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Abstract 

The nature oC repeated interaction has been extensively studied in the repeated garne liter
ature. Abreu (1988), Abreu, Pea.rce an,d Stacchetti (1986, 1990), and Cronshaw and Luen
berger (1994) develop a recursive approa.ch to characterizing repeated games by focusing on 
the present values oí suhgame perfect strategies for each player, V. Judd and Conk1in (1995), 
Cronshaw and Rutherford (1994) and Cronshaw (1996) have implemented these techniques 
computationally. Sorne oí the most interesting examples oí strategic interaction, however, 
arise in environments with state variables in wruch the recursive techniques cited aboye can
not be employed. In such environments tbe set oí values oí suhgame perfect equilibrium 
becomes a function of the state variable-the object of inlerest becomes the value correspon
den ce. This paper presents a general method for computing value corresponden ces under 
perfect monitoring and discounting. 
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1. Introduction 

The nature oí repeated interaction has been extensively studied in the repeated game liter

ature. While the theory oí repeated games has produced important qualitative results, one 

weakness oí this theory is the lack oí quantitative applications. A second weakness is that 

this theory has yet to be broadly extended to environments with state variables. In an earlier 

paper we address the first weakness, presenting a method for computing the set oí subgame 

perfect equilibria in infinitely repeated games witb perfect monitoring. Our approach is re

cursive, lollowing the lead 01 Abreu (1988) and Abreu, Pearch and Staccbetti (1986, 1990), 
and Cronshaw and Luenberger (1994). Here, we extend that technique to games with state 

variables, restricting the state space to have finite elements. 

The recursive tbeory of supergames introduces the concept of self-generating sets of pay

offs to characterize the set of equilibria. The numerical method discussed below revolves 

around efficient ways to approximate and construct these self-generating sets. As in Cron

shaw and Luenberger (1994) and Judd and Conklin (1995), we allow public randomization. 

This is advantageous since the resulting elements oC the equilibrium value correspondence 

are convex, and a convex set can be represented by a simple function denoting the distance 

Croman interior point to each point on its boundary. We cboose a piecewise linear procedure 

to approximate these boundary functions. This method is of interest since it generates a 

"lower bound" to the true solution and is computationally cheap to evaluate and recom

puteo We iIlustrate the method with an example: computing subgame perfect equilibria Cor 

government fiscal poliey in a primitive society. 

This example needs moderate computer power. We give running times -on Pentium

based personal computers. Furthermore, we used standard, freely available software. Al! 

the prograros were written in FORTRAN, but could be implemented in any programming 

language, such as BASIC or Matlab. 

Section 2 covers notatiofl. Section 3 discusses the methods for approximating convex sets 

and describes the basic algorithm. Section 4 applies the algorithm to the two examples, and 

Section 5 concludes. 

2. Supergames and Characterization of Equilibrium Payoffs 

We examine an N-player infinitely repeated game with state variables. A;, i = 1,···, N, 

will denote the action space of player i in the stage game. X = U�=¡{Xk} will denote the 

state space of K finite elements. We will call elements of A == Al X A2 X . . .  X AN action 
profiles. Player i's payoff in the stage game will be II¡ : A X X -t R. Abusing notation in 

the standard way, we define a_i = (aJ,·· ·,Gi_1!ai+1,··· ,aN) and Jet 

(1 ) 
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denote the best response payoff for pIayer i given the actions a_i by his opponents and the 

state x. Considering that for each value of x we can define a one+period garne, we rnake the 

following assurnptions: 

Assumption 1: Ai, i = 1,···, N, is a compact subset of Rm for sorne m. 

Assumption 2: II¡(·,x), i = l, ... ,N, is continuous. 

Assumption 3: The stage game has a pure strategy Nash equilibrium for x 
1, ... , K. 

Assumption 4: The value correspondence is non-empty for a1l values of x E X. 

xk,k _ 

Assumptions 1 and 2 are trivially satisfied by finite-play games. Assumptions 3 and 4 are 

satisfied by many interesting games, and are essential. Mixed strategy equilibria could be 

included if actions consisted of publicly observed randomization over pure strategy actions. 

Prom the stage game, we can construct the corresponding supergame. The action space 

in the supergame is Aoo == x�lA. We assume that player i aims to maximize his average 

discounted payoff, which equals 

1 - ó 
ó 

00 

L 6tIli(at, xt) 
t=1 

(2) 

where aj is the action profile taken in period t. A history, yt, is defined as the sequence 

{a"x,}�=o. By the continuity of ni and compactness of A;, 

lI;(x) 

ni(x) 

_ min n¡(a,x) .eA 
_ ma.>< lI;(a,x) .eA 

(3) 

(4) 

are both finite. Therefore, for any given value of the state, the supergame payoffs are 

contained in the compact set 

W(x) = X"II.!!i(X), lI;(x)]. (5) 

A strategy for player i is
.
a mapping from the history of the game in time t ioto pIayer i's 

action space Cor each time t: Ui : A! x XL _ A¡, t :;: 0,1,2, .... A strategy profile is the set 

strategies oC all pIayers: u = UieN 17;. 
For each subgame perfect strategy profile 17, we define its value to player i to he 

1-6 00 
Vi(XI,U) = -ó- ¿ó'lIi(a"x,lu). 

t=1 
(6) 
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It foHows that for each state there is a value set, representing the values that arise for all 
players across aH strategies: 

V(x)= U v(x,<1),xEX. (7) 
SPE 

Finally, we define the value corrspondence to be 

(8) 
Our objective is to compute the value correspondence V(X). 

