect, which benefits currently indebted households (those with

a < 0 at time t) and vice versa for currently lending ones (a > 0). Second, from

the bond pricing condition (9), future inflation {πs}s∈(t,∞) lowers the nominal price
of the long-term bond Qt. This, from equation (7), allows households with a positive

saving flow (δa + yi − ct (a, yi) > 0) to purchase more new bonds, and forces bond-
issuing households (those with δa + yi − ct (a, yi) < 0) to do so at lower prices and

thus increase their indebtedness. Crucially, a central bank that is able to credibly

commit to a future inflation path will take both effects into account. By contrast, a

discretionary central bank will only consider the Fisherian effect.
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3.1 Central bank preferences

The central bank is assumed to be benevolent and hence maximizes economy-wide

aggregate welfare, defined as

W0 ≡ Ef0(a,y) [v0 (a, y)] . (14)

It will turn out to be useful to express the above welfare criterion as follows.

Lemma 2 The welfare criterion (14) can alternatively be expressed as

W0 =

' ∞

0

e−ρtEft(a,y) [u (ct (a, y))− x (πt)] dt.

3.2 Commitment

Consider first the case in which the central bank credibly commits at time zero to

an inflation path {πt}t∈[0,∞). The optimal inflation path is then a function of the
initial distribution f0 (a, y) and of time: πt ≡ πR [f0 (·) , t] . The value functional of
the central bank is given by

WR [f0 (·)] = max
{πt,Qt,vt(·),ct(·),ft(·)}t∈[0,∞)

' ∞

0

e−ρtEft(a,y) [u (ct (a, y))− x (πt)] dt, (15)

subject to the law of motion of the distribution (11), the bond pricing equation

(10), and households’ HJB equation (6) and optimal consumption choice (8). Notice

that the optimal valueWR and the optimal policy πR are not ordinary functions, but

functionals, as they map the infinite-dimensional initial distribution f0 (·) into R. The
central bank maximizes welfare taking into account not only the state dynamics (11),

but also the households’ HJB equation (6) and the investors’ bond pricing condition

(10), both of which are forward-looking. That is, the central bank understands how it

can steer households’ and foreign investors’ expectations by committing to an inflation

path.

Definition 2 (Ramsey problem) Given an initial distribution f0, a Ramsey prob-
lem is composed of a sequence of inflation rates πt, a household value function vt(a, y),

a consumption policy ct(a, y), a bond price function Qt and a distribution ft(a, y) such

that they solve the central bank problem (15).

If v, f, c and Q are a solution to the problem (15), given π, they constitute a

competitive equilibrium, as they satisfy equations (11), (10), (6) and (8). Therefore

the Ramsey problem could be redefined as that of finding the π such that v, f, c and

Q are a competitive equilibrium and the central bank’s welfare criterion is maximized.
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The above Ramsey problem is an optimal control problem in a suitable function

space. In order to solve this problem, we construct a Lagrangian in such a space. In

Appendix A, we show that the Lagrangian L [π, Q, f, v, c] ≡ L0 is given by

22The general definition of Gateaux derivative is shown in Appendix A.
23One of the advantages of our small-open-economy formulation is that the social value of a

household coincides with its private value. In the closed-economy version of the model this would
not be the case, making the computations more complex, but still tractable.

multiplier is μt, the one associated with the bond pricing equation (10).
24

The following proposition characterizes the solution to this problem.

24Importantly, these techniques are not restricted to continuous-time problems. In fact, the equiv-
alent discrete-time model can also be solved using the same techniques at the cost of somewhat less
elegant expressions. Appendix E shows how our methodology can be used to solve for the optimal
policy under commitment in the discrete-time version of our model.

L0 ≡
' ∞

0

e−ρt
2&
i=1

' ∞

φ

{ [u (cit (a))− x (πt)] fit(a)

+ζ it (a)

�
−∂fit(a)

∂t
− ∂

∂a
[sit (a) fit(a)]− λifit(a) + λjfj,t(a)

�
+θit (a)

�
∂vit
∂t

+ u(cit (a))− x (πt) + sit (a)
∂vit
∂a

+ λi [vjt(a)− vit(a)]− ρvit(a)

�
+ηit (a)

�
u�(cit (a))−

1

Qt

∂vit
∂a

�
}dadt

+

' ∞

0

e−ρtμt
(
Qt (r̄ + πt + δ)− δ − Q̇t

)
dt,

where j = 1, 2, j �= i. We then obtain first-order conditions with respect to the

functions π, Q, f, v, c by taking Gateaux derivatives, which extend the concept of

derivative from Rn to infinite-dimensional spaces.22 As an example, the Gateaux

derivative with respect to the density ft(a, y) is

lim
α→0

L [f + αh, ·]− L [f, ·]
α

=
d

dα
L [f + αh, ·]






α=0

,

where ht(a, y) is an arbitrary function in the same function space as ft(a, y). The

first-order conditions require that the Gateaux derivatives should be zero for any

function ht(a, y).

In the appendix we show that in equilibrium the Lagrange multiplier ζ it (a) as-

sociated with the KF equation (11), which represents the social value of an individ-

ual household, coincides with the private value vit (a).23 In addition, the Lagrange

multipliers θit (a) and ηit (a) associated with the households’ HJB equation (6) and

first-order condition (8), respectively, are both zero. That is, households’ forward-

looking optimizing behavior does not represent a source of time-inconsistency, as the

monetary authority would choose at all times the same individual consumption and

saving policies as the households themselves. Therefore, the only nontrivial Lagrange
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Proposition 1 (Optimal inflation - Ramsey) In addition to equations (11), (10),
(6) and (8), if a solution to the Ramsey problem (15) exists, the inflation path πt must

satisfy

x� (πt) = Eft(a,y) [Qt (−a) u� (ct (a, y))] + μtQt, (16)

where μt is a costate with law of motion

dμt
dt

= (ρ− r̄ − πt − δ)μt − Eft(a,y) [−anewt (a, y) u� (ct (a, y))] , (17)

and initial condition μ0 = 0, where a
new
t (a, y) ≡ δa+y−ct(a,y)

Qt
.

Equation (16) determines optimal inflation under commitment. According to

this equation, marginal inflation disutility x� (which is increasing in inflation) equals

the sum of two terms. The first term, Eft(·) {Qt (−a) u� (ct (·))}, is the average across
households of the real market value of net liabilities, Qt (−a), weighted by each house-
hold’s marginal utility of consumption, u�. It captures the marginal effect of inflation

on social welfare through its impact on the real value of net nominal positions. For

indebted households (a < 0), the latter effect is positive as inflation erodes the real

value of their debt burden, whereas the opposite is true for lending ones (a > 0).

Crucially for our purposes, this term reflects the central bank’s incentive to inflate

for redistributive purposes, which in our model is double. On the one hand, under

Assumption 1 the country is always a net debtor (Eft(·) (−a) ≥ 0), giving the central
bank a motive to redistribute wealth from foreign investors to domestic borrowers

(cross-border redistribution). On other hand, and perhaps more interestingly, the

concavity of preferences implies that indebted households have a higher marginal

utility of consumption u� than lending ones. Thus, even if the country has a zero net

position vis-à-vis the rest of the World, as long as there is dispersion in net wealth

the central bank has a reason to redistribute from indebted to lending households

(domestic redistribution).

The second term on the right-hand side of equation (16) captures the value to the

central bank of promises about time-t inflation made to foreign investors at time 0.

The costate μt is zero at the time of announcing the Ramsey plan (t = 0), because

the central bank is not bound by previous commitments. From then on, it evolves ac-

cording to equation (17). In the latter equation, the term Eft(·) {−anewt (·) u� (ct (·))}
is the cross-household average of the real face value of new bond issuances —with

anewt (·) denoting purchases of new bonds—, weighted again by the marginal utility of
consumption. Intuitively, the central bank understands that a commitment to higher

inflation in the future lowers bond prices today, which reduces welfare for those house-

holds that need to sell new bonds (anewt < 0) and vice versa for those that purchase

new bonds (anewt > 0). If the former households have a higher marginal utility u� than
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the latter ones, then μt should become more and more negative over time.
25 From

equation (16), this would give the central bank an incentive to lower inflation over

time, thus tempering the redistributive motive to inflate discussed above.26

We now establish an important result regarding the long-run level of optimal

inflation under commitment.

Proposition 2 (Optimal long-run inflation under commitment) In the limit
as ρ → r̄, the optimal steady-state inflation rate under commitment tends to zero:

lim
ρ→r̄

π∞ = 0.

That is, provided households’ discount factor (and hence that of the benevolent

central bank) is arbitrarily close to that of foreign investors, then optimal long-run

inflation under commitment will be arbitrarily close to zero. The intuition is the

following. As explained before, at each point in time the optimal inflation under

commitment reflects the tension between two forces: current inflation helps currently

indebted households, but past expectations of such inflation hurts past issuers of the

long-term bond by lowering the price at which they do so. In the long run, both

forces cancel each other out at zero inflation for the case of ρ arbitrarily close to r̄.

25Indeed this will be the case in our numerical analysis.
26Notice that the Ramsey problem is not time-consistent, due precisely to the presence of the

(forward-looking) bond pricing condition in that problem. If at some future point in time t > 0 the
central bank decided to reoptimize given the state at that point, ft (·), the new path for optimal
inflation would not need to coincide with the original path, as the costate at that point would be
μt = 0 (corresponding to a new commitment formulated at time t), whereas under the original
commitment it is μt �= 0.

Proposition 2 is reminiscent of a well-known result from the New Keynesian liter-

ature, namely that optimal long-run inflation in the standard New Keynesian frame-

work is exactly zero (see e.g. Benigno and Woodford, 2005). In that framework, the

optimality of zero long-run inflation arises from the fact that, at that level, the wel-

fare gains from trying to exploit the short-run output-inflation trade-off (i.e. raising

output towards its socially efficient level) exactly cancel out with the welfare losses

from permanently worsening that trade-off (through higher inflation expectations).

Key to that result is the fact that, in that model, price-setters and the (benevolent)

central bank have the same (steady-state) discount factor. Here, the optimality of

zero long-run inflation reflects instead the fact that, provided the discount rate of

the investors pricing the bonds is arbitrarily close to that of the central bank, the

aggregate welfare gains from trying to redistribute wealth from creditors to debtors

becomes arbitrarily close to the aggregate welfare losses from lowering the price of

new bond issuances.
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Assumption 1 restricts us to have ρ > r̄, as otherwise households would we able to

accumulate enough wealth so that the country would stop being a net debtor to the

rest of the World. However, Proposition 2 provides a useful benchmark to understand

the long-run properties of optimal policy in our model when ρ is close to r̄. This will

indeed be the case in our numerical analysis.

3.3 Discretion

Assume now that the central bank cannot commit to any future policy. The inflation

rate π at each point in time then depends only on the value at that point in time

of the aggregate state variable, the net wealth-income distribution ft (a, y); that is,

πt ≡ πM [ft (·)] . This is a Markov (or feedback) Stackelberg equilibrium in a space of

distributions.27 As explained by Basar and Olsder (1999, pp. 413-417), a continuous-

time feedback Stackelberg solution can be defined as the limit asΔt→ 0 of a sequence

of problems in which the central bank chooses policy in each interval (t, t +Δt] but

not across intervals.28 Formally, the value functional of the central bank at time t is

27Finite-dimensional Markov Stackelberg equilibria have been analyzed in the dynamic game the-
ory literature, both in continuous and discrete time. See e.g. Basar and Olsder (1999) and references
therein. In macroeconomics, an example of Markov Stackelberg equilibrium is Klein, Krusell, and
Ríos-Rull (2008)
28In particular, for any arbitrary T > 0, we divide the interval [0, T ] in subintervals of the form

[0,Δt] ∪ (Δt, 2Δt] ∪ ...((N − 1)Δt,NΔt], where N ≡ T/Δt.

given by

WM [ft (·)] = lim
Δt→0

WM
Δt [ft (·)] ,

where

WM
Δt [ft (·)] = max

{πs,Qs,vs(·),cs(·),fs(·)}s∈(t,t+Δt]

' t+Δt

t

e−ρ(s−t)Efs(a,y) [u (cs (a, y))− x (πs)] ds

+e−ρΔtWM
Δt [ft+Δt (·)] , (18)

subject to the law of motion of the distribution (11), the bond pricing equation (10),

and household’s HJB equation (6) and optimal consumption choice (8). Notice, as

in the case with commitment, that the optimal value WM and the optimal policy

πM are not ordinary functions, but functionals, as they map the infinite-dimensional

state variable ft (a, y) into R.

Definition 3 (Markov Stackelberg equilibrium) Given an initial distribution f0,
a Markov Stackelberg equilibrium is composed of a sequence of inflation rates πt, a

household value function vt(a, y), a consumption policy ct(a, y), a bond price function

Qt and a distribution ft(a, y) such that they solve the central bank problem (18).
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The following proposition characterizes the solution to the central bank’s problem

under discretion.

Proposition 3 (Optimal inflation - Markov Stackelberg) In addition to equa-
tions (11), (10), (6) and (8), if a solution to the Markov Stackelberg problem (18)

exists, the inflation rate function πt must satisfy

x� (πt) = Eft(a,y) [Qt (−a) u� (ct (a, y))] . (19)

Our approach is to solve the problem in (18) following a similar approach as in

the Ramsey problem above but taking into account how the policies in the current

time interval affect the continuation value in the next time interval, as represented by

the value functional WM
Δt [ft+Δt (·)] at time t+Δt. Then we take the limit as Δt→ 0.

In contrast to the case with commitment, in the Markov Stackelberg equilibrium

no promises can be made at any point in time, hence the value of the costate (the

term μt in equation 16) is zero at all times. Therefore, in equation (19) there is only

a static trade-off between the aggregate welfare cost of inflation and the aggregate

welfare gain from redistributing wealth. Thus, under discretion inflation is driven

exclusively by the redistributive motive to inflate, as captured by the right-hand side

of equation (19). In fact, it is possible to establish the existence of an inflationary

bias under discretionary optimal monetary policy.

Proposition 4 (Redistributive inflationary bias under discretion) Optimal in-
flation under discretion is positive at all times: πt > 0 for all t ≥ 0.

The formal proof can be found in Appendix A, although the result follows quite

directly from equation (19). Notice first that, from Assumption 1, the country as a

whole is a net debtor: Eft(a,y) (−a) = −āt ≥ 0. Moreover, the strict concavity of pref-
erences implies that indebted households (a < 0) have a higher marginal consumption

utility u� than lending ones (a > 0) and hence effectively receive more weight in the

inflation decision. Taking both things together, we have that the right-hand side of

equation (19) is strictly positive at all times. Since x� (π) > 0 only for π > 0, it

follows that inflation must be positive. Notice that, even if the economy as a whole

is neither a creditor or a debtor (āt = 0), the fact that u� is strictly decreasing in net

wealth implies that, as long as there is wealth dispersion, the central bank will have

a reason to inflate.

To the best of our knowledge, this redistributive inflationary bias is a novel result

in the context of incomplete markets models with uninsurable idiosyncratic risk. It

is also different from the classical inflationary bias of discretionary monetary policy

originally emphasized by Kydland and Prescott (1977) and Barro and Gordon (1983).
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In those papers, the source of the inflation bias is a persistent attempt by the monetary

authority to raise output above its natural level. Here, by contrast, it arises from

the welfare gains that can be achieved for the country as a whole by redistributing

wealth towards indebted households. Importantly, while the model analyzed here is

deliberately simple with a view to illustrating our methodology, this redistributive

motive to inflate would carry over to more fully fledged models with uninsurable

idiosyncratic risk that feature a Fisherian channel.

4 Numerical analysis

In the previous section we have characterized the optimal monetary policy in our

model. In this section we solve numerically for the dynamic equilibrium under optimal

policy, using numerical methods to solve continuous-time models with heterogeneous

agents, as in Achdou et al. (2017) or Nuño and Moll (2017). The use of continuous

time improves the efficiency of the numerical solution.29 This computational speed is

essential as the computation of the optimal policies requires several iterations along

the complete time-path of the distribution.30

Before analyzing the dynamic path of this economy under the optimal policy, we

first analyze the steady state towards which such path converges asymptotically. The

numerical algorithms that we use are described in Appendices B (steady-state) and

C (transitional dynamics).

