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Abstract

We make two complementary contributions to efficiently estimate dynamic factor models: a
frequency domain EM algorithm and a swift iterated indirect inference procedure for ARMA
models with no asymptotic efficiency loss for any finite number of iterations. Although our
procedures can estimate such models with many series without good initial values, near
the optimum we recommend switching to a gradient method that analytically computes
spectral scores using the EM principle. We successfully employ our methods to construct
an index that captures the common movements of US sectoral employment growth rates,
which we compare to the indices obtained by semiparametric methods.

Keywords: indirect inference, Kalman filter, sectoral employment, spectral maximum likelihood,
Wiener-Kolmogorov filter.

JEL classification: C32, C38, C51.



Resumen

Realizamos dos contribuciones complementarias para estimar eficientemente modelos
factoriales dinamicos: un algoritmo EM espectral y un procedimiento de inferencia indirecta
iterada rapidisimo para modelos ARMA sin pérdida de eficiencia asintética para cualquier
ndmero finito de iteraciones. Aunque nuestros métodos pueden estimar dichos modelos
con muchas series sin buenas condiciones iniciales, cerca del optimo recomendamos
cambiar a un algoritmo del gradiente calculando analiticamente los gradientes espectrales
usando el principio EM. Empleamos con éxito nuestros procedimientos para construir un
indice que captura los movimientos comunes de las tasas de crecimiento del empleo a
escala sectorial en Estados Unidos y lo comparamos con indices obtenidos con métodos
semiparamétricos.

Palabras clave: inferencia indirecta, filtro de Kalman, empleo sectorial, maxima verosimilitud
espectral, filtro de Wiener-Kolmogorov.

Cédigos JEL: C32, C38, C51.



1 Introduction

Dynamic factor models have been extensively used in macroeconomics and finance since their
introduction by Geweke (1977) and Sargent and Sims (1977) as a way of capturing the cross-
sectional and dynamic correlations between multiple series in a parsimonious way. A far from
comprehensive list of early and more recent applications include not only business cycle analysis
(see Litterman and Sargent (1979), Stock and Watson (1989, 1993), Diebold and Rudebusch
(1996) or Gregory, Head and Raynauld (1997)) and bond yields (Singleton (1981), Jegadeesh
and Pennacchi (1996), Dungey, Martin and Pagan (2000) or Diebold, Rudebusch and Aruoba
(2006)), but also wages (Engle and Watson (1981)), employment (Quah and Sargent (1993)),
commodity prices (Pena and Box (1987)) and financial contagion (Mody and Taylor (2007)).

An expanding, influential body of literature has shown that one may accurately recover the
unobserved series by using the frequency domain version of principal components put forward by
Brillinger (1981, ch. 9) and further extended by Forni, Hallin, Lippi and Reichlin (2000) (FHLR),
which is based on a non-parametric estimate of the spectral density matrix of the observed series
(see Forni, Hallin, Lippi and Zaffaroni (2015) for more recent developments). In fact, it might
even be possible to use static principal components if certain additional assumptions hold (see
Bai and Ng (2008)). Aside from avoiding the numerical optimisation of a criterion function,
the main advantage of such methods is that they remain valid in the presence of some mild
contemporaneous and dynamic correlation between idiosyncratic terms when the cross-sectional
dimension, N, is commensurate with the time series dimension, 7T

There are two closely related issues, though. First, the cross-sectional asymptotic bound-
edness conditions on the eigenvalues of the autocovariance matrices of the idiosyncratic terms
underlying the approximate factor structures originally suggested by Chamberlain and Roth-
schild (1983) are largely meaningless in empirical situations in which N is small relative to
T. And second, although the factors could be regarded as a set of parameters in any given
realisation, efficiency considerations indicate that a signal extraction approach which treats the
underlying latent variables as stochastic processes would be more appropriate for such data sets.
In addition, Doz, Giannone and Reichlin (2012) have recently closed the gap between the two
strands of the literature by proving the NT-consistency of the Gaussian pseudo ML estimators
(MLE) of exact versions of dynamic factor models even when not all the maintained assumptions
hold.

In principle, Gaussian (P)MLESs of the parameters can be obtained from the usual time do-
main version of the log-likelihood function computed as a by-product of the Kalman filter predic-

tion equations or from Whittle’s (1962) frequency domain asymptotic approximation. Further,
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once the parameters have been estimated the Kalman smoother or its Wiener-Kolmogorov coun-
terpart provide optimally filtered estimates of the latent factors. These estimation and filtering
issues are well understood (see e.g. Harvey (1989)), and the same can be said of their numerical
implementation (see Jungbacker and Koopman (2015)). In practice, though, researchers avoid
ML except in relatively small models because of the heavy computational burden involved, which
is disproportionately larger as the number of series considered increases.

To ameliorate this problem, Shumway and Stoffer (1982), Watson and Engle (1983) and Quah
and Sargent (1993) applied the Ezpectation-Mazimisation (EM) algorithm in Dempster, Laird
and Rubin (1977) to the time domain versions of these models, thereby avoiding the computation
of the likelihood function and its score. This iterative algorithm has been popular in various
areas of statistics and econometrics when the data set is incomplete or contains missing values,
or the model can be posed in a similar form, such as in the finite mixture models studied by
Arcidiacono and Jones (2003) or the dynamic Markov switching models considered by Hamilton
(1990) and Fruhwirth-Schnatter (2007). Its popularity can be attributed mainly to the efficiency
of the procedure, as measured by its speed, and also to the generality of the approach and its
convergence properties (see Ruud (1991) for an elegant review of this method and McLachlan
and Krishnan (1996) for a more thorough analysis).

However, the time domain version of the EM algorithm has only been derived for dynamic
factor models in which the latent variables follow pure AR processes (see again Doz, Giannone
and Reichlin (2012)), and works best when the effects of the common factors on the observed
variables are contemporaneous, which substantially limits the class of models to which they can
be successfully applied. In particular, it excludes models in which either common or idiosyncratic
factors follow ARMA processes. As is well known, such processes combine autoregressive and
moving average components in a rather parsimonious way, and for that reason they are by far the
most common approximations used to (Wold) represent univariate stationary series. However,
while AR process often arise as difference equation-type representations of natural phenomena,
the presence of M A components is sometimes justified as a result of contemporaneous aggregation
of several underlying components. On this basis, one might argue that there is no need to
introduce M A terms in dynamic factor models.

Nevertheless, there are at least three compelling reasons for considering ARMA processes for
common or idiosyncratic factors. First, the temporal aggregation results in Bergstrom (1984)
imply that discrete time observations will often contain MA components even if the underlying
continuous time processes follow first-order stochastic difference equations. Obviously, the same
applies to the increasingly popular continuous time versions of ARMA models (see Chambers

and Thorton (2012)). Second, the usual deseasonalisation procedures employed by the national
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statistical offices imply a transfer function that substantially dampens the spectral density at
high frequencies, which pure AR models struggle to capture (see Maravall (1993)). Given that
those filters tend to be very similar for closely related homogeneous series, they are likely to
introduce MA terms not only in the specific component of each series but also in the common
one. Finally, recent macroeconomic applications of dynamic factor models have often considered
specifications in which the lagged latent variables appear as additional factors (see again Bai
and Ng (2008) and the references therein). In those circumstances, plausible cross-sectional
restrictions on the dynamic factor loadings made for parsimony reasons also introduce MA
terms in the common factors.

In the context of general dynamic factor models with latent ARMA processes, we make
two independent but complementary contributions. First, we introduce a frequency domain
version of the EM algorithm, which exploits the heteroskedastic factor structure of the spectral
density matrix of the model to carry out the expectation stage very quickly. Nevertheless, a
standard implementation of our algorithm would still require O(NN) numerical optimisations
at each mazimisation stage in models with idiosyncratic MA components. For that reason,
our second contribution is a very fast iterated indirect inference procedure for estimating the
parameters of univariate ARMA models, which is based on a sequence of simple auxiliary OLS
regressions of certain filtered series. Importantly, unlike existing indirect inference procedures
for those models, our proposed estimator entails no asymptotic efficiency loss for any finite
number of iterations. Further, it will generally coincide with the ML estimator in the limit.

The complementary between our proposals is twofold: (i) our iterated indirect inference
method can be implemented far more quickly in the frequency domain than in the time domain;
and (ii) it can be very easily adapted to deal with latent variables with only minor modifications.

Our combined proposal, though, differs from more standard applications of indirect esti-
mation methods to factor models, which typically rely on a simpler approximating model as
auxiliary model. For example, in the case of a single factor with static loadings we could fit
univariate ARMA models to the first principal component of the observed series, as well as to the
difference between each of the observed series and its common component. Such procedures will
result in an efficiency loss relative to maximum likelihood without yielding any gains in terms of
speed because the calibration of the parameters of the true model by minimising a GMM-type
criterion function whose moments have to be evaluated by simulation would remain prohibitive
(but see Sentana, Calzolari and Fiorentini (2008) for a sequential proposal that could speed up
the indirect estimation of large models).

Finally, we illustrate our proposed procedures with an empirical application to US employ-

ment data. Specifically, we follow Quah and Sargent (1993) and construct an index that captures
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the common movements of sectoral employment growth rates. Nevertheless, we also compare
our results to the ones obtained by the aforementioned semiparametric approaches.

The rest of the paper is organised as follows. In section 2, we review the properties of dy-
namic factor models and their filters, as well as maximum likelihood estimation in the frequency
domain. Then, we derive our iterated indirect procedure in section 3 and our spectral EM algo-
rithm in section 4. This is followed by the empirical application in section 5. Finally, we discuss
several interesting extensions for further research in section 6. Auxiliary results are gathered in

appendices.

2 Theoretical background

2.1 Dynamic factor models

To keep the notation to a minimum, we focus on single factor models, which suffice to
illustrate our procedures. A dynamic, exact, single factor model for a finite dimensional vector
of N observed series, y¢, can be defined in the time domain by the system of stochastic difference

equations
yi =+ c(L)x + uy,
az(L>wt = Bx(L)fta (1)
O(ul( )ult Bu( )Ui,ta izlv"'7N7
(ftyvl,ta o vN,t)‘It—la H, 0 ~ N[()? dlag(’l/}fa 1/11; LRI 7’(/}N)]7

where z; is the only common factor, u; the N specific factors, ¢(L) = > 1_  cLF a vector
of N possibly two-sided polynomials in the lag operator ¢;(L), (L) and oy, (L) are one-sided
polynomials of orders p, and p,,, respectively, while 3,(L) and S, ( ) are one-sided polynomials
of orders ¢, and g, coprime with o, (L) and «,, (L), respectively, I;_; is an information set that
contains the values of v; and f; up to, and including time ¢t — 1, p is the mean vector and 6
refers to all the remaining model parameters, which we assume variation-free.

Note that the dynamic nature of the model is the result of three different characteristics:

1. The serial correlation of the common factor a,
2. The serial correlation of the idiosyncratic factors u; and

3. The heterogeneous dynamic impact of the common factor on each of the observed variables

through the series-specific distributed lag polynomials ¢;(L).

To some extent, characteristics 1 and 3 overlap, as one could always write any dynamic factor
model in terms of white noise common factors. In this regard, the assumption of ARMA (p,, q.)
dynamics for the common factor can be regarded as a parsimonious way of modelling an infinite

distributed lag (see sections 2.3 and 4.5 for further details). In any case, we would need to shut
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down all three sources to go back to a traditional static factor model (see Lawley and Maxwell
(1971)). Cancelling only one or two of those channels still results in a dynamic factor model. For
example, Engle and Watson (1981) considered models with static factor loadings, while Pena
and Box (1987) further assumed that the specific factors were white noise.

The main difference between the exact model in (1) and the generalised dynamic factor
models considered by Forni, Hallin, Lippi and Reichlin (2000), Forni and Lippi (2001, 2011) and
Forni, Hallin, Lippi and Zaffaroni (2015) is that it rules out any contemporaneous or dynamic

cross-correlation between the idiosyncratic terms. We revisit this issue in section 6.

2.2 Spectral density matrix and filters

Under the assumption that y; is a covariance stationary process, possibly after suitable

transformations as in section 5, its spectral decomposition will be

™

yi—p = / eNdZY (N),

—T

VIAZY(N)] = Gyy(A)dA,

with a spectral density matrix given by

Gyy(A) = c(e_M)Gm()\)c’(eM) + Guu (M), (2)
Ba(e”)By(e?)
Gre(A) = (e~ “‘)am(e“‘)wf’
Guu(N) = diag[Guyuy (V), - -+, Guyuy (V)]

5%(6’“)[3%( )
(e M)y, (@)

Thus, (1) implies that Gyy(A) is the sum of the rank 1 matrix c(e™)G . (A)c(e?) and the

Guiui ()‘) =

diagonal matrix Gyuu (), thereby inheriting the exact single factor structure of the unconditional
covariance matrix of a static factor model.

The fact that the idiosyncratic impact of the common factor on each of the observed vari-
ables is in principle dynamic implies that the spectral density matrix of y, will generally be
complex but Hermitian, even though the spectral densities of x; and u;; are all real because they
correspond to univariate processes.

Assuming that Gyy () is not singular at any frequency, the Wiener-Kolmogorov two-sided

filter for the common factor z; at each frequency is given by

de”K()\) = Gue(N)c/ (e Z’\)G ()\)dZy()\) (3)
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where

Gax(A)' (€M) Gyy (M)

is known as the transfer function of the common factor smoother. As a result, the spectral

density of the smoothed values of the common factors, X Iwill be

t|oo

Garare (V) = Go (M€ (€?) Gy (Ne(e™™)

thanks to the Hermitian nature of Gyy()), while the spectral density of the final estimation

Koo will be given by

error ry — IL’tl

Guz(A) — G2, (N (€M) Gy (Ve(e™) = w()).

