

https://core.ac.uk/display/322619021?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

DYNAMIC EFFECTS OF PERSISTENT SHOCKS



DYNAMIC EFFECTS OF PERSISTENT SHOCKS ()

Mario Alloza and Carlos Sanz

BANCO DE ESPANA

Jesus Gonzalo

UNIVERSIDAD CARLOS Il DE MADRID

() We thank Fabio Canova, JesUs Fernandez-Villaverde, Alessandro Galesi, Gergely Ganics, Juan F. Jimeno,
Mikkel Plagborg-Mgller, Juan Rubio-Ramirez, Enrique Sentana, and seminar participants at the | Workshop of
the Spanish Macroeconomics Network (Universidad Publica de Navarra), Banco de Espafa, CFE 2018 (University
of Pisa), Il Workshop in Structural VAR models (Queen Mary University of London), VII Workshop on Empirical
Macroeconomics (Ghent University), 2019 American Meeting of the Econometric Society (University of Washington),
and 2019 edition of the Padova Macro Talks for insightful comments.

Alloza: m.alloza@bde.es. Gonzalo: jesus.gonzalo@uc3m.es. Sanz: carlossanz@bde.es.

Documentos de Trabajo. N.° 1944
2019



The Working Paper Series seeks to disseminate original research in economics and finance. All papers
have been anonymously refereed. By publishing these papers, the Banco de Espana aims to contribute
to economic analysis and, in particular, to knowledge of the Spanish economy and its international
environment.

The opinions and analyses in the Working Paper Series are the responsibility of the authors and, therefore,

do not necessarily coincide with those of the Banco de Espana or the Eurosystem.

The Banco de Espafna disseminates its main reports and most of its publications via the Internet at the
following website: http://www.bde.es.

Reproduction for educational and non-commercial purposes is permitted provided that the source is
acknowledged.
© BANCO DE ESPANA, Madrid, 2019

ISSN: 1579-8666 (on line)



Abstract

We show that several shocks identified without restrictions from a model, and frequently
used in the empirical literature, display some persistence. We demonstrate that the two
leading methods to recover impulse responses to shocks (moving average representations
and local projections) treat persistence differently, hence identifying different objects.
In particular, standard local projections identify responses that include an effect due to
the persistence of the shock, while moving average representations implicitly account
for it. We propose methods to re-establish the equivalence between local projections and
moving average representations. In particular, the inclusion of leads of the shock in local
projections allows to control for its persistence and renders the resulting responses
equivalent to those associated to counterfactual non-serially correlated shocks. We apply
this method to well-known empirical work on fiscal and monetary policy and find that
accounting for persistence has a sizable impact on the estimates of dynamic effects.

Keywords: impulse response function, local projection, shock, fiscal policy, monetary policy.

JEL classification: C32, E32, E52, E62.



Resumen

En este documento mostramos que varios shocks identificados sin restricciones de un
modelo, y usados frecuentemente en la literatura empirica, son persistentes. Demostramos
que los dos principales métodos para recuperar respuestas a impulsos de shocks
(representaciones de media movil y proyecciones locales) tratan la persistencia de distinta
manera y, por tanto, identifican objetos diferentes. En particular, las proyecciones locales
estandar identifican respuestas que incluyen un efecto debido a la persistencia del
shock, mientras que las representaciones de media movil implicitamente controlan por
la persistencia. Proponemos métodos para restablecer la equivalencia entre proyecciones
locales y representaciones de media movil. En particular, la inclusiéon de adelantos del
shock en las proyecciones locales permite controlar por su persistencia y hace que las
respuestas resultantes sean equivalentes a las asociadas a shocks contrafactuales no
autocorrelacionados. Aplicamos este método a trabajos empiricos sobre politica fiscal y
monetaria y encontramos que controlar por la persistencia tiene un impacto considerable
sobre las estimaciones de efectos dinamicos.

Palabras clave: funcion de respuesta a un impulso, proyecciones locales, shock, politica
fiscal, politica monetaria.

Cédigos JEL: C32, E32, E52, E62.