4.1 Calibration

The calibration is intended to be mainly illustrative, given the model’s simplicity and

parsimoniousness. We calibrate the model to replicate some relevant features of a

prototypical European small open economy.31 Let the time unit be one year. For

29First, the HJB equation is a deterministic partial differential equation which can be solved
using efficient finite-difference methods. Second, the dynamics of the distribution can be computed
relatively quickly as they amount to calculating a matrix adjoint: the operator describing the law
of motion of the distribution is the adjoint of the operator employed in the dynamic programming
equation and hence the solution of the latter makes straightforward the computation of the former.
30In a home PC, the Ramsey problem presented here can be solved in less than five minutes.
31We will focus for illustration on the UK, Sweden, and the Baltic countries (Estonia, Latvia,

Lithuania). We choose these countries because they (separately) feature desirable properties for the
purpose at hand. On the one hand, UK and Sweden are two prominent examples of relatively small
open economies that retain an independent monetary policy, like the economy in our framework.
This is unlike the Baltic states, who recently joined the euro. However, historically the latter states
have been relatively large debtors against the rest of the World, which make them square better
with our theoretical restriction that the economy remains a net debtor at all times (UK and Sweden
have also remained net debtors in basically each quarter for the last 20 years, but on average their
net balance has been much closer to zero).
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the calibration, we consider that the economy rests at the steady state implied by

a zero inflation policy.32 When integrating across households, we therefore use the

stationary wealth distribution associated to such steady state.33

We assume the following specification for preferences,

u (c)− x (π) = log (c)− ψ

2
π2. (20)

32This squares reasonably well with the experience of our target economies, which have displayed
low and stable inflation for most of the recent past.
33The wealth dimension is discretized by using 1000 equally-spaced grid points from a = φ to

a = 10. The upper bound is needed only for operational purposes but is fully innocuous, because
the stationary distribution places essentially zero mass for wealth levels above a = 8.
34The slope of the continuous-time New Keynesian Phillips curve in the Calvo model can be

shown to be given by χ (χ+ ρ), where χ is the price adjustment rate (the proof is available upon
request). As shown in Appendix D, in the Rotemberg model the slope is given by ε−1

ψ , where ε is
the elasticity of firms’ demand curves and ψ is the scale parameter in the quadratic price adjustment
cost function in that model. It follows that, for the slope to be the same in both models, we need
ψ = ε−1

χ(χ+ρ) .Setting ε to 11 (such that the gross markup ε/ (ε− 1) equals 1.10) and χ to 4/3 (such
that price last on average for 3 quarters), and given our calibration for ρ, we obtain ψ = 5.5.
35According to Eurostat, the NIIP/GDP ratio averaged minus 48.6% across the Baltic states in

2016:Q1, and only minus 3.8% across UK-Sweden. We thus target a NIIP/GDP ratio of minus 25%,
which is about the midpoint of both values. Regarding gross household debt, we use BIS data on
’total credit to households’, which averaged 85.9% of GDP across Sweden-UK in 2015:Q4 (data for
the Baltic countries are not available). We thus target a 90% household debt to GDP ratio.

As discussed in Appendix D, our quadratic specification for the inflation utility cost,
ψ
2
π2, can be micro-founded by modelling firms explicitly and allowing them to set

prices subject to standard quadratic price adjustment costs à la Rotemberg (1982).

We set the scale parameter ψ such that the slope of the inflation equation in a Rotem-

berg pricing setup replicates that in a Calvo pricing setup for reasonable calibrations

of price adjustment frequencies and demand curve elasticities.34

We jointly set households’ discount rate ρ and borrowing limit φ such that the

steady-state net international investment position (NIIP) over GDP (ā/ȳ) and gross

household debt to GDP (b̄/ȳ) replicate those in our target economies.35

We target an average bond duration of 4.5 years, as in Auclert (2016). In our

model, the Macaulay bond duration equals 1/ (δ + r̄). We set the world real interest

rate r̄ to 3 percent. Our duration target then implies an amortization rate of δ = 0.19.

The idiosyncratic income process parameters are calibrated as follows. We follow

Huggett (1993) in interpreting states 1 and 2 as ’unemployment’ and ’employment’,

respectively. The transition rates between unemployment and employment (λ1,λ2)

are chosen such that (i) the unemployment rate λ2/ (λ1 + λ2) is 10 percent and (ii)
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the job finding rate is 0.1 at monthly frequency or λ1 = 0.72 at annual frequency.36

These numbers describe the ‘European’ labor market calibration in Blanchard and

Galí (2010). We normalize average income ȳ = λ2
λ1+λ2

y1 +
λ1

λ1+λ2
y2 to 1. We also set

y1 equal to 71 percent of y2, as in Hall and Milgrom (2008). Both targets allow us to

solve for y1 and y2. Table 1 summarizes our baseline calibration.

)
36Analogously to Blanchard and Galí (2010; see their footnote 20), we compute the equivalent

annual rate λ1 as λ1 =
$12

i=1 (1− λm1 )
i−1

λm1 ,where λm1 is the monthly job finding rate.

Table 1. Baseline calibration

Parameter Value Description Source/Target

r̄ 0.03 world real interest rate standard

ψ 5.5 scale inflation disutility slope NKPC in Calvo model

δ 0.19 bond amortization rate Macaulay duration = 4.5 yrs

λ1 0.72 transition rate unemp-to-employment monthly job finding rate 0.1

λ2 0.08 transition rate employment-to-unemployment unemployment rate 10%

y1 0.73 income in unemployment state Hall & Milgrom (2008)

y2 1.03 income in employment state E (y)= 1

ρ

φ

0.0302

-3.6

subjective discount rate

borrowing limit

�
NIIP -25% of GDP

HH debt/GDP 90%

4.2 Steady state under optimal policy

We start our numerical analysis of optimal policy by computing the steady state

equilibrium to which each monetary regime (commitment and discretion) converges.

Table 2 displays a number of steady-state objects. Under commitment, the optimal

long-run inflation is close to zero (-0.05 percent), consistently with Proposition 2 and

the fact ρ and r̄ are very close to each other in our calibration.37 As a result, long-run

gross household debt and net total assets (as % of GDP) are very similar to those

under zero inflation.

Table 2. Steady-state values under optimal policy

units Commitment Discretion

Inflation, π % −0.05 1.68

Bond yield, r % 2.95 4.68

Net assets, ā % GDP −24.1 −0.6
Gross assets (creditors) % GDP 65.6 80.0

Gross debt (debtors), b̄ % GDP 89.8 80.6

Current acc. deficit, c̄− ȳ % GDP −0.63 −0.01

37As explained in section 3, in our baseline calibration we have r̄ = 0.03 and ρ = 0.0302.
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Under discretion, by contrast, long run inflation is 1.68 percent, which reflects the

inflationary bias discussed in the previous section. The presence of an inflationary

bias makes bond yields higher through the Fisher equation: r∞ = δ
Q∞ − δ = r̄ + π∞,

where we have used Q∞ = δ
δ+r̄+π∞ . The economy’s aggregate net liabilities fall

substantially relative to the commitment case (0.6% vs 24.1%), mostly reflecting

larger asset accumulation by lending households.38

4.3 Optimal transitional dynamics

As explained in Section 3, the optimal policy paths depend on the initial (time-

0) distribution of net wealth and income across households, f0 (a, y), which is an

(infinite-dimensional) primitive in our model. In the interest of isolating the effect

of the policy regime (commitment vs discretion) on the equilibrium allocations, we

choose a common initial distribution in both cases. For the purpose of illustration, we

consider the stationary distribution under zero inflation as the initial distribution.39

Later we will analyze the robustness of our results to a wide range of alternative

initial distributions.

Consider first the case under commitment (Ramsey policy). The optimal paths

are shown by the green solid lines in Figure 1.40 Under our assumed functional

form for inflation disutility in (20), it follows from equation (16) and the fact that

μ0 = 0 (no pre-commitments at time zero) that initial optimal inflation is π0 =

ψ−1Ef0(·)Q0 (−a) u� (c0 (·)). Therefore, the time-0 inflation rate, of about 4.6 percent,
reflects exclusively the redistributive motive discussed in Section 3. From time zero

onwards, Ramsey inflation follows

πt =
1

ψ
Eft(a,y) [Q0 (−a) u� (ct (a, y))] +

1

ψ
μtQt, (21)

where the costate μt follows in turn equation (17). As shown in the figure, inflation

gradually declines towards its (near) zero long-run level. Panels (b) and (c) show why:

while the redistributive motive to inflate (the first right-hand-side term in equation 21)

38It is important to remark that the optimal steady-state inflation both under commitment and
discretion differs from the inflation rate that maximizes steady-state welfare (subject to the con-
straint that āt ≤ 0 holds at all times), equal to 1.8% in our case. This is analogous to the distinction
between the steady-state and the “Golden Rule” consumption level in the neoclassical growth model.
39We thus assume f0 (a, yi) = f

a|y
π=0 (a | yi) fy (yi) , i = 1, 2, where fy (yi) = λj �=i/ (λ1 + λ2) , i, j =

1, 2, and fa|yπ=0 is the stationary conditional density of net wealth under zero inflation. Notice that
aggregate income is constant at ȳt = λ2

λ1+λ2
y1 +

λ1
λ1+λ2

y2 = 1, given our calibration of {yi}i=1,2.
40We have simulated 800 years of data at monthly frequency.
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remains roughly stable, the costate μt becomes more and more negative over time.
41

The reason for the latter effect is the following. As explained in Section 3, the costate

captures the central bank’s understanding of the fact that a commitment to lower

future inflation raises bond prices today, which redistributes resources towards those

households that issue new bonds. The upper-left panel in Figure 3 below shows that

the latter households (i.e. those with anewt (a, y) < 0) have lower net wealth and hence

higher marginal consumption utility than bond-purchasing households (anewt (a, y) >

0).42 Therefore, households with anewt (·) < 0 receive more weight in equation (17).

This, together with the fact that the country is a net issuer of new bonds at all times

(Eft(·) (−anewt (·)) > 0), implies that the costate becomes negative immediately after
time zero, and more so as time goes by. In summary, under the optimal commitment

the central bank front-loads inflation in order to redistribute net wealth towards

indebted households, but commits to gradually reducing inflation in order to prevent

those same households from selling new bonds at excessively low prices.

Under discretion (dashed blue lines in Figure 1), time-zero inflation is 4.3 per-

cent, close to the value under commitment.43 In contrast to the commitment case,

however, from time zero onwards optimal discretionary inflation remains relatively

high, declining very slowly to its asymptotic value of 1.7 percent. This reflects the

inflationary bias for redistributive purposes explained in Section 3. This inflationary

bias produces permanently lower nominal bond prices (due to higher inflation premia)

than under commitment.

Finally, panel (g) shows that both inflationary policies succeed at reducing the

country’s net liabilities with the rest of the World —equivalently, at increasing (the

real face value of) its net wealth, which evolves according to equation (13), with ȳt = 1.

Even though the fall in bond prices forces the country as a whole to issue more new

bonds and thus raise its external debt burden (panel e), this is dominated by the

41Panels (b) and (c) in Figure 1 display the two terms on the right-hand side of (21), i.e. the u� (c)-
weighted average net liabilities and μ (t)Q (t) both rescaled by the inflation disutility parameter ψ.
Therefore, the sum of both terms equals optimal inflation under commitment.
42Figure 3 displays policy functions for high-income (employed) households, which account for

90% of the population in our calibration. Figure 7 in Appendix H shows the analogous objects for
low-income households. Notice that essentially all indebted households (a < 0) are also issuers of
new bonds (anewt (a, y) < 0). Conversely, most bond-issuing households are also indebted, the only
exception being low-income households with a ∈ [0, 1.5].
43Since μ0 = 0, and given a common initial wealth distribution, time-0 inflation under commit-

ment and discretion differ only insofar as time-0 consumption policy functions in both regimes do.
Numerically, the latter functions are similar enough that π0 is very similar in both regimes.
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erosion of such debt burden thanks to inflation (panel f).44 This aggregate behavior

however masks differences between both policy regimes in terms of redistributive

effects, to which we turn next.

4.4 Redistributive effects of optimal inflation

We have seen that heterogenous net holdings of nominal assets across households,

together with the concavity of preferences, gives the central bank a reason to inflate

for redistributive purposes. In other words, the net wealth distribution is a key input

of optimal inflation dynamics, both under discretion and commitment. Conversely,

inflation plays a role in the evolution of the endogenous net wealth distribution over

time. This section investigates the effects of monetary policy on the wealth distri-

bution. We also analyze the redistributive effects on consumption, which is a key

determinant of household welfare.

44During the first 3-4 years, the increase in net wealth is somewhat faster under commitment,
because in those years inflation is quite similar to that under discretion but the initial fall in bond
prices is much smaller —which in turn reflects the fact that foreign investors anticipate the short-lived
nature of inflation under commitment and hence require a relatively small inflation premium.

Figure 1: Aggregate dynamics under optimal monetary policy
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Wealth redistribution. Figure 2 displays the evolution over time of the marginal

density of the real face value of net wealth fat (a) ≡
$2

i=1 fit (a) under both policy

regimes. Panels (a) and (b) display the distribution itself in both cases. In order to

make such evolution more visible, panels (c) and (d) show the same densities net of

the initial one, fa0 (a), which as explained before is common and assumed to equal

the steady-state distribution implied by a zero inflation policy. Thus, panels (c) and

(d) illustrate the redistributive effects of both inflationary regimes relative to the zero

inflation policy.

Let us start with the commitment case (panel c). The transitory inflation in that

regime succeeds at redistributing wealth towards indebted households (those with

a < 0) and away from lending ones (a > 0). This can be seen in the relatively fast

decline in the mass of households with negative net wealth, as well as in the more

gradual decline in the mass of relatively rich households. This is mirrored by the

increase over time in the mass of households with intermediate wealth levels.

Under discretion (panel d), by contrast, the extent of the domestic wealth redis-

tribution is more modest. The reason is that bond prices fall considerably more than

under commitment, reflecting expectations of higher inflation in the future. This un-

Figure 2: Dynamics of the net wealth distribution

does much of the redistributive effect from current inflation, because indebted house-

holds are also issuers of new bonds, and hence suffer from low bond prices. While

there is some decline in the mass of poorer households and a corresponding increase
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in that of households with intermediate wealth levels, this effect is weaker than un-

der commitment. As for rich households, they are barely affected by discretionary

inflation.

To summarize, the optimal commitment is more successful than the discretionary

policy at redistributing wealth (in face value terms) towards indebted households,

by promising to inflate only transitorily and thus preventing such households from

having to sell new bonds at very low prices.

Consumption redistribution. One may also ask to what extent the utilitarian cen-

tral bank succeeds at redistributing consumption and hence welfare across households.