The perspective implicit in the notation aboye does not provide us with a numerically 

tractable way of viewing the supergame since it focusses on infinite sequences of actions. 

While such descriptions are useful theotetically and descriptively, they are not useful when 

it comes to computation since infinite sequences are costly, if at all possible, to represent in 
a computer. Furthermore, examining the set of possible strategies and checking for subgame 

perfection is also difficult if one takes an infinite sequence approach. Naturally, we take a 

dynamic prograrnming approach to the problem, compressing the information in the game's 

histories into continuation values and extend the approach to garues with state variables. 

This "dynamic progarnming approach" to supergames with state variables can be ex

pressed through a map, B. Let W(x) be a ca.ndidate for V(x) for each state x. Then the set 

of possible payoffs today are those consistent with N.ash play today with continuation values 

in W(x'), a.nd are defined by the map 

B(W)(x)= U {(i-ó)lI(a,x)+ów(x')} 
(a,w(x'))EA xco(W(x')) 

subject to: X'= h(a,x) 

(9) 

(!O) 

i = h(ii;,a_;,x) (11) 

(1 -ó)lI;( a, x) + ów;(x') � m.ax{ (1 - ó)lI;( ii;, a_;, x) + óll!;(i), \li E N). (12) 
'; 

h( a, x) is tbe Iaw oC motion of tbe state variable. Intuitively, a value b(x) is in B(W)(x) iC 
tbere is sorne action profile, a, and continuation payoff, W(X') E W(x'), such that b(x) is the 

value oC playing a today and receiving the continuation value w(x') tomorrow, a.nd, for each 

i, player i will cboose to play a¡ because he believes tbat to do otherwise will yield him the 

worst possible continuation payoff. The right ha.nd side oC equation 12 represents tbe value 

oC deCection from the prescribed equilibriurn. For player i playing a¡ implies that the state 

tomorrow will be x' = h(a,x). However if player i defects a.nd takes action a·, the economy 

will Dot be in state x' tomorrow but state x· = h(ai,a_i,x). Hence when computing the 

value oC defection, the punishment value must be drawn Crom the set W(x·). 
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Proposition: V(X) = B�WO(X) il WO(X) 2 V(X). 
proof: The numerical algorithm"described in section 3 provides a constructive prooL 

While this characterization oí V(X) is elegant and intuitive, there are important dif

ficulties associated with computing ¡t. The maio problem is that V(X) can be aD ugly 

correspondence, difficult to represent in a computer. To deal with these problems, we alter 

the supergarne by including public randomization. Intuitively, we assume that a.t the end oí 

each stage game, a lottery is used to determine how the game continues. Formally, strategies 

will now map histories of players' a.ctions, the history oí the realizations oí tbe lottery and 

the current lottery outcome, ioto current actions. Realized stage-game payoffs will differ 

from expected stage-game payoffs in strategies where non-trivial (non-degenerate) lotteries 

are employed. Operationally, we imagine the Collowing scenario. AH the players know that 

tomorrow's continuation value líes in co(W(x')). However, they don't know what that con

tinuatíon value will be until after a publicly observed random valuable is revealed, whích 

will signal tomorrow's w(x') E W(x'). ThereCore, Crom today's perspective, we can ex ante 
construct a continuation value in co(W). 

While the main motivation Cor adding lotteries is to make the computation easier, it does 

generalize the notion oC subgame perCect Nash equilibrium in an appropriate and interesting 

Cashion. Since one aim oC this research is to see what is possible in the absence oC contracting, 

it is natural to add this public randomizing device. The addition oC lotteries will possibly 

be inessential. In particular, iC V(X) without lotteries is convex, then adding lotteries will 

not expand V(X) and our algorithm wiU compute V(X). One couId also further generalize 

the anaIysis to correlated equilibria. However, that would admit private information and 

assume sorne coordinating agent, unappealing assumptions in many contexts. 

3. Computing the Equilibrium Value Correspondence 

Choosing.n initia! set WO(X) 2 V(X), the sequence 01 sets {W'(X)}f:o, where W'+I(x) = 

B(Wk)(x), converges to V(x) Cor each x E X. Direct application of this technique, however, 

poses two computational obstacles. The first is that Cor many supergames, equilibrium value 

correspondence V(X) is infinite and thereCore impossible to represent on a computer. We 
treat this problem by exploiting the convexity of W(X) and B(W)(X): any ray originating 

from any'interior point of a convex set intersects the boundary of that set only once. A 

convex set can be represented by its boundary, a fact we will exploit. By virtue oC its 

"star-shapeness", a convex sets comprising the value correpondence can be represented in a 

particularly simple fashion; we discuss the details of this in section 2.1. 
The second computational obstacle we confront is that even if we can represent W(X) 

finitely, generating B(W)(X) can involve exhaustive pairing of actions with all possible value 

pairs, (Wi(X'),!Qo(x')) to derive incentive compatible actions and rewards. This technique is 
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too crude for anything but tbe smallest problems. As an illustration, consider constructing 

