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Abstract 

One of the most extended empirical stylized facts about output dynamics in the United States 

is the positive autocorrelation of output growth. This paper shows that the positive 

autocorrelation can be better captured by shifts between business cycle states rather than by 

the standard view of autoregressive coefficients. This result is extremely robust to different 

nonlinear alternative models and also applies not only to output but to the most relevant 

macroeconomic variables. 
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1 Introduction 

The positive and significant autocorrelation of output growth is one of the few 

empirical observations about business cycle dynamics that is widely accepted in the 

literature. Recently, Timothy Cogley and James Nason (1995) documented this stylized fact 

for the US economy over short horizons corroborating the results already found by 

other authors as Charles Nelson and Charles Plosser (1982), Mark Watson (1986), or John 

Campbell and Gregory Mankiw (1987). All of these papers follow the standard view that the 

autocorrelation in output is well characterized by autoregressive processes. 

This observed positive autocorrelation has been of crucial importance to 

evaluate the empirical relevance of real-business-cycle (RBC) models in characterizing the 

output dynamics. Along this line, Timothy Cogley and James Nason (1995) pointed out 

the difficulties of RBC models to reproduce this recognized pattern. On the one hand, 

standard RBC models, even when adding intertemporal substitution, capital accumulation, 

or cost of adjusting the capital stock, have weak internal propagation mechanisms and need 

to be complemented with exogenous sources of dynamics in order to match the 

autocorrelation found in the data. On the other hand, non-standard RBC models, as those 

that assume lags or costs of adjusting labor input, are only partially successful since they 

need to incorporate implausibly large transitory shocks. Consequently, these authors consider 

the difficulties to match the autocorrelation of the data as a failure of RBC models and 

suggest that RBC theorists ought to devote further attention to modeling internal sources of 

propagation in order to replicate the right pattern of output dynamics. 

The purpose of this paper is to provide empirical evidence in favor of a novel 

alternative view of aggregate growth dynamics. We show that output growth is 

characterized by a recurrent sequence of shifts between two steady states of high and low 

growth means. This sequence explains the dynamics of output growth better than the 

standard autocorrelated time series alternative. For this attempt, we begin our analysis in a 

simple scenario in which we assume that the switches between the two states coincide with 

the widely accepted record of turning points identified by the National Bureau for Economic 

Research (NBER). Under this assumption, we obtain that, once the business cycle phases are 

accounted for, the autocorrelation in output growth is no longer significant, being the system 

dynamically complete. 

However, we understand the limitations in terms of availability and endogeneity of 

using the NBER sequence to model the dynamic specification of output growth. In order to 

overcome those limitations, we propose nonlinear extensions to the baseline model that 

provide inference of the business cycle shifts without any of the inconveniences of 

exogeneously considering the location of the NBER turning points. To prevent our study 

against the dependence of our results to any particular nonlinear specification, we use a wide 

range of nonlinear proposals and we find that, since they all are able to identify sequences of 

business cycle states that are similar to the NBER chronology, the absence of autocorrelation 

is remarkably robust to any of these nonlinear models. According to these results, we can 

conclude that the expected US output growth displays a dynamics as simple as a series that 

switches back and forth between the two fixed equilibria. For large enough shocks, output 

growth shows sharp transitions from one regime to the other regime. However, smaller 

shocks have no dynamic effect and output growth fluctuates around each of these states as 

a white noise exhibiting no conditional autocorrelation. 

To be sure that we are appropriately addressing the actual data generating process 

for output growth, we carry out several robustness checks. First, we check that the absence 
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of autocorrelation is an intrinsic characteristic of the output growth series and it is not a 

consequence of the particular sample period selected in the paper or the last output 

growth releases. Second, we obtain that the recurrence of declines and recoveries proposed 

by the NBER's dating committee is the sequence of business cycle dummies which reduces 

the autocorrelation in output growth the most. Third, while we have primarily focused on 

output growth, we detect that the absence of autocorrelation has been an important secular 

regularity affecting other key macroeconomic aggregates, such as real consumption, 

investment, and sales, typically assumed to be positively autocorrelated and estimated by 

using autoregressive parameters. Finally we empirically show that multiequilibria models in 

which the shifts among equilibria are governed by Markov chains may be good starting 

specifications in order to replicate the main US business cycle characteristics. 

This new characterization of output growth (and other economic aggregates) has 

several important implications. First, our findings can be interpreted as empirical evidence in 

favor of recent developments in theoretical macroeconomics that explain output dynamics as 

stochastic switches between periods of low and high growth with different sources of 

business cycle fluctuations. Examples of these papers are George Evans; Seppo Honkapohja 

and Paul Romer (1998) that rely on complementarities among different types of capital goods, 

and Costas Azariadis and Bruce Smith (1998) where adverse selection problems in financing 

capital goods create credit cycles associated with business cycles. Second, and coming 

back to the Cogley-Nason findings, our results may serve as a guideline to resuscitate 

theoretical models that were neglected because positive autoregressive parameters were 

accepted as roughly the true source of the output growth short-run persistence. Finally, from 

a technical point of view, predictions, impulse responses, and dynamic multipliers obtained in 

nonlinear contexts become much simpler and more intuitive since they solely rely on our 

believes about current and future states of the cycle and also, the absence of autocorrelation 

minimizes the mathematical complexity and the computational cost of simulation and 

calibration exercises. 