Similarly, the Wiener-Kolmogorov smoother for the N specific factors will be

dZ"" (\) = Guu(N)Gyg (V)dZY (\)

— [IN — (e G (V) (€M) Gyl (V)| dZ¥ (N) = dZY () — c(e)dz"" (N).

Hence, the spectral density matrix of the smoothed values of the specific factors will be given
by

Gurux(A) = Guu()‘)G;;(A)GuU()\)a

while the spectral density of their final estimation errors u; — utl‘(Oo is

Guu(A) — Guryr () = Guu(A) = Guu(A)Gyy (A)Guu(A) = w(A)e(e )/ () = E(N).
Finally, the co-spectrum between xffoo and ufl(oo will be

G,xux (N) = Gar (V) (€7)Gyy (V) Guu(N).

2.3 Identification

The identification by means of homogeneous restrictions of linear dynamic models with latent
variables such as (1) was discussed by Geweke (1977) and Geweke and Singleton (1981), and more
recently by Scherrer and Deistler (1998) and Heaton and Solo (2004) (see also Forni and Lippi
(2001, 2011) for related results). These authors extend well known results from static factor
models and simultaneous equation systems to the spectral density matrix (2) on a frequency by
frequency basis. Thus, two models will be observationally equivalent if and only if they generate
exactly the same spectral density matrix for the observed variables at all frequencies. As in the

traditional case, there are two different identification issues:

'The main difference between the Wiener-Kolmogorov filtered values, xf"oo, and the Kalman filter smoothed
values, xfl(p results from the dependence of the former on a double infinite sequence of observations.
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1. the nonparametric identification of common and specific components,
2. the parametric identification of dynamic loadings and factor dynamics within the common

components.

The answer to the first question is easy when Guyu()) is a diagonal, full rank matrix.? Specif-
ically, we can show that for the dynamic single factor model (1), nonparametric identification of
common and idiosyncratic terms is guaranteed when N > 3 provided that at least three series
load on the common factor. The intuition is as follows. We know that the condition above
coincides with the so-called Ledermann bound for single factor models (see e.g. Scherrer and
Deistler (1998)). Since it is not possible to transfer variance from the common to the idiosyn-
cratic components (or vice versa) in those circumstances, and any model with more than one
factor will lead to some singular idiosyncratic variance, we can uniquely decompose Gyy () into
the rank one matrix c(e”)Gp(A)c/(e*) and the full rank matrix Gyuu()\) in this way.

The separate identification of c(e™™) and G, () is trickier, as we could always write any
dynamic factor model (up to time shifts) in terms of white noise common factors. But it can
be guaranteed (up to scaling and sign changes) if in addition the dynamic loading polynomials
¢i(.) are one-sided of finite order and coprime, so they do not share a common root across all N
series (see theorem 3 in Heaton and Solo (2004) for a more formal argument along these lines).?

To avoid dealing with nonsensical situations, henceforth we maintain the assumption that
the model that has to be estimated is identified, which will have to be verified on a case by
case basis. Nevertheless, the conditions above suffice to guarantee identification in the empirical
application in section 5. The only remaining issue is the unconditional scaling of the common

factor, which we can achieve by normalising the variance of f; to 1.*

2.4 Maximum likelihood estimation in the frequency domain

Let -
1 —i(t—s)A;
Ly (\) = 5= > D (v = w)(ys — p)'e I (4)
t=1 s=1

denote the Hermitian positive semidefinite periodogram matrix of y; and \; = 27j/T (j =

0,...7T — 1) the usual Fourier frequencies. If we assume that Gyy()) is not singular at any of

2Scherrer and Deistler (1998) refer to this situation as the Frisch case.

3The one-sided restriction is without loss of generality in finite order models because any shift in the dating
of the common factor can be exactly matched by an opposite shift in the timing of the dynamic loadings.

4Other symmetric scaling assumptions would normalise the unconditional variance of x;, or some norm of the
vector of loadings co or their long run counterparts c(1). Alternatively, we could asymmetrically fix one element
of ¢ or ¢(1) to 1.
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those frequencies, the so-called Whittle (discrete) spectral approximation to the log-likelihood

. . B
function is®

=
L
~
L

) — £ 3 Gy (W) — 5 3 tr { Gy ) 2Ty (4]} (5)

N =
Il
=}
.
I
o

J

Expression (4), though, is far from ideal from a computational point of view, and for that
reason we make use of the Fast Fourier Transform (FFT). Specifically, given the 7' x N original
real data matrix Y = (yi1,...,¥t,...,yr), the FFT creates the centred and orthogonalised

T x N complex data matrix Z¥ = (z, ..., z;' ... 2y _,) by effectively premultiplying Y — ¢pp/

y*

by the T" x T" Fourier matrix W. On this basis, we can easily compute Iyy();) as 27TZ] 5

y*

where z 78 the complex conjugate transpose of zz»'. Hence, the spectral approximation to the

log-likelihood function (5) becomes
LTl
NT v
f—ln 2r) — = g ln|ny > g er Gy;()\j)zg,
J=0

which can be regarded as the log-likelihood function of 7" independent but heteroskedastic com-
plex Gaussian observations.

But since z;' does not depend on p for j = 1,...,T — 1 because {1 is proportional to the
first column of the orthogonal Fourier matrix and z§ = (§7 — p), where y is the sample mean
of y¢, it immediately follows that the ML of g will be yp. As for the remaining parameters, the

score function will be given by:

=
a(6) = 13" d(r,:0)
=0
1 Qvec’ [Gyy (A;)] -1 eyl /
d(:0) = 5 o (G, L(0) ® GYy (A))] vec [2wzjy Y Gl (N )]
1 0ved[Gyy(A))]
= §TM()\J)IH()\J)7 (6)
where z3° = 2} * is the complex conjugate of z,
m()\;) = vec |2123°z) — Gy ()
and

M(}j) = Gyy(N)) @ Gyy' (A))-

The information matrix is block diagonal between p and the elements of 6, with the (1,1)-

element being Gy (0) and the (2,2)-block being

Q- % /_7; 8vec’[(§,;yy()\)]M(/\) {8@@0’[66*,0yy()\)] } dx 7)

"There is also a continuous version which replaces sums by integrals (see Dunsmuir and Hannan (1976)).
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a consistent estimator of which will be provided by either by the outer product of the score or
by
o 9ved[Gyy (V)] dved [Gyy (V)] |
D RIEM()) {ae} .
=0

Formal results showing the strong consistency and asymptotic normality of the resulting
ML estimators of dynamic latent variable models under suitable regularity conditions were
provided by Dunsmuir (1979), who generalised earlier results for VARMA models by Dunsmuir
and Hannan (1976). These authors also showed the asymptotic equivalence between time and
frequency domain ML estimators.’ In addition, they explicitly acknowledged the possibility
that the normality assumption does not hold, in which case the criterion function (5) must be
understood as a pseudo log-likelihood.”

Appendix C provides detailed expressions for the Jacobian of vec [Gyy ()] and the spectral
score of dynamic factor models, while appendix E includes numerically reliable and efficient
formulae for the information matrix. Those expressions make extensive use of the complex
version of the Woodbury formula in appendix A.

Nevertheless, when N is large the number of parameters is huge, and the direct maximisation
of the log-likelihood function becomes excruciatingly slow, especially without good initial values.
For that reason, in section 4 we derive a much faster alternative to obtain MLEs of all the model
parameters based on the EM algorithm. But first, we propose a very fast iterated indirect
inference procedure asymptotically equivalent to ML for estimating the parameters of univariate

ARMA models, which will provide a very useful complement to the EM algorithm.

3 Indirect inference estimation of ARMA models

3.1 Pure MA terms
Consider the following M A (1) model
v = fi = Bfic1, Bl <1, felwi—1,2—2,... ~ N(0,1)

The simplest consistent estimator of § is an indirect inference (II) one based on the misspecified

AR(1) auxiliary model

Ty = pri—1 + ety Et|rp—1,24-9,... ~ N(0,1)

This equivalence is not surprising in view of the contiguity of the Whittle measure in the Gaussian case (see
Choudhuri, Ghosal and Roy (2004)).

"See also Quah and Sargent (1993) for a least squares projection interpretation of the EM algorithm under
non-normality
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(see e.g. Gouriéroux, Monfort and Renault (1993), Chumacero (2001) or Ghysels, Khalaf and
Vodounou (2003)). This estimator is equivalent to the GMM estimator of 5 based on

B thl> Tt—1,
1+p8

which coincides with the score of the AR(1) parameter p evaluated at the binding function

g
1+ 3%

Elmy(8)|8) = 0, my(B) = <xt +

p(B) = —

We could increase the efficiency with which we estimate g by II if we considered higher
order ARr(k) models for k& > 2. Unfortunately, for any finite order k those II estimators of
are generally inefficient relative to the ML estimator, which is effectively based on the moment

condition

Ov(B)
0B’

Els(8)18] =0, s:(B) = [z — v4(B)]
where

BL
vi(B) = E(xt|wi—1, 212, .. .5 B) § Bay =
t t|Lt t Pt t—j ]__ﬁL

is the conditional mean of z; given its past under the maintained assumption that the MA(1)
process is invertible.

At first sight, it would appear that this highly non-linear estimator cannot be obtained by
applying OLS to some auxiliary linear autoregressive model, but appearances can sometimes be

misleading. Define

fi(B) = x —vi(B) = Zﬁjxt—j = 1_1/8L$Ut
—0

as the “innovations” in z;. Similarly, let us use the shorthand notation

o0 1
=S G+ ) =
7=0 J+ 6 i - (]‘_BL)th

_ov
wi(B) = t+1
We know that at the true value of 3, say B, fi(f8y) will be white noise while w(3,) will be

an AR(1). In addition, it is easy to see that

1
1-BL

wy(B) = ft(B)

so that
ft(B) = we(B) — Bwi-1(8).

Therefore, we can re-write the score of the MA(1) model as

st(B) = —[wi(B) = Bwi—1(B)wi-1(8),

which coincides with the (minus) score of an AR(1) model for w(f).

BANCO DE ESPANA 16 DOCUMENTO DE TRABAJO N.° 1619



This regression is infeasible, but we can compute é7 as the OLS estimator in the regression of
wi(Br) on wi_1(Br), where By is the II estimator of 3 based on the misspecified ARr(1) auxiliary
model for ;.

Unfortunately, é7 is even less efficient than B;. Nevertheless, we can optimally combine
those two different consistent but inefficient II estimators. Specifically, we can easily prove
that BT = 2B, — 67 is the outcome of a Gauss-Newton iteration, and therefore asymptotically
equivalent to the ML estimator. In fact, it is possible to iterate the above procedure and obtain
a new estimator Sr} by regressing wy(Br) on w;_1(Br), which preserves asymptotic efficiency.
The fixed point of these iterations is the ML estimator.

It turns out that Hannan (1969) proposed a simple iterative frequency domain procedure,

which is effectively identical to the iterated indirect inference procedure we have just discussed.
3.2 Mixed models
Let us now consider the extension of our iterated II procedure to the ARMA(1,1) model
rr=axi—1+ fr — Bfic1,  |al, 18] <1, filri—1,m—2,... ~ N(0,1)

The simplest consistent estimator of o and J is an indirect inference one based on the misspecified

AR(2) auxiliary model
T = 01T4—1 + 09Xi—9 + Wy, wt];ct_l, Ty een N(O, 1)

(see again Chumacero (2001)). This estimator is asymptotically equivalent to the GMM esti-

mator of a and 3 based on the moment conditions

Emy(a, B)|a, 5] = 0,
mlt(aaﬂ) = <$t - (a _16)_(10; aﬁ) 96t—1> Tt—1,

D008, Vo

mat(e, B) = <mt - o2
The exactly identified nature of these moment conditions implies that the indirect inference
estimator of o will coincide with the ratio of the second to the first autocorrelation of x;, which
is always between -1 and 1. As for the indirect inference estimator of 3, we can obtain it from
the first moment condition if we keep « fixed at its indirect inference value. In large samples,
this procedure is effectively identical to the indirect inference estimator of 3 described in the
previous section obtained by fitting an AR(1) model to the filtered series n,(a) = x4 — ax—_;.
Once again, we could increase the efficiency with which we estimate « and S if we considered

higher order ARr(k) models. Unfortunately, for any finite order k those II estimators are generally

inefficient relative to the ML estimator, which is effectively based on the moment conditions
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Elsi(8)18] = 0,

sat(a,B) = [zt — Vt(ﬁ)](w’
spr(a, f) = [ze = Vt(ﬁ)]aytg;,ﬁ)
where )
vi(e, B) = B(w|wi-1, -2, .. s, f) = (a = F) Zﬁj_lxt—j - (?:g)Lth
j=1

This highly non-linear estimator can also be related to a couple of auxiliary linear autore-

gressive models. Specifically, define

1—alL
ft(@;ﬁ) =Tt — Vt(a,ﬁ) = 1 ﬂLth
as the “innovations” in x;. Similarly, let us use the shorthand notation
o 8l/t-i-l(Oéa 6) o 1
r(f) = oo (1-pL)""
(B (1-ol)

Then it is easy to see that

5at(a7/8) = [Tt(ﬂ)—OZTt—l(ﬁ)]Tt—l(ﬁ)
spr(a, B) = —[wi(a,B) — Bwi-1(a, B)|wi-1(a, B)

so that we can estimate « for given 8 from the autoregression of (/) and S for given « from
the autoregression of wy(a, 3). Again, these alternative indirect inference estimators will be
inefficient when the unknown ARMA parameters are replaced by the indirect inference estimators
ar and Bp based on the misspecified AR(2) auxiliary model for z;, but we can combine them
by means of a Gauss-Newton iteration of the form

~ _ T 9 = = _ - -1

( ar ) _ < ar ) + iz [ ri(Br) —re—1(Br)wi—1(ar, Br) ]
Br Br T = | —re1(fr)wia(ar, Br) wi_y(ar, Br)

1 ZT: [ re—1(Br) fe(@r, Br) ] .

Xi
T

—wy—1(ar, Br) fe(ar, Br)

Once again, it is possible to iterate the above procedure while preserving asymptotic efficiency,

t=1

the fixed point of these iterations being the ML estimator.