1 Introduction

Understanding the origin and propagation of economic shocks has been an important yet
elusive challenge in macroeconomics. Early work on this subject has traditionally relied on
systems of equations coupled with restrictions implied by economic theory in order to identify
economically meaningful shocks. In recent years, researchers have sought the identification
of shocks without the use of an empirical model, known as narrative identification, typically
by looking at written official documentation, periodicals, magazines, etc. and exploiting ar-
guably exogenous variation in these series. As argued by Ramey (2016), these shocks are
meant to be the empirical counterparts of the structural shocks found in theoretical models
and hence they should be uncorrelated with both current and lagged values of endogenous
variables, and with other shocks in the system. Furthermore, they should be serially uncorre-
lated since they are expected to represent unanticipated variation in an exogenous variable.

In this paper, we study the estimation of impulse responses in the presence of persistence
in the shock. Our analysis highlights the econometric implications of relaxing the assump-
tion of serial uncorrelation in shocks, and quantifies its importance by revisiting well-known
empirical applications.

We begin by providing evidence that many shocks used by the literature display serial
correlation. These aggregate shocks have been used to estimate the impact of exogenous
changes in tax revenues, government spending, and monetary policy on output and other
macroeconomic variables. To interpret the dynamic responses to these shocks, it is usually
assumed that they are serially uncorrelated or that the researcher can effectively account for
this feature.

Next, we analyze the econometric consequences of using persistent shocks in empirical
work. When a shock is identified from outside an empirical model, the researcher can recover
its dynamic effects (the impulse responses) using either local projections (LPs), as proposed
by Jorda (2005), or moving average (MA) regressions.! We show that, if the shock is se-
rially uncorrelated, both methods recover the same impulse response functions. However,
this equivalence breaks down upon the presence of persistence. In this case, LPs and MA
regressions identify different dynamic effects, since they allow for the presence of different
channels of propagation when constructing impulse responses.

When persistence exists but is ignored, LPs estimate dynamic effects that contain two
components: an economic effect (the economic impact of the shock on the endogenous vari-
ables) and an effect that exclusively depends on the degree of serial correlation of the shock.
The intuition follows from the way that LPs compute the response at horizon h, regressing

the outcome variable in ¢ 4+ h against the shock in time ¢. Since the standard setting does

By MA regressions, we refer to either single-equation distributed-lags models of an outcome variable
against the contemporaneous value and lags of the shock, as in Romer and Romer (2010) (often known as
truncated MA), or to a MA structure of the shock embedded in a vector autoregressions (VAR), as in Mertens
and Ravn (2012).
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not account for how the shock evolves between ¢ and t 4 h, the responses include this per-
sistence in the shock. Perhaps contrary to intuition, including lags of the shock in LPs fails
to isolate both effects.? Instead, we show that the inclusion of leads of the shock in LPs
does control for the presence of persistence and deliver responses to the shock as if it were
serially uncorrelated. Intuitively, the leads control for the evolution of the shock between ¢
and t + h. Following this intuition, for some data generating processes, the persistence of a
shock may still affect the impulse responses even if the shock is used as an instrument for
an endogenous variable in LPs (known as LP-IV; see Stock and Watson (2018) and Ramey
and Zubairy (2018)). In this case, the inclusion of leads of the instrument as explanatory
variables allows to identify the dynamic effects as if the instrument did not have persistence.?

The persistence of a shock does not affect the impulse responses when these are con-
structed using MA regressions (e.g. using a VAR with the shock as an exogenous variable).
In this case, regardless of the existence of persistence, responses always resemble those as
if the shock had no persistence, as long as the (truncated) MA representation includes a
sufficiently long lag structure. An important consequence of this result is that, even un-
der comparable conditions (e.g., same sample length, same control variables), MA and LPs
methods will yield different dynamic estimates in the presence of persistence.*

Our results should not be interpreted as a support for one particular method (LPs wvs.
MA regressions) when the process is known to be linear. Instead, they are intended to raise
awareness on the identification challenges that arise when shocks follow more complicated
data generating processes. The choice of a particular method should consider two issues:
(i) the object that is aimed to be identified (a response that includes or not the effect of
persistence), and (ii) the efficiency-robustness trade-off of the estimation method (with LPs
being more robust but less efficient). Note that our results show that (i) should not be
binding, since our proposed methods can adapt LPs to identify the same object as MA
regressions, and viceversa.