The center-right panel of Figure 3 shows how the consumption policy function at time

0, c0 (a, y), is affected in each optimal inflationary regime vis-à-vis the zero inflation

regime.45 Clearly, both discretionary and Ramsey inflation reduce consumption for

lending households (a > 0) and increase it for indebted ones (a < 0). A key chan-

nel through which this consumption redistribution happens is the impact of future

expected inflation on initial bond prices Q0, and therefore on the initial real market

value of household’s net wealth, Q0a.46 Thus, higher future inflation reduces bond

prices, which hurts lending households and favors indebted ones —in the latter case

by reducing the real market value of their liabilities, Q0 (−a).
The panels in the first two columns and last two rows in Figure 3 offer a dynamic

perspective on consumption redistribution after time 0. Most of the action takes

place under commitment (first column). On the one hand, the consumption policy

tilts over time in detriment (favor) of indebted (lending) households, largely reflecting

45Figure 3 shows policy functions for high-income (employed) households only (y = y2), who
account for 90% of the population in our calibration. The corresponding policies for low-income
(unemployed) households (y = y1) are displayed in Figure 7 in Appendix H. As shown there, the
impact of inflationary policies on consumption redistribution is qualitatively similar to that for
high-income households.
46To illustrate this channel, in Appendix F we consider a simplified version of our model with

constant nonfinancial income (y1 = y2 = y) and the natural borrowing limit replacing the exogenous
one (φ). There it is shown that, under our assumed log preferences, the consumption policy function
equals ct (a) = ρ (Qta+ ht), where ht is a measure of life-time income. With constant inflation π
(which approximates well the discretionary outcome in the full model) the latter function simplifies to
ct (a) = ρ (Qa+ y/r̄), with Q = δ/ (δ + r̄ + π), such that inflation reduces consumption by lowering
Q. In our full model, consumption cannot be solved in closed-form. However, bond prices remain a
key determinant of household consumption by shifting ct (a, y) over time.

the gradual recovery in bond prices (see panel d in Figure 1). On the other hand, and

as mentioned before, the Ramsey policy succeeds at moving some highly indebted

households towards the range of intermediate net wealth levels, which favors their

consumption over time. These two effects tend to cancel each other out. As regards

discretion, in this case neither the consumption policy nor the wealth density show

much time variation. To sum up, the time-0 consumption effects discussed in the

previous paragraph tend to be the dominant force as far as consumption redistribution

is concerned.
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Figure 3: Policy functions and net wealth densities across policies and over time
(high-income households, y = y2)
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4.5 Welfare analysis

We now turn to the welfare analysis of alternative policy regimes. Aggregate welfare

is defined as

Ef0(a,y) [v0 (a, y)] =
' ∞

0

e−ρtEft(a,y) [u (ct (a, y))− x (πt)] dt ≡ W [c] ,

Table 3 displays the welfare losses of suboptimal policies vis-à-vis the Ramsey optimal

equilibrium. We express welfare losses as a permanent consumption equivalent, i.e.

the number Θ (in %) that satisfies in each case WR
�
cR
�
= W [(1 +Θ) c], where R

denotes the Ramsey equilibrium.47 The table also displays the welfare losses incurred

respectively by lending and indebted households.48 The welfare losses from discre-

tionary policy are of first order: 0.31% of permanent consumption. This welfare loss

is suffered not only by lending households (0.23%), but also by indebted ones (0.08%).

The reason is that, while discretionary inflation succeeds at redistributing consump-

tion to the latter households (as shown in the previous subsection), this beneficial

effect is dominated by the direct welfare costs of permanent inflation, which are born

by all households alike.

47Under our assumed separable preferences with log consumption utility, it is possible to show
that Θ = exp

�
ρ
�
WR

�
cR
�
−W [c]

��
− 1.

48That is, we report Θa>0 and Θa<0, where Θa>0 = exp
�
ρ
�
WR,a>0 −WMPE,a>0

��
− 1,

with Θa<0 defined analogously, and where for each policy regime we have defined W a>0 ≡%∞
0

$2
i=1 v0i (a) fit(a)da, W

a<0 ≡
% 0
φ

$2
i=1 v0i (a) fit(a)da. Notice that Θa>0 and Θa>0 do not

exactly add up to Θ, as the expontential function is not a linear operator. However, Θ is sufficiently
small that Θ ≈ Θa>0 +Θa>0.

Table 3. Welfare losses relative to the optimal commitment

Economy-wide Lending HHs Indebted HHs

Discretion 0.31 0.23 0.08

Zero inflation 0.05 -0.17 0.22

Note: welfare losses are expressed as a % of permanent consumption

We also compute the welfare losses from a policy of zero inflation, πt = 0 for

all t ≥ 0. As the table shows, the latter policy approximates the aggregate welfare

outcome under commitment very closely, for two reasons. First, the welfare losses

—relative to commitment— suffered by indebted households due to the lack of infla-

tionary redistribution are largely compensated by the corresponding gains for lending

households. Second, zero inflation avoids any direct welfare costs from inflation.
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4.6 Robustness

Appendix G contains a number of robustness exercises, including (i) the sensitivity of

steady-state inflation under commitment to the gap between domestic households’ and

foreign investors’ discount rates (ρ− r̄), and (ii) the sensitivity of initial inflation π0
(which is very similar under commitment and discretion) to the initial wealth distrib-

ution. The results can be summarized as follows. First, Ramsey optimal steady-state

inflation decreases approximately linearly with the gap ρ − r̄, because the central
bank’s incentive to protect bond issuing households —by committing to lower future

inflation and thus raising bond prices— becomes more and more dominant relative

to its incentive to redistribute resources towards currently indebted households —by

raising current inflation.

Second, initial inflation increases with the dispersion of the initial net wealth

distribution (while holding constant the initial net foreign asset position), reflecting

a stronger redistributive motive. This exercises also reveals that both the domestic

and cross-border redistributive motives are quantitatively important for explaining

initial inflation, with contributions of about one third and two thirds, respectively.

4.7 Aggregate shocks

So far we have restricted our analysis to the transitional dynamics, given the econ-

omy’s initial state, while abstracting from aggregate shocks. We now extend our

analysis to allow for aggregate disturbances. For the purpose of illustration, we

consider a one-time, unanticipated increase of 1 percentage point in the World real

interest rate, followed by a gradual return to its baseline value of r̄ = 3%. After the

shock the dynamics of the (time-varying) World real rate r̄t are given by

dr̄t = ηr (r̄ − r̄t) dt,

with ηr = 0.5. Notice that, up to a first order approximation, this is equivalent to solv-

ing the model considering an aggregate stochastic process dr̄t = ηr (r̄ − r̄t) dt+ σdZt

with σ = 0.01 and Zt being a Brownian motion. In fact the impulse responses re-

ported in Figure 4 coincide up to a first order approximation with the ones obtained by

considering aggregate fluctuations and solving the model by first-order perturbation

around the deterministic steady state, as in the method of Ahn et al. (2017).

The dashed red lines in Figure 4 display the responses to the shock under a strict

zero inflation policy, πt = 0 for all t. The shock raises nominal (and real) bond

yields, which leads households to reduce their consumption on impact. The reduction

in consumption induces an increase in assets holdings in the case of creditors and a

reduction in debt (i.e. an increase in net assets) in the case of debtors. This allows
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consumption to slowly recover and to reach levels slightly above the steady state after

roughly 5 years from the arrival of the shock.

The solid lines in Figure 4 display the economy’s response under the optimal

commitment policy. An issue that arises here is how long after ‘time zero’ (the

implementation date of the Ramsey optimal commitment) the aggregate shock is

assumed to take place. Since we do not want to take a stand on this dimension, we

consider the limiting case in which the Ramsey optimal commitment has been going

on for a sufficiently long time that the economy rests at its stationary equilibrium

by the time the shock arrives. This can be viewed as an example of optimal policy

’from a timeless perspective’, in the sense of Woodford (2003). In practical terms, it

requires solving the optimal commitment problem analyzed in Section 3.2 with two

modifications (apart of course from the time variation in r̄t): (i) the initial wealth

distribution is the stationary distribution implied by the optimal commitment itself,
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Figure 4: Responses to a World real interest rate shock under commitment (from a
timeless perspective).

and (ii) the initial condition μ0 = 0 (absence of precommitments) is replaced by μ0 =

μ∞, where the latter object is the stationary value of the costate in the commitment

case. Both modifications guarantee that the central bank behaves as if it had been

following the time-0 optimal commitment for an arbitrarily long time.
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As shown by the figure, under commitment inflation rises slightly on impact, as the

central bank tries to partially counteract the negative effect of the shock on household

consumption. However, the inflation reaction is an order of magnitude smaller than

that of the shock itself. Intuitively, the value of sticking to past commitments to

keep inflation near zero weighs more in the central bank’s decision than the value of

using inflation transitorily so as to stabilize consumption in response to an unforeseen

event.

5 Conclusion

We have analyzed optimal monetary policy, under commitment and discretion, in

a continuous-time, small-open-economy version of a standard incomplete-markets

model extended to allow for nominal, long-term claims and costly inflation. Our

analysis sheds light on a recent policy and academic debate on the consequences that

wealth heterogeneity across households should have for the appropriate conduct of

monetary policy.

Our first main contribution is methodological: to the best of our knowledge, our

paper is the first to solve for a fully dynamic optimal policy problem, both under

commitment and discretion, in an incomplete-markets model with uninsurable idio-

syncratic risk. While models of this kind have been established as a workhorse for

policy analysis in macro models with heterogeneous agents, the fact that in such

models the infinite-dimensional, endogenously-evolving wealth distribution is a state

in the policy-maker’s problem has made it difficult to make progress in the analysis

of fully optimal policy problems. Our analysis proposes a novel methodology, based

on infinite dimensional calculus, for dealing with problems of this kind.

Our second main contribution relates to our normative results. Optimal discre-

tionary monetary policy features a ’redistributive inflationary bias’. In particular,

optimal discretionary inflation depends positively on the average net liabilities across

households weighted by their marginal utility of consumption. Under incomplete mar-

kets and standard concave preferences, indebted households have a higher marginal

utility than lending ones, giving the central bank an incentive to use inflation on a

permanent basis in order to redistribute wealth from the latter to the former. Under

commitment, such redistributive motive to inflate exists as well, but it is counteracted

over time by a ’deflationary force’ that has too a redistributive motive. By promising

lower and lower inflation in the future, the central bank increases the price of the

long-term nominal bond (through lower inflation premia). This favors the households

that issue new bonds, who also have a higher marginal utility than those that pur-

chase new bonds. In the long run, and under certain parametric conditions, both

effects exactly cancel each other out and optimal inflation is zero. Numerically, the
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optimal commitment policy is found indeed to imply inflation ’front-loading’, with an

initial inflation very similar to that under discretion, but a gradual undoing of such

inflationary stance.

While the model used here is deliberately simple —with a view to illustrating our

methodology as transparently as possible—, the above normative insights are likely to

carry over to more fully fledged macroeconomics models featuring uninsurable idio-

syncratic risk and a Fisherian redistributive channel. More generally, extending the

methods developed here for computing fully optimal monetary policy to New Keyne-

sian frameworks with uninsurable idiosyncratic risk and household heterogeneity, of

the type constructed e.g. by Auclert (2016), Kaplan et al. (2016), Gornemann et al.

(2012) or McKay et al. (2016), is an important task that we leave for future research.

Finally, we stress that our results should not be interpreted as suggesting that

monetary policy is the best tool to address redistributive issues, as there are probably

more direct policy instruments such as taxes or transfers. What our results indicate

is that, in the context of economies with uninsurable idiosyncratic risk, the optimal

design of monetary policy will typically reflect redistributive motives, the more so

the less other policies (e.g. fiscal policy) are able to achieve optimal redistributive

outcomes.
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Online appendix (not for publication)

A. Proofs

Mathematical preliminaries

First we need to introduce some mathematical concepts. An operator T is a mapping

from one vector space to another. Given the stochastic process at in (4), define an

operator A,

Av ≡
�
s1(t, a)

∂v1(t,a)
∂a

+ λ1 [v2(t, a)− v1(t, a)]
s2(t, a)

∂v2(t,a)
∂a

+ λ2 [v1(t, a)− v2(t, a)]

�
, (22)

so that the HJB equation (6) can be expressed as

ρv =
∂v

∂t
+max

c
{u (c)− x (π) +Av} ,

where v ≡
�
v1(t,a)
v2(t,a)

�
and u (c)− x (π) ≡

�
u(c1)−x(π)
u(c2)−x(π)

�
.49

Let Φ ≡ [φ,∞) be the valid domain. The space of Lebesgue-integrable functions
L2 (Φ) with the inner product

�v, f�Φ =
2&
i=1

'
Φ

vifida =

'
Φ

vTfda, ∀v, f ∈ L2 (Φ) , (23)

is a Hilbert space.50 Notice that we could have alternatively worked in Φ = R as the
density f(t, a, y) = 0 for a < φ.

Given an operatorA, its adjoint is an operatorA∗ such that �f,Av�Φ = �A∗f, v�Φ .
In the case of the operator defined by (22) its adjoint is the operator

A∗f ≡
�−∂(s1f1)

∂a
− λ1f1 + λ2f2

−∂(s2f2)
∂a

− λ2f2 + λ1f1

�
, (24)

with boundary conditions

si (t,φ) fi (t,φ) = lim
a→∞

si (t, a) fi (t, a) = 0, i = 1, 2, (25)

49The infinitesimal generator of the process is thus ∂v
∂t +Av.

50See Luenberger (1969) or Brezis (2011) for references.

such that the KF equation (11) results in

∂f

∂t
= A∗f, (26)
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for f ≡
�
f1(t,a)
f2(t,a)

�
. We can see that A and A∗ are adjoints as

�Av, f�Φ =

'
Φ

(Av)T fda =
2&
i=1

'
Φ

�
si
∂vi
∂a

+ λi [vj − vi]
�
fida

=
2&
i=1

visifi|∞φ +
2&
i=1

'
Φ

vi

�
− ∂

∂a
(sifi)− λifi + λjjj

�
da

=

'
Φ

vTA∗fda = �v,A∗f�Φ .

We introduce the concept of Gateaux and Frechet derivatives in L2 (Φ) , where

Φ ⊂ Rn as generalizations of the standard concept of derivative to infinite-dimensional
spaces.51

Definition 4 (Gateaux derivative) Let W [f ] be a functional and let h be arbi-

trary in L2 (Φ) . If the limit

δW [f ;h] = lim
α→0

W [f + αh]−W [f ]

α
(27)

exists, it is called the Gateaux derivative of W at f with increment h. If the limit

(27) exists for each h ∈ L2 (Φ) , the functional W is said to be Gateaux differentiable

at f.

If the limit exists, it can be expressed as δW [f ;h] = d
dα
W [f + αh] |α=0. A more

restricted concept is that of the Fréchet derivative.

Definition 5 (Fréchet derivative) Let h be arbitrary in L2 (Φ) . If for fixed f ∈
L2 (Φ) there exists δW [f ;h] which is linear and continuous with respect to h such

that

lim

h
L2(Φ)→0

|W [f + h]−W [f ]− δW [f ;h]|
�h�L2(Φ)

= 0,

thenW is said to be Fréchet differentiable at f and δW [f ;h] is the Fréchet derivative

of W at f with increment h.

51See Luenberger (1969), Gelfand and Fomin (1991) or Sagan (1992).

The following proposition links both concepts.

Theorem 1 If the Fréchet derivative of W exists at f , then the Gateaux derivative

exists at f and they are equal.
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Proof. See Luenberger (1969, p. 173).
The familiar technique of maximizing a function of a single variable by ordinary

calculus can be extended in infinite dimensional spaces to a similar technique based

on more general derivatives. We use the term extremum to refer to a maximum or

a minimum over any set. A a function f ∈ L2 (Φ) is a maximum of W [f ] if for all

functions h, �h− f�L2(Φ) < ε then W [f ] ≥ W [h]. The following theorem generalizes

the Fundamental Theorem of Calculus.

Theorem 2 Let W have a Gateaux derivative, a necessary condition for W to have

an extremum at f is that δW [f ;h] = 0 for all h ∈ L2 (Φ) .

Proof. Luenberger (1969, p. 173), Gelfand and Fomin (1991, pp. 13-14) or Sagan
(1992, p. 34).

In the case of constrained optimization in an infinite-dimensional Hilbert space,

we have the following Theorem.

Theorem 3 (Lagrange multipliers) Let H be a mapping from L2 (Φ) into Rp. If
W has a continuous Fréchet derivative, a necessary condition for W to have an ex-

tremum at f under the constraint H [f ] = 0 at the function f is that there exists a

function η ∈ L2 (Φ) such that the Lagrangian functional

L [f ] = W [f ] + �η, H [f ]�Φ (28)

is stationary in f, that is., δL [f ;h] = 0.