Analogous procedures apply to general ARMA (p,q) models® if we define

o (L) 1 oy (L)
zt, 1(B) = Ty, wi(a,B) =
Bo(L) Ba(L) ’ Ba(L)
8The stationarity and strict invertibility of the estimated AR and MA polynomials in high order models could

be achieved by reparametrising them in terms of partial autocorrelations, as in Barndorff-Nielsen and Schou
(1973).

ft(ale) =

Tt.
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Importantly, the variances, autocovariances and cross-covariances of the different filtered series
can be computed much faster in the frequency domain than in the time domain, which makes
these iterated indirect inference estimators an ideal match to our spectral estimation techniques

(see again Hannan (1969)).

3.3 Computational gains of the iterated indirect inference procedure

To assess the performance of our iterated II procedure, we have generated 2,000 samples
of 300 observations each (plus 50 initial ones) of univariate Gaussian ARMA(1,1) models with
autoregressive parameter a = .95 and three possible values for the moving average parameter 3:
—.5, .5 and .7. The first design roughly corresponds to the parameter estimates for the common
factor in the empirical application in section 5, while the second one is typical of many observed
time series. The last design, in turn, captures those situations in which the autocorrelations are
small, but they decay rather slowly to 0. For scaling purposes but without loss of generality,
we choose the true value of O'?c to be 1, and estimate this parameter in closed- form from the
spectral version of the zero order autocovariance of f;(«a, 3) evaluated at the II estimates.

We use a frequency domain version of the GMM procedure described in the previous section
to generate starting values. As a benchmark, we consider the direct maximisation of the spectral
log-likelihood function with respect to «, 8 and J?C using the Quasi Newton (QN) procedure
in MATLAB’s fmincon routine with analytical first derivatives and the spectral estimator of
the information matrix in lieu of the Hessian. The convergence criterion for our iterated II
procedure is that the L; norm of the parameter changes be less than 10~°, with a maximum of
100 iterations. Finally, we also look at several procedures that only carry out a fixed number of
II iterations.”

The three panels of Table 1 present medians and interquartile ranges (IQR) across replica-
tions for those different estimators. As can be seen, the efficiency gains increase at a decreasing
rate as the number of II iterations increases, despite the fact that all estimators other than
the GMM procedure are asymptotically equivalent up to first order. In fact, only a handful of
iterations seem to be necessary to achieve full efficiency, except in the case in which the Ma
root is close to the AR one.

The ranking is completely reversed in terms of computational speed. In particular, our
proposed iterated II procedure is an order of magnitude faster than the QN algorithm. Although
this is unlikely to make much of a difference for observed series, it becomes crucial when O(N+1)

such maximisations are required at each stage of the EM algorithm we describe next.

9We also considered mixed procedures that switch to QN after a fixed number of II iterations, but given that
they typically converge to the same estimates as the direct ML procedure after giving up most of the computational
gains, we do not discuss them separately.
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4 Spectral EM algorithm

As we mentioned in the introduction, the EM algorithm in Dempster, Laird and Rubin
(1977) adapted to static factor models by Rubin and Thayer (1982) was successfully employed
to handle a very large dataset of stock returns by Lehmann and Modest (1988). Shumway
and Stoffer (1982), Watson and Engle (1983) and Quah and Sargent (1993) also applied the
algorithm in the time domain to dynamic factor models and some generalisations, but they
restricted common and specific factors to follow low order AR processes.

We saw before that the spectral density matrix of a dynamic single factor model has the
structure of the unconditional covariance matrix of a static factor model, but with different
common and idiosyncratic variances for each frequency. Demos and Sentana (1998) applied
a time domain version of the EM algorithm to conditionally heteroskedastic factor models in
which the common factors followed GARCH-type processes. We could easily adapt their algorithm
to models with white noise idiosyncratic factors and contemporaneous effects of the common
factors on the observed variables if we replaced the subscript ¢t for time with the subscript j
for frequency. However, since we want to consider more complex models, we need to do some

additional algebra.

4.1 Complete log-likelihood function

Consider a situation in which the common factor x; was also observed. The joint spectral

density of y; and x¢, which is given by

[ Gyy(A) Gyz(}) } _ [ C(e_i/\)G:rx(A)cl(ei/\) + Guu(N) (e Gur(N) }
G;:c()\) Gaz(N) Gm(/\)cl@l)\) Gaz(N) ’

could be diagonalised as

[IN c(ei’\)][Guu(A) 0 ][CIIN 0]7

0 1 0 Grz(N) (e 1
with
Iy 0]|_,
c/(ei’\) 1 -
and .
Iy 0| - In 0
c’(ei)‘) 1 - —C/(ei)‘) 1 :
Let us define as [ZY|z"] as the Fourier transform of the 7' x (N + 1) matrix [y,,...,yn,X] =

Y |x] so that the joint periodogram of y; and x; at frequency \; could be quickly computed as
J

Zy y* T
2W<23¢>(zj 2 ),
J
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where we have implicitly assumed that either the elements of y have zero mean, or else that
they have been previously demeaned by subtracting their sample averages.

In this notation, the spectral approximation to the joint log-likelihood function would become

T—1
(N+1)T 1 HG A\ G (A»)”
(y,z) = ——"—In(27) — = In hed yae
(v, ) —— In(2m) — 2 2_3 Gi(N) GuslVy)
_2£T_l( gV ) Iy 0 Gl:l.ll()\]) 0 Iy c(e_Z/\J) Zgl
2 =\ c/(e) 1 0 G\l o 1 7
j:
T-1 T-1
NT 1 2 oy u
= - In21) - > > W[Guu(\)| — 5 Y 2 Gpa()))z
2 2 4 2 <
7=0 Jj=0
1 2T
—S @) = 5 Y G ) - 2 S Gt ()
j=0 J=0
N T T—1 o T-1
=[5 W@ = 5 Y m|Guu M) = T Y Gl (M) 5 (8)
=1 7=0 7=0
T-1 T-1
T 27 . e
_5 ln(2ﬂ—) Y Z In ’Gfﬂw()‘j)| - 7 Gmcl()‘J)zj Zj (9)
j=0 j=0
N
= Uyilx) + 1(x) = [(Y]x) + I(x),
=1
where!?
Z‘;‘Li = Y _ ci(eﬂ)‘ﬂ)zm = z;i” — Z Ci,kefik)‘z;c, (10)
k=—m
so that
Z;LZZ;LZ* _ ijzzéh* _ Ci(e—i)\j)z}:zjgi* o Ci(ei)\j)z‘?izjx‘* + Ci(e_iAj)Ci(ei)\j)Z;:Z}c*
= Ty (Ng) = ci(e™) Ly, (0) = i€ Iyw(Ag) + cile™)ei(€79) Luw(N) = Lugus (Ag)-
In this way, we have decomposed the joint log-likelihood function of y1,...,ynx and x as the

sum of the marginal log-likelihood of x in (9) and the log-likelihood function of y1, ...,y N given
x, [(Y]|x), which in turn can be decomposed as the sum of N univariate components in (8) by
exploiting the diagonality of Guu();).

Importantly, these expressions can be computed using real arithmetic only since
(€M) Ly () + ™) Ty () = 2R [ea(e™™) Ly, ()]

and

e ™)) L) = [lete ™)

Lz (Nj).

u,_ux u_r*x

""We could have expressed those log-likelihood in terms of Iz ();) = 27 27", Iuu(A) = 2z and Lu. (\) = z}2]*,
but for the EM algorithm it is more convenient to work with the underlying complex random variables.
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Let us classify the parameters into three blocks:

1. the parameters that characterise the spectral density of x; : 6,

2. the parameters that characterise the spectral density of us : ¥ = (¢1,...,9%y) and
0u=(0,.. . ...0,)Y

3. the parameters that characterise the dynamic idiosyncratic impact of the common factors

on each observed variable: ¢ = (cf.,...,c},...,c)y.), where ¢, = (¢; —m,....Ci0,-..,Cin)-

Importantly, 8, only appear in (9) while 8, and ¢ appear in (8). This sequential cut on the
joint spectral density confirms that z%¥ and therefore z; would be weakly exogenous for v, 0y
and ¢ (see Engle, Hendry and Richard (1983)). Moreover, the fact that f; is uncorrelated at all
leads and lags with vy implies that x; would be strongly exogenous too.

We can also exploit the aforementioned log-likelihood decomposition to obtain the score of

the complete log-likelihood function. In this way, we can write

T—1
(Y, x ol(x 1 OG 1(Nj) S
(ae ) _ aé ) _ 5 30 TG 20 [arat” — GV (11a)
T—1
al(Y,X) _ 8l(yl|x) _ 1 aGuzuz(/\j) -2 Wi gk
00, 08, 2 o8, CumlN) 2mf 2 = G ()] (11b)
T—1
ol(Y,x) Ol(yi|x) 2« ~1 wi ik _ax kN o ui
B dcig ZTZG“WZ'()\]) [Z eE e T }’
i, 1, =0
or =1 n . 4 . n .
_ =7 ZG;}ul()‘]) [(zé{i_ Z Ci,le_lw\zjg':> ezk/\jzjqf*_'_e—zk)\jzgf (Z;/z‘*_ Z Ci’lezl)\z;v*>] ’ (11C)
j=0 l=—m l=—m
where we have used the fact that
0z ,
J —ik\ x
({’)C@k -C Zj

in view of (10).

Expression (11a) confirms that the MLE of 6, would be obtained from the marginal log-
likelihood of x;. In models with pure AR processes, such as the one discussed in appendix F
or in Fiorentini, Galesi and Sentana (2016), one could easily obtain closed form expressions for
the estimators. However, there are no closed form solutions for models with MA components
because G (A;) also depends on 6, so in principle we would have to resort to the numerical
optimisation of (9). In this context, the swift iterated indirect inference procedures in section 3
would prove very useful because they are asymptotically equivalent to ML.

Analogous comments apply to the dynamic parameters that appear in 6,, for a given value

of ¢;. in view of (11b).
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Finally, (11c) would allow us to obtain the ML estimators of c¢;. for given values of 6,,. In
particular, if we write together the derivatives for ¢;; for k = —m,...,0,...,n we end up with
the “weighted” normal equations:

_— ezm)\j Z:J;Z:p*efzm/\j 4 ezm)\j z;tzx* —imA\;

7 i ©
-1 A
j=0 elmA; Z]@Z]@*ein/\j + e~ inAj Z;czgc*e—im/\j

e~ mA; Z;cz;c*efzm)\j + eimA; Z;pzjg:*ezn)\j éi,—m

e~ A Z]@Z]@*ezn)\j 4 e~ inAj Z;{:Z;:*ezn)\j éi,n

Yi xx ,—1im; Yix x im\;
T_1 zjzire +zj zje
_ -1
7=0 Yi x* n; Yi* x —in\;
zj'ziTe —i—zJ zje

Thus, unrestricted MLE’s of ¢ for given values of 8,,, could be obtained from N univariate
distributed lag weighted least squares regressions of each y;; on z; that take into account the
residual serial correlation in w;. Interestingly, given that G,.,();) is real, the above system of
equations would not involve complex arithmetic. In addition, the terms in 1; would cancel, so
the WLS procedure would only depend on the dynamic elements in 8,,.

We could then carry out a zig-zag procedure that would estimate c;. and v, for given 8,,,
and then 8, for a given c;- and v;. This would represent the spectral analogue to the Cochrane-
Orcutt (1949) procedure. Obviously, iterations would be unnecessary when Guu(J;) is in fact
constant, so that the idiosyncratic terms are static, in which case the equations could be written
in terms of the elements of the covariance and first autocovariance matrices of y; and .

Unfortunately, we would have to resort once again to numerical optimisation in models with
MaA components, which would be far more taxing than in the case of the common factor because
there would be N such optimisations at each Cochrane-Orcutt iteration. Once again, the iterated

indirect inference procedures in section 3 would also prove very useful in this context.