In the last section, we explore how estimates of government spending multipliers, fiscal
consolidations, and other monetary policy shocks change when persistence is accounted for.
We find that adjusting the estimates for serial correlation has a sizable impact.

In particular, we show that the response of government spending and output to an exoge-
nous shock (measured as news about future changes in defense spending as in Ramey (2011))
is up to 70% higher due to the persistence of the shock. We also contribute to the ongoing
debate on the state-dependence of fiscal multipliers by showing that this persistence affects

the dynamics of the government spending multiplier during times of expansion and slack.

2 Another possibility is to include the identified shock as and endogenous variable in a VAR, but note that,
as highlighted by Plagborg-Mgller and Wolf (2019), this would identify the same object as LPs. We illustrate
this point in the appendix.

3In particular, we show that the inclusion of leads of the instrument can potentially re-establish the
condition of lead-lag exogeneity postulated in Stock and Watson (2018).

4We also show how to obtain impulse responses estimated by MA regressions that incorporate the effect
of serial correlation.
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Ramey and Zubairy (2018) find that, in recessions, the multiplier becomes substantially neg-
ative immediately after the shock (with estimates close to -2) and that, after two years, it
is not different from the multiplier in expansions.® We show that accounting for persistence
changes the dynamics of the fiscal multiplier in recessions: it becomes smaller upon impact
(-1 instead of -2) and remains lower than the multiplier in expansions even after two years.

We also show that ignoring the presence of persistence when using LPs has substantial
effects in other contexts. We find that the large negative effects that fiscal consolidations
have on output in Guajardo et al. (2014) are partially due to the presence of serial correlation
in the shocks. When accounting for their persistence, the negative impact of consolidations
on economic activity becomes non-significant during much of the response horizon. We also
explore other empirical applications and find that the effects of monetary policy on economic
activity can be over or under-estimated depending on the nature of the persistence found in
common measures of monetary policy shocks, such as Romer and Romer (2004) and Gertler
and Karadi (2015). Additionally, we find that when a shock does not display persistence (as is
the case with the measure of tax changes from Romer and Romer (2010)), the (unnecessary)
inclusion of leads in LPs does not affect the point estimation of dynamic responses.

In this paper, we focus on shocks, which are generally thought to be serially uncorrelated
variables. However, the inclusion of leads of a variable in LPs has more general applications.
In particular, a researcher interested in using LPs to uncover the dynamic relations of two
variables may be interested in including leads of a third variable to construct counterfactual
responses as if the behavior of that third variable had remained constant over the response

horizon.b

Related literature. Our results relate to several strands of the literature. First, we con-
tribute to previous work that develops the econometric methods of LPs and estimation of
dynamic effects. The use of LPs to estimate impulse responses was proposed in the sem-
inal paper of Jorda (2005), which shows the advantages of using LPs over VAR methods,
particularly their robustness to certain sources of misspecification and the possibility to ac-
commodate non-linear estimations in a practical way. Since LPs impose fewer specification
restrictions than a VAR, the estimates are often more volatile than with MA regressions.
Barnichon and Brownlees (2018) propose a strategy, called smooth LPs, that models the
sequence of the impulse response coefficients as a linear combination of B-splines. More
recently, Plagborg-Mgller and Wolf (2019) prove that LPs and VAR methods identify the

same impulse responses when both methods have an unrestricted lag structure. This result

5See Auerbach and Gorodnichenko (2012) for early work on this topic. The authors find that the govern-
ment spending multiplier during recessions is higher than during booms.