Proof. Luenberger (1969, p. 243).
Finally, according to Definition 5 above, if the Fréchet derivative δW [f ] of W [f ]

exists then it is linear and continuous. We may apply the Riesz representation theorem

to express it as an inner product

Theorem 4 (Riesz representation theorem) Let δW [f ;h] : L2 (Φ) → R be a

linear continuous functional. Then there exists a unique function w [f ] = δW
δf
[f ] ∈ L2

(Φ) such that

δW [f ;h] =

�
δW

δf
, h

�
Φ

=
2&
i=1

'
Φ

wi [f ] (a)hi (a) da.
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Proof of Lemma 1

In order to prove the concavity of the value function we express the model in discrete

time for an arbitrarily small Δt. The Bellman equation of a household is

Proof. See Brezis (2011, pp. 97-98).

vΔtt (a, y) = max
a�∈Γ(a,y)

�
u

�
Q (t)

Δt

��
1 +

�
δ

Q (t)
− δ − π (t)

�
Δt

�
a+

yΔt

Q (t)
− a�

��
− x (π (t))

�
Δt

+e−ρΔt
2&
i=1

vΔtt+Δt (a
�, yi)P (y� = yi|y) ,

where Γ (a, y) =
(
0,
�
1 +

�
δ

Q(t)
− δ − π (t)



Δt


a+ yΔt

Q(t)

)
, and P (y� = yi|y) are the

transition probabilities of a two-state Markov chain. The Markov transition proba-

bilities are given by λ1Δt and λ2Δt.

We verify that this problem satisfies the conditions of Theorem 9.8 of Stokey and

Lucas (1989): (i) Φ is a convex subset ofR; (ii) the Markov chain has a finite number of
values; (iii) the correspondence Γ (a, y) is nonempty, compact-valued and continuous;

(iv) the function u is bounded, concave and continuous and e−ρΔt ∈ (0, 1); and (v)
the set Ay = {(a, a�) such that a� ∈ Γ (a, y)} is convex. We conclude that vΔtt (a, y)

is strictly concave for any Δt > 0. Finally, for any a1, a2 ∈ Φ

vΔtt (ωa1 + (1− ω) a2, y) > ωvΔtt (a1, y) + (1− ω) vΔtt (a2, y) ,

lim
Δt→0

vΔtt (ωa1 + (1− ω) a2, y) > lim
Δt→0

�
ωvΔtt (a1, y) + (1− ω) vΔtt (a2, y)

�
,

v (t,ωa1 + (1− ω) a2, y) > ωv (t, a1, y) + (1− ω) vt (t, a2, y) ,

so that v (t, a, y) is strictly concave.
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Proof of Lemma 2

Given the welfare criterion defined in equation (14), we have

W0 =

' ∞

φ

2&
i=1

v0(a, yi)f0(a, yi)da

=

' ∞

φ

2&
i=1

E0
�' ∞

0

e−ρt [u (ct)− x (πt)] dt|a0 = a, y0 = yi
�
fi0(a)da

=

' ∞

φ

2&
i=1

�
2&
j=1

' ∞

φ

' ∞

0

e−ρt [u(cjt (ã))− x (πt)] ft(ã, ỹj; a, yi)dtdã
�
fi0(a)da

=

' ∞

0

2&
j=1

e−ρt
' ∞

φ

[u(cjt (ã))− x (πt)]
�

2&
i=1

' ∞

φ

ft(ã, ỹj; a, yi)fi0(a)da

�
dãdt

=

' ∞

0

e−ρt
2&
j=1

' ∞

φ

[u(cjt (ã))− x (πt)] ft(ã, ỹj)dãdt,

where ft(ã, ỹj; a, yi) is the transition probability from a0 = a, y0 = yi to at = ã,

yt = ỹj and in the last equality we have used the Chapman—Kolmogorov equation,

ft(ã, ỹj) =
2&
i=1

' ∞

φ

ft(ã, ỹj; a, yi)f0(a, yi)da.

Proof of Proposition 1. Solution to the Ramsey problem

The idea of the proof is to construct a Lagragian in a Hilbert function space and to

obtain the first-order conditions by taking the Gateaux derivatives.

Step 1: Statement of the problem. The problem of the central bank is given

by

W [f0 (·)] = max
{πt,Qt,vt(·),ct(·),ft(·)}∞t=0

' ∞

0

e−ρt
�&2

i=1

'
Φ

(u (ct)− x (πt)) fit(a)da
�
dt,

subject to the law of motion of the distribution (11), the bond pricing equation (10)

and the individual HJB equation (6). This is a problem of constrained optimization

in an infinite-dimensional Hilbert space that includes also time, which we denote as

Φ̂ = [0,∞)× Φ. We define L2
�
Φ̂


(·,·)Φ

as the space of functions f that verify

'
Φ̂

e−ρt |f |2 =
' ∞

0

'
Φ

e−ρt |f |2 dtda =
' ∞

0

e−ρt �f�2Φ dt <∞.
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We need first to prove that this space, which differs from L2
�
Φ̂


is also a Hilbert

space. This is done in the following lemma, which is proved later on.

Lemma 3 The space L2
�
Φ̂


(·,·)Φ

with the inner product

(f, g)Φ =

'
Φ̂

e−ρtfg =
' ∞

0

e−ρt �f, g�Φ dt =
�
e−ρtf, g

	
Φ̂

is a Hilbert space.

Step 2: The Lagragian. From now on, for compactness we use the operator A,
its adjoint operator A∗, and the inner product �·, ·� defined in expressions (22), (24),
and (23), respectively. The Lagrangian is defined in L2

�
Φ̂


(·,·)Φ

as

L [π, Q, f, v, c] ≡
' ∞

0

e−ρt �u− x, f�Φ dt+
' ∞

0

�
e−ρtζ (t, a) ,A∗f − ∂f

∂t

�
Φ

dt

+

' ∞

0

e−ρtμ (t)
�
Q (r̄ + π + δ)− δ − Q̇



dt

+

' ∞

0

�
e−ρtθ (t, a) , u− x+Av + ∂v

∂t
− ρv

�
Φ

dt

+

' ∞

0

�
e−ρtη (t, a) , u� − 1

Q

∂v

∂a

�
Φ

dt

where e−ρtζ (t, a), e−ρtη (t, a), e−ρtθ (t, a) ∈ L2
�
Φ̂


and e−ρtμ (t) ∈ L2[0,∞) are the

Lagrange multipliers associated to equations (11), (8), (6) and (10), respectively. The

Lagragian can be expressed as

L =

' ∞

0

e−ρt
�
u− x+ ∂ζ

∂t
+Aζ − ρζ + μ

�
Q (r̄ + π + δ)− δ − Q̇



, f

�
Φ

dt

+

' ∞

0

e−ρt
�
�θ, u− x�Φ +

�
A∗θ − ∂θ

∂t
, v

�
Φ

+

�
η, u� − 1

Q

∂v

∂a

�
Φ

�
dt

+ �ζ (0, ·) , f (0, ·)�Φ − lim
T→∞

�
e−ρT ζ (T, ·) , f (T, ·)

	
Φ

+ lim
T→∞

�
e−ρT θ (T, ·) , v (T, ·)

	
Φ
− �θ (0, ·) , v (0, ·)�+

' ∞

0

e−ρt
2&
i=1

visiθi|∞φ dt,

where we have applied

�ζ,A∗f� = �Aζ, f� , �θ,Av� = �A∗θ, v�Φ +
2&
i=1

visiθi|∞φ
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and integrated by parts

' ∞

0

�
e−ρtζ,−∂f

∂t

�
Φ

dt = −
2&
i=1

' ∞

0

'
Φ

e−ρtζ i
∂fi
∂t
dadt

= −
2&
i=1

'
Φ

fie
−ρtζ i



∞
0
da+

2&
i=1

' ∞

0

'
Φ

fi
∂

∂t

�
e−ρtζ i

�
dadt

=
2&
i=1

'
Φ

fi (0, a) ζ i (0, a) da− lim
T→∞

2&
i=1

'
Φ

e−ρTfi (T, a) ζ i (T, a) da

+

2&
i=1

' ∞

0

'
Φ

e−ρtfi

�
∂ζ i
∂t
− ρζ i

�
dadt

= �ζ (0, ·) , f (0, ·)�Φ − lim
T→∞

�
e−ρT ζ (T, ·) , f (T, ·)

	
Φ

+

' ∞

0

e−ρt
�
∂ζ

∂t
− ρζ, f

�
Φ

dt,

and' ∞

0

�
e−ρtθ,

∂v

∂t
− ρv

�
dt =

2&
i=1

' ∞

0

'
Φ

e−ρtθi

�
∂vi
∂t
− ρvi

�
dadt

=
2&
i=1

'
Φ

θie
−ρt
i v



∞
0
da−

2&
i=1

' ∞

0

'
Φ

vi

�
∂

∂t

�
e−ρtθi

�
+ ρθi

�
dadt

= lim
T→∞

2&
i=1

'
Φ

e−ρTvi (T, a) θi (T, a) da−
2&
i=1

'
Φ

vi (0, a) θi (0, a) da

−
2&
i=1

' ∞

0

'
Φ

e−ρtvi

�
∂θi
∂t

�
dadt

= lim
T→∞

�
e−ρT θ (T, ·) , v (T, ·)

	
Φ
− �θ (0, ·) , v (0, ·)�Φ

+

' ∞

0

e−ρt
�
−∂θ
∂t
, v

�
Φ

dt,
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Step 3: Necessary conditions. In order to find the maximum, we need to take

the Gateaux derivatives with respect to the controls f , π, Q, v and c.

• The Gateaux derivative with respect to f (t, a) is

d

dα
L [π, Q, f + αh, v, c] |α=0 = �ζ (0, ·) , h (0, ·)�Φ − lim

T→∞
�
e−ρT ζ (T, ·) , h (T, ·)

	
Φ

−
' ∞

0

e−ρt
�
u− x+ ∂ζ

∂t
+Aζ − ρζ, h

�
Φ

dt,

which should equal zero for any function e−ρth ∈ L2
�
Φ̂


such that h (0, ·) = 0,

as the initial value of f (0, ·) . We obtain

ρζ = u− x+ ∂ζ

∂t
+Aζ, for a > φ, t > 0 (29)

Given that e−ρtζ (t, a) ∈ L2
�
Φ̂


, we obtain the transversality condition limT→∞ e−ρT ζ (T, a) =

0. Equation (29) is the same as the individual HJB equation (6). The boundary

conditions are also the same (state constraints on the domain Φ) and there-

fore their solutions should coincide: ζ(t, a, y) = v(t, a, y), that is, the Lagrange

multiplier ζ(t, a, y) equals the private value v (·).

• In the case of c (t, a) , the Gateaux derivative is

d

dα
L [π, Q, f, v, c+ αh] |α=0 =

' ∞

0

e−ρt
��
u� − 1

Q

∂ζ

∂a

�
h, f

�
Φ

dt

+

' ∞

0

e−ρt
��

θ,

�
u� − 1

Q

∂v

∂a

�
h

�
Φ

+ �η, u��h�Φ
�
dt,

where ∂
∂a
(Aζ) = − 1

Q
∂ζ
∂a
. The Gateaux derivative should be zero for any function

e−ρth ∈ L2
�
Φ̂


. Due to the first order conditions (8) and to the fact that

ζ (·) = v (·) this expression reduces to' ∞

0

e−ρt �η (t, a) , u�� (t, a)h (t, a)�Φ dt = 0.

As u is strictly concave, u�� < 0 and hence η (t, a) = 0 for all (t, a) ∈ Φ̂, that is,

the first order condition (8) is not binding as its associated Lagrange multiplier

is zero.
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• In the case of v (t, a) , the Gateaux derivative is

d

dα
L [π, Q, f, v + αh, c] |α=0 =

' ∞

0

e−ρt
��
A∗θ − ∂θ

∂t
, h

�
Φ

�
dt

+ lim
T→∞

�
e−ρT θ (T, ·) , h (T, ·)

	
Φ
− �θ (0, ·) , h (0, ·)�Φ

+

2&
i=1

hisiθi|∞φ ,

where we have already taken into account the fact that η (·) = 0. Given that

e−ρtθ (t, a) ∈ L2
�
Φ̂


, we obtain the transversality condition limT→∞ e−ρT θ (T, ·) =

0. As the Gateaux derivative should be zero at the maximum for any suitable

h, we obtain a Kolmogorov forward equation in θ

∂θ

∂t
= A∗θ, for a > φ, t > 0, (30)

with boundary conditions

si (t,φ) θi (t,φ) = lim
a→∞

si (t, a) θi (t, a) = 0, i = 1, 2,

θ (0, ·) = 0.

52Notice that if we denote g (t) ≡
�
A∗θ − ∂θ

∂t , 1
	
Φ
and G (t) ≡

%∞
t
e−ρsg(s)ds then the fact that

A∗θ − ∂θ
∂t = 0, for a > φ, t > 0, implies that G(t) = 0, for t > 0. As G (t) is differentiable, then

it is continuous and hence G (0) = 0 so that the condition G(0) + �θ (0, ·) , h (0, ·)�Φ = 0 for any
h (0, ·) ∈ L2 (Φ) requires θ (0, ·) = 0. A similar argument can be employed to analyzed the boundary
conditions in Φ.

This is a KF equation with an initial density of θ (0, ·) = 0.52 Therefore, the

distribution at any point in time should be zero θ (·) = 0. Both the Lagrange
multiplier of the households’ HJB equation θ and that of the first-order condition

η are zero, reflecting the fact that the HJB equation is slack, that is, that the

monetary authority would choose the same consumption as the households.

This would not be the case in a closed economy, in which some externalities

may arise, as discussed, for instance, in Nuño and Moll (2017).

• The Gateaux derivative in the case of π (t) is

d

dα
L [π + αh,Q, f, v, c] |α=0 =

' ∞

0

e−ρt
�
−x� − a

�
∂v

∂a

�
+ μQ, f

�
Φ

hdt,
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where we have already taken into account the fact that θ (·) = η (·) = 0. and
ζ (·) = v (·) . As the Gateaux derivative should be zero for any h(t) ∈ L2[0,∞),
the optimality condition then results in

μ (t)Q (t) =

2&
i=1

'
Φ

�
a
∂vi
∂a

+ x�
�
fi (t, a) da, (31)

where we have applied the normalization condition (equation 12): �1, f�Φ = 1.

• In the case of Q (t) the Gateaux derivative is

d

dα
L [π, Q+ αh, ·] |α=0 =

' ∞

0

e−ρt
�
− δh
Q2
a
∂v

∂a
− (y − c)h

Q2
∂v

∂a
+ μ

(
h (r̄ + π + δ)− ḣ

)
, f

�
Φ

dt,

where we have already taken into account the fact that ζ (·) = v (·) and θ (·) =
η (·) = 0. Integrating by parts' ∞

0

e−ρt
"
−μḣ, f

#
Φ
dt = −

' ∞

0

e−ρtμḣ �1, f�Φ dt = −
' ∞

0

e−ρtμḣdt

= − e−ρtμh


∞
0
+

' ∞

0

e−ρt (μ̇− ρμ)hdt

= μ (0)h (0) +

' ∞

0

e−ρt �(μ̇− ρμ)h, f�Φ dt.

Therefore, the optimality condition in this case is' ∞

0

e−ρt
�
− δ

Q2
a
∂v

∂a
− (y − c)

Q2
∂v

∂a
+ μ (r̄ + π + δ − ρ) + μ̇, f

�
Φ

hdt+μ (0)h (0) = 0.

The Gateaux derivative should be zero for any h(t) ∈ L2[0,∞). Thus we obtain�
− δ

Q2
a
∂v

∂a
− (y − c)

Q2
∂v

∂a
, f

�
Φ

+ μ (r̄ + π + δ − ρ) + μ̇ = 0, t > 0,

μ (0) = 0.

or equivalently,

dμ

dt
= (ρ− r̄ − π − δ)μ+

2&
i=1

'
Φ

∂vit
∂a

δa+ (y − c)
Q (t)2

fi (t, a) da, t > 0,(32)

μ (0) = 0.