4.2 Expected log-likelihood function

In practice, of course, we do not observe x;. Nevertheless, the EM algorithm can be used to
obtain values for 6 as close to the optimum as desired. At each iteration, the EM algorithm max-
imises the expected value of I(y1,...,yn~|x) + [(x) conditional on Y and the current parameter
estimates, 0™ . The rationale stems from the fact that l(y1,...,yn,X) can also be factorized
as l(y1,...,¥y~) +U(X|y1,...,yn). Since the expected value of the latter, conditional on Y and
6™ reaches a maximum at 0 = 6™, any increase in the expected value of I(y1,...,yN,X)

must represent an increase in [(y1,...,yn). This is the generalised EM principle.
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In the E step we must compute

T—-1 T-1
Ell(x)|2¥,00] = —f1n<27r —%Zlnwam >|—2§ZG;;<Aj>E[ v |ZY, 00,
Jj=0 j=0
1T 1 27‘(’ T—1
Ell(yi|x)|2¥,0] = —f1n<27r 5 G ] = G Y Gl W) Bl 2 6],
Jj=0 j=0
But
Bl2525712y, 0] = 275027 (0) + B {[2F — £ (0] — 27 (0|27, 6 }
= Ii%unwwm
where
2TK(0) = B2HZY,0] = Guu(M)c/(¢V) Gyt (V)2
E{z - 5= (0)]1:]%" - 2(0)2¥.0} = w(\),
and
Licgr () = 27G2(0)c/ (€)Gyt (M) Tyy (\) Gyg (\y)e(e ™)
= 27w’ (A)€ (€M) Gab M) Tyy (M) Gab (g )e(e ™). (12)

is the periodogram of the smoothed values of the common factor.

In turn, if we define

Ly, (A)) = Lyy (\) Gyy (A)e(e ™) Gau (V) = Lyy (X)) Gau(Ag)e(e™ Y )w(X)) (13)

Yy uu

as the cross-periodogram between the observed series y and the smoothed values of the common

factor, we will have that

TR0 = Blagay (2,00 = B { [ — el )55] [ = 2] 2,00}
= [z — e(e™ )2 (0")][2" c'<ew> F (O] + (e M) () ()

= Ty () = I )€/ (€)= e(e ™)L () + e(e™™ )10, (A) + w™ ()€ (e™), (14)

which resembles the expected value of Iyu(A;) but the values at which the expectations are
evaluated are generally different from the values at which the distributed lags are computed.

For the i series, this expression reduces to

100, (3) = 2215712, 0] = [ — cy(e™ )20 (@)% — ()25 (7))

+w™ (g)ei(e)ei(¢)

= Iy () — cile ™5 () = 1M ()e(e™) + (152 1 () + 0™ O)]eile ™™ )eile™).

Yix x
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Therefore, if we put all these expressions together we end up with

T-1 T-1
EIGIY,00] = - n(2m)-5 3 In[Gre ()] -2 3 G2 () [, )4 0)] - (15)
7=0 Jj=0
T 1 27 =
Ell(yilx)|Y,0™] = —5n@m) = o ) n|Gua (W) = 5 D G, ()] I, (16)
2 JZO 2 ]:0 (a2 14

We can then maximise E[l(x)|Y, 0] in (15) with respect to 6, to update those parameters.
Similarly, we can maximise E[l(y;|x)[Y,0™)] in (16) with respect to c;., 1; and 6,, to update
those parameters.

In order to conduct those maximisations, we need the scores of the expected log-likelihood
functions.

Given that (15) is obtained from (9) by simply replacing 2727 with its conditional expected
value Ii?()zK(Aj) + w™ (), it is easy to see that

ELx)|Y, 0] 12 0Guu(A)) o)\ 1™ 00y 4 ™ (s 4
9, "2 o, Cr ) 7 [LRa ) 0] -G}

which, not surprisingly, coincides with the the expected value of (11a) given Y and the current
parameter estimates, 0,

It is also straightforward to modify the indirect inference procedures discussed in section 3
to handle models with ARMA terms if we replace the periodogram of the common factor by its
expected value given observables, which coincides with sum of the periodogram of the smoothed
values of the factor and its estimation error. Those periodograms can be obtained in no time in
the E step of the algorithm from the minimal “sufficient statistics” discussed in appendix B.

Similar expressions would apply to the dynamic parameters that appear in 6,,, and 1, for a
given value of c;..

Finally, the derivatives of (16) with respect to ¢;j for k = —m,...,0,...,n for fixed values

of 6, will give rise to the modified “weighted” normal equations:

NI () + 0 O]+ EMIIEL () 4w (e

't x x

: : uzuz

i NI () + WG] 4+ eI () + M (g)lem

TN [I5) 1 Og) + M O)e™™™ 4 eI () + @ ()™ Chany
I () + WO + e () + W) ey
- I;j?;K(AJ) I, ()
C’Yuﬂ,z1
Jj=0 IZSZZK ()\j)ein)\j + Ii?{)yl ()\j)efin)\j
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Once again, we suggest a zig-zag procedure that estimates c;. and 1; for given 6,,, and 6,,
for a given c;. and 1), although it is not clear that we really need to fully maximise the expected
log-likelihood function at each EM iteration since the generalised EM principle simply requires
us to increase it. Obviously, such iterations would be unnecessary when the idiosyncratic terms

are static.

4.3 The EM algorithm in practice

Taking into account the theoretical results obtained in the previous sections, the step by step
spectral EM algorithm combined with the iterated indirect inference procedure can be described
as follows:

Preliminary steps

e Choose some arbitrary initial values for the parameters 0;0), (O), 0&0), c.

e Select the number of EM iterations M.

e Select the number of zig-zag iterations Z for the spectral Cochrane-Orcutt estimator.

e Select the maximum number of Indirect Inference iterations Q, as well as a convergence
tolerance 0.

e Set n=0.

EM algorithm

1. Compute Ig,?xK and w(™ using expressions (12) and (A1), respectively (E-step).

2. Treat Ig,?xK + w(™ as if it were the periodogram of the observed data and iterate the
indirect inference procedure in section 3 until the number of iterations is equal to () or the

norm of the change in the parameters is less than §. Store the results into oY (M-step).

3. Compute first I)(,Z)K and then 147 using expressions (13) and (14), respectively (E-step).

4. Perform Z iterations of the zig-zag procedure in the following way (M-step).

(a) Treat each element L(ﬁqll of the diagonal of Il(ﬁl) as if it were the periodogram of an

observed univariate series and perform the iterated indirect inference procedure in
section 3 until the number of iterations is equal to @ or the norm of the change in

the parameters is less than . Store the results into wgnH) and 9&?“).
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(b) For the given value of 972?“) solve the modified linear system of normal equations in

(n+1)

Section 4.2 to obtain c;

(c) Repeat (a) and (b) Z times.
5. if n > M stop, else n =n + 1 and go to 1.

4.4 Convergence properties of the EM algorithm

To assess the speed and convergence properties of our proposed spectral EM algorithm,
we have generated 100 samples of size N = 10 and T = 300 from a generalised version
of the dynamic factor model in (F8) in which both common and idiosyncratic factors follow
ARMA(1,1) processes with autoregressive parameters o, = a; = .95 and moving average para-
meters 3, = —.5 and 8; = .5,¢ = 1,..., N. These values correspond to the ones considered in
section 3.3 that most closely resemble those found in the empirical application described in sec-
tion 5. Note that the presence of MA components prevents the use of the time domain versions
of the EM algorithm mentioned in the introduction. As for the factor loadings, we introduce
some heterogeneity by assuming that they are ¢g = (1,2,0.5,1.5,1.5,0.5,2,.5,1.5,1.5)" and ¢; =
(1,0.5,1.5,0.5,1.5,0.5,0.5,1.5,1.5,2)". Finally, we also allow for different variances for the idio-
syncratic innovations. Specifically, we consider v = (1.5,0.5,1.5,0.5,1.5,0.5,1.5,0.5,1.5,0.5)’,
which leads to widely different signal to noise ratios across series.

We carry out two Cochrane-Orcutt iterations only within each EM iteration. Similarly,
for each univariate ARMA-type maximisation we use the same convergence L criterion as in
section 3.3 with a maximum of five II iterations. As starting values, we assume unit loadings
on the contemporaneous and lagged values of the common factor, unit specific variances, and
all autoregressive and moving average coefficients set to 0.5 and 0.1, respectively. These initial
values are far away from the true parameters.

We attempt to reproduce the likely behaviour of empirical researchers by capping the number
of EM iterations to 300. As in section 3.3, we also consider as benchmark the direct maximisation
of the spectral log-likelihood function using the QN procedure in MATLAB’S fmincon routine with
the analytical first derivatives in appendix C and the spectral estimator of the information matrix
in appendix E in lieu of the Hessian. Finally, we also look at two combined procedures that
switch to QN after either 5 or 10 EM iterations. For completeness, we also look at the values of
the log-likelihood at those switching points, as well as the ratio of the Lo norm of the differences
between the initial values and the values of the parameters at that point to the Lo norm of the
differences between initial and final values. Such a measure gives us a precise indication of the

ground covered by the EM algorithm after a fixed number of iterations.
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The results are described in Table 2 based on 99 Monte Carlo replications.!’ Given the
persistence in the common factor, we re-normalise the results so that cg; = 1, replacing this
parameter with the variance of the innovations in the common factor, f;. As can be seen, 300
iterations of the EM algorithm are almost as costly in terms of CPU as the direct maximisation
of the spectral log-likelihood. They also fail to reach the maximum, although they get very close.
However, a significant fraction of the gains in fit are achieved after just a few iterations. For
that reason, the mixed methods, which converge to the maximum roughly twice as fast, provide
a very good compromise. In that regard, switching after ten EM iterations slightly dominates
doing so after five.

Ideally, we would like to repeat this exercise with a larger cross-sectional dimension N, but
the computational cost of a Monte Carlo exercise involving the QN method becomes prohibitive.
Nevertheless, we conjecture that the optimal number of EM iterations conducted before switch-
ing to the direct maximisation of the log-likelihood function is an increasing function of V.

Figure 1 illustrates a typical example of our Monte Carlo results with ten series, while Figure
2 corresponds to a model with one hundred series, with a design which is a tenfold replica of
the one described in the first paragraph of this section. Remarkably, the first iteration of the
EM yields a massive increase in the log-likelihood function in both cases. In addition, successive
iterations also provide noticeable gains. As expected, though, the algorithm slows down con-
siderably as we approach the optimum. Reassuringly, though, if we conduct a sufficiently large
number of iterations, the value of the estimated parameters coincides with the estimates ob-
tained by maximising the marginal log-likelihood function directly using the method of scoring

with analytical expressions for the score and information matrix.

4.5 Efficiency gains of modelling the common factors’ ARMA processes

Dynamic factor models with ARMA (p,q) processes for the common factors may alternatively
be written as models with simpler AR(p) common factors by replacing the dynamic loadings
polynomials ¢;(L) with ¢ (L) = ¢;(L)B,(L),i = 1,..., N (see the end of section 2.1 for a more
general discussion). Therefore, one might argue that the indirect procedures described in section
3 are unnecessary, at least as far as the common factors are concerned. However, by ignoring the
commonality of 3, (L), the number of parameters that must be estimated increases in proportion
to the number of series, which in turn may lead to substantial efficiency losses.

To assess the extent to which this potential efficiency loss is relevant in practice, we have
conducted two Monte Carlo experiments with a very simple exchangeable design with 300 ob-

servations for 10 and 80 series, in which the only dynamic feature is the serial correlation of the

"n the remaining replication, the mixed procedures converged to a local maximum with a lower value for the
log-likelihood than the one achieved by the EM algorithm after 5,000 iterations, which in turn coincided with the
value yielded by the QN method.
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common factor. Specifically, we assume that x; follows an ARMA(1,1) process with parameters

a = .95 and 8 = .5, and all the factor loadings and idiosyncratic variances are equal to 1. We
then estimate two observationally equivalent versions of this dynamic factor model. In the first
one, x; explicitly contains a first-order MA component, which forces us to employ our proposed
iterated indirect inference procedure. In the second version, in contrast, we model the common
factor as an AR(1) process, but add an additional lag in the dynamic loadings of each series.
Nevertheless, the static nature of the idiosyncratic terms together with the pure autoregressive
nature of the common factor imply that our proposed EM algorithm is able to estimate this
alternative model very quickly even for large values of N without resorting to indirect inference
or Cochrane-Orcutt iterations.

We assess the differences between the two procedures by looking at the MSE in estimating
(i) the white noise innovations in the common factor and (ii) the common component for each
series, which we compute as the difference between the observed series and the estimate of its
idiosyncratic terms. Since both these quantities are common to the two representations of the
dynamic factor model when evaluated at the true parameter values, their differences only reflects
the sampling variability in the ML estimators (see Ansley and Kohn (1986)). Our results are
based on 2,000 replications. Importantly, we average the MSE of all the time series observations
except the first and last 50, so as to avoid end of sample effects. Further, we average across
series whenever possible to improve the precision of our estimates.

As a benchmark, we can use the fact that at the true values the theoretical MSEs for f; are
.8525 when N = 10 and .6589 when N = 80, while the respective figures for ¢,z = yir — Ut
are 2.95 and .8528. When we explicitly model the common factor as an ARMA(1,1) process, the
MSEs for f; at the ML estimates become .8598 when N = 10 and .6709 when N = 80, so the
efficiency loss resulting from parameter uncertainty is minor. In contrast, when we ignore the
common nature of the MA polynomial (L), those MSEs become 1.0740 (N=10) and 1.0146
(N=80), which are noticeably worse. This deterioration is far more acute if we look at the
common components of the series. In particular, while the MSEs of y;; — u; are 3.7278 for
N =10 and 1.5596 for N = 80 when we explicitly model the common factor as an ArRMA(1,1)
process, they become 6.0188 (N=10) and 3.0534 (N=80), implying deteriorations of 104.4% and
252.4% in the precision with which we estimate those components.