6This can be seen as the counterpart in LPs of constructing counterfactual responses in a VAR that allow
to separate a direct effect of a regressor on a dependent variable from other indirect effects. This procedure
has been frequently used in the empirical VAR literature. See, for example, Bernanke et al. (1997), Sims and
Zha (2006), or Bachmann and Sims (2012).
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formalizes some of the examples provided in Ramey (2016), which implies that different
identification schemes in a VAR setting can be implemented in a LPs context. Note that
our result builds on a different premise: we consider the cases where the shock has already
been identified (e.g. using narrative measures) and the researcher wants to use LPs or MA
regressions (perhaps embedded in a VAR) to estimate dynamic effects. Our contribution to
this literature is to show that, while both LPs and MA regressions identify the same object if
the shock is serially uncorrelated, this equivalence breaks down in the presence of persistence.
Our second contribution is to propose a method to re-establish the LP-MA equivalence
when there is persistence, namely, the inclusion of leads of the shock in LPs. The use of leads
has a long tradition in econometrics, dating back to work on factor analysis by Geweke and
Singleton (1981) and on the DOLS estimation of cointegration vectors (Stock and Watson
(1993)). Faust and Wright (2011) find that including ex-post forecast errors results in an
accuracy improvement when forecasting excess bond and equity returns. More recently,
Teulings and Zubanov (2014) find that estimating dynamic effects of a dummy variable (e.g.
banking crisis) in a panel data context with fixed effects and LPs suffers from a negative small-
sample bias, since the estimation of the fixed effect picks up the value of future realization
of the dummy variable. The authors show that this bias is attenuated either by increasing
the sample size or by including future realizations of the dummy variable over the response
horizon. By contrast, the difference between LPs and MA regressions that we identify is
not due to a bias in the estimates, but instead to differences in the identification due to the
persistence of the shock. Since our problem still persists asymptotically, increasing the sample
does reduce the LP-MA difference. Additionally, this difference is not necessarily negative,
but will depend on the nature of the data generating process that drives the persistence.
Third, our paper relates to the literature that employs narrative methods to identify ex-
ogenous shocks as an alternative to imposing restrictions in empirical models (e.g. structural
VARs). The use of narrative methods dates back to Romer and Romer (1989) and Ramey
and Shapiro (1998) and is based on using external information, such as official reports or
newspapers, to construct series of shocks that are arguably exogenous to macroeconomic
events.” Given that the objective of this literature is to identify shocks that have similar
properties as those found in theoretical models, persistence is seen as an undesirable feature
(Ramey (2016)). Our contribution to this literature is to formally and systematically test
for the presence of serial correlation in shocks used by previous empirical work. Although
the issue of persistence in shocks has been noted before,® we believe ours is the first study
to formally test the hypothesis of serial uncorrelation in a variety of narratively-identified

shocks ranging from fiscal to monetary policy.

"Examples of state of the art narrative methods can be found in Romer and Romer (2004), Romer and
Romer (2010), or Ramey (2011).

8Ramey (2016) finds that the time aggregation required to convert the shock in Gertler and Karadi (2015)
to monthly frequency, inserts serial correlation. Miranda-Agrippino and Ricco (2018) corroborate this finding,
by regressing the shock on four lags and testing their joint significance. They also find that other measures
of monetary shocks such as Romer and Romer (2004) exhibit serial correlation.
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Fourth, our work also relates to empirical applications that use LPs to investigate the
dynamic effects of narratively-identified shocks.” Our contribution is to show that controlling
for persistence in the shocks has substantial impact on the estimated impulse responses when
using LPs.

The rest of the paper proceeds as follows. Section 2 provides evidence on the existence
of serial correlation in shocks used by prominent previous work. Section 3 describes how
LPs and MA regressions treat persistence differently, and proposes a solution to re-establish
the equivalence between them. It also provides simulations to help understand the results.
Section 4 provides evidence of how serial correlation affects estimates of the effects of fiscal

and monetary policies. Section 5 concludes.

2 Evidence of persistence in shocks

Throughout this paper, we consider economic shocks in the same meaning as stated in Ramey
(2016), that is, shocks are considered to be the empirical counterpart of those employed in
theoretical models. According to this description, empirical shocks should be exogenous
to current and lagged endogenous variables, uncorrelated to other exogenous shocks, and
represent unanticipated movements (or news about future shocks).

When shocks are identified from within an empirical model, the researcher imposes a set
of restrictions to recover shocks that can be economically meaningful, as described above. A
byproduct of the restrictions from these models is that the resulting shocks are well-behaved
and display desirable statistical features, in particular, no serial correlation.