The paper is organized as follows. Section 2 outlines the standard and new stylized 

facts about the US economy, provides a simple scenario to take them into account, and 

introduces the main characteristics of the absence of autocorrelation. Section 3 examines 

the robustness of this new fact to the sample period, to the business cycle chronology, 

and to other real aggregates. Section 4 reveals how the results of the nonlinear 

specifications, that generate inferences about the business cycle timing, corroborate the 

previous findings. Section 5 evaluates the empirical reliability of our new characterization of 

output growth. Section 6 concludes. 
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2 New facts about output growth dynamics 

2.1 Stylized facts 

The time series literature reports three stylized facts about postwar output growth 

dynamics in the United States: Output growth is positively autocorrelated, exhibits a 

remarkable business cycle dependence, and experienced a decline in volatility in the mid 

eighties. Quotes to these facts are all over in the literature, but we can easily appreciate them 

just by looking at the series. Figure 1 presents those facts for the growth rate of US real 

Gross Domestic Product (GDP) for the period 1.20041.1953 − . In this figure, Chart 1 reports 

the total and partial sample autocorrelation functions for output growth, along with the 

ninety-five confidence bands ( T/2± , where T  is the sample size). Chart 2 plots the output 

growth series, along with several shaded areas that correspond to the NBER recessions, and 

a vertical dashed line that refers to 1.1984 . Finally, Chart 3 shows the kernel density estimate 

of output growth before and after the volatility break of 1.1984 . 

As shown in Chart 1, the pattern of the total sample autocorrelation function appears 

consistent with the simple geometric decay of autoregressive processes of order one, 

henceforth )1(AR . In addition, the partial autocorrelation function could be viewed as dying 

out after one lag, also consistent with the )1(AR  hypothesis with an autoregressive 

parameter of about 32.0 . This standard result suggests that output growth presents positive 

autocorrelation and has been adopted by the literature as an empirical stylized fact. In 

fact, this is the motivation of Cogley and Nason (1995) to review the standard theoretical 

real-businesscycle (RBC) models and to incorporate exogenous sources of dynamics in order 

to replicate this impulse dynamics. 

Chart 2 and the first column of Table 1 reveal that, while output growth fluctuates 

around its mean of 81.0 , the broad changes of direction in the series seem to mark quite well 

the NBER-referenced business cycles. During expansions, output growth is usually higher 

(mean of 04.1 ) than its unconditional mean, but declines significantly within recessions (mean 

of 51.0− ). However, these business cycle differences do not seem to affect output volatility 

(standard deviations of 75.0  in expansions and 85.0  in recessions). Simple tests of the null 

of no different within-recessions and within-expansions means and variances are clearly 

rejected for the means and non rejected for the variances ( p -values of 00.0  and 40.0 , 

respectively). 

Finally, Chang-Jim Kim and Charles Nelson (1999), and Margaret McConnell and 

Gabriel Pérez-Quiros (2000) among other authors, have recently detected a substantial 

moderation in output growth volatility, with the suggestion that this moderation is well 

modeled as a single break in the mid eighties. We show empirical evidence in favor of this 

fact in the first column of Table 1. In particular, we update the supremum, exponential, and 

average tests used by Margaret McConnell and Gabriel Pérez-Quiros (2000) to corroborate 

that 1.1984  is still the more appropriate break date to consider the structural change in 

volatility. This fact is also illustrated in Figure 1 (Chart 3), where it is clear that, after the break, 

the distribution of output growth is more tightly centered about its mean. The results of the 

Kolmogorov-Smirnov tests and the Wilconxon tests of equality of the quartiles are also 

displayed in Table 1, where the null of no change in the distribution of output growth is clearly 

rejected. However, contrary to the case of the business cycle, this break does not seem to 

affect the mean but the volatility. The former only moves from 81.0  to 80.0  while the latter 

dramatically falls from 14.1  to 54.0 . This result is reinforced by the standard tests of no 

different means and variances that show p -values of 93.0  and 00.0 , respectively. 
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2.2 A simple approach 

In order to deal with the previous facts about the output growth dynamics, a good place to 

start is a simple linear autoregressive model. The evidence presented in the previous section 

supports a first order process as the best first candidate. First column of Table 2 presents the 

estimates of the model, labelled as 1M , 

,110 ttt yaay ε++= −  (1) 

where ty  represents output growth at time t , and  ),0(~ σε Nt   which is identically and 

independently distributed over time. As stated in textbooks, the estimated autoregressive 

coefficient is about 32.0  and generates an endogenous propagation of impulses that 

accounts for the positive autocorrelation stated above. That is, the k -period ahead impact of 

an unanticipated shock is estimated to be k32.0 . Figure 2 (Chart 1) shows the in-sample 

fitting of this model by plotting both the actual and the estimated growth rates. As expected, 

after the negative shocks that characterize the peaks, output growth falls during recessions. 

However, it is interesting to realize that, in all recessions, due to the smooth dynamics implicit 

in this autoregressive model, estimates notably remain above the actual series. 

The simple model in 1M  can be easily extended to take into account the volatility 

break just by assuming that ( ),,0~ 10 ttt BddN +=σε  where tB  is a dummy that equals one 

in the period 1.20041.1984 − . Second column of Table 2, labelled as 2M , presents the 

estimates of this specification. The estimate of the coefficient 1d  is negative and statistically 

significant showing the reduction in volatility of output growth. 

2.3 Jump-and-rest effect of business cycles 

In this section we look at how business cycle fluctuations influence the positive 

autocorrelation of output growth documented in the previous section. To address this 

question, the simplest way of taking into account the whole set of stylized facts is by adding a 

dummy variable to the previous baseline model, 2M , that equals one in the NBER 

recessionary periods. We understand the limiations in terms of availability and endogeneity of 

using the NBER sequence. Advanced reader can skip this section and go directly to the 

non-linear modelization. However, we consider that this section is a good ilustration of the 

nature of the results obtained with the more sophisticated modelizations. 

We use tN  to denote the dummy variable that capture the NBER recession periods. 

The different ways in which the break in volatility dummy ( tB ) and the NBER dummy )( tN  can 

modify the previous regressions are numerous. A general characterization of several of these 

modifications can be summarized by the following expression: 

,100110 ttttttt NBcBcNbyaay ε+++++= −  (2) 

where ( )tttt NdBddN 210,0~ ++=σε . Models 3M  to 5M  are generalizations of the 

standard linear autoregressive specification with heteroskedasticity 2M . 