These results are due to a substantial efficiency loss in the estimators of the model parameters,
and in particular in the factor loadings. Specifically, the interquartile range in the estimates of
a typical contemporaneous loading c¢;o goes from .26 to 1.98 when N = 10 and from .31 to 3.10
when N = 80, while the corresponding figures for the implied dynamic loadings are .23 versus
1.98 (N=10) and .24 versus 3.10 (N=80). Moreover, the median biases are also noticeably

larger. In contrast, the effect on the idiosyncratic variances and especially the AR parameter of
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the common factor is much lower. Therefore, we can safely conclude that ignoring the common
MA roots for the purposes of avoiding our iterated indirect inference procedures is not advisable,

especially if the cross-sectional dimension is reasonably large.

5 Common dynamics in sectoral employment

5.1 Dynamic factor models in practice

There is a long tradition of analysing comovements of sectoral activity indicators (see for
example Abraham and Katz (1986), Lilien (1982) or Rogerson (1987)). In this context, dynamic
factor models have proved useful in assessing the extent to which observed fluctuations in sectoral
aggregates are accounted for by common sources of variation. In their seminal paper, Quah and
Sargent (1993) studied the behavior of annual employment series across sixty US industries over
the period 1948-1989. They found that the bulk of the time variation of the different sectors was
explained by a common factor, and that their estimated measure of “business activity” captured
aggregate dynamics in sectoral employment very well.

Motivated by their results, we downloaded employment series from the Bureau of Labor
Statistics corresponding to the 81 NAICS 3-digit sectors, measured at monthly frequency and
seasonally adjusted, for the period 1990M1-2014M4, which was the longest available (see Table
3 for the list of sectors). We decided to work with (annualised) growth rates for 7' = 291
months in view of the overwhelming evidence that the (log) levels of those employment series
are nonstationary.'?

Since our latent factor is meant to capture the common source of variation across sectoral
employment growth rates, we followed Quah and Sargent (1993) and considered a dynamic
single factor model. In order to determine the dynamic specification of common and specific
factors, as well as the dynamic impact of the former on each sectoral series, we carried out some
preliminary empirical analysis. Given that one can expect total nonfarm employment to provide
an imperfect proxy for the latent variable, we fitted univariate ARMA models of various orders
to the (geometric) rate of growth of this observed series. We found that an ARMA(1,1) yields the
best fit according to both the Schwartz and Akaike criteria. Next we regressed the demeaned
changes of employment on the demeaned contemporaneous and one-month lagged changes of
total nonfarm employment. We found that the coefficients associated to the lagged changes were
significantly different from zero for a sizeable fraction of the series, which strongly suggests that

the sector-specific employment growth rates may be driven not only by the contemporaneous

12 A preliminary check on data quality indicated that a handful of series display abnormal values. We treated
them as additive outliers in the (log) levels and replaced them by the average of the adjacent observations, which
is a simple filter that is nevertheless optimal under the random walk hypothesis.
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value of the latent factor but also by its one-month lagged values. In addition, we conducted
LM tests for first- and second-order residual autocorrelation to assess whether the idiosyncratic
disturbances are likely to be serially correlated. We found that roughly 2/3 of the series require
serially correlated idiosyncratic terms.

In view of those findings, we began by estimating a special case of model (F8) in which both
xy and x;_1 heterogeneously affect each of the sectoral growth rates, z; follows an ARMA(1,1)
process while the idiosyncratic terms u;; follow simple AR(1)’s. Individual tests for Hp : a; = 0
indicated that there are 35 series for which the white noise hypothesis is not rejected,'® which we
decided to impose thenceforth. For the remaining 46 series we jointly tested the null of AR(1)
against ARMA (1,1) specific factors, the likelihood ratio statistic taking the extremely significant
value of 1369.9.'

Estimation of the final model with 46 ARMA(1,1) and 35 white noise idiosyncratic processes
was conducted by means of the EM algorithm using the iterated indirect procedure discussed in
previous sections. As starting values, we assumed again unit loadings on the contemporaneous
and lagged values of the common factor, unit specific variances, and autoregressive and moving
average coefficients set 0.5 and 0.1, respectively, for both common and idiosyncratic factors. As
expected, the direct maximisation of the log-likelihood function in (5) starting from the same
starting values failed to converge.

In order to speed up the EM iterations, we conducted five Cochrane-Orcutt iterations only
instead of continuing until convergence. Despite the hundreds of parameters involved, this
procedure worked very well to begin with. Eventually, though, the norm of the gradients cor-
responding to the idiosyncratic parameters of three series reached a positive lower bound. A
careful inspection suggested that the corresponding AR and M A coefficients were probably too
close to each other, and the resulting quasi cancellations slowed down our iterated indirect in-
ference procedure, as predicted by the Monte Carlo results in section 3.3. For that reason, we
switched at that point to an alternative, slower version of the EM algorithm that relied instead in
the direct maximisation of the expected log-likelihood function in (16) using a scoring algorithm
with analytical derivatives and information matrix. Although the estimated parameters did not
change much, the log-likelihood function improved slightly and the norm of the gradients went
down all the way to 0. Finally, we computed standard errors of the parameter estimators using
the analytical expressions for the information matrix in appendix E. The estimation results are

reported in Tables 4 and 5.

Y The series are: 5 8 18 19 22 23 26 28 32 34 35 36 37 38 39 40 41 43 45 47 48 51 54 58 62 63 65 66 70 71 73
75 77 79 81, which by and large coincide with the LM tests computed for the total nonfarm regressions.

'See Fiorentini and Sentana (2013) for computationally simple and intuitive individual and joint LM tests for
neglected serial correlation in common and specific factors.
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As is well known, the usual Wiener-Kolmogorov filter can lead to filtering distortions at
both ends of the sample. For that reason, we wrote the model in state-space form and applied
the Kalman filter in the time domain with exact initial conditions derived from the stationary
distribution of the 165 state variables (3 for the common factor and 2 for each of the idiosyn-
cratic ones; see appendix G for details).!® Given that the standard fixed interval smoother was
numerically unstable with such a big state vector, we used the modified Bryson-Frazier smoother
instead (see Bierman (1977)). In Figure 3 we benchmark our procedure by plotting the yearly
growth rate of our estimated employment factor (solid blue line) and the total nonfarm em-
ployment (red dashed line). Importantly, our smoothed factor is remarkably close to the actual
growth rate of aggregate employment, especially during recession phases, such as in 1991, 2001,

and 2009, although it is unsurprisingly smoother than the observed series.

5.2 Comparison with semiparametric approaches

One potential drawback of our parametric procedure is that it might yield misleading re-
sults if the dynamic factor model specification is incorrect. Although the testing procedures in
Fiorentini and Sentana (2016b) are designed to detect those situations, the filtered estimates of
the state variables are likely to be heavily influenced by the dynamic specification of the model
when N is relatively small.

As we mentioned in the introduction, an alternative possibility is to resort to non-parametric
procedures, which impose much less structure on the spectral density matrix.

Conceptually, the simplest such procedure is the spectral version of principal components
put forward by Brillinger (1981, ch. 9). The idea is to create a linear combination of the Fourier
components of the observed series at a finite number of frequencies, with weights given by
p1(), which is the eigenvector associated to the largest eigenvalue of a standard non-parametric
estimate of the spectral density matrix of y; at the same frequency. The resulting spectral series
is then transformed to the time domain by means of the inverse Fourier transform. We use the
BUSY software developed by Fiorentini and Planas (2003), which in turn follows Forni, Hallin,
Lippi and Reichlin (2000) (FHLR) in the choice of frequencies and non-parametric spectral
estimator.

Unfortunately, the fact that we can multiply complex eigenvectors by a complex number on
the unit circle without altering its scale implies that we can arbitrarily phase shift the spectral

principal component differently for different frequencies. For that reason, we choose the scaling at

15The main difference between the Wiener-Kolmogorov filtered values, ajf‘{oo, and the Kalman filter smoothed
values, :rfl(T, results from the implicit dependence of the former on a doubly infinite sequence of past and future
observations. As shown by Fiorentini (1995) and Gémez (1999), though, they can be made numerically identical
by replacing both pre- and post- sample observations by their least squares projections onto the linear span of
the sample observations.
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each frequency in such a way that the principal component is in phase with the actual growth rate
of aggregate employment. We do so by dividing p1(A) by pj(A)fye(A)/|pT(Mfye(N)], where fyc(X)
is the cross-spectral density between the rates of growth of the 80 sectoral employment series
and non-farm employment, so that the co-spectrum between this re-scaled principal component
and the rate of growth of aggregate employment is frequency-invariant.

FHLR considered an alternative way of constructing an index of comovements. Specifically,
they cross-sectionally averaged the component attributable to the common factor for each of
the series by the spectral principal component, which is univocally defined regardless of the
normalisation chosen for pj(A). Given the widely different employment levels across sectors, we
consider a weighted average that reflects relative sector sizes at each point in time.

The two additional indices are depicted in Figure 4, together with our estimated factor. The
dynamic principal component is the noisiest of the three measures, which is probably due to
the phase normalisation that we have chosen. The FHLR index is also more erratic than the
estimate of the common factor produced by the Kalman filter smoother, but sometimes it leads
it, providing a more timely indication of turning. This suggests that adding “forward” loadings
to our dynamic factor model constitutes an interesting avenue for research. Overall, though, our
smoothed factor provides a clearer signal, with a slightly higher correlation with total nonfarm

employment.

6 Directions for further work

The spectral EM algorithm developed in the previous sections can be extended in several
interesting directions. One obvious possibility would be models with multiple common factors.
Although this would be intensive in notation, such an extension would be otherwise straightfor-
ward after dealing with identification issues before estimating the model. However, sometimes
it would be necessary to add many common factors to adequately capture the off-diagonal ele-
ments of the autocovariance matrices even though the number of pervasive sources of variation is
small. To some extent, this fact explains the success of approximate factor structures. In those
situations in which it is natural to group the N series into R homogeneous blocks, an attractive

alternative solution are bifactor models with two types of factors:

1. Pervasive common factors that affect all N series

2. Block factors that only affect a subset of the series, such as the ones belonging to the same

country or region.
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In Fiorentini, Galesi and Sentana (2016) we explain how to efficiently exploit the sparsity
of the factor loading matrix of bifactor models so that the spectral EM algorithm we propose
in this paper can successfully estimate them by maximum likelihood with a large number of
series from multiple regions. In this regard, it would be convenient to extend our algorithm to
dynamic trifactor models, in which each block has a bifactor structure of its own. Such models
would be particularly well suited to the analysis of international business cycles using a large
set of country specific macro variables.

More generally, we could in principle extend our numerical procedures to dynamic factor
structures with non-diagonal idiosyncratic spectral density matrices because in those models
the factorisation of the complete log-likelihood function of observed series and common factors
will still be true. Nevertheless, except in models with contemporaneously correlated, white
noise idiosyncratic terms, we would have to resort to frequency domain versions of multivariate
regressions, whose numerically efficient estimation when N is relatively large deserves further
consideration. For that reason, an extension of the Doz, Giannone and Reichlin (2012) analysis
that looks at the properties of our algorithm and the resulting ML estimators in approximate
factor models in which the cross-sectional dimension is non-negligible relative to the time series
dimension would constitute a very valuable addition. In fact, a very large number of series might
constitute a computational blessing in this framework, the rationale being that for large N the
unobservable factors will be consistently estimated by the Kalman-Wiener-Kolmogorov filter, so
that the model effectively becomes a multivariate regression model.

Another interesting extension would deal with models in which the heterogeneous dynamic
impact of the common factor on each observed variable, which is characterised by the ¢;(L)
polynomials, can be represented by the ratio of two low order polynomials (see Hannan (1965)
and Hannan and Nichols (1972) for frequency domain estimators of some rational distributed
lag models when x; is observable).

Finally, it is worth mentioning that although we have exploited some specificities of dynamic
factor models, our procedures can be easily extended to most unobserved components time
series processes, and in particular to UCARIMA models and the state-space models underlying
the recent nowcasting literature (see Fiorentini and Sentana (2016a) and Banbura, Giannone
and Reichlin (2011), respectively, and the references therein). We are currently pursuing some

of these research avenues.
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Appendices
A The Woodbury formula

Computations can be considerably speeded up by exploiting the Woodbury formula under
the assumption that neither G.;(\) nor Guu(\) are singular at any frequency (see Sentana

(2000) for a generalisation). Specifically, we obtain

’ny()‘)’ = |Guu(A)|Gaz(N)w(N),
Gyy(N) = Gua) —wN)GuuMele™ e (€M) Gra(V),
wA) = (Gt (V) + (€GN e(e™™)] (A1)

The advantage of these expressions is that Guu(A) is a diagonal matrix and w(\) a scalar,
which greatly simplifies the computations. On this basis, the transfer function of the Wiener-

Kolmogorov common factor smoother becomes

Gar(NE' (€M) Gy (V) = w(M)e (e?)Gua(N),

G o (N) = w(N)Gae (N (€M) Gra(Ne(e™™) = Gaa(N) — w(N),

where we have used the fact that

WA (€M) Gaa(Ne(e™) =1 - w(N) G (), (A2)

uu

which can be easily proved by dividing both sides by w(\).