Alternatively, shocks may be identified without the explicit use of a model. This is typ-
ically the case of narrative methods. This alternative identification relies on the existence
of historical sources (such as official documentation, periodicals, etc...) that allow the re-
searcher to trace the cause and size of such shocks. These methods, which depend crucially
on the richness of the data and the judgment of the researcher, offer an excellent opportunity
to find exogenous variation in aggregate data. However, due to a lack of a subjacent model,
the resulting time series may display undesirable features.

In this section, we provide evidence of persistence in eight prominent aggregate shocks
related to monetary and fiscal policy. Some of these shocks are identified using narrative
methods, while some employ alternative strategies such as timing restrictions using high-
frequency methods. In particular, Romer and Romer (2010) and Cloyne (2013) construct
measures of exogenous tax changes for the US and the UK, respectively. The authors classify
legislated tax measures according to the motivation, as reflected in official documentation,

and consider those tax changes that are the result of causes non-related to the state of the

9There are several examples of studies that employ narratively identified shocks to estimate dynamics
effects using LPs. To name a few: Owyang et al. (2013) and Ramey and Zubairy (2018) look at the the
effects of government spending, Fieldhouse et al. (2017) explore the effects of government assets purchases,
and Tenreyro and Thwaites (2016) study the impact of monetary policy using and updated sample from
Romer and Romer (2004).
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economy. In a similar vein, Ramey and Zubairy (2018) construct a measure of government
spending shocks by looking at the announcements of future changes in defense spending.
Guajardo et al. (2014) construct a series of fiscal consolidations in OECD countries moti-
vated by a desire to reduce the deficit (as opposed to motivated by current or prospective
economic conditions). Romer and Romer (2004) and Cloyne and Hurtgen (2016) identify
exogenous changes in monetary policy by looking at the minutes and discussion of the mon-
etary policy committees of the Federal Reserve and Bank of England, respectively (they also
orthogonalized the resulting series using forecastable information available at that time). Al-
ternatively, Gertler and Karadi (2015) identify a proxy of monetary policy shocks using high
frequency surprises around policy announcements. Lastly, Arezki et al. (2017) construct a
measure of news shocks based on the date and size of worldwide giant oil discoveries. While
some of these papers employ auxiliary regressions to isolate forecastable information, all have
in common that the shocks have not been exclusively identified from a time series model.

To test for the presence of persistence we use a portmanteau-type test following Box and
Pierce (1970).'° The null hypothesis is that the data are not serially correlated. We test for
the presence of autocorrelation in 40 periods, although results are robust to different horizons
(see Table D.1).

The results from these tests are displayed in Table 1. Out of the eight considered shocks,

six show very large test statistics that result in rejections of the hypothesis of serial uncor-

Table 1: Persistence in macroeconomic shocks

paper type of shock Box-Pierce (40) test p-value
Arezki et al. (2017) news about oil discoveries 177.903 0.000
Cloyne (2013) tax (UK) 98.751 0.000
Cloyne and Hiirtgen (2016) monetary policy (UK) 84.422 0.000
Gertler and Karadi (2015) monetary policy (US) 124.568 0.000
Guajardo et al. (2014) fiscal consolidations 185.810 0.000
Ramey and Zubairy (2018) government spending 182.950 0.000
Romer and Romer (2004) monetary policy (US) 53.758 0.072
Romer and Romer (2010) tax (US) 19.023 0.998

The third column implements the Box and Pierce (1970) test of serial correlation using the small sample
correction following Ljung and Box (1978). The null hypothesis of this test assumes that the data are not
serially correlated within 40 periods. For Arezki et al. (2017) and Guajardo et al. (2014), which refer to panel
data, we use a generalized version of the autocorrelation test proposed by Arellano and Bond (1991). The
serial correlation test yields p-values smaller than 0.05 when testing the shocks of Romer and Romer (2004)
with fewer lags or when using the updated data from Coibion (2012) (p-value drops to 0.0041). Ramey and
Zubairy (2018) uses extended data from Ramey (2011).