In model 3M  the NBER dates are allowed to interact with the intercept ( 0b  different 

from 0 )1 This extension clearly improves the specification with respect to 2M . Model 3M  

already reflects one of the main empirical findings of this paper: once the business cycle 

movements of output growth have been taken into account, the autoregressive parameter 

is no longer statistically significant. According to this result, the US economy seems to be 

characterized by two different steady states. In the first one, the average growth rate of 

                                                                          
1. We failed to obtain any statistically relevant finding from the obvious general proposal. For example, allowing 

the NBER dates to interact with the autoregressive coefficient produces an estimate of 09.0−  with standard error 

of 18.0  . 
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output is positive while in the second one is negative. In each of these states, output growth 

fluctuates around its mean value as a white noise exhibiting no autocorrelation. 

Contrary to the autoregressive processes, the next period expected impact of an 

unanticipated one-unit increase in current output growth is no longer one third. Instead, 

the impact depends on the magnitude of the shock. To understand this point, let us take 

model 4M  that, according to the result of the significativity test, imposes to 3M  the 

excluding restriction that the autoregressive parameter is zero. Now assume the 

economy is in the negative growth steady state. For low shocks, the expected impact on 

output growth is zero. Thus, output growth is expected to remain at its negative growth state 

mean of 42.0− . However, for drastic innovations, large enough to change the state of the 

economy, the expected instantaneous impact on output growth is 37.1 , and zero in 

subsequent periods, leading output growth to rise until its positive growth state mean 

of 95.0 2. Figure 2 (Chart 2) illustrates this dynamics: output growth estimates switch sharply 

at turning points and remain constant at each steady state mean within states. This is why 

we call this particular effect of business cycles on output growth dynamics jump-and-rest 

effect of business cycles. 

Before following with this analysis, it is worth to examine whether this simple model 

can be accepted as adequate as the first order autoregressive model usually does in the 

standard literature. In particular, model 4M  residuals have zero mean ( p -value of 21.0 ) and 

are normally distributed (the p -value of the Jarque-Bera normality test is 14.0 ). More 

importantly, we have to check whether this model is dynamically complete. If we had 

erroneously eliminated the first order autocorrelation of model 3M , the unestimated model 

dynamic would have appeared in the residuals of the resulting model (that is, model 4M ), so 

they would have been serially correlated. However, if there was nothing to be gained by 

adding any lag of output growth to model 4M , its residuals would be white noise. These 

residuals are plotted in Figure 3, Chart 1. In Chart 2, we show the autocorrelation functions 

of the residuals, which support the white noise prior since the autocorrelations at 

the various lags are statistically insignificant. More formal tests of the null to detect 

possible serial correlation in the residuals are the Durbin-Watson, the Breusch-Godfrey, 

and the Brock-Dechert-Scheinkman tests. The former test shows a statistic of 78.1  that lies 

in the no autocorrelation zone (about 31.269.1 − ). The second test presents a p -value 

of 18.0 , which does not allow us to reject the null hypothesis that residuals are white noise. 

The last test, for pairs of residuals that lie in hypercubes of size 75.1  times the standard 

deviation, shows a p -value of 28.0 , which confirms that the residuals are independent3. 

Before ending this section, we address in Table 2 two additional minor questions 

about output growth dynamics. The first one has to do with the potential business cycle 

dependence of output volatility. To examine this question, model 5M  adds the NBER 

dummy to the specification of the standard deviation ( 2d  different from 0 ). Following the 5M  

estimates, we conclude that, when the volatility break is accounted for, the recessionary 

dummy does not affect output volatility ( p -value 10.0 ). The second issue deals with 

the analysis of whether the reduction in volatility induces a narrower gap in the business 

cycle means. In this respect, model 6M  includes the volatility dummy in the mean 

specification ( 0c  and 1c  different from 0 ). The resulting estimates show that the break 

significantly affects the business cycle dynamics ( p -value of joint significance of these 

dummies 007.0 ). According to Figure 3, Chart 3, this implies that the volatility reduction may 

be due to both a narrowing gap between growth rates during recessions and expansions as 

                                                                          
2. We return to this point in the next section in an attempt to provide an estimate of the threshold that marks the 
magnitude of shocks that are able to change the expected growth, and a description of the transition between states. 
3. According to the quarterly frequency of output growth, we conduct the Breuch-Godfrey test using four lags. 
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in Chang-Jim Kim and Charles Nelson (1999), and a decline in output volatility as in Margaret 

McConnell and Gabriel Pérez-Quiros (2000)4. 

                                                                          

4. Output growth mean falls from 17.1  to 87.0  in expansions and rises from 56.0−  to 25.0−  in recessions 

after the volatility break. In addition, its standard deviation is reduced from 88.0  to 46.0  . 
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3 Robustness analysis 

In this section we investigate the robustness of the jump-and-rest effect of business 

cycles in three different ways. First, we examine whether the absence of autocorrelation is a 

recent development or if it is robust to the sample period considered. Second, we check to 

what extent this effect is related to the particular sequence of business cycles proposed 

by the NBER. Finally, we study whether this effect is limited to output growth or shared by 

other US major macroeconomic aggregates. 

3.1 Is the jump-and-rest effect robust to the sample period? 

We have detected that, accounting for the business cycle phases, additional autoregressive 

parameters are no longer statistically significant. However, an interesting question to analyze 

could be if this fact is just a consequence of the sample period studied or, instead, if it is an 

intrinsic characteristic of the output growth dynamics. 

This question is addressed in Figure 4 (first row of charts) by using a recursive 

approach estimation of output growth. That is, we start by estimating the autoregressive 

parameters for a short sample covering from 1.1953  to 1.1963 . Then, we iteratively expand 

the initial sample by one observation and re-estimate the parameters in two different 

scenarios. In the first one, we assume the process to be the simple first-order autoregressive 

specification stated in (1). Chart 1a shows the OLS estimates of the slope parameter and 

Chart 1b plots the p -value of the null of non-significativity. In these graphs, we observe a 

secular decrease in the magnitude of the slope parameter whilst it always remains very 

highly significant. The second scenario modifies the autoregressive process by the inclusion 

of the additive NBER-recessionary dummy variable tN . Chart 1c shows that, once we allow 

for business cycle shifts around turning points, the autoregressive parameter becomes 

negligible, and Chart 1d reveals that it has never been statistically significant. These results 

confirm that, once accounted for the business cycle shifts, the absence of positive 

autocorrelated parameters in the output growth specification is robust to the sample period. 