Similarly, the transfer function of the Wiener-Kolmogorov specific factors smoother will be

Guu(N)Gyy (V) = Iy — w(N)e(e ) (€™)Gau(N),
S0
Guruk(A) = Guu(N) —w(N)e(e ™)/ ().
Finally,
G cuic (V) = w(A)e'(e).
We can also exploit the same formula to compute the quadratic form z}’*G;;()\j)zz' as
2" Gub (W) — 27 Gl (Vw(hy)ele e (€)) Gl (V2!
=2 GL)7 — W)z T (0)7 (0),
where
217(8) = EI2127,0] = Guu(N)€ (M) Gy (V)2 = wNe (€M) Gri(V)z]  (A3)

denotes the filtered value of 2§ given the observed series and the current 6 from (3).
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B The minimal sufficient statistics for {z;}

In any given realisation of the vector process {y;}, the values of {z;} could be regarded as a

set of T' parameters. With this interpretation in mind, we can define z&_ as the spectral GLS

t|oo
estimator of z; through the transformation

dz* () = [¢ (™) Gaa(Ve(e™™)] ™) Gua(A)dZY (V).
Similarly, we can define u oo through

dZ" (\) = {In — [¢/(€M)Gra(Nele™™)] 7'/ (€)Gra (N }ZY (3).

It is then easy to see that the joint spectral density of xt‘ - and u floo will be block-diagonal,

with the (1,1) element being
Gao(A) + [/ (€) Gu(Ne(e™™)]
and the (2,2) block

Gyy(A) — (e[ (™) Gua(Ne(e™™)] e/ (™),
whose rank is NV — 1. This orthogonalisation allows us to factorise the spectral log-likelihood
function of y; as the sum of the log-likelihood function of mﬁoo, which is univariate, and the
log-likelihood function of u tloo . The Jacobian of the transformation is 1, as we can write

< [ (€M) Gg(Ne(e™™)] e/ (e “)Guu(A) ) _(r 0
{In — e(e™)[e/ (M) Gua(Ne(e™™)] e (€M) Gua(V)} 0 Gui(N)

» ( )Gyl (Nele )] (e Gt () ) G20y

{Iy = Gua*(Vele™™)[e/ () Gra(Ne(e™™)] e (@) Gu ")} ) 7
where the matrix in the centre is orthogonal. Importantly, the parameters characterising G, ()
only enter through the first component. In contrast, the remaining parameters affect both

components. Moreover, we can easily show that
1. xﬁT =z + CﬁT, with x; and thfT orthogonal at all leads and lags.

2. The smoothed estimator of x; obtained by applying the Wiener- Kolmogorov filter to :cﬁoo

coincides with x oo

This confirms that 3:‘ constitute minimal sufficient statistics for x;, thereby general-
ising earlier results by Jungbacker and Koopman (2015), who considered models in which
c(e”™) = ¢ for all \, and Fiorentini, Sentana and Shephard (2004), who looked at the related
class of factor models with time-varying volatility (see also Gouriéroux, Monfort and Renault
(1991)). In addition, the degree of unobservability of z; depends exclusively on the size of
[c/(e)Grl(N)e(e=™)] L relative to G (\) (see Sentana (2004) for a closely related discussion).
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C Spectral scores

The score function for all the parameters other than the mean is given by (6). Since
dGyy(\) = de(e7™)Grr (V) () + c(e7™)dG e (M) (€?) 4 c(e7™)Grr (V) dc! (€7) + dGyu(N)
(see Magnus and Neudecker (1988)), it immediately follows that

dvec[Gyy(\)] = [C(ei)‘)Gm()\) ® IN] de(e™™) + [Ty ® c(e™)Gaw (V)] de(e?)
+ [c(e“) ® c(e*”)] dGn(N) + Endvecd [Guu(N)]

where Efy = (e1€]]...|ene€)y), with (e1]...|ex) = Iy, is the unique N? x N “diagonalisa-
tion” matrix that transforms vec(A) into vecd(A) as vecd(A) = Eyvec(A), and K, is the
commutation matrix of orders m and n (see Magnus (1988)). But

n

cle ™) =) ()™, (C4)

l=—m

SO

—z)\ Z dCl —zl)\ )

I=—m
Consequently, we can write
dvec [Gyy(N)] = Zn: {[e—mc(ei/\)g A ®I } [I i (i MY
yy\ A= zx N| + [ In®@e"c(e)Gre(N)]| ¢ dei(0)
l=—m

+ [c(ei)‘) ® c(e*“)] dGz(N) + Endvecd [Gua(N)] .

Hence, the Jacobian of vec [Gyy (A)] will be
duec[Gyy(N)] Z”: [ e(eM)Gua(V) @ In] | O
06’ B + [In ® ee(e™™)Gaa(N)] | 06’

0G 2 (N) ovecd [Gyuu(N)]
o0 TN og

l=—m

+ [c(eik) ® c(e—i)\)}
If we combine this expression with the fact that

[GyL () ® GL ()] uec[ 2 — Gy (\ )}

= wec [QWG;;,I()\J) e y/G/ 1()\) Gy, 10‘ )}
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and Iy () = 2)° zg' we obtain:

c e—z)\ 7,/\
2ae) = 3 G L [TC N O] e rapt i, et - et

l:—m

+8Gg;( ) /(%) @ /()| vee [2rG (N, (NG (V) = Gt (V)]
8”“‘”5“““)]15:“6@ 27 G N, ()\)G’ L) - G ]
s ac;m[ 27TGZ:/1(A) S NG N)e()Gar (e — G N )e(e) Gy (Ve }
56" | +2meNGL, (N (e NG (N, (NGl 1( ) — PG (Ve (e G (N)

I——
PG e [amel ()Gl (VT (NGl (Nele™) — /(e )Gl (el

Yy

Queet [Cul g ee [ar Gl (VI (NG — Gl ()]

Let us now try to interpret the different components of this expression. The first thing to

_l’_

note is that

e e [%G’ LT, (VG (Ve (e"*)Gm(A)—G’y‘yl(k)c(e“)Gm(A)}

and

e"Mvec | 21Gan(A)e (€7 ) Gl (NI, (NG (A) = Gaa (A (€7 Gy (A
yy
are complex conjugates because Gyy () is Hermitian and the conjugate of a product is the

product of the conjugates, so it suffices to analyse one of them.

If we further assume that G5 (A) > 0 and Guu(A) > 0 we can write

210Gy (AL, (NG (Ne(€)Gan(A) = Gly' (Ae(e)Gan (V)
= Glg (\) 27T (N) — Gl (V)]

C/(efz)\)G —

by Ne(e?)

orc! (e *M)G NIy (N Gy (Ve(e?) —
= G;x ()‘) [27rIerK(A) - G:BK:EK ()‘>]

and
2mG (M (VG (V) — Gy (V) = Gl () 27T (V) = Gy (V)] Gl (V).

Therefore, the component of the score associated to c¢; will be the sum across frequencies of

terms of the form
eTINGII(N) [20T ki (N) — G (V)]

(and their conjugate transposes), which capture the difference between the cross-periodogram

and cross-spectrum of xtK ; and uft( inversely weighted by the spectral density of u;;. As a result
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we can understand this term as arising from the normal equation in the spectral regression of
y;¢ onto x;_; but taking into account the unobservability of the regressor.

Similarly, the component of the score associated to the parameters that determine G, (\) will
be the cross-product across frequencies of the product of the derivatives of the spectral density
of ; with the difference between the periodogram and spectrum of z* inversely weighted by
the squared spectral density of x;. In this case, we can interpret this term as arising from a
marginal log-likelihood function for x; that takes into account the unobservability of x;.

Finally, the component of the score associated to the parameters in Gy, () will be the cross-
product across frequencies of the product of the derivatives of the spectral density of u; with
the difference between the periodogram and spectrum of uft( inversely weighted by the squared
spectral density of u;;. Once again, we can interpret this term as arising from the conditional
log-likelihood function of u;; given x; that takes into account the unobservability of u,.

As usual, we can then exploit the Woodbury formula, as in expressions (12), (D6) and (D7),

to greatly speed up the computations. In particular, we will get

Gm()‘)cl(ei/\)G;; (Myy (NG ¢ (A) = Gue (M) (€7)Gyy (V)

Yy yy

= GV (M) Gy Wy (V) | Gaa (V) = w(N) G (Ve(e™™)e/ (€M) Gab(V)] —w Ve () Gaa()

vy uu uu

= G (WE (MG (Vyy (V) [Ty — N Gab(Vele™)e ()] Gub(Y) —w(N)e/ ()Gl

vy uu uu uu

Gyy (MLy(NG

vy V) = Gyy (V)
= |Gaa(Y) — 0N GabWele™)e (M) Gaa)] Ly () [Gaa V) = w(NGab(Ne(e™)e () GV |
)

uu ) -
— |Gab() — NGk (WVele™)e (M) Ga (V)|

GaaV) [Iv = w(Ve(e™)e (™) GV Ty () [Iy = w(N)Gaa(Ne(e™)e/ ()] Gaa(y)
ek

uu

= Gl_llll()\) [IuKuK ()\) - GuKuK ()‘)] Gl_ll,ll()\)7

() [Gua(V) = wWele™)e/ ()| Gaa)

uu

and

(MG (MIyy (VG

vy s (Ae(e™™) = (¢?)Gyy (Ve(e™™) = Gog (N Lpre o (A) =G pr (NG (M)

;y Yy T T
D Alternative marginal scores

As is well known, the EM algorithm slows down considerably near the optimum (see e.g.
Tanner (1996)). At that point, the best practical strategy would be to switch to a first derivative-
based method. In this regard, the EM principle can also be exploited to simplify the computation
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of the score This result was first noted by Louis (1982); see also Ruud (1991) and Tanner (1996).
Since the Kullback inequality implies that E [I(x|Y;60)|Y; 0] = 0, it is clear that 0l(Y;8)/00
can be obtained as the expected value (given Y and @) of the sum of the unobservable scores

corresponding to I(y1,. .. ,yN|x) and [(x). This yields

al(Y) 8Gm -

8Z(Y) o 8Gu1uz —2 . g Ug* .

50, = ZO 20062 () (2L 2 28] = Gun ()]
al(Y) _ 27 - ik u; a:* zk)\j T Ui*
vl Y Gt ) | Bl 25712, 0] + e~ B2 2|2, 6]

But since the scores are now evaluated at the values of the parameters at which the expec-
tations are computed, we will have that
Elzf2{*|27,0] = ILx,x(Xj) +w(X),
Ez}z*|27,0] = E[z}|2Y,0|E[z}*|ZY,0] + E [{z;‘ - E[z}|ZY, 0]} {z;‘* - E[z}"|Z7, 0}} VAS 0}
= Lyrcur(A)) +e(e”™M)w(Xy)e (e™).
Elz}2*|2Y,0) = E[z}|2Y,0|E[z}"|ZY,0] + E [{z} — E[z}|2Y,0]} {]* — E[2{*2Y,0]} |27, 0]

= Luxgx (N) — cle™™)w ()

where
uK_E uzy 91 = G (AVGTIaNZY = 2Y —iXjy oK
= [Z]| ) ] = uu( ]) yy( J)Zj = z; —C(e )zj ’
E[(ZEl — Z?K)(z}l* _ Z?K*)‘Zy, 9] — C(efi)\j)w()\j)cl(ei)\j),
E[(z - Z?K)(z;”* B Z;;K*)|Zy’ 0 = C(G_Mf)w()\j),

IuKuK()‘ ) = 277('}uu(>‘ )G;;()‘j)Iyy(/\j)G;;()‘j)Guu(/\j)

= 27 [Ty = w()e(e™™)e/ (™) Gaa(4)] Ty () [Ty = wOy)e(e™)e/ (™) Gaa(ny)] - (D6)
is the periodogram of the smoothed values of the specific factors, and

L (X)) = 20Gaa(X)c (e™)Gyy M)y (A)Gyy (A7) Guu(X)

= 2m0()e (€M) FRt )Ty () [T — w4 Gk y)e(e™)e ()] (D7)

K

too and ufl

is the co-periodogram between x Hoo®

Tedious algebra shows that these scores coincide with the expressions in appendix C. They
also closely related to the scores of the expected log-likelihoods in section 4.2, but the difference
is that the expectations were taken there with respect to the conditional distribution of x given

Y evaluated at 8, not 6.
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E Spectral information matrix

Given the expression for the Jacobian matrix (C5), we will have that
dvec [Gyy (M) _ Zn: Icp [ [e7MGua(N)e () @ In]
00 o= 00 |+ Iy et (em)Gaa (V)]

8ng(>\) [c’(ei)‘) ® c'(e*“‘)] + MCd[a(;““()‘)]E?V

and

dved [GyyNI" | © ee(em™)Grr(N) @ T dc
{ 80yy } B l:zm{ +[ Iy @ eiZAc(eiA)me(]X\])] }801’

0G 1 (N) L Ex ovecd [Gyuu(N)]

e et g %0

Hence, it is straightforward to see that the elements of the block of the information matrix

(7) corresponding to the dynamic factor loadings will be

oved [Gyy ()] — dvec [Gyy(N)] '
g e e e { el

e MGV (€M) @ T _ — efe(em™)Gra(N) @ T
{ +[ [y @ eil)\Gxx(/\)c/(eg\])} } (G (V) ® Gyt (V)] { +[ Iy ® eik,\c(ez,\>Gm(]\)]\])] }
¢7i(l+k))\G/yfy1()\>C(ez:/\) (M)ny(A)
G2 ] FE (Gl ele e e MGl ]
- zx e—i(l—k))\cl(eiA)G}—’;(/\ C( _M)}G’_l()\)
(

)
ez‘(l—kz))\ [c/(e_M)G/y_yl )\) ( zA)] Gy;()\)

Notice that since the information matrix is real, there will be cancellation between the

complex parts of the above matrices.