Finally, using the household’s first order condition ∂vit
∂a
= Qtu

�(cit) to substitute

for ∂vit
∂a
in equations (31) and (32) yields the expressions in the main text.
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Proof of Lemma 3

We need to show that L2
�
Φ̂


(·,·)Φ

is complete, that is, that given a Cauchy sequence

{fn} with limit f : limn→∞ fn = f then f ∈ L2
�
Φ̂


(·,·)Φ

. If {fn} is a Cauchy sequence
then

�fn − fm�(·,·)Φ → 0, as n,m→∞,

or

�fn − fm�2(·,·)Φ =

'
Φ̂

e−ρt |fn − fm|2 =
"
e−

ρ
2
t (fn − fm) , e−

ρ
2
t (fn − fm)

#
Φ̂

=
���e− ρ

2
t (fn − fm)

���2
Φ̂
→ 0,

as n,m→∞. This implies that
�
e−

ρ
2
tfn
�
is a Cauchy sequence in L2

�
Φ̂


. As L2

�
Φ̂



is a complete space, then there is a function f̂ ∈ L2
�
Φ̂


such that

lim
n→∞

e−
ρ
2
tfn = f̂ (33)

under the norm �·�2Φ̂ . If we define f = e
ρ
2
tf̂ then

lim
n→∞

fn = f

under the norm �·�(·,·)Φ , that is, for any ε > 0 there is an integer N such that

�fn − f�2(·,·)Φ =
���e− ρ

2
t (fn − f)

���2
Φ̂
=
���e− ρ

2
tfn − f̂

���2
Φ̂
< ε,

where the last inequality is due to (33). It only remains to prove that f ∈ L2
�
Φ̂


(·,·)Φ

:

�f�2(·,·)Φ =
'
Φ̂

e−ρt |f |2 =
'
Φ̂




f̂ 


2 <∞,
as f̂ ∈ L2

�
Φ̂


.
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Proof of Proposition 2: Optimal long-run inflation under commitment in
the limit as r̄ → ρ

In the steady state, equations (17) and (16) in the main text become

(ρ− r̄ − π − δ)μ+
1

Q2

2&
i=1

' ∞

φ

∂vi
∂a
[δa+ (yi − ci)] fi (a) da = 0,

μQ = x� (π) +
2&
i=1

' ∞

φ

a
∂vi
∂a
fi (a) da,

respectively. Notice that we have replaced Qu�(ci) by ∂vi
∂a
. Consider now the limiting

case ρ→ r̄ , and guess that π → 0. The above two equations then become

μQ =
1

δQ

2&
i=1

' ∞

φ

∂vi
∂a
[δa+ (yi − ci)] fi (a) da,

μQ =
2&
i=1

' ∞

φ

a
∂vi
∂a
fi (a) da,

as x� (0) = 0 under our assumed preferences in Section 3.4. Combining both equations,

and using the fact that in the zero-inflation steady state the bond price equals Q =
δ

δ+r̄
, we obtain

2&
i=1

' ∞

φ

∂vi
∂a

�
r̄a+

yi − ci
Q

�
fi (a) da = 0. (34)

In the zero inflation steady state, the value function v satisfies the HJB equation

ρvi(a) = u(ci (a))+

�
r̄a+

yi − ci (a)
Q

�
∂vi
∂a
+λi [vj(a)− vi(a)] , i = 1, 2, j �= i, (35)

where we have used x (0) = 0 under our assumed preferences. We also have the

first-order condition

u� (ci (a)) = Q
∂vi
∂a

⇒ ci (a) = u
�−1
�
Q
∂vi
∂a

�
.

We guess and verify a solution of the form vi(a) = κia + ϑi, so that u� (ci) = Qκi.

Using our guess in (35), and grouping terms that depend on a and those that do not,

we have that

ρκi = r̄κi + λi (κj − κi) , (36)

ρϑi = u
�
u�−1 (Qκi)

�
+
yi − u�−1 (Qκi)

Q
κi + λi (ϑj − ϑi) , (37)
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for i, j = 1, 2 and j �= i. In the limit as r̄ → ρ, equation (36) results in κj = κi ≡ κ,

so that consumption is the same in both states. The value of the slope κ can be

computed from the boundary conditions.53 We can solve for {ϑi}i=1,2 from equations
(37),

ϑi =
1

ρ
u
�
u�−1 (Qκ)

�
+
yi − u�−1 (Qκ)

ρQ
κ+

λi (yj − yi)
ρ (λi + λj + ρ)Q

κ,

for i, j = 1, 2 and j �= i. Substituting ∂vi
∂a
= κ in (34), we obtain

2&
i=1

' ∞

φ

�
r̄a+

yi − ci
Q

�
fi (a) da = 0. (38)

Equation (38) is exactly the zero-inflation steady-state limit of equation (13) in the

main text (once we use the definitions of ā, ȳ and c̄), and is therefore satisfied in

equilibrium. We have thus verified our guess that π → 0.

Proof of Proposition 3. Solution to the Markov Stackelberg equilibrium

The approach is to consider that, given any arbitrary horizon T > 0, the interval

[0, T ] is divided in N subintervals of length Δt := T/N. In each subinterval (t, t+Δt]

the central bank solves a Ramsey problem with terminal value WM
Δt [f (t+Δt, ·)] ,

taken as given the initial density ft (·) and the terminal value WM
Δt [ft+Δt (·)]. Notice

that the initial density ft (·) of a subinterval subinterval (t, t+Δt] is the final density

of the previous subinterval whereas the terminal value WM
Δt [ft+Δt (·)] is the initial

value of the next subinterval. A Markov Stackelberg equilibrium is the limit when

N →∞, or equivalently, Δt→ 0.

Step 1: The discrete-step problem. First we solve the dynamic programming

problem in a subinterval (t, t + Δt]. This is now a Ramsey problem in the Hilbert

53The condition that the drift should be positive at the borrowing constraint, si (φ) ≥ 0, i = 1, 2,
implies that

s1 (φ) = r̄φ+
y1 − u�−1 (Qκ)

Q
= 0,

and

κ =
u� (r̄φQ+ y1)

Q
.

In the case of state i = 2, this guarantees s2 (φ) > 0.

WM
Δt [f (t, ·)] = max

{πs,Qs,vs(·),cs(·),fs(·)}s∈(t,t+Δt]

' t+Δt

t

e−ρ(s−t)
2&
i=1

' ∞

φ

(u (cis (a))− x (πs)) fi(s, a)dads

+e−ρΔtWM
Δt [f (t+Δt, ·)] ,

space L2
�
Φ̂t



(·,·)Φ

with Φ̂t = (t, t+Δt]× Φ. We define
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subject to the law of motion of the distribution (11), the bond pricing equation (10),

and household’s HJB equation (6) and optimal consumption choice (8). This can be

seen as a finite-horizon commitment problem with terminal value WM
Δt [f (t+Δt, ·)] .

We proceed as in the proof of Proposition 1 and construct a Lagragian

L [π, Q, f, v, c] ≡
' t+Δt

t

e−ρ(s−t) �u− x, f�Φ ds+ e−ρΔtWM
Δt [f (t+Δt, ·)]

+

' t+Δt

t

�
e−ρ(s−t)ζ (t, a) ,A∗f − ∂f

∂t

�
Φ

ds

+

' t+Δt

t

e−ρ(s−t)μ (s)
�
Q (r̄ + π + δ)− δ − Q̇



ds

+

' t+Δt

t

�
e−ρ(s−t)θ (s, a) , u− x+Av + ∂v

∂t
− ρv

�
Φ

ds

+

' t+Δt

t

�
e−ρ(s−t)η (s, a) , u� − 1

Q

∂v

∂a

�
Φ

ds,

with WM
Δt [·] defined in (18). Proceeding as in the proof of Proposition 1, we can

express the Lagragian as

L =

' t+Δt

t

e−ρ(s−t)
�
u− x+ ∂ζ

∂t
+Aζ − ρζ + μ

�
Q (r̄ + π + δ)− δ − Q̇



, f

�
Φ

ds

+

' t+Δt

t

e−ρ(s−t)
�
�θ, u− x�Φ +

�
A∗θ − ∂θ

∂t
, v

�
Φ

+ �η, u��Φ +
�
1

Q

∂η

∂a
, v

�
Φ

�
ds

+ �ζ (t, ·) , f (t, ·)�Φ −
�
e−ρΔtζ (t+Δt, ·) , f (t+Δt, ·)

	
Φ

+
�
e−ρΔtθ (t+Δt, ·) , v (t+Δt, ·)

	
Φ
− �θ (t, ·) , v (t, ·)�

+

' t+Δt

t

e−ρ(s
�−t)

�
2&
i=1

visiθi|∞φ −
1

Q

2&
i=1

viηi|
∞
φ

�
ds� + e−ρΔtWM

Δt [f (t+Δt, ·)]

• The first order condition with respect to f in this case is

0 = �ζ (t, ·) , h (t, ·)�Φ −
�
e−ρΔtζ (t+Δt, ·) , h (t+Δt, ·)

	
Φ

−
' t+Δt

t

e−ρt
�
u− x+ ∂ζ

∂t
+Aζ − ρζ, h

�
Φ

dt

+ e−ρΔt
d

dα
WM
Δt [f (t+Δt, ·) + αh (t+Δt, ·)]




α=0

.

Given the Riesz representation theorem (Theorem 4), the Gateaux derivative

can be expressed as

d

dα
WM
Δt [f (t+Δt, ·) + αh (t+Δt, ·)]




α=0

= �w (t+Δt, ·) , h (t+Δt, ·)�Φ
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• In the case of v (t, a) :

where

w (t, ·) = δWM
Δt

δf
[f (t, ·)] : [0,∞)× Φ→ R2.

Notice that, as there is no aggregate uncertainty, the dynamics of the distribu-

tion only depend on time. As it will be clear below w(t, a) is the central bank’s

value at time t of a household with net wealth a. As the Gateaux derivative

should be zero for any h ∈ L2 ((t, t+Δt]× Φ) we obtain

ρζ = u− x+ ∂ζ

∂t
+Aζ, for a > φ, s ∈ (t, t+Δt), (39)

ζ (t+Δt, ·) = w (t+Δt, ·) .

The boundary conditions are state constraints on the domain Φ. Notice that

we have employed the fact that h (t, ·) = 0 as f(t, ·) is given. The rest of

Gateaux derivatives are obtain by following exatly the same steps as in the

proof of Proposition 1 above, but restricted to the interval (t, t+Δt] and without

simplifying terms.

• In the case of c (t, a) , this yields�
u� − 1

Q

∂ζ

∂a

�
f + ηu�� = 0, for a ≥ φ, s ∈ (t, t+Δt], (40)

A∗θ − ∂θ

∂t
+
1

Q

∂η

∂a
= 0, for a > φ, s ∈ (t, t+Δt),

θ (t+Δt, ·) = θ (t, ·) = 0 (41)

si (s,φ) θi (s,φ)−
1

Q (s)
ηi (s,φ) = lim

a→∞

�
si (s, a) θi (s, a)−

1

Q (s)
ηi (s, a)

�
= 0, i = 1, 2.

• In the case of π (t) :�
−x� − a∂ζ

∂a
+ μQ, f

�
Φ

+

�
−x� − a∂v

∂a
, θ

�
Φ

= 0, (42)

for s ∈ (t, t+Δt].

• Finally, in the case of Q (t) :

0 =

�
− δ

Q2
a
∂ζ

∂a
− (y − c)

Q2
∂ζ

∂a
, f

�
Φ

+

��
− δ

Q2
a− (y − c)

Q2

�
∂v

∂a
, θ

�
Φ

+μ (r̄ + π + δ − ρ) + μ̇+

�
η,
1

Q2
∂v

∂a

�
Φ

, for s ∈ (t, t+Δt),

lim
s→t

μ (s) = μ (t+Δt) = 0. (43)
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Step 2: Taking the limit. If we take the limit asN →∞, or equivalently, Δt→ 0,

we obtain that ζ (t, ·) = w (t, ·) for all t ≥ 0 and hence equation (39) results in

ρw = u− x+ ∂w

∂t
+Aw, for t ≥ 0, (44)

with state constraints on the domainΦ. The transversality condition limT→∞ e−ρTw (T, ·) =
0 as limT→∞ e−ρTW [f (T, ·)] = 0. Equation (44) coincides with the individual HJB

equation (6) and hence, as in the case with commitment, we obtain that w (t, ·) =
v (t, ·) , that is, the social value is the same as the private value.
Proceeding as in the case with commitment, the fact that ζ (t, ·) = v (t, ·) and that

the utility function is strictly concave in equation (40) yields η (t, ·) = 0. In the limit
Δt→ 0 the transversality conditions (41) and (43) result in μ (t) = 0 and θ (t, ·) = 0,
for all t ≥ 0.
Finally, the optimality condition with respect to π (t) (42) simplifies to�

−x� − a
�
∂v

∂a

�
, f

�
Φ

= 0,

or equivalently

0 =

2&
i=1

'
Φ

�
a
∂vit
∂a

+ x�
�
fi (t, a) da.

Using the household first order condition ∂vit
∂a
= Qtu

�(cit) to substitute for ∂vit
∂a
above

yields the expression in the main text.

Proof of Proposition 4: Inflation bias in the Markov Stackelberg equilib-
rium

As the value function is strictly concave in a by Lemma 1, it satisfies

∂vit (ã)

∂a
<
∂vit (0)

∂a
<
∂vit (â)

∂a
, for all ã ∈ (0,∞), â ∈ (φ, 0), t ≥ 0, i = 1, 2. (45)

In addition, Assumption 1 (the country is a always a net debtor: āt ≤ 0) implies

2&
i=1

' ∞

0

(a) fit(a)da ≤
2&
i=1

' 0

φ

(−a) fit(a)da, ∀t ≥ 0. (46)
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Therefore,

54We have also used the fact that af (a) > 0 for all a > 0 and (−a) f (a) > 0 for all a < 0, as well
as ∂vit (0) /∂a > 0 (which follows from the household first order condition and the assumption that
u� > 0).

satisfies
2&
i=1

' ∞

φ

afi
∂vi
∂a
da+ x� = 0.

Combining this expression with (47) we obtain

x� =
2&
i=1

' ∞

φ

(−a)Qtu�fida =
2&
i=1

' ∞

φ

(−a) ∂vi
∂a
fida > 0.

Finally, taking into account the fact that x� (π) > 0 only for π > 0, we have that

π (t) > 0.

B. Computational method: the stationary case

B.1 Exogenous monetary policy

We describe the numerical algorithm used to jointly solve for the equilibrium value

function, v (a, y), and bond price, Q, given an exogenous inflation rate π. The algo-

rithm proceeds in 3 steps. We describe each step in turn. We assume that there is

an upper bound arbitrarily large κ such that f(t, a, y) = 0 for all a > κ. In steady
state this can be proved in general following the same reasoning as in Proposition

2 of Achdou et al. (2017). Alternatively, we may assume that there is a maximum

constraint in asset holding such that a ≤ κ, and that this constraint is so large that
it does not affect to the results. In any case, let [φ,κ] be the valid domain.