3.2 On the uniqueness of the NBER cycles 

Up to this point, we have identified that the NBER business cycle fluctuations represented by 

a particular sequence of zeroes (expansions) and ones (recessions) has absorbed and 

continues to absorb the autocorrelation in the output growth dynamics. An obvious question 

that arises in the development of this property is to examine whether this is common to a few 

or to many other business cycle sequences, or whether the reduction in the autocorrelation of 

output growth achieved by the NBER chronology converts their sequence in “unique” in some 

sense. 

In order to address this question, we propose different exercises. First, we want to 

examine to what extent the jump-and-rest effect remains significant under minor diferences in 

turning points identifications. For this attempt, we use leads and lags of the NBER additive 

dummy as regressors in the OLS regression of GDP growth rates on an intercept and on its 

lagged value. That is, we estimate  

,1 tititit NBERyy εγβα +++= −−  (3) 

for ,4−=i  ... ,0,  ... 4, , where the random error tε  is iid normal with mean 0  and 

variance 2σ . In Figure 5, we present the estimated coefficients iγ  for each value of i  , along 

with their %95  confidence intervals. As we can observe, only the coefficient 0γ  eliminates 
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the correlation in the data. All the other values of i  imply confident intervals that do not 

contain the value 0=iγ . Therefore, minor differences in turning point identification imply the 

lost of the jump-and-rest effect of the business cycles. 

In a second exercise, we consider by how much the autoregressive reduction 

achieved by the NBER chronology is shared by other business cycle sequences. This 

exercise is performed in two scenarios. In the first one, we create business cycle sequences 

that share the same business cycle properties as the NBER-dated phases. For this attempt, 

we generate 000,10  blocks of recessions and expansions generated from a Markov process 

whose probabilities of staying in expansions, of staying in recessions, and of changing the 

state give an expected value of the blocks equal to the ones observed in the NBER data. With 

these 000,10  series of zeroes and ones, we repeat the regressions outlined in (4), where, 

instead of using NBER leads and lags, we use each of the generated dummies. The result 

cannot accept the the null hypothesis of 0=iγ  in any case. Actually, the minimum value 

of the t-statistic is 68.3 . In the second scenario, we want to avoid the dependence of the 

analysis with respect to the NBER business cycle characteristics. In this case, we randomly 

generate 000,1  threesomes of probabilities of staying in expansions, staying in recessions, 

and switching the regime5. For each of these threesomes, we generate 000,1  business cycle 

dummies and repeat the previous regression exercise. Remarkably, our result is qualitatively 

the same: of the 000,000,1  regressions (that is, 000,1  threesomes times 000,1  dummies) 

the minimum t-statistic of the null of 0=iγ  is 55.3 . Thus, these results reinforce the 

idea that the autocorrelation reduction is consistent with some particular business cycle 

characteristics associated to the sequence proposed by the NBER. 

Finally, we would like to go even further and try to compare its ability against all 

the possible combinations of zeroes and ones. However, due to the current capacity of 

our personal computers, the problem seems to be intractable ( 206  observations imply 
62206 1002.12 ∗=  possible combinations)6. As an alternative, we propose an algorithm for 

seeking a global minimal value in the autocorrelation significativity over a huge amount 

of competing business cycle dummies, but trying to keep the problem computationally 

feasible. We start the algorithm by generating the 536,65  different combinations of 

recessions and expansions for the first 16  observations7. We drop from this set of 

possible combinations those that do not have a minimum size block of two observations 

(this implies 856,19  combinations left). As usual, we use the remaining combinations as 

additive business cycle dummies in the first order autoregressive regression and keep only 

those k  combinations that provide a p -value of the null hypothesis of 0=iγ  that is 

smaller than or equal to the one obtained by using the NBER sequence. Now, we consider 

that those k  selected business cycle sequences could be followed by an expansion (add 

one more zero) or by a recession (add one more one), obtaining k∗2  business cycle 

combinations. With these k∗2  combinations, we repeat the exercise of regresing them as 

dummies in the first order autoregression. 

We then continue with this process until we get to the last observation8. Out 

of this algorithm we obtain that there is only one sequence of zeroes and ones that 

reduces the autocorrelation in the GDP data more that the NBER recession dummy. This 

sequence is exactly the same that the NBER recession but adding as recession periods the 

                                                                          
5. In order to obtain business cycle dummies with economic sense, we impose that the probabilities of staying in each 
state are above one half, and that the probability of staying in expansions is greater than the probability of staying in 
recessions. 
6. In fact, we were able to develop an algorithm that examines the jump-and-rest effect in any combination of zeroes 

and ones. However, according to our preliminary results, we would have required more than 1 year of iterations to finish 

up the calculations. 
7. We tried with different starting sample sizes but they yielded the same results. 
8. We understand that the best analysis would come from examining all the possible combinations of zeroes and ones. 
However, given the impossibility of doing that, we think that the approach that we follow here is reasonable because it 
directly relates with the property of robustness across time that has been examined in the previous subsection. 
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quarters 3.1990 , 2.1991  and 1.2001 9. Therefore the 1991 recession may start one period 

before and end one period later, and the last recession may end one period later, as already 

pointed out by Camacho (2004) in an independent study. 

We then continue with this process until we get to the last observation 

leading to the following results. First, up to 1981, we obtain just one combination out of the 

algorithm, the NBER combination. Second, recessions usually imply that the number of 

selected combinations increases but they always stabilize after we add a few more 

observations. In particular, the 1981 recession is the noisiest since it creates up to sixty 

selected blocks that stabilizes in the nineties. Third, only the recession in the nineties 

leaves one combination that dominates the NBER recession indicator: according to this 

algorithm, one period before and after the official 1991 recession should also be 

considered as recession periods ( 3.1990  and 2.1991 ). Something similar happens with the 

last NBER recession that, according to the algorithm, should last one more quarter (the 

algorithm locates the trough in 1.2001 )10. 