Similarly,
(%ec’[;?rcjy()\)] [Gyi(\) @ G’*l(A)] i%ec[;;w
—il)\ 67'/\ . i xT

o—ilA '(61)‘) ( c(e G/ 1( )e(e! A) O0G 1z(N)

= wa(A){ [ (e A)G/ 1()\)(:( )] ( Ye(e™™) } 00,

which again will be real.

In addition

dved [Gyy (M) dvec [Gyy ()]
de 00,
—ilA e/ (ei -~ 0G oy, (N
{ [ [IN gezlgczvxx(( )():/((X;Ii\/[\] ] } [ny()\) G 1()\)] Ex (ej 802“( )>
(

B [ﬂlA (€M) Gy (Ne;] Gl (Ne; | 9Guu (V)
= G (e Gt | o8],

[Gyy(N) ® Gy (V)]
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since

e/ By = €j(e1€e}]...lenyely) =€ @ e

In turn,

dved [Gyy (V)]

00,

0G 10(N)
00,

= {c'(ei/\)G;; (/\)c(e*i/\)} [c’((fi/\)(}'y;,1 (A)c(ei)‘)}

ovec [Gyy ()]
00,
(€M) @ e(e™)] [Gry (V) @ Gy (V)] [e(e™) @ c(e™)

0G2(N) 0Gpa(N)
00, 00,

[Gyy (V) ® GR (V)]

0G.0(N)
0,

Further
Oved [Gyy(N)]
00,
0G0 (N)

= Tew |:C/(€i/\) ® cl(e—i/\):| [G;,;()\) ® G/y_yl(A)] ENej

= [eeMerme] [ele MG (e,

_ _ ovec [Gyy (A
(G & Gyt ] 2 )
0G0, (N)
06,
0G0 (N) G, (V)

00, 00,

Finally,

dved [Gyy (N)]
90,

0Gluyu, (A B .
- ae() e/Ely [Gyy(\) © Gi' (V)] Ene;

ovec [Gyy(N)]
802“
OG yju; (M)
602@
8Guiui ()‘) aGujuj ()‘>
00, 80’uj ’

[Goy (V) @ G (V)]

= € [Gy1(\) O Gt e

where ® denotes the Hadamard (or element by element) product of two matrices of equal size.
If we assume that both G.z(\) and Guu(A) are strictly positive, we can use again the

Woodbury formula to considerably simplify the previous expressions. In particular,

GyiNele™) = GuiWele™) —wN)Gua(Nele e/ (M) @bV el ™),

yy uu uu

Gl e(e?) = GRi(e(e) — N Gui(Ne(eN)e/ () GuiNe(e™),

uu uu

so that

(M) Gy (Ne(e™) = [/ G (el = /(M) GaaNe(e™) Gt (w()

in view of (A2). Finally, further speed gains can be achieved by noticing that

(e?)Gua(Ne(e™) = EN: 7“%(6%“2.
uu = Gu]-uj- ()\)
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F A simple example with pure AR processes

F.1 The model and spectral density

We illustrate our spectral EM algorithm with the following model

Y1t 5 €1,0 1,1 Uy ¢
= : + : Ty + : Ti—1+ : )
YNt 125\ CN,0 CN,1 UN ¢
Ty = QpT-1+ fi
Ut = QU1+ Vi, ©=1,... N.

In this case:

1
Gro(N) = ’
ow:( ) 14+ O‘?gl — 201 COS )\T/}f
1
Guuw,(N) =
uzuz( ) 1 + azil — 2aui1 CcoS \
and ' '
c10 + cl’lefz)\ cl(efz)\t)
c(ef’i)\t) = ¢y 4 Cle*i)\ — = :
N + CN,le_M CN(e—z'At)

F.2 Complete likelihood

Using the results in section 4, the derivative of G, (\) with respect to a1 would be

OG (X)) 2(cos A — az1)
Oazr  (1+a?; —2az1cos\)?

Hence, the log-likelihood score would become

T—
ol(x) 1 2(cos A\j — 1) ) 2
2 1+ agy — 2ag1 c0s Aj)° X
1 T—
[ TZ5 25 (1+oz3251 — 2001 cos)\ } Z::() cos axl j 2

where we have exploited the fact that

T-1

(cosAj — agz1)
= Vau(l) = 0) = 0.
jzz;) (1 + Cki — 2031 €OS )‘j) ’Y&T( ) a$171$< )

As a result, if we set the score to 0 and solve for a1 then we would obtain

A Zf 01 cos \jzj 25" o Z;—'Fz_ol cos AjLzz(A))
Agpl = ZT 1 . xx - ZT71I ()\) .
j=0 %5 %j j=0 txxz\Aj
But since
T—1
III(A]) = ’?x:p(o) + 2 Z &:m:(kl) COS(k‘)\j),
k=1
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we would have that

T-1
j=0
and
T-1
Z cos Aj [27TI$$(A]>] = T[’A)/a:;v(l) + ’S/JJJ:(T - 1)]7
j=0

which is the first sample (circulant) autocovariance of x;. Therefore, the expression for d,
is (almost) identical to the one we would obtain in the time domain, which will be given by
Yo (1)/422(0), because 4, (T — 1) = T~ wrzy = 0p(1).

Similar expressions would apply to the dynamic parameters that appear in 8, for a given
value of ¢;. in view of (11b), since in this case it would be possible to estimate the variances of
the innovations v, in closed form.

Specifically, the partial derivatives of G, () with respect to v; and «,,; would be

OGN I
0Y; 14 0412”1 — 20,1 cOS A
aGuiui(A) _ Q(COS A= auil)¢i
dau,y (L4 02 ) —2ay,1co8 \)?

so the corresponding log-likelihood scores would be

T-1

M o 1 (]- + Oéiil — 205ui1 COS )\J)2 27-[-2'“1'2“11* B wz
N, 2 = (1+ ap | — 2001 €OS Aj) 93 i “i 1+ a2, — 20,1 cos
| T2
= W Z [(1 + aiil — 20y,,1 cos )\j)27rz;-”z;“* — %} ,
i j=0
Al(yilx) _ }T_l 2(cos Aj — oy, 1) i (1 4 @ | — 2,1 cos Aj)?
dovy;1 2 =0 (1+ 0‘31;1 — 2011 cOS )\j)Q@ZJ?
T-1
; 2m
X |2mzfiat - v ] =— CosSAj — ovy1)7 250
[ I (14 a2, — 2ay1 cos \j) b, ;Z:%( J ui1) 3 Ci

Hence, the spectral ML estimators of v, and o, for fixed values of c;. would satisfy

~ 2 T-1
. . ~2 _ ~ . Uq UG *
v, = T2 (1 + ay,1 — 20,1 c0s Aj)z; 2",
T-1 ) Ui UG
Zj:() cos )\]zj z;

T—1 _u; ju;*
2 j=0 %j %

duil =

Intuitively, these parameter estimates are, respectively, the sample analogues to the variance
of v, which is the residual variance in the regression of u;; on u;;—1, and the slope coefficient in

the same regression.
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Finally, as far as the dynamic loading parameters are concerned, the matrix on the left hand

of the normal equations becomes

T-1 T T —i\; 2y ST Tk
ZG;lsz()\]) < 2V 22—273\ T Tk (6 ];_:re r*) % >
: (€™ + €7 ) 2% 2] 2327

j=0 J 7
T-1
1 COS A\,
_ — T Tk g
o4 OG% ui(A)225%] (cos)\j 1 >’
j:

while the vector on the right hand side will be

— Yi jx* Yi* x

a1 (\) 25"z + zi 7z
E Ui Us N7V z/\] Zyz ZJ:* te —i\; Zyz*za: :
i—=0 J J

F.3 Expected log-likelihood

The expected log-likelihood score for the autoregressive parameter of the common factor

becomes T
Ewggzﬂ EBC%A — o) [15,1 ) + 0™ ()]
Hence,
L) _ Z;F "o cos \j { (K) o (A)) +W(n)()‘j)}
A S 1 o)+ )]
Similarly,

Ell(yix)|Y, 0]

. (142 2001 cos) [2r18, () — ]

2 UiU;
o, i =
Bll(y:lo[Y, 6™ P,
[1( gaﬂl ] _ JZ(COSAJ- ) I, (M)
s ? 7=0

As a result, the spectral ML estimators of ¢; and a1 given c;. will satisfy

(1) 21 =Tl ~(n+1)\?2 oA (nt1) () ().
Vi T T Zej=o [1+ (auil ) 2y 08| T, ();
A _ Z;‘.Fz_ol cos )\jll(&)” (Aj)

u;l -

S T ()
Finally, the matrix on the left hand of the normal equations for the example in (F9) becomes
T-1
1 Aj
Gl 200 e () + 0™ (A)] ( Cosl ! ) :

COS \;
i=0 J

.

while the vector on the right hand side will be

i —— L Og) + I3, () |
i 7, z)\JI( n) ()‘J) +6_Mjlg;<)y.()‘j)

j=0 ok
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G State space representation in the time domain

There are several ways of casting the dynamic factor model in (F8) into state-space format,
but the most straightforward one is to consider a huge state vector of dimension 2N + 3 in which
the ARMA(1,1) process for the common factor is written as a trivariate VAR(1) in (24, x¢—1, fi)
and the N ARMA(1,1) processes for the specific factors are written as first order bivariate VARs

in (ui,v;t). As a result, we can write the measurement equation without an error term as

Yt = I‘Xta

Xt = (xt,xt—b St U1, V185 - Uit Vg5 - - - ;uNt,UNt),
and I' is an N x (2N + 3) matrix with typical row equal to
[¢io, ¢i1,0;0,0;...51,0;...;0,0].

In turn, the transition equation will be

T a 0 —p Tp-1 Ji
Tt—1 = 1 0 0 Tt—9 + 0 s
ft 00 O fi—1 Tt

Uit a =B || wi—1 Vit ,
= + i=1,...,N),
with a block diagonal covariance matrix for its innovations.

Given our stationary assumption, the initial conditions for the state will trivially be x;g =

0(2n+3)z1 and )

(Q. © 0
0 Q -+ -+ - 0
PlO — b
| Q
c. '.‘ 0
| 0 0 0 Qn
in which the first 3 x 3 block is
Yoo Va1 1+ 4% — 208 (1—aB)(a—5B)
Q: = Yz1 Yz0 0 | Va0 = W’ zl = 1— a2 )

1 0 1

and the other N 2 x 2 blocks are

. . 1 Z_Qii
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Figure 1: A model with N = 10 series
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Figure 2: A model with N = 100 series
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Table 1: Performance of the Indirect Inference procedure for univariate ARMA(1,1)

a B o7 Relative time

True values 0.95 -0.50 1.00

GMM 0.9428 (0.0291) -0.4457 ) 11200 (0.2496)  0.0029
Ind. Inf. (1 iteration) 0.9431 (0.0287) -0.4453 ) 1.1087 (0.2509)  0.0080
Ind. Inf. (3 iterations)  0.9429 (0.0287) -0.4473 ) 1.1076 (0.2477)  0.0208
Ind. Inf. (5 iterations)  0.9432 (0.0286) -0.4472 ) 1.1063 (0.2463)  0.0338
Tterated Ind. Inf. 0.9432 (0.0286) -0.4472 ) 11063 (0.2463)  0.0375
Direct ML (Quasi-Newton) 0.9432 (0.0286) -0.4472 ) 1.1063 (0.2463) 1
True values 0.95 0.50 1.00

GMM 0.9428 (0.0430) 0.4805 1.0198 (0.1201) 0.0028
Ind. Inf. (1 iteration) 0.9420 (0.0344) 0.4800 1.0093 (0.1133) 0.0073
Ind. Inf. (3 iterations) 0.9420 (0.0335) 0.4814 1.0079 (0.1137) 0.0190
Ind. Inf. (5 iterations)  0.9420 (0.0334) 0.4816 1.0079 (0.1139)  0.0307
Iterated Ind. Inf. 0.9420 (0.0334) 0.4817 1.0074 (0.1135) 0.0384
Direct ML (Quasi-Newton) 0.9420 (0.0334) 0.4817 1.0074 (0.1135) 1
True values 0.95 0.70 1.00

GMM 0.9079 (0.0936) 0.6633 (0.2522 1.0488 (0.1928 0.0023

( ) ( ) ( )
Ind. Inf. (1 iteration) 0.9475 (0.0484) 0.6941 ( ) 1.0217 (0.1501) 0.0068
Ind. Inf. (3 iterations)  0.9464 (0.0456) 0.6924 (0.1027) 1.0126 (0.1294)  0.0172
Ind. Inf. (5 iterations) 0.9445 (0.0421) 0.6892 ( ) 1.0036 (0.1156) 0.0288
Iterated Ind. Inf. 0.9432 (0.0402) 0.6853 ( ) 0.9993 (0.1099) 0.0972
Direct ML (Quasi-Newton) 0.9424 (0.0396) 0.6837 (0.0786) 0.9970 (0.1075)

Monte Carlo medians and (interquartile ranges) of estimated parameters and computation time relative to direct
maximization of the log-likelihood. Model: (1 — aL)x; = (1 — BL)f;. Sample length=300. Replications=2,000.
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Table 2: Convergence properties of the EM algorithm

% maximum distance covered Log-likelihood. Relative time.