B(W)(X) from W(X) in direct fasbion: for a given state today, x, and the state tbat will 

arise tomorrow, x' = h(a,x), applying tbe definition of B(W)(x) for each player, you pair 

an action ai with two continuation values (Wi(X'),y!.{r(a¡, x» ) E Wi(x') x Wi(.i(ai,a_i,x)). 
1f.(w,(x'), !Q;(x(a;,x))) s.tis6es incentive compatibility, (1 - ó)Il,(a,x) + ów,(x') ;:: (1 -
ó)Il;( a_i, x) + ó",,(x(a;, x)), then we koow the oew poiot b,(a, x, w,(x')) = (1 - ó)Il,(a, x) + 
áw;(x') will lie in B(W)(x). Doing this exhaustively, for every possible combination of action 

profile and promisc·threat pair, will generate the correspondence B(W)(X). Exhaustive 

pairing is clearly impracticaJ for most games. We avoid it by directly approximating the 

boundary of B(W), ignoring interior points. We describe this method in section 2.1. Section 

2.2 covers more specific details of the algorithm's implementation. 

3.1 Piecewise Linear Approximations of Convex Sets 

Since tbe sets the comprise the elements of tbe value correpondeoce are convex, we need 

efficient ways to approximate'convex sets in the computer. Also, for tbeoretical reasans 

apparent below, we wil1 want to use approximations which allow us to have useful and 

relatively precise inforrnation about the approximation error. For these rcasans we will use 

piecewise linear approximations. Sinee we will only develop a twa--player implementation of 

our methods, our discussion will focus on approximating twa--dimensional convex sets, such 

as those in Figure 1. 

3.2 Value Set Iteration for Convex Sets 

To do this, we exploit the sl.r-sh.peness of.e.eh 01 the sel B(W)(x,), k = 1,2, ... K .nd Ihe 

assumption that there exists sorne point vNa(x,\:) for every state which is the equilibrium 

value of at least one subgame perfeet equilibrium whose path passes through tbat state. 

Refer to Figure 1, where vNa(X,l;) is in W(X,l;) and B(W)(x,l;). Any ray originating from 

vNa(x,\:) intersects the boundary oí the set 8B(W)(x,\:) only once. Henee, we can deter· 

mine the boundary at a given direction 9 E [0,211"] by extending a ray from the set center 

vNa(x,\:). Let a be the length oí the ray and let w(a,9,x,\:) be the poiot at the "tip" of 

the rayo We want to increase a until w(a,e,x,l;) is no longer in B(W)(x,\:). To determine if 

w(a, 9, x,\:) E B(W)(x,\:), we check two conditions. First, tbere must be both an action profile 

and a eontinuation value promise and threat, (a, w(x,\:), Yl(ai, a_j, x¡(a;, a_j" x,\:»), tbat sup· 

port w( a, 9). Second, the supporting triple (a, w(x,\:),.w.( ai, a_i, XI( ai, a_j, ,x,\:) must satisfy 

incentive compatibility. Maximizing a at each 9 E [0,211"], subject to these two constraints, 
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Figure 1: Star-shapeness oC B(W) 
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defines a periodic function representing 8B(W)(xlo): 

) (

") 
In Equation (9), the point tii( a, O, XI:) is written as VNc(xk)+av( O), where v( O) = (cos O, sin O). 
In order for VNc(Xk) + av(O) to be in B(W)(Xk), this point must be generated by a triple 

(a, W(xk),1Q(a¡, a_i, x/(ai, a_i" XIo» where vNc(xlo) + av(8) = (1 -ó)IT(a, Xk) + ów(x'), for 

sorne w(x') E W(x'). This irnplies that [(vN·(x.) + ,,¡¡(e) -(1 -S)TI(a,x.)JlS = w(x'). 
Imposing w(x') E W(x'),x' = h(a,xlo) yields condition i. in the equation. If we define 

a grid of M angles, e � [0, 211"J, this representation reduces the problem of finding the 

boundary 8B(W)(Xk) in every direction 8 for each state k E {1, ... , K} to M x K constrained 

maximization problems, a task that can be handled by conventional software and hardware. 

We compute the total approximation of the boundary function R( 8) by first convexifying 

the vertices defined by the R(9m) and computing the appropriate coefficients for the linear 

approximation between vertices. 

Figure 2 illustrates the method applied with an angular grid. Starting at the "center" 

VN"(Xk), we select an angle 9m E 0. At that angle, we extend a ray to the boundary of 

B(W)(xlo) by maximizing 0'. At that maximized 0''", tii(a'",Om, Xk) is the interpolant vertex 

for the piecewise linear approximation of B(W)(xlo). Note that our constraints appear in the 

set W(x'). For this examplc, the binding constraint on maximizing a is that we hit aW(x/) 
- W(x') will afford us no more extravagant promises than w(x'). 