Summing up all of these results, we find that the NBER recession periods represent 

a succession of blocks of zeroes and ones with a property never previously found in the 

literature. Our results support the hypothesis that there is something “special” about the 

sequence of business cycles established by the NBER since it is very close to be the one that 

absorbs the autocorrelation of the GDP growth series the most11. 

3.3 Does it affect other U.S. macroeconomic aggregates? 

Table 1 (last six columns) analyzes whether the stylized facts that have been previously 

documented for output growth appear in other US real macroeconomic variables. In 

particular, the analysis includes the rate of growth of Personal Consumption Expenditures 

(PCE), Gross Private Domestic Investment (GPDI), Government Consumption and Investment 

(GCI), Exports of Good and Services (EGS), and Final Sales of Domestic Product (FSDP). In all 

of these series but GCI, the business cycle phases seem to affect the first but not the second 

moment. The decline in volatility is significant in all the series, by using both informal tests 

of different standard deviations ( p -values of 00.0 ) and formal structural break tests 

(vast majority of p -values below 05.0 ). The timing in this reduction is in either mid 

eighties ( 3.82  for EGS, 1.84  for GDP and GDPI, and 1.85  for IGS) or early nineties ( 1.92  

for PCE and 4.92  for FSDP), with the exception of government expenditures whose break 

date occurs in the mid sixties. In addition, with the exception of consumption, the 

moderation in volatility is associated with reductions in the conditional variance after a break, 

not with different volatility in different business cycle phases. Specifically, in the case of 

consumption, the p -value of equal (within recessions and within expansions) standard 

deviations is 00.0 . In the rest of macroeconomic variables, their respective p -values are 

always higher than the standard significance level of 05.0 . 

As in the case of output, the analysis of the autocorrelations is the main interest 

of this paper. The first four rows of Table 1 show that the autoregressive coefficients of 

consumption, investment and sales are positive and statistically significant. Their point 

estimates are 29.0 , 16.0  and 18.0 , and their p -values are 00.0 , 02.0 , and 00.0 , 

respectively. However, they become negligible and statistically insignificant when the 

additive NBER dummy is introduced in their respective baseline first order autoregressive 

                                                                          

9. This 1.2001  correction is not necessary when repeating the algorithm taking into account the heteroskedasticity 

associated to the volatility break in 1.1984 . 

10. The results are robust to the heteroskedasticity associated with the break in 1.1984 . However, in this case, the 

last NBER recession does not need correction. 
11. According to our results, we consider that this particular property of the NBER cycles may be used as an alternative 
way of identifying the business cycle phases in other countries. However, this is out of the scope of this paper and we 
think that it could be material for further research. 
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processes. Specifically, their point estimates become 08.0 , 06.0− , and 01.0 , and their 

p -values increase to 23.0 , 38.0 , and 85.0 , respectively. 

Finally, as documented in Figure 4, this empirical fact seems to be very robust to the 

sample period considered. The secular reduction of the autoregressive parameters is shared 

by consumption and investment growths but they are always highly statistically significant. 

However, once the NBER business cycle phases are accounted for, the magnitudes of these 

parameters are dramatically reduced and never statistically significant. The case of sales is 

somehow special because, even though the jump-and-rest effect of business cycles affects 

its dynamics since the mid eighties, the slope parameter in a simple autoregressive regression 

is not significant for series that end prior to these years. 
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4 Nonlinear models of output growth 

Up to this point, we have tried to confront two rather different views about the behavior of 

output growth dynamics. The first one is the standard description of output growth as a first 

order autoregressive process. This specification implies that an unanticipated shock gradually 

mitigates over time. The second one is the primary finding of this paper and depicts output 

growth as fluctuating around two steady states that coincide with the NBER expansions and 

recessions, probably with a narrower gap after the volatility break of the mid eighties. In this 

case, the expected impact of relatively high shocks (high enough to be able to shift the state 

of the economy) is the difference between these two steady state values. However, once the 

economy moves from one regime to the other one, output growth behaves like a white noise, 

so the impact dies out just in one period. Hence, subsequent relatively small shocks have no 

expected impact on output growth. 

Even though we have found evidence in favor of the second one, the scenario 

proposed to develop the analysis was simple and had limited empirical application. In 

particular, we assumed to observe the discrete shifts between states directly since we used 

the dichotomous NBER variable as known at each time period. Additionally, this assumption 

implied a potential endogeneity problem of using the NBER dummy as an explanatory variable 

that has been constructed under the basis of knowing the actual value output growth. We 

overcome these two problems by using nonlinear extensions to the baseline model presented 

in the previous section. These specifications are useful because they provide inference about 

the probability of business cycle shifts in each period with information available up to that 

period. Furthermore, they allow us to correct the endogeneity problem that may affect the 

estimations of the previous section. Finally, we show that the main conclusions of this study 

are invariant to the wide range of nonlinear specifications that propose to account for the 

business cycle dynamics of output growth. 

4.1 Self-exciting threshold autoregressive (SETAR) 

In the autoregressive model enlarged with the business cycle dummy, the mean growth 

rate switches between business cycle states through the intercept term according to 

the NBER official classification. One possible way to endogenize the business cycles is the 

SETAR model, originally proposed by Howell Tong (1978)12. In SETAR models, the regime is 

assumed to be determined by the value of an observed lagged dependent variable, pty − , 

relative to a threshold c . In particular, based on the previous analysis, we propose the 

following two-regime SETAR model 

,)( 1100 ttdtt yayIbay ε+++= −−  (4) 

where ( )ttt BddN 10,0~ +=σε . In these models, )( dtyI −  is an indicator function taking the 

value of one when cy dt ≥− , and zero otherwise. It is worth to note that the shifts between the 

two states is instantaneous by assumption and marked by the changes in the value of the 

indicator function from zero to one or viceversa. 

Since the SETAR model is piecewise linear, all parameters can be easily estimated 

by maximum likelihood, provided we know the value of the threshold, c . However, since the 

threshold is unknown, we solve the maximization problem by searching the value of the 

                                                                          
12. For an overview of SETAR models, see Bruce Hansen (1999) and the references therein. 
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threshold over the observed values of dty − . Finally, we choose the threshold and the lag of 

output growth that maximize the corresponding log-likelihood function13. 