Initial values 0 -11519.2457 0

5 EM iterations 70.36 -4695.3231 0.0158
10 EM iterations 76.63 -4687.7697 0.0317
300 EM iterations 98.83 -4669.6352 0.9503
5 EM iterations + QN 100 -4669.5494 0.5341
10 EM iterations + QN 100 -4669.5494 0.5174
QN 100 -4669.5494 1

Monte Carlo averages of the percentage of the maximum distance covered, of the log-likelihood values and of the
computation time relative to Quasi-Newton. The maximum distance is assumed to be the L? norm of the difference

between the parameter initial values and the QN estimates. Sample length=300. Replications=100.
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Table 3: Sample of NAICS 3-digits sectors for estimating the employment index

Oil and gas extraction (211)

Mining, except oil and gas (212)

Support activities for mining (213)
Construction of buildings (236)

Heavy and civil engineering construction (237)
Specialty trade contractors (238)

Wood products (321)

Nonmetallic mineral products (327)
Primary metals (331)

Fabricated metal products (332)

Machinery (333)

Computer and electronic products (334)
Electrical equipment and appliances (335)
Transportation equipment (336)

Furniture and related products (337)
Miscellaneous durable goods manufacturing (339)
Food manufacturing (311)

Textile mills (313)

Textile product mills (314)

Apparel (315)

Paper and paper products (322)

Printing and related support activities (323)
Petroleum and coal products (324)
Chemicals (325)

Plastics and rubber products (326)

Miscellaneous nondurable goods manufacturing (312,6)

Wholesale trade, durable goods (423)

Wholesale trade, nondurable goods (424)
Electronic markets and agents and brokers (425)
Motor vehicle and parts dealers (441)

Furniture and home furnishings stores (442)
Electronics and appliance stores (443)

Building material and garden supply stores (444)
Food and beverage stores (445)

Health and personal care stores (446)

Gasoline stations (447)

Clothing and clothing accessories stores (448)
Sporting goods, hobby, book, and music stores (451)
General merchandise stores (452)

Miscellaneous store retailers (453)

Nounstore retailers (454)

Air transportation (481)

Rail transportation (482)

Water transportation (483)

Truck transportation (484)

Transit and ground passenger transportation (485)
Pipeline transportation (486)

Scenic and sightseeing transportation (487)
Support activities for transportation (488)
Couriers and messengers (492)

Warehousing and storage (493)

Publishing industries, except Internet (511)
Motion picture and sound recording industries (512)
Broadcasting, except Internet (515)
Telecommunications (517)

Data processing, hosting and related services (518)
Other information services (519)

Monetary authorities - central bank (521)

Credit intermediation and related activities (522)
Securities, commodity contracts, investments, etc. (523,5)
Insurance carriers and related activities (524)

Real estate (531)

Rental and leasing services (532)

Lessors of nonfinancial intangible assets (533)
Administrative and support services (561)

Waste management and remediation services (562)
Ambulatory health care services (621)

Hospitals (622)

Nursing and residential care facilities (623)

Social assistance (624)

Performing arts and spectator sports (711)
Museums, historical sites, and similar institutions (712)
Amusements, gambling, and recreation (713)
Accommodation (721)

Food services and drinking places (722)

Repair and maintenance (811)

Personal and laundry services (812)

Membership associations and organizations (813)
Federal, except U.S. Postal Service

State government, excluding education

Local government, excluding education

Notes: NAICS 3-digit codes in parentheses.
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Table 4: Dynamic loadings estimates

Series cio std.err. ci1 std.err. Series cio std.err. ci1 std.err.
1 0.510 (0.458) -0.183 (0.458) 42 0.956 (0.401) -0.469 (0.400)
2 0.606 (0.542) -0.201 (0.542) 43 0.026 (0.394) 0.275 (0.395)
3 0.233 (0.657) 1.180 (0.663) 44 0.049 (0.748) 0.178 (0.748)
4 1.757 (0.335)  -0.957 (0.331) 45 1.080 (0.235) -0.522 (0.232)
5 2.004 (0.499) -1.343 (0.494) 46 0.279 (0.608) -0.136 (0.608)
6 2.195 (0.316) -1.351 (0.308) 47 -0.520 (0.461) 0.444 (0.461)
7 2.457 (0.385) -1.445 (0.377) 48  -0.341 (1.523) 0.836 (1.524)
8 2.031 (0.297) -1.226 (0.288) 49 0.572 (0.299) 0.011 (0.300)
9 1.582 (0.295) -0.135 (0.300) 50 0.312 (0.663) 0.241 (0.665)

10 1.060 (0.141) 0.038 (0.149) 51 0.877 (0.266) -0.486 (0.264)
11 0.720 (0.183) 0.479 (0.195) 52 0.290 (0.135) 0.247 (0.140)
12 0.447 (0.169) 0.236 (0.172) 53 1.518 (0.908) -1.227 (0.906)
13 0.741 (0.226) 0.166 (0.232) 54 -0.245 (0.216) 0.654 (0.221)
14 1.839 (0.483) -1.042 (0.478) 55 0.136 (0.232) 0.163 (0.233)
15 2.068 (0.243) -1.060 (0.234) 56 0.822 (0.339) -0.617 (0.338)
16 0.625 (0.168) -0.224 (0.167) 57 0.622 (0.430) 0.067 (0.430)
17 0.159 (0.200)  -0.069 (0.200) 58  -0.018 (0.480) 0.106 (0.480)
18 2.786 (0.448)  -1.992 (0.437) 59 0.030 (0.139) 0.010 (0.139)
19 2.037 (0.412) -1.298 (0.406) 60 0.212 (0.220) 0.337 (0.223)
20 1.760 (0.462) -1.068 (0.458) 61 0.029 (0.109) 0.040 (0.109)
21 0.677 (0.154) -0.289 (0.153) 62 0.416 (0.193) -0.174 (0.192)
22 0.391 (0.180) 0.212 (0.185) 63 0.456 (0.268) 0.212 (0.272)
23 0.329 (0.451) -0.316 (0.451) 64 -0.610 (0.745) 0.847 (0.746)
24 0.168 (0.132) 0.067 (0.133) 65 2.734 (0.272) -1.932 (0.255)
25 1.542 (0.236) -0.694 (0.232) 66 0.261 (0.323) -0.031 (0.323)
26 0.568 (0.358) -0.319 (0.357) 67 0.260 (0.085) -0.267 (0.085)
27 0.614 (0.098) -0.169 (0.098) 68 0.073 (0.063) -0.051 (0.063)
28 0.593 (0.125) -0.367 (0.123) 69  -0.092 (0.090) 0.038 (0.090)
29 0.778 (0.156)  -0.502 (0.154) 70 -0.195 (0.301) 0.273 (0.301)
30 1.187 (0.136) -0.819 (0.132) 71 -1.157 (0.970) 1.437 (0.971)
31 2.035 (0.261) -1.352 (0.252) 72 0.093 (0.429) 0.174 (0.429)
32 1.547 (0.437)  -0.925 (0.434) 73 0.736 (0.496) -0.374 (0.495)
33 1.668 (0.275) -1.202 (0.269) 74 0.953 (0.262) -0.544 (0.261)
34 0.119 (0.136) 0.031 (0.137) 75 0.683 (0.162) -0.479 (0.160)
35 0.171 (0.194) -0.006 (0.194) 76 0.967 (0.204) -0.587 (0.202)
36 0.205 (0.187) -0.016 (0.187) 7 0.520 (0.161) -0.310 (0.160)
37 1.621 (0.365) -1.326 (0.362) 78 0.182 (0.149) -0.134 (0.149)
38 1.238 (0.565) -0.821 (0.563) 79  -0.717 (1.330) 0.442 (1.329)
39 0.512 (0.318) -0.326 (0.318) 80 -0.156 (0.113) 0.203 (0.113)
40 0.828 (0.277) -0.303 (0.276) 81 -0.155 (0.137) 0.195 (0.137)
41 0.581 (0.420) -0.128 (0.420)
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Table 5: ARMA parameter estimates

Series «a std.err. [ std.err. v std.err.|Series « std.err. [ std.err. 1 std.err.
x 0.969 (0.015) -0.448 (0.092)  1.000
1 0.974 (0.017) 0.828 (0.044) 60.096 (4.986)| 42  0.695 (0.092) 0.347 (0.120) 40.336 (3.358)
2 0.722 (0.130) 0.528 (0.159) 78.369 (6.502)| 43  0.000 0.000 46.122 (3.826)
3 0.903 (0.034) 0.470 (0.069) 112.757 (9.371)| 44 -0.299 (0.276) -0.473 (0.255) 144.746 (12.001)
4 0.941 (0.031) 0.754 (0.060) 29.177 (2.465)| 45 0.000 0.000 15.325 (1.288)
5 0.000 0.000 70.792 (5.926)| 46  0.468 (0.088) 0.830 (0.055) 211.881 (17.568)
6 0.961 (0.024) 0.811 (0.052) 24.725 (2.125)| 47  0.000 0.000 63.006 (5.227)
7 0.898 (0.062) 0.767 (0.091) 37.122 (3.168)| 48 0.000 0.000 689.215 (57.149)
8 0.000 0.000 22.695 (1.942)| 49 -0.424 (0.221)-0.203 (0.239) 32.114 (2.673)
9 0.980 (0.014) 0.819 (0.043) 22.489 (1.908)| 50 -0.043 (0.188) 0.273 (0.181) 183.986 (15.264)
10 0.983 (0.012) 0.797 (0.044) 4.482 (0.394)| 51  0.000 0.000 20.391 (1.702)
11 0.978 (0.014) 0.761 (0.047) 8.523 (0.725)| 52  0.935 (0.042) 0.811 (0.069) 5.039 (0.422)
12 0.913 (0.030) 0.432 (0.067) 7.197 (0.601)] 53 0.087 (0.320) 0.266 (0.309) 291.773 (24.221)
13 0.981 (0.015) 0.886 (0.038) 14.162 (1.188)| 54  0.000 0.000 13.672 (1.140)
14 0.025 (0.302) 0.220 (0.295) 80.586 (6.733)| 55 0.968 (0.018) 0.715 (0.050) 14.950 (1.240)
15 0.931 (0.047) 0.819 (0.075) 13.359 (1.172)| 56  0.954 (0.028) 0.811 (0.054) 32.269 (2.686)
16 0.921 (0.100) 0.877 (0.124) 7.852 (0.657)| 57 0.934 (0.026) 0.509 (0.062) 48.497 (4.027)
17 0.653 (0.175) 0.778 (0.146) 13.743 (1.140)| 58  0.000 0.000 68.358 (5.667)
18 0.000 0.000 53.176 (4.522)| 59 0.933 (0.026) 0.518 (0.062) 5.091 (0.422)
19 0.000 0.000 47.095 (3.964)| 60 0.944 (0.029) 0.740 (0.059) 13.408 (1.115)
20 0.975 (0.020) 0.883 (0.042) 59.655 (4.991)| 61 0.900 (0.037) 0.558 (0.071) 3.167 (0.263)
21 0.969 (0.027) 0.898 (0.048) 6.569 (0.551)| 62  0.000 0.000 10.871 (0.904)
22 0.000 0.000 9.236 (0.773)| 63  0.000 0.000 20.938 (1.745)
23 0.000 0.000 60.368 (5.006)| 64 0.924 (0.057) 0.832 (0.082) 158.608 (13.160)
24 0.937 (0.046) 0.841 (0.071) 4.965 (0.412)] 65 0.000 0.000 15.862 (1.431)
25 0.903 (0.057) 0.763 (0.086) 13.737 (1.174)] 66  0.000 0.000 30.885 (2.562)
26 0.000 0.000 37.754 (3.135)| 67 0.974 (0.016) 0.791 (0.045) 1.986 (0.166)
27 0.937 (0.029) 0.673 (0.062) 2.344 (0.200)| 68 0.935 (0.028) 0.619 (0.061) 1.084 (0.090)
28 0.000 0.000 4.314 (0.363)| 69 0.961 (0.021) 0.735 (0.052) 2.248 (0.186)
29 0.966 (0.019) 0.758 (0.049) 6.406 (0.541)] 70  0.000 0.000 26.847 (2.227)
30 0.908 (0.033) 0.485 (0.070) 3.934 (0.356)| 71  0.000 0.000 278.380 (23.109)
31 0.970 (0.022) 0.869 (0.046) 16.520 (1.434)| 72 0.032 (0.386) 0.183 (0.379) 63.386 (5.257)
32 0.000 0.000 54.725 (4.571)| 73 0.000 0.000 72.657 (6.031)
33 0.870 (0.081) 0.743 (0.111) 19.082 (1.626)| 74 0.055 (0.368) -0.107 (0.366) 17.384 (1.454)
34 0.000 0.000 5.503 (0.457)| 75  0.000 0.000 7.423 (0.622)
35 0.000 0.000 11.180 (0.928)| 76  0.843 (0.078) 0.665 (0.109) 10.737 (0.904)
36 0.000 0.000 10.322 (0.857)| 77  0.000 0.000 7.504 (0.626)
37 0.000 0.000 37.501 (3.148)| 78 0.879 (0.048) 0.604 (0.080) 6.007 (0.499)
38 0.000 0.000 93.621 (7.783)| 79  0.000 0.000 525.057 (43.536)
39 0.000 0.000 29.886 (2.481)| 80 0.942 (0.035) 0.803 (0.061) 3.619 (0.301)
40 0.000 0.000 22.070 (1.841)| 81 0.000 0.000 5.515 (0.458)
41 0.000 0.000 52.014 (4.318)
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