Direct application of this technique, however I poses two computational obstacles. The 

first is that for many supergames, equilibrium value sets V(x) are infinite and therefore im

possible to represent on a computer. We treat this problem by invoking lotteries to render 

W(x) and B(W)(x) convexo Any ray originating from any interior point of a convex set 

intersects the boundary of that set only once. By virtue of this quality, "star-shapeness", a 

convex set can be represented by its bounda.ry, hence, in finite fashion. The second compu

tational obstacle we confront is that even representing W(x) finitely, generating B(W)(x) 
can involve exha.ustive pairing of actions with value pairs, (wi(x),.lQ¡(i)). This technique is 

too crude for anything but the smallest problems. As an illustration, consider constructing 

B(W)(x) from W(x) in direct fashion: applying the definition of B(W), you pair an action 

profile with a continuation value: (a,w(x') E A x W(X'). If (a,w(x')) satisfies equations 20-

23, then we know the new point w(a, W(X/), x) = (1-ó)Il(a, x) +ÓW(X') will lie in B(W)(X'), 
Xl = h(a,x). Doing this exhaustively, for every possible action profile and promise pair, will 

generate the correspondence B(W)(x). Exhaustive pairing is c1early impractical for most 
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games. We avoid it by using a piecewise linear approximation of the boundary of B(W)(x), 
ignoring interior points, and directly approximating the boundary of B(W)(x) from the 

boundary of W (x). 

0.1 Speciflcs of Value Set Iteration for the 2-player Case. 

At this point, we shall discuss the steps in detail for the special case where N = 2, Al> the 

action-space of player 1, is finite with J elements, and A2 is finite with L elements, and the 

state space has K elements. Starting with an initial W(X) that we are sure contains the 

equilibrium value correspondence V(X), we apply the operator B(o) to W until 11 B(W) -
W II"N.S é, where é is the convergence criterion and 11 II"N. is the root sum of squared 

differences oC o� at each (Jm between iterations. We summarize the principal steps for the 

operator B(·) witb the following scheme: 

o: Initialize 

0.1: Select vNa E V(x) for x E X. 

0.2: Set angle grid e = {thet." ... ,OM} � [0,2�] 

0.3: Seleet initia] R(O)(x) lengths for eaeh o E e, thereby eonstructing a W(x) 2 V(x) 
for x E X. 

1: For each Xk E X do 

2: For each (Jm E e do 

2.1: For each action profile (aj,al) E A do 

o(aj, a,) = max 
s.t. 

a 
(i) 6-1[(VN(X.) + av(Om)) - (1- 6)n(.j,.¡,x.))] 

E W(x'(aj, a" Xk)) 
(ii) (1- 6)n(.¡,.¡,x.) + 6w(x') � (1- 6)W(._;.x.)+ 

ów(i(aj, ah Xk)) 
(iii)· a � O 

where o(aj, al, Xk) = O is understood if the constraint set is empty. 

2.2: o·((Jm,Xk) = max(o(at.a¡,xk),o(alla2,xk), ... ,o(aJ,aL)); 

2.3: w(a·(Om.x,).Om,X') = vN·(x.) + a·(Om.x.)v(Om); 

3: Determine those elements oC the set UmEMW(O·((Jm,Xk),Om,Xk) which lie in W·, the 

boundary oí the set 's oonvex hu11; 

4: Compute piecewise linear approximation oC the boundary oC B(W)(Xk); specificalIy, 

compute the convex hull oC the points from (2). 
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5, Sel W(X) = B(W)(X). Slop if W has changed little; else go lo 1. 

Step 1 in the scheme specifies that the a.Jgorithm "loop" through each angle 8"" m = 

... M. We maximize O' in at each angle, subject to the constraints that appear in Equation 

(10). These constra.ints are functioos oC action profiles, and sorne profiles will be more 

constraining than albers. We loop through all action profiles in step 1. ti to find tbe a.ction 

profile tbat yields the maximal a. In step 1.1, 8m and (aj,a¡) are fixed, meaning that for 

each iteration on W, we maximize a M x J x L x K times. Note that in 1.1, there is the 

numerical subproblem oí deciding if a paiot is in W(Xk). These points show that the heart 

oí the algorithm is a constrained maximization problem. 
To understand this constrained maximization problem, we study how large a can be 

before hitting one of the two constraints. With reference to Figure 3, consider constraint 

l.). This constraint didates that tombrrow's value promise, w(x'), used to support today's 

value, w(x"a,Om) = vN,(x,) + av(Óm) = (1- 6)II(a"a"x,) + 6w(x'), musl be in W(x'). 
Moreover, we can break w(x') down into two components, one that varies with 0', and one 

that is fixed: 

( ') _ vN,(x,) - (1- 6)II(a"a"x,) � 
(
" 

) = ( ) 
� (ió ) 

w x - fj + fj V Vm _ Va Xk + fj V Vm (14) 

This decomposition appears in Figure A3. We increase a so that w(a, x') = Va(Xk) + lV(Om) 
approaches tbe boundary of W(x') along tbe angle (Jm' When w(a,x') strikes the boundary, 

this quantity as ir. 
Now consider constraint ¡i.), the incentive compatibility (le) condition. We can rearrange 

this constraint as the inequality 

w;(x') � 6-'[(1- 6)(II;(a"a" x,) - 1I;(a_;,x,)) - 6m(x')], i = 1,2. (15) 