Table 3 shows the parameter estimates in the columns labeled as SETAR. The 

estimates of the baseline model, that appears in the first column as SETAR1, reveal that the 

maximum likelihood is achieved for a threshold of 16.0 . Thus, the first regime is reached 

whenever last period's output growth is larger than 16.0  and is associated with a large 

conditional mean. The second regime appears when output growth is lower than 16.0  and 

is associated with a low mean. In order to put some additional light in the identification 

of the SETAR regimes, Figure 6 (Chart 1) plots the values of the indicator function, along with 

the NBER recessions. Typically, the indicator function is one, that is when past growth is 

roughly negative, at the official recessions. This confirms that, even though we have not 

imposed it a priori, the SETAR model clearly makes endogenous the dynamics of business 

cycles. 

Something crucial for the interest of this paper is that the autoregressive parameter 

is statistically insignificant (the p -value for this test is about 09.0 ). This result leads to the 

model SETAR2 which directly excludes the autoregressive parameters14. This confirms our 

previous findings that, contrary to the standard analysis of output growth, provided we 

account for the business cycle asymmetries, output growth is not autocorrelated. This result 

corroborates that the absence of autocorrelation when accounting for business cycles was 

independent of the potential endogeneity induced by considering the business cycle phases 

as the ones identified by the NBER. 

These findings have important implications for analyzing output growth reactions 

to shocks. Let us assume that output growth at time t  is, say, equal to 20.0 . Since this 

value is above the threshold level of 16.0  in SETAR2, the economy is in the expansive phase 

of the business cycle. If other factors are held fixed, the expected impact of any shock greater 

than 04.0−  (threshold minus actual growth) is zero, and the expected growth for this and 

subsequent periods should be the rate of growth of expansions 90.0  . However, negative 

shocks that lower the economy below the threshold, change the state of the economy, 

lowering the expected growth to 14.0  ( 76.090.0 − ) instantaneously. 

4.2 Smooth transition autoregressive (STAR) 

The hypothesis that the US output growth can switch between two states according to the 

value of an observed lagged variable with respect to a threshold may be generalized by using 

the STAR models of Timo Teräsvirta (1994). The generalization comes from the fact that these 

models allow for more gradual transitions between the different regimes by replacing the 

indicator function in (4) with the logistic transition function15:  

( )[ ].exp1

1
)(

1

1
cyg

yF
t

t −−+
=

−
−  (5) 

The role of the transition function is then to allow the mean growth rate to change 

monotonically with the values of the transition variable, 1−ty , with respect to the threshold c . 

The parameter g , usually called smoothing parameter, determines the degree of smoothness 

of the transition from one regime to the other, in the sense that the higher the parameter the 

sharper the change (the steeper the slope of the transition function at the threshold). 

                                                                          

13. Following Bruce Hansen (1999), we restrict the maximum value of d  to be the maximum lag length in the 

autoregressive specification, and the thresholds to contain at least %10  of observations in each regime. 

14. We obtain the p -value by comparing models SETAR1 and SETAR2 and testing, using a likelihood ratio test, the 

null hypothesis of autoregressive parameter equal to zero. 
15. We do not consider exponential transition functions since they are symmetric around the threshold. These 
specifications would imply that local dynamics would be the same for expansions and recessions. 
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As in the case of SETAR models, the STAR specification allows us to provide the 

statistical regimes with economic meaning. For this attempt, the last two columns of Table 3 

contain the estimates of the different STAR models that we consider. Also, Figure 6 in 

Charts 2 and 3 show (one minus) the transition function. Let us associate the first regime to 

the values of lagged growth rate lower enough than the threshold to drive the transition 

function to zero. Hence, from an economic point of view, this regime may be considered as a 

recession and, according to the parameter estimates, coincides with periods of relatively low 

conditional expected growth estimates. As the value of lagged growth increases, the 

transition function changes monotonically from zero to one. In the limit, for very high lagged 

growth rates that are obviously associated to expansions, the transition function reaches one, 

and the parameter estimates lead to relatively higher values of the conditional growth 

rate. Hence, the closer to one the transition function is, the more probable the economy 

be in expansion. This is why Chart 3 plots the value of one minus the value of the transition 

function. This chart suggests that periods of low transition function values (high values of one 

minus the transition function) correspond to the official recessions fairly well, which confirms 

that the regimes may be interpreted as business cycle phases. 

Again, the most important conclusion in the STAR specification is that the 

autoregressive parameter is insignificant ( p -value of 13.0 ). Thus, our final conclusions 

should be based on the simpler model STAR2, that excludes the insignificant autoregressive 

parameter of model STAR1. Finally, we obtain a very high value of the smoothing parameter, 

which indicates that the transition from one business cycle phase to the other is very quickly. 

This means that the STAR model behaves very similar to the SETAR model. This results can 

be seen in Figure 6 (Chart 2), where the transition function changes from zero to one almost 

instantaneously when lagged growth reaches the threshold. 

4.3 Markov-Switching autoregressive (MS) 

Probably, this is the most popular and most successful specification for a nonlinear model 

of GDP growth in the U0S. Initially formulated by James Hamilton (1989), was modified by 

Margaret McConnell and Gabriel Pérez-Quiros (2000) to capture the break in volatility. 

As in STAR models, the MS specification does not impose the change in regime to be 

sharp. However, in MS models, as opposite to STAR models, shifts are governed by an 

unobservable state variable that is assumed to follow a Markovian scheme with two regimes 

and fixed probabilities of transition from one to another. 

According to the original specification of James Hamilton (1989), output growth 

may be decomposed into an state-dependent mean, that takes on value 1µ  in the first state 

and 0µ  in the second state, and a stationary process tu , 

,tSt uy
t
+= µ  (6) 

where tu  follows an )1(AR 16. This specification implies that  

,)(
111 tStSt tt

yy εµφµ +−+=
−−  (7) 

with ( )σε ,0~ Nt . Therefore, the autocorrelation of output growth may be independently 

determined by both the shifts in the mean of the process and the autoregressive parameter. 