Step 1: Solution to the Hamilton-Jacobi-Bellman equation Given π, the

bond pricing equation (10) is trivially solved in this case:

Q =
δ

r̄ + π + δ
. (48)

2&
i=1

' ∞

0

afit (a)
∂vit(a)

∂a
da <

∂vit (0)

∂a

2&
i=1

' ∞

0

afit (a) da ≤
∂vit (0)

∂a

2&
i=1

' 0

φ

(−a) fit(a)da

<
2&
i=1

' 0

φ

(−a) fit(a)
∂vit(a)

∂a
da, (47)

where we have applied (45) in the first and last inequalities and (46) in the inter-

mediate one.54 The optimal inflation in the Markov Stackelberg equilibrium (19)
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The HJB equation is solved using an upwind finite difference scheme similar to

Achdou et al. (2017). It approximates the value function v(a) on a finite grid with

step Δa : a ∈ {a1, ..., aW}, where aj = aj−1 + Δa = a1 + (j − 1)Δa for 2 ≤ j ≤ J .
The bounds are a1 = φ and aI = κ, such that Δa = (κ − φ) / (J − 1). We use the
notation vi,j ≡ vi(aj), i = 1, 2, and similarly for the policy function ci,j.
Notice first that the HJB equation involves first derivatives of the value function,

v�i(a) and v
��
i (a). At each point of the grid, the first derivative can be approximated

with a forward (F ) or a backward (B) approximation,

v�i(aj) ≈ ∂Fvi,j ≡
vi,j+1 − vi,j

Δa
, (49)

v�i(aj) ≈ ∂Bvi,j ≡
vi,j − vi,j−1

Δa
. (50)

In an upwind scheme, the choice of forward or backward derivative depends on the

sign of the drift function for the state variable, given by

si (a) ≡
�
δ

Q
− δ − π

�
a+

(yi − ci (a))
Q

, (51)

for φ ≤ a ≤ 0, where

ci (a) =

�
v�i(a)
Q

�−1/γ
. (52)

Let superscript n denote the iteration counter. The HJB equation is approximated

by the following upwind scheme,

for i = 1, 2, j = 1, ..., J , where 1 (·) is the indicator function and

sni,,jF =

�
δ

Q
− δ − π

�
a+

yi −
(

Q
∂F v

n
i,j

)1/γ
Q

, (53)

sni,j,B =

�
δ

Q
− δ − π

�
a+

yi −
(

Q
∂Bv

n
i,j

)1/γ
Q

. (54)

Therefore, when the drift is positive (sni,,jF > 0) we employ a forward approximation

of the derivative, ∂Fvn+1i,j ; when it is negative (s
n
i,j,B < 0) we employ a backward

approximation, ∂Bvn+1i,j . The term
vn+1i,j −vni,j

Δ
→ 0 as vn+1i,j → vni,j. Moving all terms

involving vn+1 to the left hand side and the rest to the right hand side, we obtain

vn+1i,j − vni,j
Δ

+ρvn+1i,j =
(cni,j)

1−γ

1− γ
− ψ

2
π2+ vn+1i,j−1α

n
i,j+ v

n+1
i,j βni,j+ v

n+1
i,j+1ξ

n
i,j+λiv

n+1
−i,j , (55)

vn+1i,j − vni,j
Δ

+ρvn+1i,j =
(cni,j)

1−γ

1− γ
−ψ
2
π2+∂Fv

n+1
i,j s

n
i,j,F1sni,j,F>0+∂Bv

n+1
i,j s

n
i,j,B1sni,j,B<0+λi

�
vn+1−i,j − vn+1i,j

�
,
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where

αni,j ≡ −
sni,j,B1sni,j,B<0

Δa
,

βni,j ≡ −
sni,j,F1sni,j,F>0

Δa
+
sni,j,B1sni,j,B<0

Δa
− λi,

ξni,j ≡
sni,j,F1sni,j,F>0

Δa
,

for i = 1, 2, j = 1, ..., J . Notice that the state constraints φ ≤ a ≤ 0 mean that

sni,1,B = s
n
i,J,F = 0.

In equation (55), the optimal consumption is set to

cni,j =

�
∂vni,j
Q

�−1/γ
. (56)

where

∂vni,j = ∂Fv
n
i,j1sni,j,F>0 + ∂Bv

n
i,j1sni,j,B<0 + ∂v̄ni,j1sni,F≤01sni,B≥0.

In the above expression, ∂v̄ni,j = Q(c̄ni,j)
−γ where c̄ni,j is the consumption level such

that s (ai) ≡ sni = 0 :
c̄ni,j =

�
δ

Q
− δ − π

�
ajQ+ yi.

Equation (55) is a system of 2×J linear equations which can be written in matrix
notation as:

1

Δ

�
vn+1 − vn

�
+ ρvn+1 = un +Anvn+1
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where the matrix An and the vectors vn+1 and un are defined by

The system in turn can be written as

Bnvn+1 = dn (58)

where ,Bn =
�
1
Δ
+ ρ

�
I−An and dn = un + 1

Δ
vn.

The algorithm to solve the HJB equation runs as follows. Begin with an initial

guess {v0i,j}Jj=1, i = 1, 2. Set n = 0. Then:

1. Compute {∂Fvni,j, ∂Bvni,j}Jj=1, i = 1, 2 using (49)-(50).

2. Compute {cni,j}Jj=1, i = 1, 2 using (52) as well as {sni,j,F , sni,j,B}Jj=1, i = 1, 2 using
(53) and (54).

3. Find {vn+1i,j }Jj=1, i = 1, 2 solving the linear system of equations (58).

4. If {vn+1i,j } is close enough to {vn+1i,j }, stop. If not set n := n + 1 and proceed to
1.

An = −

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

βn1,1 ξn1,1 0 0 · · · 0 λ1 0 · · · 0

αn1,2 βn1,2 ξn1,2 0 · · · 0 0 λ1
. . . 0

0 αn1,3 βn1,3 ξn1,3 · · · 0 0 0
. . .

...
...

. . . . . . . . . . . . . . . . . . . . . . . .
...

0 0 · · · αn1,J−1 βn1,J−1 ξn1,J−1 0 · · · λ1 0

0 0 · · · 0 αn1,J βn1,J 0 0 · · · λ1

λ2 0 · · · 0 0 0 βn2,1 ξn2,1 · · · 0
...

. . . . . . . . . . . . . . .
...

. . . . . .
...

0 0 · · · 0 0 λ2 0 · · · αn2,J βn2,J

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, vn+1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

vn+11,1

vn+11,2

vn+11,3
...

vn+11,J−1
vn+11,J

vn+12,1
...

vn+12,J

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(57)

un =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(cn1,1)
1−γ

1−γ − ψ
2
π2

(cn1,2)
1−γ

1−γ − ψ
2
π2

...
(cn1,J )

1−γ

1−γ − ψ
2
π2

(cn2,1)
1−γ

1−γ − ψ
2
π2

...
(cn2,J )

1−γ

1−γ − ψ
2
π2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Most computer software packages, such as Matlab, include efficient routines to

handle sparse matrices such as An.
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Step 2: Solution to the Kolmogorov Forward equation The stationary dis-

tribution of debt-to-GDP ratio, f(a), satisfies the Kolmogorov Forward equation:

0 = − d

da
[si (a) fi(a)]− λifi(a) + λ−if−i(a), i = 1, 2. (59)

1 =

' ∞

φ

f(a)da. (60)

We also solve this equation using an finite difference scheme. We use the notation

fi,j ≡ fi(aj). The system can be now expressed as

55In particular, we have replaced the entry 2 of the zero vector in (62) by 0.1.

Step 1: Individual economy problem. Given π, compute the bond price Q using
(48) and solve the HJB equation to obtain an estimate of the value function v

and of the matrix A.

Step 2: Aggregate distribution. Given A find the aggregate distribution f .

or equivalently

fi,j−1ξi,j−1 + fi,j+1αi,j+1 + fi,jβi,j + λ−if−i,j = 0, (61)

then (61) is also a system of 2 × J linear equations which can be written in matrix
notation as:

ATf = 0, (62)

where AT is the transpose of A = limn→∞An. Notice that An is the approximation

to the operator A and AT is the approximation of the adjoint operator A∗. In order
to impose the normalization constraint (60) we replace one of the entries of the zero

vector in equation (62) by a positive constant.55 We solve the system (62) and obtain

a solution f̂ . Then we renormalize as

fi,j =
f̂i,j$J

j=1

�
f̂1,j + f̂2,j



Δa
.

Complete algorithm The algorithm proceeds as follows.

0 = −
fi,jsi,j,F1sni,j,F>0 − fi,j−1si,j−1,F1sni,j−1,F>0

Δa
−
fi,j+1si,j+1,B1sni,j+1,B<0 − fi,jsi,,jB1sni,,jB<0

Δa
−λifi,j + λ−if−i,j,
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B.2 Optimal monetary policy - Markov Stackelberg equilibrium

In this case we need to find the value of inflation that satisfies condition (19). The

algorith proceeds as follows. We consider an initial guess of inflation, π(1) = 0. Set

m := 1. Then:

Step 1: Individual economy problem problem. Given π(m), compute the bond
price Q(m) using (48) and solve the HJB equation to obtain an estimate of the

value function v(m) and of the matrix A(m).

Step 2: Aggregate distribution. Given A(m) find the aggregate distribution f (m).

Step 3: Optimal inflation. Given f (m) and v(m), iterate steps 1-2 until π(m) satis-
fies56

2&
i=1

J−1&
j=2

ajf
(m)
i,j

�
v
(m)
i,j+1 − v

(m)
i,j−1



2

+ ψπ(m) = 0.

B.3 Optimal monetary policy - Ramsey

Here we need to find the value of the inflation and of the costate that satisfy conditions

(17) and (16) in steady-state. The algorith proceeds as follows. We consider an initial

guess of inflation, π(1) = 0. Set m := 1. Then:

Step 1: Individual economy problem problem. Given π(m), compute the bond
price Q(m) using (48) and solve the HJB equation to obtain an estimate of the

value function v(m) and of the matrix A(m).

Step 2: Aggregate distribution. Given A(m) find the aggregate distribution f (m).

56This can be done using Matlab’s fzero function.

Step 3: Costate. Given f (m), v(m),compute the costate μ(m) using condition (16) as

μ(m) =
1

Q(m)

⎡⎣ 2&
i=1

J−1&
j=2

ajf
(m)
i,j

�
v
(m)
i,j+1 − v

(m)
i,j−1



2

+ ψπ(m)

⎤⎦ .
Step 4: Optimal inflation. Given f (m), v(m) and μ(m), iterate steps 1-3 until π(m)

satisfies

�
ρ− r̄ − π(m) − δ

�
μ(m)+

1

(Q(m))
2

⎡⎣ 2&
i=1

J−1&
j=2

�
δaj + yi − c(m)i,j



f
(m)
i,j

�
v
(m)
i,j+1 − v

(m)
i,j−1



2

⎤⎦ .
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C. Computational method: the dynamic case

C.1 Exogenous monetary policy

We describe now the numerical algorithm to analyze the transitional dynamics, similar

to the one described in Achdou et al. (2017). With an exogenous monetary policy

it just amounts to solve the dynamic HJB equation (6) and then the dynamic KFE

equation (11). Define T as the time interval considered, which should be large enough

to ensure a converge to the stationary distribution and discretize it in N intervals of

lenght

Δt =
T

N
.

The initial distribution f(0, a, y) = f0(a, y) and the path of inflation {πn}Nn=0 are
given. We proceed in three steps.

Step 0: The asymptotic steady-state The asymptotic steady-state distribution

of the model can be computed following the steps described in Section B. Given πN ,

the result is a stationary destribution fN , a matrix AN and a bond price QN defined

at the asymptotic time T = NΔt.

Step 1: Solution to the bond pricing equation The dynamic bond princing

equation (10) can be approximated backwards as

(r̄ + πn + δ)Qn = δ +
Qn+1 −Qn

Δt
,⇐⇒ Qn =

Qn+1 + δΔt

1 +Δt (r̄ + πn + δ)
, n = N − 1, .., 0,

(63)

where QN is the asymptotic bond price from Step 0.

Step 2: Solution to the Hamilton-Jacobi-Bellman equation The dynamic

HJB equation (6) can approximated using an upwind approximation as

ρvn = un +Anv
n +

(vn+1 − vn)
Δt

,

where An is constructing backwards in time using a procedure similar to the one

described in Step 1 of Section B. By definingBn =
�
1
Δt
+ ρ

�
I−An and dn = un+Vn+1

Δt
,

we have

vn = (Bn)−1 dn. (64)
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Step 3: Solution to the Kolmogorov Forward equation Let An defined in

(57) be the approximation to the operator A. Using a finite difference scheme similar
to the one employed in the Step 2 of Section A, we obtain:

fn+1 − fn
Δt

= AT
n fn+1,⇐⇒ fn+1 =

�
I−ΔtAT

n

�−1
fn, n = 1, .., N (65)

where f0 is the discretized approximation to the initial distribution f0(b).

Complete algorithm The algorithm proceeds as follows:

Step 0: Asymptotic steady-state. Given πN , compute the stationary destribu-
tion fN , matrix AN , bond price QN .

Step 1: Bond pricing. Given {πn}N−1n=0 , compute the bond price path {Qn}N−1n=0

using (63).

Step 2: Individual economy problem. Given {πn}N−1n=0 and {Qn}N−1n=0 solve the

HJB equation (64) backwards to obtain an estimate of the value function

{vn}N−1n=0 , and of the matrix {An}N−1n=0 .

Step 3: Aggregate distribution. Given {An}N−1n=0 find the aggregate distribution

forward f (k) using (65).

C.2 Optimal monetary policy - Markov Stackelberg equilibrium

In this case we need to find the value of inflation that satisfies condition (19)

Step 0: Asymptotic steady-state. Compute the stationary destribution fN , ma-
trix AN , bond price QN and inflation rate πN . Set π(0) ≡ {π(0)n }N−1n=0 = πN and

k := 1.

Step 1: Bond pricing. Given π(k−1), compute the bond price pathQ(k) ≡ {Q(k)n }N−1n=0

using (63).

Step 2: Individual economy problem. Given π(k−1) and Q(k) solve the HJB

equation (64) backwards to obtain an estimate of the value function v(k) ≡
{v(k)n }N−1n=0 and of the matrix A

(k) ≡ {A(k)
n }N−1n=0 .

Step 3: Aggregate distribution. Given A(k) find the aggregate distribution for-

ward f (k) using (65).

Step 4: Optimal inflation. Given f (k) and v(k), iterate steps 1-3 until π(k) satisfies

Θ(k)
n ≡

2&
i=1

J−1&
j=2

ajf
(k)
n,i,j

�
v
(k)
n,i,j+1 − v

(k)
n,i,j−1



2

+ ψπ(k)n = 0.
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This is done by iterating

π(k)n = π(k−1)n − ξΘ(k)
n ,

with constant ξ = 0.05.

C.3 Optimal monetary policy - Ramsey

In this case we need to find the value of the inflation and of the costate that satisfy

conditions (17) and (16)

Step 0: Asymptotic steady-state. Compute the stationary destribution fN , ma-
trix AN , bond price QN and inflation rate πN . Set π(0) ≡ {π(0)n }N−1n=0 = πN and

k := 1.

Step 1: Bond pricing. Given π(k−1), compute the bond price pathQ(k) ≡ {Q(k)n }N−1n=0

using (63).

Step 2: Individual economy problem. Given π(k−1) and Q(k) solve the HJB

equation (64) backwards to obtain an estimate of the value function v(k) ≡
{v(k)n }N−1n=0 and of the matrix A

(k) ≡ {A(k)
n }N−1n=0 .

Step 3: Aggregate distribution. Given A(k) find the aggregate distribution for-

ward f (k) using (65).

Step 4: Costate. Given f (k) and v(k), compute the costate μ(k) ≡ {μ(k)n }N−1n=0 using

(17):

μ
(k)
n+1 = μ(k)n

�
1 +Δt

�
ρ− r̄ − π(k) − δ

��
+

Δt�
Q
(k)
n


2
⎡⎣ 2&
i=1

J−1&
j=2

�
δaj + yi − c(k)n,i,j



f
(k+1)
n,i,j

�
v
(k)
n,i,j+1 − v

(k)
n,i,j−1



2

⎤⎦ ,
with μ(k)0 = 0.

Step 5: Optimal inflation. Given f (k), v(k) and μ(k) iterate steps 1-4 until π(k)

satisfies

Θ(k)
n ≡

2&
i=1

J−1&
j=2

ajf
(k)
n,i,j

�
v
(k)
n,i,j+1 − v

(k)
n,i,j−1



2

+ ψπ(k)n −Q(k)n μ(k)n = 0.

This is done by iterating

π(k)n = π(k−1)n − ξΘ(k)
n .
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D. An economy with costly price adjustment

In this appendix, we lay out a model economy with the following characteristics:

(i) firms are explicitly modelled, (ii) a subset of them are price-setters but incur a

convex cost for changing their nominal price, and (iii) the social welfare function and

the equilibrium conditions constraining the central bank’s problem are the same as

in the model economy in the main text.

Final good producer

In the model laid out in the main text, we assumed that output of the consumption

good was exogenous. Consider now an alternative setup in which the consumption

good is produced by a representative, perfectly competitive final good producer with

the following Dixit-Stiglitz technology,

yt =

�' 1

0

y
(ε−1)/ε
jt dj

�ε/(ε−1)
, (66)

where {yjt} is a continuum of intermediate goods and ε > 1. Let Pjt denote the

nominal price of intermediate good j ∈ [0, 1]. The firm chooses {yjt} to maximize
profits, Ptyt −

% 1
0
Pjtyjtdj, subject to (66). The first order conditions are

yjt =

�
Pjt
Pt

�−ε
yt, (67)

for each j ∈ [0, 1]. Assuming free entry, the zero profit condition and equations (67)
imply Pt = (

% 1
0
P 1−εjt dj)1/(1−ε).