Examine Figure A3. Since these constraints are not a function of a, they are vertical for 

player 1, borizontal for player 2, and shift as a function of the action profiJe a. They appear 
as el a.nd el in Figure A3. The le constraints are binding if a given player's value promise, 

w;(o', x') = V;,a(Xk)+ ¡Vi, is equal to tbe le constraint. In Figure A3, tbis is shown happening 

for player 1 at o' = ó. Therefore, at the angle 8m and the action profiJe (aj, al), Ó is the 
constrained maximum for step 1.1; tbe le constraint for player 2 and tbe constraint w E W 
are not binding. Tbe maximization problem oí step 1.1 boils down to solving a Cew linear 

equations that identify tbe intersedions oC the ray at angle 8m originating at Va, witb tbe 

two le constraints and the boundary oC W. 
We do, tbe maximization in step 1.1 for alI possible action profiles. Different action profiJes 

impJy different constrained maxima for a. This is shown in Figure A4. In tbat figure, we 

show bow botb Va and the le constraints shiCt as a function oC Q. eonsider the action profile 

IOne might exploit game structure to economize on this search I as one would have to if A were continuou$. 
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Figure 2: Extending the ray v + ov at the boundary oí B(W) 
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Figure 3: Extending the ray at angle () with the a.ction profile fixed 

- 15 -



B(V.¡) 

j " ...". ... +«,IV" 
--- "V.....tI % ,.;r 

� 'Y"'" �t<'JV 

¿'v.:(J) 
ir"" 

�(r) .. . . '1,r"(3)) 

Figure 4: Ray extension from varjous action profiles 
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a(l): it shifts Va(t) to the upper Ieft of vNa. As we inerease a at angIe 8m, we find that 

we encounter pIayer l's re constraint first, it(a(l». Hence, a.ction profile a(l) produces a 

maximaI a of length al' Moving on to a.ction profile a(2) , Va(2) shifts directly below vNa. 

The le constraints for this action profile are non.binding, therefore we hit the constraint 
Va(2) + ¡'v(8m) = w(a) E W first. This determines that the maximal a for a(2) is 0'2' For 

action profile a(3) we hit pIayer 2's le eonstraint first (the le constraint for pIayer 1 is not 

depicted) giving us a muimal a which we denote 0'3' Aetion profiles do not always generate 

a point Va which lies in W. We show this with action profile a(4). As we extend a, the point 

w(a) enters the set W. Hence, it is possible that although a = O is not in the constraint set, 

there are larger values of a that do fall in the constraint seto With 8m remaining fixed, after 

having looped through each action profile we determine the largest value o( aj, ak) and set 

it equal to o· (step 1.2). We determine the extremal elements of B(W) at each angle Om in 

cartesian coordinates, w(a"(Om),Om) = v: + o·v(8m) (step 1.3). We then convexify this set 

of extremal points and then fit an approximation of R(O) (steps 2 and 3). 

4. An Example: Credible Fiscal Policy in a Primitive Society. 

In this example a government must finance a varying but periodic series of (exogenous) 

expenditures, either through varying the taxes paid by its constituents, or through financing 

fluctuations in expenditures with the help of a lendee. Government's objective is to maximize 

the welfare of its constituents. Included in the specification of the government's action space 

is a budget constraint. If an action violates tbe budget constraint, it is rendered unavailable. 

Tbougb the government's source of revenue is a tu 00 the productioo of bouseholds, it 

ca.nnot directly choose allocations of consumption and leisure on behalf of the households. 

Naturally, these allocations are ehosen by the households themselves, in light of the tax 

rateo Taxes are distorting and therefore decrease households' welfare beyond losses that 

would arise tbrougb lump sum taxation. Due to its restriction to a distorting instrument of 

taxation, the government prefers to smootb taxes, since tbis maximizes household welfare 

subject to the government financing its expenditures. 

Tbe lender is risk neutral. He lends· to the govemment out of an endowment he receives 

each period, w. His payoff, de, is the sum of the endowment he receives each period less 

tbe net transfer made to the government. One can interpret the lender as a banking house 

or cartel of banks, assuming also that the coalition is rohust to defection by tbe individual 

players tbat comprise it. 

The fiscal problem faced by tbe government reduces to a two..player ga.me between tbe 

government and its lender. The government is tempted to default on tbe lender once it 

has debt outstanding¡ the lender protects birnself from such opportunism with the threat 

of witbdrawing lending services indefinitely in the future sbould tbe government defa.uIt. 
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Literature 00 sovereign leoding2 has shown that, perhaps surprisingly, this threat is not 
sufficient to support lending in all environments. That is, the Folk Theorem does not hold 

for a11 games of sovereign lending. The key to such "no lending results" is whether the 

government has access to an alternative channel for smoothing taxes: if the government 

does not have access to a storage technology, bankers effectively have a sanction technology. 

They can deny the
· 
government the means by which to smooth taxes in the face of fluctuating 

expenditures. If the government does have access to a storage technology (e.g., or a state

contingent form of savings deposity in an environment of uDcertainty), it can self-smooth, 

and will always be better off not paying lenders, and using the proceeds of default to build 

a tax-smootbing fundo 

As an illustration of the algorithm, we replicate these well-known results in the economy 

described aboye. 