Since the transition between states is assumed to follow a first order Markov chain, 

probabilities are determined by  

                                                                          
16. In the original proposal, James Hamilton (1989) allows for four autoregressive lags. However lags of order two or 
higher are not statistically significant. 
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),/()/( 11 jSiSPiSP tttt ===Ω= −−  (8) 

where tΩ  represents all the information set in period t . This specification is modified by 

Margaret McConnell and Gabriel Pérez-Quiros (2000) by allowing for two independent 

Markov processes that capture the two stylized facts, the change in mean (goberned by tS ) 

and the break in volatility (goberned by tV ). Therefore, they propose the model  

,)(
11,11, tVStVSt tttt

yy εµφµ +−+=
−−−  (9) 

with ( )
tVt N σε ,0~ . 

 

The results of this regression are displayed in Table 4. As shown in the table, the 

Hamilton's original specification, labelled as MS1, implies that the autoregressive parameter 

is 31.0  and statistically significant (standard error of 10.0 ). This would imply that, contrary to 

our previous findings, in the determination of the data generating process, autocorrelation 

matters. However, this result is not robust to including the second stylized fact, the change 

in volatility. Once we take into account both facts at the same time, as shown in MS2, 

the autoregressive parameter decays to 08.0 , with a standard error of 09.0 , and is clearly 

non significant. Thus, confirming our previous results, the serial correlation in logarithmic 

changes of real GDP seems to be better captured by shifts between states rather than by the 

autoregressive coefficients. 

Figure 7 (Charts 1 and 2) gives a clear intuition of the nature of these results. 

As Chart 1 shown, the original Hamilton's model provides statistically significant 

autoregressive parameter because it does not provide reasonable inferences on the 

sequence of recessions and expansions identified by the NBER. One potential reason 

is that the model lacks a mechanism to account for the volatility reduction. In this 

respect, Chart 2 shows that, once we control for the volatility reduction, the model provides 

inferences about the business cycles that are in close agreement with the NBER reference 

cycle, and in this case, there is no room for more autocorrelation in the data. 

Given that the autocorrelation is not significant in the data, we try a new MS 

specification of a model with no autoregressive parameter. The results are displayed 

in the third column of Table 4, model MS3, and the probabilities of recession and low 

variance in Chart 3 of Figure 7. Compared with the probabilities depicted in Chart 2, it is 

straightforward to conclude that lagged values of output growth do not help at all in forming 

inference of either the identification of the business cycle phases or in the determination of the 

timing of the volatility break. 

Finally, as in the case of STAR models, the MS approach may also be used to infer 

the degree of abruptness in the transitions between business cycles. As Chart 7 shows, the 

filtered probability of low mean dramatically increases about the peaks and decreases about 

the troughs determined by the NBER dating committee17. This goes in line with our previous 

finding that the transitions from expansions to recessions and viceversa are sharp. 

                                                                          

17. For example, the probability of low mean rises about %250,1  and falls about %62  in the first peak and trough, 

respectively. 
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5 Model evaluation 

In this section, we evaluate the different estimated models in terms of their forecast errors, by 

recursively comparing actual with one-period-ahead forecasts of output growths. In addition, 

we examine the extent to which the best of the non-linear models is able to generate cyclical 

behavior consistent with the actual data. 

5.1 Forecast accuracy 

To evaluate the forecast accuracy of one of these models, we consider Mean Squared 

Error (MSE), that is the average of the squared difference between actual and forecasts 

of output growth. However, to compare the forecast accuracy of competing models, we 

use two different kinds of statistical measures. The first type are usually called tests of 

equal forecast accuracy. Among them, we consider the Diebold-Mariano (DM), Modified 

Diebold-Mariano (MDM), Wilcoxon signed-rank (WILC), Morgan-Granger-Newbold (MGN), 

and Meese-Rogoff (MR) tests, all of them described in Francis Diebold and Roberto 

Mariano (1995) and David Harvey; Stephen Leybourne; and Paul Newbold (1997). The 

second type are the forecast encompassing tests (ENC). These tests are based on the fact 

that, if one model's forecasts encompass the other, then nothing can be gained by combining 

forecasts. Hence, additional competing forecasts should be statistically insingnificant in the 

regression of actual output growth on the models' forecasts. 

Table 5 examines the ability of a simple linear AR model, and the nonlinear 

specifications SETAR, STAR and MS. In addition, we compare our results with the well-know 

multivariate representation of the dynamics of the main US macroeconomic variables 

described in Robert King; Charles Plosser; James Stock; and Mark Watson (1991, henceforth 

KPSW). This consists on a vector error correction model of output, consumption and 

investment with two cointegration relationships. In the in-sample analysis, the MS model 

exhibits MSE reductions of about one-half, despite the competing model that we consider, 

and these reductions appear to be statistically significant using the whole set of tests of equal 

forecast accuracy. In addition, the encompassing tests show that forecasts from the MS 

model incorporate all the relevant information about output growth in competing forecasts, 

with the unique exception of the KPSW. Hence, everything points toward the MS model as 

the best model to fit the in-sample values of output growth. 

The out-of-sample analysis, on the other hand, is based on recursive one-step-

ahead forecasts. That is, the sample is successively enlarged with an additional observation 

and, to construct each of these forecasts, all the parameters are reestimated. However, 

prior to developing these forecasts, it may be determined at what time a forecaster would 

have recognized the volatility slowdown dated in the middle of the eighties. To address 

this question, Figure 8 uses the approximation suggested by Bruce Hansen (1997) to plot 

the p -values of the supremum test defined in Donald Andrews (1993) and the exponential 

and average tests developed in Donald Andrews and Werner Ploberger (1994) to test the 

structural break in the volatility of the series of GDP growth successively enlarged with one 

additional observation during the period 1.20041.1997 − . This figure reveals that a clear 

signal of the structural break does not appear until the nineties. This result restricts the 

out-of-sample analysis to the relatively short forecast period 1.20041.1991 − . For this period, 

the MS model again exhibits the lowest MSE. Although, probably due to the very short 

forecasting period, its forecast accuracy does not seem to be superior to its competitors 

since the forecast accuracy tests show p -values that are considerably large. However, the 
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null that forecasts from this model still encompass the forecasts from other models can not 

be rejected at any standard significance level. 