Intermediate goods producers

Each intermediate good j is produced by a monopolistically competitive intermediate-

good producer, which we will refer to as ’firm j’ henceforth for brevity. Firm j operates

a linear production technology,

yjt = njt, (68)

where njt is labor input. At each point in time, firms can change the price of their

product but face quadratic price adjustment cost as in Rotemberg (1982). Letting

Ṗjt ≡ dPjt/dt denote the change in the firm’s price, price adjustment costs in units
of the final good are given by

Ψt

�
Ṗjt
Pjt

�
≡ ψ

2

�
Ṗjt
Pjt

�2
C̃t, (69)
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where C̃t is aggregate consumption. Let πjt ≡ Ṗjt/Pjt denote the rate of increase in
the firm’s price. The instantaneous profit function in units of the final good is given

by

Πjt =
Pjt
Pt
yjt − wtnjt −Ψt (πjt)

=

�
Pjt
Pt
− wt

��
Pjt
Pt

�−ε
yt −Ψt (πjt) , (70)

where wt is the perfectly competitive real wage and in the second equality we have

used (67) and (68).57 Without loss of generality, firms are assumed to be risk neutral

and have the same discount factor as households, ρ. Then firm j’s objective function

is

E0
' ∞

0

e−ρtΠjtdt,

with Πjt given by (70). The state variable specific to firm j, Pjt, evolves according to

dPjt = πjtPjtdt. The aggregate state relevant to the firm’s decisions is simply time:

t. Then firm j’s value function V (Pjt, t) must satisfy the following Hamilton-Jacobi-

Bellman (HJB) equation,

ρV (Pj, t) = max
πj

��
Pj
Pt
− wt

��
Pj
Pt

�−ε
yt −Ψt (πj) + πjPj

∂V

∂Pj
(Pj, t)

�
+
∂V

∂t
(Pj, t) .

The first order and envelope conditions of this problem are (we omit the arguments

of V to ease the notation),

ψπjtC̃t = Pj
∂V

∂Pj
, (71)

ρ
∂V

∂Pj
=

�
εwt − (ε− 1)

Pj
Pt

��
Pj
Pt

�−ε
yt
Pj
+ πj

�
∂V

∂Pj
+ Pj

∂2V

∂P 2j

�
.

In what follows, we will consider a symmetric equilibrium in which all firms choose

the same price: Pj = P, πj = π for all j. After some algebra, it can be shown that

the above conditions imply the following pricing Euler equation,58�
ρ− dC̃ (t)

dt

1

C̃ (t)

�
π (t) =

ε− 1
ψ

�
ε

ε− 1w (t)− 1
�
1

C̃t
+
dπ (t)

dt
. (72)

57In the proofs of Propositions 1 and 3, w has been used to denote the social value of individual
households. Nonetheless, there is no possibility of confusion in this section.
58The proof is available upon request.

Equation (72) determines the market clearing wage w (t).
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Households

The preferences of household k ∈ [0, 1] are given by

E0
' ∞

0

e−ρt log (c̃kt) dt,

where c̃kt is household consumption of the final good. We now define the following

object,

ckt ≡ c̃kt +
c̃kt

C̃t

' 1

0

Ψt (πjt) dj,

i.e. household k�s consumption plus a fraction of total price adjustment costs (
%
Ψt (·) dj)

equal to that household’s share of total consumption (c̃kt/C̃t). Using the definition of

Ψt (eq. 69) and the symmetry across firms in equilibrium (Ṗjt/Pjt = πt,∀j), we can
write

ckt = c̃kt + c̃kt
ψ

2
π2t = c̃kt

�
1 +

ψ

2
π2t

�
. (73)

Therefore, household k’s instantaneous utility can be expressed as

log(c̃kt) = log (ckt)− log
�
1 +

ψ

2
π2t

�
= log (ckt)−

ψ

2
π2t + o

�����ψ2 π2t
����2
�
, (74)

where o(�x�2) denotes terms of order second and higher in x. Expression (74) is
the same as the utility function in the main text (eq. 20), up to a first order ap-

proximation of log(1 + x) around x = 0, where x ≡ ψ
2
π2 represents the percentage

of aggregate spending that is lost to price adjustment. For our baseline calibration

(ψ = 5.5), the latter object is relatively small even for relatively high inflation rates,

and therefore so is the approximation error in computing the utility losses from price

adjustment. Therefore, the utility function used in the main text provides a fairly

accurate approximation of the welfare losses caused by inflation in the economy with

costly price adjustment described here.

Households can be in one of two idiosyncratic states. Those in state i = 1 do not

work. Those in state i = 2 work and provide z units of labor inelastically. As in
the main text, the instantaneous transition rates between both states are given by

λ1 and λ2, and the share of households in each state is assumed to have reached its

ergodic distribution; therefore, the fraction of working and non-working households is

λ1/ (λ1 + λ2) and λ2/ (λ1 + λ2), respectively. Hours per worker z are such that total

labor supply λ1
λ1+λ2

z is normalized to 1.
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An exogenous government insurance scheme imposes a (total) lump-sum transfer

τ t from working to non-working households. All households receive, in a lump-sum

manner, an equal share of aggregate firm profits gross of price adjustment costs,

which we denote by Π̂t ≡ P−1t
% 1
0
Pjtyjtdj −wt

% 1
0
njtdj. Therefore, disposable income

(gross of price adjustment costs) for non-working and working households are given

respectively by

I1t ≡
τ t

λ2/ (λ1 + λ2)
+ Π̂t,

I2t ≡ wtz −
τ t

λ1/ (λ1 + λ2)
+ Π̂t.

We assume that the transfer τ t is such that gross disposable income for households

in state i equals a constant level yi, i = 1, 2, with y1 < y2. As in our baseline model,

both income levels satisfy the normalization

λ2
λ1 + λ2

y1 +
λ1

λ1 + λ2
y2 = 1.

Also, later we show that in equilibrium gross income equals one: Π̂t + wt λ1
λ1+λ2

z = 1.

It is then easy to verify that implementing the gross disposable income allocation

Iit = yi, i = 1, 2, requires a transfer equal to τ t = λ2
λ1+λ2

y1 − λ2
λ1+λ2

Π̂t. Finally, total

price adjustment costs are assumed to be distributed in proportion to each household’s

share of total consumption, i.e. household k incurs adjustment costs in the amount

(c̃kt/C̃t)(
ψ
2
π2t C̃t) = c̃kt

ψ
2
π2t . Letting Ikt ≡ ykt ∈ {y1, y2} denote household k’s gross

disposable income, the law of motion of that household’s real net wealth is thus given

by

dakt =

��
δ

Qt
− δ − πt

�
akt +

Ikt − c̃kt − c̃ktψπt/2
Qt

�
dt

=

��
δ

Qt
− δ − πt

�
akt +

ykt − ckt
Qt

�
dt, (75)

where in the second equality we have used (73). Equation (75) is exactly the same as

its counterpart in the main text, equation (4). Since household’s welfare criterion is

also the same, it follows that so is the corresponding maximization problem.

Aggregation and market clearing

In the symmetric equilibrium, each firm’s labor demand is njt = yjt = ȳt. Since labor

supply λ1
λ1+λ2

z = 1 equals one, labor market clearing requires

' 1

0

njtdj = ȳt = 1.
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Therefore, in equilibrium aggregate output is equal to one. Firms’ profits gross of

price adjustment costs equal

Π̂t =

' 1

0

Pjt
Pt
yjtdj − wt

' 1

0

njtdj = ȳt − wt,

such that gross income equals Π̂t + wt = ȳt = 1.

Central bank and monetary policy

We have shown that households’ welfare criterion and maximization problem are as

in our baseline model. Thus the dynamics of the net wealth distribution continue to

be given by equation (11). Foreign investors can be modelled exactly as in Section

2.2. Therefore, the central bank’s optimal policy problems, both under commitment

and discretion, are exactly as in our baseline model.

E. The methodology in discrete time

The aim of this appendix is to illustrate how the methodology can be extended to

discrete-time models. We assume again that (Ω,F , {Ft} ,P) is a filtered probability
space but time is discrete: t ∈ N.

E.1. Model

Households The domestic price at time t, Pt, evolves according to

Pt = (1 + πt)Pt−1, (76)

where πt is the domestic inflation rate.

Household k ∈ [0, 1] is endowed with an income ykt per period, where ykt follows
a two-state Markov chain: ykt ∈ {y1, y2} , with y1 < y2. The transition matrix is

P =

�
p11 p12

p21 p22

�
.

Outstanding bonds are amortized at rate δ > 0 per period. The nominal value of the

household’s net asset position Akt evolves as follows,

Akt+1 = A
new
kt + (1− δ)Akt,
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where Anewkt is the flow of new issuances. The nominal market price of bonds at time

t is Qt and ckt is the household’s consumption. The budget constraint of household

k is

QtA
new
kt = Pt (ykt − ckt) + δAkt.

The dynamics for net nominal wealth are

Akt+1 = (1 + rt)Akt +
Pt (ykt − ckt)

Qt
. (77)

where rt ≡ δ
Qt
− δ is the nominal bond yield. The dynamics of the real net wealth as

akt ≡ Akt/Pt are

akt+1 =
1

1 + πt

�
(1 + rt) akt +

ykt − ckt
Qt

�
= st (akt, ykt) . (78)

From now onwards we drop subscripts k for ease of exposition. For any Borel subset

Ã of Φ we define the transition function associated to the stochastic process at as

Ht

(
(a, yi) ,

�
Ã, yj


)
= P(at+1 ∈ Ã, yt+1 = yj|at = a, yt = yi), i, j = 1, 2.

This transition function equals

Ht

(
(a, yi) ,

�
Ã, yj


)
= pij1Ã (st,i (a)) ,

where 1Ã (·) is the indicator function of subset Ã and st,i (a) ≡ st (a, yi) .

Household have preferences over paths for consumption ckt and domestic inflation

πt discounted at rate β > 0,

E0

� ∞&
t=0

βt (u(ct)− x (πt))
�
. (79)

We use the short-hand notation vi(t, a) ≡ v(t, a, yi) for the value function when

household income is low (i = 1) and high (i = 2). The Bellman equation results in

vi(t, a) = max
ct
u(ct)− x (πt) + β (T vi) (t+ 1, a), i = 1, 2, (80)
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where operator T is the Markov operator associated with (78), defined as59

(T vi) (t+ 1, a) = Et [v(t+ 1, at+1, yt+1)|at = a, yt = yi] (81)

=
2&
j=1

'
vj (t+ 1, a

�)Ht [(a, yi) , (da�, yj)] =
2&
j=1

pijvj(t+ 1, st,i (a)).

The first order condition of the individual problem is

u� (ci)+β
�
T ∂vi
∂a

�
(t+1, a)

∂st,i (a)

∂ci
= u� (ci)−

�
T ∂vi
∂a

�
(t+1, a)

β

(1 + πt)Qt
= 0 (82)

Foreign investors The nominal price of the bond at time t is given by

Qt =
δ + (1− δ)Qt+1
(1 + πt) (1 + r̄)

.

Distribution dynamics The state of the economy at time t is the joint density of

net wealth and income, f(t, a, yi) ≡ fi(t, a), i = 1, 2. The dynamics of this density

are given by the Chapman—Kolmogorov (CK) equation,

fi(t, a) = (T ∗fi) (t− 1, a) (83)

59Notice that we consider the complete space R as the borrowing limit affects the dynamics through
the admissible consumption paths.

where the adjoint operator T ∗t−1 is defined as

(T ∗fi) (t−1, a) =
2&
j=1

'
Ht−1 [(a�, yj) , (a, yi)] fj(t−1, a�)da� =

2&
j=1

pji
fj(t− 1, s−1t−1,j (a))

dst−1,j/da
,

(84)

where s−1t,i (a) is the inverse function of st,i (a) : if a
� = st,i (a) then a = s−1t,i (a

�) .

The proof of the CK equation is as follows. Let

P(at ≤ a, yt = yi) =
' a

−∞
fi (t, a

�) da�,

be the joint probability of at ≤ a and yt = yi. It is equal to

2&
j=1

pji

' s−1t−1,j(a)

−∞
fj (t− 1, a�) da�,

and taking derivatives with respect to a:

fi (t, a) =

2&
j=1

pjifj
�
t− 1, s−1t−1,j (a)

� ds−1t−1,j (a)
da

=
2&
j=1

pji
fj(t− 1, s−1t−1,j (a))

dst−1,j/da
,
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where we have applied the inverse function theorem.

By changing variable a� = st,i (a) :

�T v(t+ 1, ·), f(t, ·)� =
2&
j=1

' 2&
i=1

pijfi(t, s
−1
t,i (a

�))vj(t+ 1, a�)
da�

dst,i/da

=

2&
j=1

' �
2&
i=1

pij
fi(t, s

−1
t,i (a

�))

dst,i/da

�
vj(t, a

�)da�

=
2&
j=1

'
(T ∗t fj) (t, a�)vj(t, a�)da� = �v(t+ 1, ·), T ∗t f(t, ·)� ,

showing that T and T ∗ are adjoint operators with one period lag.60

E.2. Optimal monetary policy (Ramsey)

Central bank preferences The central maximizes economy-wide aggregate wel-

fare,

W0 =
∞&
t=0

βt
�' ∞

φ

&2

i=1
[u (ci (t, a))− x (π (t))] fi(t, a)da

�
. (85)

Lagragian In this case the Lagragian can be written as

L [π, Q, f, v, c] =
∞&
t=0

βt �ut − xt, ft�+
∞&
t=0

�
βtζt, T ∗ft−1 − ft

	
+

∞&
t=0

βtμt

�
Qt −

δ + (1− δ)Qt+1
(1 + πt) (1 + r̄)

�
+

∞&
t=0

�
βtθt, ut − xt + βT vt+1 − vt

	
+

∞&
t=0

�
βtηt, u

�
t −

β

(1 + πt)Qt

�
T ∂vt+1

∂a

��
,

If we define T v(t, ·) = [T v1(t, ·), T v2(t, ·)]T and T ∗f(t, ·) = [T ∗f1(t, ·), T ∗f2(t, ·)]T

the inner product results in

�T v(t+ 1, ·), f(t, ·)� =
2&
i=1

'
(T vi) (t+ 1, a)fi(t, a)da =

2&
i=1

' 2&
j=1

pijvj(t+ 1, st,j (a))fi(t, a)da

=

2&
j=1

' 2&
i=1

pijfi(t, a)vj(t+ 1, st,j (a))da.

60A general proof for the time-invariant case can be found in theorem 8.3 in Stockey and Lucas
(1989).
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where βtζt (a), β
tηt (a), β

tθt (a) e
−ρtμt are Lagrange multipliers.

The problem of the central bank in this case is

max
{πs,Qs,vs(·),cs(·),fs (·)}∞s=0

L [π, Q, f, v, c] . (86)

We can apply the fact that T and T ∗ are adjoint operators to express

�
βtζt, T ∗ft−1 − ft

	
= βt �T ζt, ft� − βt �ζt, ft� ,�

βtθt, ut − xt + βT vt+1 − vt
	
= βt �θt, ut − xt − vt�+ βt+1 �T ∗θt, vt+1� ,�

βtηt, u
�
t −

β

(1 + πt)Qt

�
T ∂vt+1

∂a

��
= βt �ηt, u�t� −

βt+1

(1 + πt)Qt

�
T ∗ηt,

∂vt+1
∂a

�
.

Necessary conditions In order to find the maximum, we need to take the Gateaux

derivative with respect to the controls f , π, Q, v and c.

The Gateaux derivative with respect to ft (·) in the direction h is

βt �ut − xt, ht�+ βt+1
�
T ζt+1, ht

	
− βt �ζt, ht� = 0. (87)

Expression (87) should equal zero for any function hit (·) ∈ L2 (R) , i = 1, 2 :

ζ i (t, a) = u(ct,i)− x (πt) + β (T ζ i) (t, a) ,

which coincides with the household’s Bellman equation (80) and hence ζ i (t, a) =

vi (t, a) .