4.1 Program 1: the government cannot save 

The bargaining session works as. íollows: a11 lending matures in one periodo Lending oí 

tonger maturity must be arranged by successively "rolling over" principal. The government 

begins by stating how much interest and principal from last period's loaos it will pay back, 

RIB,_I, where Rt is the gross factor oí return (one plus the interest rate). Simultaneously, 

the government states how much fresh credit it wants, Bt. Next, the ooalition oí lenders 

state how much they are willing to lend, E,. New credit extended is Bt = min(Bt. Bt), and 

the net transíer of funds in the period is (B, - RtBt_d.l This specification reduces to an 

arrangement where the government and its lender bargain over net flows: let T, = (B, -
R,B,_,) and f, = (B, - R,B,_,). Then T, = sign(f,)·min(lf,¡, If,1) il f, and f, are the same 

sign, T, = O ií T, and T, are of opposite signo 

The repeated game has a state variable, the leve! of government expenditure. For a given 

profile oí actions, players' current and expected future payoffs differ according to the value 

oí the state variable. The discounted present value of a strategy will aloo depend upon the 

current value of the state. Hence, the discounted value of an equilibrium is actually a set of 

values, indexed by the states tbat occur aJoog the path arising in that equilibrium. The set 

of equilibrium values is comprised oí many sets, one associated with each state of the world. 

Because the game is recursive, given the state of the world, the set of equilibrium values that 

can be achieved does not depend on time. 

Formally, the lender's problem is 

'Bulow and Rogoff (198980, 1989b); Chari and Kehoe (199380, 1993b). 
sTec:hnically, the timing scheme amounts to a device of exp08ition: the solution algorithm used to compute 

eq,uilibruim utilizes tbe stage game in its normal form, which is equivalent to a version of tbe game wbere 
neitber player observes tbe otber's action at tbe time be cbooses. We do not adopt a Rubenstein bargaining 
set-up for negotiations, common in other of tbe debt literature. 
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V(9o) = m.!'x 
{Te} 

subject tO: 

� 

if 

if 

(1 -8)¿::8'd, � V(9.) 
1=6 

1'1 and TI are 

oC the sa.me sign 

T¡ and Tt are 

oí the opposite signo 

(16) 

(17) 

(18) 

(19) 

In the problem fJ is the discount factor1 (I-b") is a normalization factor that scales the dis

counted present value of utility.to the range oí single period utility values. Equation 3 is the 

bargaining rule .on nel transfers between government and hanker explained aboye. Equation 

4 imposes subgame perfect behavior on the lender. 

The economy is inhabiled by a number oí identical households that produce the single 

consumption good by supplying labor. They have access lo a production technology, f(nd, 
that allows thero to convert labor. nI, ioto the consumption good. This fundian is increasing 

in its first derivative and concave. Households optimize over an infinite horizon, {) is the 

discount factor, and preferences are definoo over consumption and leisure, U(er. lt). The 

households' basic choice is how much to work versus how much to eat. The formal problem 

is 

max {CI'/'} 

subject to: 

� 

(J -8)¿::8'U(c"I,) 
t:O 

c, $ (1 - r,)! (n,) 

It 1 - nt. 

(20) 

(21 ) 

(22) 

The family is a "tax·taker", that is, it accepts the tax levy Tt as giveo each periodo The 

family does oot save because it is denied means to do so. Assume that production technology 

and preferences are 5uch that the revenue maximizing tax rate, T-, always yields' revenues 

sufficient to cover government expenditure: gt � T·f(nt(T")). Households do oot behave 

strategically. They go through life equating marginals in their repeated, static problem. 

The government sol ves the problem 

� 

(! -8) ¿::8'U(c"I,) (23) 
t=O 
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subject to: 

U,( c" 1,)fU, (e" 1,) = (1 - T,)f'( n,) 

C, = (1 - T,)f(n,) 

ir 

ir 

Tt and Tt are 

oC the same sign 

Tt and Tt are 

oC tbe opposite signo 

(1 -ó) L ó' U(c" 1,) ? W(y.) t=. 

(24) 

(25) 

(26) 

(27) 

(28) 

Equation 8 is tbe government's objective Cunction, equal to the discouted present value oC 

the weighted utility oC its subjects. Ut(Ch lt) > O, U2(Ch lt) > O and U(Ct, lt) is concave. 

Equation 9 is the government budget constraint. Domestic spending, 9t, must equal the net 

current flow oC Cunds Crom the lenders plus total revenue taxes. Equations 10 and 11 are 

the households' incentive compatibility constraints. Tbey determine how government taxes 

affect consumption and labor supply. Equations 2, 9 and 11 yield the aggregate resource 

equilibrium condition Ct +dt +9t :;;; f(nt)+w. Equation 12 is the outcome rule for bargaining 

over tbe net flow of funds between the lender and the borrower. Equation 13 imposes subgame 

perCection on the government. 

Solutions to Program 1 show that in punishment phases oC p'aths arising in subgame per· 

Cect equilibria, tbe government must move taxes up and down with fluctuating expenditure. 

In high welfare equilibria, the government borrows and repays to allow smoothing of taxes. 

Tbese results are graphed and discussed in greater detail in Section 4. 

4.2 Program 2: the government can save 

In this program, the government has a.ccess to a storage technology. This makes the lender's 

penalty oC cutting off future credit much less severe. The government can smooth without 

creditors, but it must save in advance. The government now sol ves the problem 

00 

W(Yo, Ao) = ",ax 
{ .... T.,A.+I} (l-ó)¿;ó'U(c" I,) 

t=O 
(8) 

subject to: (14) 
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U,(c"I,)/U,(c" 1,) = (1- T,)f'(n,) 

e, = (1 - T,)f(n,) 

if 

if 

00 

TI and T, are 

of the same sigo 

TI and Tt are 

oí the opposite signo 

(l-ó)Ló'U(c" I,)::> W(g"A,) 
f=. 