5.2 Adelman tests 

The previous section suggests that the MS model is a reasonable starting point to 

forecast GDP growth. However, apart from describing first and second moments reasonably 

well, to be considered a good representation of the actual data generating process, we 

should ask whether this class of models are also able to generate cyclical behavior consistent 

with the data. We perform this exercise by comparing several business cycle characteristics 

of the data generated by this class of models with those generated by the actual data. 

There is an extensive literature on business cycle characteristics which concentrates 

on the duration, amplitude and shape of the cycle. In this paper, we focus on the aspects of 

the cycle proposed by Don Harding and Adrian Pagan (2002) and Grant McQueen and 

Steven Thorley (1993) since they lead to a reasonable representation of the overall form of the 

typical cycle. In particular, for each of the two phases of the cycle, we consider the duration 

or average number of periods in the state of the cycle, the amplitude or percentage of gain in 

an expansion and loss in a recession, the cumulative movements between phases or 

percentage of wealth accumulated in expansions and lost in recessions, and the excess 

cumulated movements or difference between actual cumulative movements and the triangle 

approximation to cumulative movements18. In addition, we report measures of sharpness that 

compare growth rate changes two quarters around turning points19. Finally, one additional 

characteristic that should be generated by the MS process if it pretends to match the 

observed characteristics of the data is the sample autocorrelation. 

The description of these business cycle characteristics must be accomplished 

first by isolating the turning points in the series. This is specially problematic when we try 

to report the cyclical behavior of thousands of generated time series. In this paper, we follow 

the well-known Bry-Boschan dating procedure to identify the countries' business cycle 

turning points because it is quick, easy to implement, and commonly accepted in the 

literature20. 

First two columns of Table 4 provide an overview of the business cycle 

characteristics concerning the actual data. Expansions are about six times longer than 

recessions. The amplitude of expansions is also much larger than in recessions, 

basically because the latter are short-lived. This may also induce that, in expansions, 

the cumulated gains are much higher than the cumulated loses of recessions. The measures 

of excess show that contractions are similar and expansions are different from the triangle 

approximation of the cumulated loses and gains, respectively. The sign of the excess in 

expansion is consistent with the rapid recovery in the early part of the expansion that has 

been documented in the literature. Finally, according with the results of Grant McQueen and 

Steven Thorley (1993), the sharpness of troughs is roughly twice the sharpness of peaks, 

which support the view that peaks are relatively more rounded than troughs. 

Now, it is turn to examine the ability of the MS model to match the characteristics 

found in the data. For this attempt, we collect the estimates of the model MS3 displayed in 

the third column of Table 3, generate 000,10  Montecarlo time series simulations using these 

estimates, identify their turning points with the Bry-Boschan algorithm, and compute the set 

of business cycle characteristics generated by each of these simulations. Last two columns 

of Table 6 provides some summary statistics for the business cycle characteristics generated 

by the MS model: the mean, the standard deviation, and the percentile of the Montecarlo 
                                                                          
18. In the definition of the cumulative movements between the phases of the cycle, wealth is defined as the 
accumulation of GDP production in each period of time. 
19. For a comprehensive overview of these measures, we refer the reader to the original papers. 
20. The Bry-Boschan algorithm isolates the local minima and maxima in a series, subject to reasonable constraints on 
both the length and amplitude of expansions and contractions. 
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distribution in which the actual business cycle statistic is placed. Because the actual business 

cycle statistics are not in the extreme tails of the Montecarlo distributions, the MS model does 

a reasonable job of producing recessions and expansions with business cycle characteristics 

consistent with those of the actual data. For the purpose of this paper, of noticeable interest 

is the ability of the MS model to generate time series with similar average correlation than the 

observed in the data, specially if we recall that the process that generates the simulations 

does not include any autoregressive parameter. This confirms the empirical reliability of the 

jump-and-rest effect of business cycles and the ability of the Markov switching representation 

to generate time series with business cycle characteristics similar to the ones of the observed 

data. 
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6 Conclusion 

In this paper, we have found empirical evidence in favor of what we call the jump-and-rest 

effect of business cycles: Once we take into account the business cycle recessions and 

expansions sequence that is provided by the NBER, and the break in volatility at the mid 

eighties, there is no autocorrelation in the US output growth rate. We have shown that this 

result is robust to the sample period, to many other alternative sequences of business cycle 

dates, to other macroeconomics aggregates such as consumption, investment, and sales, 

and to several alternative non-linear specifications determining endogenously the timing of 

the turning points. We believe that this result can be considered as a new stylized fact of 

the US economy. 

The consequences of this new fact for both empirical and theoretical subsequent 

macroeconomic analysis are diverse and depend on the interest of the reader. From an 

empirical point of view, this simple dynamics facilitates the understanding and developing of 

forecasts, reduces to the minimum the complexity of impulse response functions and 

dynamic multipliers, specially those developed in nonlinear contexts, and simplifies the 

simulation and calibration analysis by overcoming unsolved computational problems. From a 

theoretical point of view, these finding provide empirical support to those theoretical models 

that describe the data generating process of output growth as a succession of equilibria 

between high and low growth. In addition, the jump-and-rest dynamics put additional lines to 

investigate the empirical reliability of theoretical simulations. Finally, it may serve as a guideline 

to resuscitate theoretical models that were neglected when autoregressive parameters were 

accepted as the source of the positive autocorrelation of output growth. 
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Table 1. Summary statistics of U.S. macroeconomic series and analysis of the break 

in volatility 
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Table 2. Simple linear time series models of U.S. output growth 
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Table 3. SETAR and STAR models of U.S. output growth 
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Table 4. Markov-switching model of U.D. output growth 
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Table 5. In-sample and out-of-sample accurancy 
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Table 6. Summary statistics for actual data and Markov-switching simulations 
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