In the case of ct (a) , the Gateaux derivative is

βt �u�tht, ft� −
βt+1

(1 + πt)Qt

�
htT

∂ζ+1
∂a

, ft

�
+ βt �θt, u�tht� −

βt+1

(1 + πt)Qt

�
θt, htT

∂vt+1
∂a

�
+βt �ηt, u��t ht�+

βt+1

(1 + πt)
2Q2t

�
ηt, ht

�
T ∂

2vt+1
∂a2

��
,

where we have applied the fact that ∂
∂c
T ∂vt+1

∂a
= − 1

(1+πt)Qt
T ∂2vt+1

∂a2
. This expression

should be zero for any function hit (·) ∈ L2 (R) , i = 1, 2. Notice that�
θt,

�
u�t −

1

(1 + πt)Qt
βT ∂vt+1

∂a

�
ht

�
= 0

due to the first order condition of the individual problem (82). Analogously,�
ft,

�
u�t −

1

(1 + πt)Qt
βT ∂ζt+1

∂a

�
ht

�
= 0
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as ζ = v. Therefore the optimality condition with respect to c results in

ηt

�
u��t +

β

(1 + πt)
2Q2t

�
T ∂

2vt
∂a2

��
= 0 (88)

As the instantaneous utility function is assumed to be strictly concave, u��t < 0, and

the individual value function v is also strictly concave ∂2vt
∂a2

< 0 for all t and a, then

u��t +
β

(1 + πt)
2Q2t

�
T ∂

2vt
∂a2

�
< 0

and the equality in equation (88) is only satisfied if ηi (t, ·) = 0, i = 1, 2.
In the case of vt (a) , the Gateaux derivative is

−βt �θt, ht�+ βt �T ∗θt−1, ht� ,

where we have taken into account the fact that ηi (t, ·) = 0. The Gateaux derivative
should be zero for any function hit (·) ∈ L2 (R) , i = 1, 2 so that we obtain a CK equa-
tion that describes the propagation of the “promises” to the individual households:

θt = T ∗θt−1,

where θ−1 = 0 as there are no precommitments. Hence θi(t, ·) = 0, i = 1, 2..
In the case of Qt, we compute the standard (finite-dimensional) derivative:

βt+1
�

∂

∂Qt
T vt+1, ft

�
+ βtμt − βt−1μt−1

(1− δ)

(1 + πt−1) (1 + r̄)
= 0,

β

��
− δ

Q2t
a− (yt − ct)

Q2t

�
T vt+1, ft

�
+ μt − β−1μt−1

(1− δ)

(1 + πt−1) (1 + r̄)
= 0,

and thus

μt =
μt−1 (1− δ)

β (1 + πt−1) (1 + r̄)
+
β

Q2t

2&
i=1

'
(δa+ yi − ci (t, a))

�
T ∂vi
∂a

�
(t+ 1, a) fi (t, a) da.

The lack of any precommitment to bondholders implies μ−1 = 0. If we take into

account the first order condition of households u� (ci) =
�
T ∂vi

∂a

�
(t+ 1, a) β

(1+πt)Qt
, this

simplifies to

μt =
μt−1 (1− δ)

β (1 + πt−1) (1 + r̄)
+
(1 + πt)

Qt

2&
i=1

'
(δa+ yi − ci (t, a)) uc (ci (t, a)) fi (t, a) da.
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Finally, we compute the standard derivative with respect to πt :

βt �x�t, ft�+ βt+1
�

∂

∂πt
T vt+1, ft

�
+ βtμt

�
δ + (1− δ)Qt+1

(1 + πt)
2 (1 + r̄)

�
= 0,

�x�t, ft� −
β

(1 + πt)
2

�
T
�
at+1

∂vt+1
∂a

�
, ft

�
+ μt

�
Qt+1

(1 + πt)
2 (1 + r̄)

�
= 0,

and hence

μtQt+1 = (1 + r̄)

2&
i=1

' �
β

(1 + πt)
2T

�
a
∂vi
∂a

�
(t+ 1, a)− x� (t, a)

�
fi (t, a) da,

which, taking into account the first order condition of households, simplifies to

μtQt+1 = (1 + r̄)

2&
i=1

' �
Qt

(1 + πt)
u� (ci (t, a))− x� (t, a)

�
fi (t, a) da,

The solution to the Ramsey problem in discrete time is given by the following

proposition

Proposition 5 (Optimal inflation - Ramsey discrete time) If a solution to the
Ramsey problem (86) exists, the inflation path π (t) must satisfy

μtQt+1 = (1 + r̄)
2&
i=1

' �
Qt

(1 + πt)
u� (ci (t, a))− x� (t, a)

�
fi (t, a) da, (89)

where μ (t) is a costate with law of motion

μt =
μt−1 (1− δ)

β (1 + πt−1) (1 + r̄)
+ (1 + πt)

2&
i=1

'
u� (ci (t, a))

δa+ yi − ci (t, a)
Qt

fi (t, a) da.

(90)

and initial condition μ−1 = 0.

Notice that this proposition is the the equivalent of Proposition 1 in discrete time.
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F. A simplified model version

Consider a simplified model version with no idiosyncratic uncertainty (y1 = y2 ≡ y).
Let also the natural borrowing limit replace the exogenous lower bound for real net

wealth (φ). The household’s problem is otherwise unchanged relative to the one in

the main text. As in our numerical implementation, assume log consumption utiliy:

u(c) − x(π) = log (c) − ψπ2/2. The HJB equation (equation 6 in the main text)

simplifies to

ρvt(a) =
∂vt
∂t
+max

c

�
log (c)− ψπ2t/2 + st (a, c)

∂vt
∂a

�
, (91)

where st (a, c) =
�

δ
Qt
− δ − πt



a+ y−c

Qt
. The first order condition for consumption is

1

ct (a)
=
1

Qt

∂vt(a)

∂a
. (92)

From now on, drop function arguments for ease of notation. The envelope condition

is

ρ
∂vt
∂a

=
∂2vt
∂t∂a

+

�
δ

Qt
− δ − πt

�
∂vt
∂a

+ st
∂2vt
∂a2

. (93)

Differentiating (92) with respect to a and t, we obtain respectively

0 =
∂ct
∂a

∂vt
∂a

+ ct
∂2vt
∂a2

.

Q̇t =
∂ct
∂t

∂vt
∂a

+ ct
∂2vt
∂a∂t

.

Using the latter two expressions and (92) to substitute for ∂vt
∂a
, ∂

2vt
∂t∂a

and ∂2vt
∂a2

in (93),

and rearranging,

ρ =
Q̇t
Qt
+

δ

Qt
− δ − πt −

�
st
∂ct
∂a

+
∂ct
∂t

�
1

ct
.

Using the fact that st ∂ct∂a
+ ∂ct

∂t
= dct

dt
≡ ċt, we obtain the following consumption Euler

equation,

ċt
ct

=
Q̇t
Qt
+

δ

Qt
− δ − πt − ρ

= r̄ − ρ,
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where the last equality follows from the bond pricing condition, Q̇t
Qt
+ δ

Qt
− δ− πt = r̄

(see equation 10 in the main text).61

We now guess and verify that the value function takes the form

vt(a) =
1

ρ
log(a+ ht/Qt) + v̂t, (94)

where

ht ≡
' ∞

t

e−
% s
t
(ru−πu)duy

Qt
Qs
ds.

where rt = δ
Qt
− δ and v̂t is the solution to the ordinary differential equation

dv̂t
dt
+ log (ρQt)−

ψ

2
π2t +

rt − πt − ρ

ρ
= ρv̂t, (95)

with the transversality condition limt→∞ e−ρtv̂t = 0. We then have ∂vt(a)/∂a =

ρ−1(a+ ht/Qt)−1 and hence, from equation (92), the optimal consumption is

ct (a) = ρ (Qtat + ht) .

If we substitute the value function and the consumption in the HJB (91) we obtain

log(a+
ht
Qt
) + ρv̂(t) =

∂

∂t

�
1

ρ
log(a+

ht
Qt
) + v̂(t)

�
+ log (ρQt) + log(at +

ht
Qt
)− ψ

2
π2t

+

�
(rt − πt) a+

y − ρ (Qtat + ht)

Qt

�
∂

∂a

�
1

ρ
log(a+

ht
Qt
) + v̂(t)

�
.

Notice that

∂

∂t

�
1

ρ
log(a+

ht
Qt
) + v̂(t)

�
=
1

ρ

1

a+ ht/Qt

∂

∂t
(
ht
Qt
) +

dv̂(t)

dt
,

61In the full model, and with log preferences, the Euler equation generalizes to ċit/cit = r̄ − ρ +
λi (cit/cjt − 1) for i, j = 1, 2, j �= i.

and
∂

∂t
(ht/Qt) =

' ∞

t

e−
% s
t
(ru−πu)duy

1

Qs
ds =

−y
Qt

+
(rt − πt)ht

Qt
.

Using the latter in the HJB equation, cancelling terms, and rearranging,

0 =
(rt − πt − ρ) (ht +Qta)

Qt

1

ρ

1

a+ ht/Qt

+
dv̂(t)

dt
− ρv̂(t) + log (ρQt)−

ψ

2
π2t ,
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We finally obtain

ρv̂(t) =
rt − πt − ρ

ρ
+
dv̂(t)

dt
+ log (ρQt)−

ψ

2
π2t ,

which is satisfied due to equation (95).

G. Robustness

Steady state Ramsey inflation. In Proposition 2, we established that the Ramsey
optimal long-run inflation rate converges to zero as the central bank’s discount rate

ρ converges to that of foreign investors, r̄. In our baseline calibration, both discount

rates are indeed very close to each other, implying that Ramsey optimal long-run

inflation is essentially zero. We now evaluate the sensitivity of Ramsey optimal steady

state inflation to the difference between both discount rates. From equation (21),

Ramsey optimal steady state inflation is

π∞ =
1

ψ

2&
i=1

' ∞

φ

Q∞ (−a) u� (ci∞ (a)) fi∞ (a) da+
1

ψ
μ∞Q∞, (96)

where from equation (17)

μ∞ = −
Ef∞(a,y) [−anew∞ (a, y) u� (c∞ (a, y))]

π∞ + δ − (ρ− r̄) . (97)

Figure 5 displays π (left axis), as well as its two determinants (right axis) on the

right-hand side of equation (96). Optimal inflation decreases approximately linearly

with the gap ρ− r̄. As the latter increases, two counteracting effects take place. On
the one hand, it can be shown that as the households become more impatient relative

62The evolution of the long-run wealth distribution as ρ− r̄ increases is available upon request.

to foreign investors, the net asset distribution shifts towards the left, i.e. more and

more households become net borrowers and come close to the borrowing limit, where

the marginal utility of wealth is highest.62 As shown in the figure, this increases the

central bank’s incentive to inflate for the purpose of redistributing wealth towards

debtors. On the other hand, higher indebtedness implies also more issuance of new

debt. Moreover, a higher gap ρ − r̄ increases the extent to which the central bank
internalizes the effect of trend inflation on the price of bond issuances. The latter

two effects imply that in equation (97), ceteris paribus, the numerator increases and

the denominator falls, respectively, such that μ∞ becomes more negative. This gives

the central bank an incentive to committing to lower long-run inflation. As shown by

Figure 5, this second ’commitment’ effect dominates the redistributive inflationary
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effect, such that in net terms optimal long-run inflation becomes more negative as

the discount rate gap widens.

Initial inflation. As explained before, time-0 optimal inflation and its subsequent
path depend on the initial net wealth distribution across households, which is an

infinite-dimensional object. In our baseline numerical analysis, we set it equal to the

stationary distribution in the case of zero inflation. We now investigate how initial

inflation depends on such initial distribution. To make the analysis operational, we

restrict our attention to the class of Normal distributions truncated at the borrowing

limit φ. That is,

f0 (a) =

�
φ (a;μ,σ) / [1− Φ (φ;μ,σ)] , a ≥ φ

0, a < φ
, (98)

where φ (·;μ,σ) and Φ (·;μ,σ) are the Normal pdf and cdf, respectively.63 The para-
meters μ and σ allow us to control both (i) the initial net foreign asset position and

(ii) the domestic dispersion in household wealth, and hence to isolate the effect of

each factor on the optimal inflation path. Notice also that optimal long-run inflation

rates do not depend on f0 (a) and are therefore exactly the same as in our baseline

numerical analysis regardless of μ and σ.64 This allows us to focus here on inflation

63In these simulations, we assume that the initial net asset distribution conditional on income is the
same for high- and low-income households: fa|y0 (a | y2) = fa|y0 (a | y1) ≡ f̃0 (a). This implies that the
marginal asset density coincides with its conditional density: fa0 (a) =

$
i=1,2 f

a|y
0 (a | yi) fy (yi) =

f̃0 (a).
64As shown in Table 2, long-run inflation is −0.05% under commitment, and 1.68% under discre-

at time 0, while noting that the transition paths towards the respective long-run lev-

els are isomorphic to those displayed in Figure 1.65 Moreover, we report results for

the commitment case, both for brevity and because results for discretion are very

similar.66

Figure 6 displays optimal initial inflation rates for alternative initial net wealth

distributions. In the first row of panels, we show the effect of increasing wealth

dispersion while restricting the country to have a zero net position vis-à-vis the rest

of the World, i.e. we increase σ and simultaneously adjust μ to ensure that ā0 = 0.67

In the extreme case of a (quasi) degenerate initial distribution at zero net assets (solid

blue line in the upper left panel), the central bank has no incentive to create inflation,

tion.
65The full dynamic optimal paths under any of the alternative calibrations considered in this

section are available upon request.
66As explained before, time-0 inflation in both policy regimes differ only insofar as the respective

time-0 value functions do, but numerically we found the latter to be always very similar to each
other. Results for the discretion case are available upon request.
67We verify that for all the calibrations considered here, the path of āt after time 0 satisfies

Assumption 1.
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Figure 5: Sensitivity analysis to changes in ρ− r̄.

and thus optimal initial inflation is zero. As the degree of initial wealth dispersion

increases, so does optimal initial inflation.

The bottom row of panels in Figure 6 isolates instead the effect of increasing

the liabilities with the rest of the World, while assuming at the same time σ 

0, i.e. eliminating any wealth dispersion.68 As shown by the lower right panel,

optimal inflation increases fairly quickly with the external indebtedness; for instance,

an external debt-to-GDP ratio of 50 percent justifies an initial inflation of over 6

percent.

We can finally use Figure 6 to shed some light on the contribution of each re-

distributive motive (cross-border and domestic) to the initial optimal inflation rate,

π0 = 4.6%, found in our baseline analysis. We may do so in two different ways. First,

we note that the initial wealth distribution used in our baseline analysis implies a

consolidated net foreign asset position of ā0 = −25% of GDP (ȳ = 1). Using as

initial condition a degenerate distribution at exactly that level (i.e. μ = −0.205 and

68That is, we approximate ’Dirac delta’ distributions centered at different values of μ. Since such
distributions are not affected by the truncation at a = φ, we have ā (0) = μ, i.e. the net foreign
asset position coincides with μ.
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σ 
 0) delivers π0 = 3.1% (see panel d). Therefore, the pure cross-border redistrib-

utive motive explains a significant part (about two thirds) but not all of the optimal

time-0 inflation under the Ramsey policy. Alternatively, we may note that our base-

line initial distribution has a standard deviation of 1.95. We then find the (σ,μ) pair

such that the (truncated) normal distribution has the same standard deviation while

ensuring that ā0 = 0 (thus switching off the cross-border redistributive motive); this

requires σ = 2.1, which delivers π0 = 1.5% (panel b). We thus find again that the

pure domestic redistributive motive explains about a third of the baseline optimal

initial inflation. We conclude that both the cross-border and the domestic redistribu-

tive motives are quantitatively important for explaining the optimal inflation chosen

by the monetary authority.

H. Additional figures

Figure 7 is the analogue of Figure 3 in the main text for low-income (unemployed)

households, i.e. those with y = y1. Qualitatively, the effects of optimal inflation on

consumption redistribution are similar to those for high-income (employed) house-

holds. First, relative to zero inflation, optimal inflationary policies favor time-0

consumption for indebted households and vice versa for lending ones (center-right

panel). Second, the optimal commitment policy moves some low-wealth households

to the range of intermediate wealth levels, which favors their consumption over time

(lower-left panel).
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