Households' and the lender's problems are unchanged from Program lo 

( 10) 
(11 ) 

(12) 

( 13) 

Granting the government a storage technology causes lending to break clown. This is 

because in the first period the government owes the lender a. repayment it can instead save 

the resources that were to be used to repay. In the next period the government has need of 

resources in arder to smooth taxes, it draws clown ¡ts savings. The lender, in anticipation 

of this, never ¡ends. These results are sensitive to tbe assumptions: T" f(C(T")¡) ;::: 91 is 

criticaL It is also important that the sequence {gtl� is known with certainty. If {gr}�o 
was stochastic, a. no-lending result would depend the on distribution and support of gl' 
With a storage technology and no lending the government is worse off at the best equilibria 

oí Program 2 than it would be at the best equilibria oí Program 1: in those states oí the 

world where the government has low savings and high expenditures, it must raise taxes 

and deíer a plan oí smooth taxes until the next period oC low government expenditure. If 

it could borrow, it could begin smoothing right away. These findings are sensitive to the 

efficiency oC the government 's storage technology. [f it can save and earn interest equal to 

or greater than the lender's discount rate, there will be no lending whatsoever. As interest 

earned by the government approaches zero, or becomes negative, small amounts oC debt 

can be supported. As the storage technology becomes less efficient, lending nears levels for 

Program 1. This confirms results of ehari .nd Kehoe (1993b) .nd Bulow and Rogoff (1989.) 

in tbis environment. 

4.3 Computational results 

For the computation oC all programs, we assume the Collowing íunctional forms: 

( 15) 
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f(n,) = n,'. ( 16) 

The period ayer which the experiments will be run will be about three or four years. We 

choose this period length because we are modeling expenditure fluctuations and this seerns 

a reasonable duration to posit for a typical cause oí expenditure fluctuation, war. Therefore 

6 = 0.9 ror most experiments. 

4.3.1 Computations for Program 1 

To run the first computation we set 0") = 0.6, 0"2 = 0.2. While these elasticities are oot 

particularly "realistic", Cor the additive separable specification oí utility and the households' 

environment it yields negative labor supply response to the tax rateo (For lag preferentes, ¡.e. 

0'"1 = (72 = 1, labor supply is inelastic; Cor 0"1 > 1 and 0'2 > 1, labor supply rises in response 

to higher taxes.) The production parameter "1 is set at 0.65. The process for exogenous 

government expenditure is of period two: one period of high expenditure, one oc. low (four 

years of wa.r, four years of pea.ce). {gl}�o = {O, 0.24, O, 0.24, ... }. The endowment for 

the lender, w = 0.24. The lender is always capable of funding the government's full need for 

finance. Utility functions were scaled up or down by affine transformation so that payofrs 

lie in the interval [O, IOJ. Calling the government player 1, the lender player 2, and ·their 

respective payoffs IT1(a) and Ih(a), we have 

11,(a) =�, + 6U(c" 1,) 
and 

11,(a) = (, + (,d,. 
The values � = (-26,15.5) and ( = (0,20.8) map government and lender payoffs into 

¡O, 10J x ¡O, IOJ. 

Finally, we, discretize both action and state spaces oí tbe government and bankers. Dis

cretization is not necessary for varia.bles ct, and lt, for they are determined as a result of 

the government 's choice of T and can be solved exactly without increasing computational 

complexity. For the government 's actions, 

TI E {O.O, 0.2, 0.46, 0.715}; 

r, = lJ,-R,B,_, e {-0.24, -0.18, -0.12, -0.06, 0.0, 0.06, 0.12, 0.18, 0.24}. 

For the lender's a.ction:. 

r, = lJ,-R,B,_, e {-0.24, -0.18, -0.12, -0.06, 0.0, 0.06, 0.12, 0.18, 0.24}. 

Negative transfers go from government to lender; positive transfers go írom lender to govern

mento We have chosen the grids on gt, Tt and TI so that the accounting oí the government's 
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Figure 1: Value sets, Program 1 

budget ¡eaves only small amounts oí taxed resources unaUocated. However, the government 

still has the choice to give these inter·grid rounding errcrs back lo consumers lump sum, or 

lo give thero to the lender, as a small adjustment to the bargained transfer in the lender's 

favor. 

The value sets for Program 1 are shown in Figure 1 for tbe two values oC the state variable 

9c. The axes oC tbe graphs represent the average oC the present discounted values each pI ayer 

receives ftom playing a subgame perfect equilibrium. The value sel corresponding to peace 

(9t = O) appears on the left, war (ge = .24) on the right. There are many possible equilibria, 

and by extension, many equilibrium values in each state of the world. The punishment 

values on the southwest border of the value sets arise in two types of equilibria: the first 

are autarkic-the government.never borrows, and the lenders never lend. The second are 

"carrot and stick" punishments-in these equilibria, it is not best to play non.cooperatively, 

but rather to go along with your own punisbment. In such equilibria, the player that is 

known as the deviator deliberately chooses an action that results in a low one-shot payoff. 
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Of course the inducement is that the continuation promise associated with going along with 
one's punishment is high. As a con.sequence, carrot and stick paths can generate severe 
punishment5, yet they still allow pIayers to emerge from punishment, or non-cooperative 
play. 

It is possible to generate outcome allocations along �he paths that alise in equilibrlum 
from V(x) using optimal penal codes, in the language oC Abreu (1988). The evolution oC the 
value of playing a particular equilibrium is shown in Figure 5. The value of the outcome 
path i. marked by circl .. (o) in the otate g, = O and by staro ( • ) in the state g, = .24. 

Firstly note that the value of playing a given equilibri� can move all over the
' 
value sets. 

Play originates in g, = O, at the point (5.2, 5.4). Since gt = .24 in tbe subsequent perlod, 
.kip over to the right hand value set: the star al (4.4, 5.44) i. the value oC Ihe equilibrium 
in the second period. The value of play evolves rising to nearly the top of the value sets, 
altemating from one set to the other. Then, play moves the position of continuation values 
down, in southeast directioo, along the Pareto frootier. 

The Cour ploto in Figure • graph the on ... shot payoffs Cor each player through time on the 
top row (the govermnent 00 the left, the lender on the right), the evolution of value on the 
bottom row. In periods 1-11, perlod payoft'a for tbe govemmeot are volatile, reftecting the 
fact that it is in punishment phase4 and that it ia not being allowed to smooth by tbe tender. 
Tbe government also mues small tranafers to tbe tender out of revenues not allocated to 
9,. Trua is part of "going along with its own punishment." In perlod 10 the government 
begins lo mue larger IransCers lo the lender during periods oC peace (declining peaks in Ihe 
Iop left plot). With that show oC "good faith", the lender slarts lending lo Ihe governmenl. 
Govemment ta.xes, and perlod-payoft's are tben smooth for tbe remainder of play. The lender 
now aborbs the volatility of the sequence g, through financial flows. The four plots in Figure 
3 graph the underlying economic allocations through time. 

Note thal tbis path i. only one arnong literally infinile palhs lhal arise in equilbrium. 
We were able to see allocations during a punishment because we chose to start the path at a 
punishment value. Paths moving along the northeast frontiers of the equilibrlum value sets 
always uve the govemment smootbing taxes. 

4.3.2 Computations for Program 2 

In Program 2, the government has the capacity to save. As with Program 1, parameters are 

set as al = 0.6, 002 = 0.2, and -¡ = 0.65. The process for exogenous government expenditure 

remains {gt}:'o = {O, 0.24, O, 0.24, ... }, and tbe endowment for tbe lender w = 0.24. 

The values e � (-26,15.5) and ( � (0, 20.8). 

·Once on a cooperative path, punishments do not arise in equilibrium as can happen in a game with 
imperCect inCormation. However by initiating tbe. game at a punisbment value, we are able to trace out 
punisbment patbs tbat would otherwise líe "off path. n 
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For the government's action space, T is discretized as 

T. E {O.O, 0.2, 0.46, 0.715}. 

The gross rate of interest for the government, R, is constant at 1/6 or 1.111 .  The govern
ment's assets lie in the grid 

A. E {O.O, 0.06, 0.12}. 

The government 's bargaining position for transfers Hes in 

T. = B.-R.BI-l E {-0.24, -0.18, -0.12, -0.06, 0.0, 0.06, 0.12, 0.18, 0.24}. 

The lender's transfer offers lie in 

t. = B.-R.BI-l E {-0.24, -0.18, -0.12, -0.06. 0.0, 0.06, 0.12, 0.18, 0.24}. 

There are six possible states in the garne, one for eac� combination of gt and At. 

The value sets for Program 2 are shown in Figure 8.. The only four states are shown, 
(g" A.) = {(O,O), (0,0.12), (.24,0), (.24,.12)}. The value set in e&eh st.te has col
lapsed to a single point. TOOs is because lending breaks down, and there is a unique equilib
rium action (and hence a unique subsequent path oí play and a unique value) in each state. 
The lenders never lend, and the government smooths using its own assets. The path shown 
is marked by a + and a x :  in state 1 (gt = O. At = O), the government saves 0.12. In state 
6 (gt = .24, At = .12), it raises revenues oí .12, draws down savings, and gives interest 
back to the households as a lump-sum payrnent. The penod payoffs and evolution oí values 
through time are shown in Figure �, and Figures 1 0 and l 1 show the economy's allocations 
through time. 

5. Conc1usion 
In this paper we have described and implemented a computer algorthm to solve discounted 
sugergarnes with perfect monitoring and state variables. Key assumptions are restriction to 
pure strategies, the inclusion of public randomization and a finite state space. We represent 
the key object in the "dynamic prograrnrrung approach to supergames", the value set, by 
its boundary. This parsimonious representa.tion of the value set allows us to compute a.n 
inner approxima.tion oí the set rapidly, far more ra.pidly tnan would be possible using "brute 
force" methods such as exhaustive search. 

We demonstrate the algonthm for a. fiscal policy game played by a government and its 
lender. The level of government expenditures to be financed is the state variable. Com
puta.tions venfy theoretical results of Cronshaw and Luenberger and Abreu, Pearce and 
Stacchetti, Bulow and 'Rogoff and Chari and Kehoe. Tbis computa.tiooal approach is gener
alizable to games of imperfect information, stochastic garues, a.nd games oí asymmetnc in
íormation. Areas oí research we are exploriog are wa.ys to produce an "outer-approxima.tion" 
oí the value set, and other a.pplications. 
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