10We implement the small sample correction following Ljung and Box (1978). For the cases of Arezki et al.
(2017) and Guajardo et al. (2014), which refer to panel data, we test serial correlation using a generalized
version of the autocorrelation test proposed by Arellano and Bond (1991) that specifies the null hypothesis
of no autocorrelation at a given lag order.
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relation for any level of significance. One of them (Romer and Romer (2004)) displays some
degree of serial correlation which leads to failure to reject the null hypothesis only for signifi-
cance levels above 5%.!1 As further evidence of the presence of serial correlation in the above
series, Figure D1 plots the associated correlograms. Romer and Romer (2010) constitutes
the only considered shock for which we fail to detect the presence of persistence.

Persistence may have different origins. In some instances, it arises because of the method
used to convert a nominal series into real terms. For example, Cloyne (2013) and Arezki
et al. (2017) divide their series by lagged GDP, while Ramey and Zubairy (2018) use the
GDP deflator and a measure of trend GDP. In other instances, the serial correlation arises
because of the mapping between different time frequencies. This is usually the case with
the identification of monetary policy shocks, such as Romer and Romer (2004), Gertler and
Karadi (2015), or Cloyne and Hiirtgen (2016), where daily monetary changes are converted
into monthly series. Finally, there are other shocks that are more likely to appear together,
because of their multi-period nature (for example, episodes of fiscal consolidations, as iden-
tified by Guajardo et al. (2014), tend to be spread over the course a few years) or because of
they cluster aorund events like wars (as in Ramey and Zubairy (2018)).

From the econometric point of view, shocks can be seen as forecasting errors. If the loss
function is quadratic, the best forecast is the conditional expectation and forecast errors
become martingale difference sequence (m.d.s). For other loss functions (e.g. the check
function) the forecast errors may not be m.d.s and therefore they can show certain serial
correlation.

In light of this evidence, we conclude that many relevant narratively-identified empiri-
cal shocks display persistence and hence do not meet one of the characteristics of shocks
mentioned above (Ramey (2016)). Hence, we distinguish between strictly-defined shocks,
which share all the defining characteristics (including no autocorrelation) and weakly-defined
shocks, which may be autocorrelated. We will see that persistent, narratively-identified
shocks still contain important variation that allows the researcher to trace the dynamic re-
sponse of relevant macroeconomic variables. For this reason, in the next section we study
how persistence affects the computation of dynamic responses, and how it can be accounted

for to allow identification of the objects of interest.

3 Theoretical framework
Without loss of generality, consider the following simple data generating process:

Y = 0xy+ uy
Ty = YTi-1 t+ &, (1)

' The hypothesis of serial uncorrelation is rejected for significance levels below 5% when considering fewer
lags in the test or when considering a longer series (with updated data) from Coibion (2012). The presence
of some degree of autocorrelation is shown in Panel E of Figure D1.
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where y, is the economic outcome variable (for example, GDP), z; is an economic shock (e.g.
a fiscal or monetary policy shock) with E(z,u;) = 0, and u; and &; are white noises with
mean and variance given by us ~ (i, 02) and &; ~ (., 0?). Following the evidence found in
the previous section, system (1) allows for the shock variable to be serially correlated. This
persistence is captured by the parameter v.!2 § measures the contemporaneous impact of
variable x; on y; and is the main parameter of interest.

The data generating process described by system (1) is intentionally simple to illustrate
how the dynamic relationship between the dependent variable y; and the shock x; depends
on the persistence of the latter. Importantly, the obtained results also arise in more complex
settings.!?

We are interested in recovering the response of our variable of interest when a shock hits

the system in period t. This statistic is known as the impulse response function, which we

denote by R(h) for period h:

R(h) =E [yt+h|$t =1, Qt—l] —-E [?/t+h|$t =0, Qt—l] ) (2)

where €2;_; represents all the history of previous realizations of £; and x; up to period
t — 1. Importantly, note that the above definition does not condition for future realizations
of ;. Hence, if v # 0, an initial unit impulse in z; does not imply that z;,; = 0.'* In other
words, equation (2) describes dynamic responses that include the possible persistence of the

shock z;. For example:

_ 9y _
RO) = 5 =9
8yt+1
1 = =
R(1) on, =
- Y2 2
R(2) = or, =07y

However, the researcher might also be interested in the response to the shock as if the

shock had no persistence. We call this response R(h)* and define it as:

R(h)* =FK [yt+h|$t =121, Tign, Qt—l] —-E [?Jt+h|$t =0,%T11, -, Tign, Qt—l] . (3)

Contrary to equation (2), equation (3) controls for future realizations of x; so that it
describes dynamic responses that do not incorporate the effect of persistence (regardless of

the value of 7), i.e. the responses are observationally equivalent to those that would arise

12 Although we think of x; as a shock (probably resulting from a narrative identification), it could be in
principle any macroeconomic variable that displays persistence.

13In Subsection 3.3, we consider more complex models that include persistence in the dependent variable,
lagged effects of the shock, and x; as an instrument of a true shock.

“This impulse response is equivalent to R(h) = Elynler =1,6001 =0, .00 =0, 1] —
E[ytrnler = 0,041 = 0,..cie040n = 0,Q_1]. See, for example, Koop et al. (1996).
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from a data generating process with v = 0:

Oy
RO = =—=—=94§
(0) or,
0Yi11
R(1)* = =0
( ) 8xt Tt4+1
R(Z)* _ 8yt+2 -0
Tt41,Tt42

al’t
Note that, if v = 0 (the shock is not persistent), then R(h) = R(h)* V h. By contrast, if
v # 0, then R(h) # R(h)* ¥V h > 0.

3.1 Differences between MA regressions and LPs under persis-

tence

We now consider the two most frequently used methods to estimate impulse responses, MA
regressions and LPs, and compare the objects that they identify when the shock is persistent.
We first consider the case of MA regressions. This is the underlying method employed by

VARSs to recover the response to a shock and its use is widespread in applied macroeconomics.

In the case of system (1), note that we can recover the response function R(h)*4 using the
following regression:'®
Yr = Oy + 01001 + Oop o + 031y 3 + Oy g + ... + ey, (4)

and it follows that R(h)M4 = 24 — ¢,/ h.

The second main method to compute impulse responses is LPs, proposed by Jorda (2005).
LPs are more robust to certain sources of misspecification and for this reason, their use has
increased in recent times (see Ramey (2016) for examples). LPs compute impulse responses

by estimating an equation for each response horizon h =0,1,..., H:

Yirh = OnT + Eppn,s (5)

where the sequence of coefficients {0}, determine the response of the variable of interest
R(h)EF = §;, for each horizon h.'6

We now consider under which conditions both methods identify the same objects.

Proposition 1. Given the data generating process described by system (1), if the shock x; is
serially uncorrelated, then the response functions identified by MA regressions and LPs are

equal for all response horizons, that is:
If v =0, then R(h)M4 = R(h)*F = R(h)* = R(h) Vh.

15 This regression should include as many lags as the response horizon h = 0,1,..., H.
16Unrelated to our case at hand, note that the structure of the LPs induce serial correlation in the residuals
&t+n. This is usually corrected by computing autocorrelation-robust standard errors (Jorda (2005)).
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If the shock is serially correlated, then the response functions identified by MA regressions
and LPs are different for all h > 0:

If v # 0 and h =0, then R(h)M4 = R(h)LF = R(h)* = R(h).

If v #0 and h > 1, then R(h)MA = R(h)* # R(h)*F = R(h).

Proof. See Appendix A.1. O

Following the above proposition, when v # 0, LPs recover a dynamic response that
includes three dynamic effects: (i) the effect that x; has directly on 3,5 (due to a lagged
impact of the shock), (ii) the effect that z; has through the persistence of y;, and (iii) the
effect that z; has on vy, through xy,, (since cov(zy, x41p) # 0 when v # 0). The first
two effects are frequently the objects that the econometrician aims at recovering. They are
independent of v and are shut down in our simple specification of system (1).!” The last
effect (the persistence effect of x;) drives the difference between R(h)M4 and R(h)LF. In
particular, R(h)XY = R(h) = §+", while R(h)MA = R(h)* =0 for all h > 1,

To understand why LPs, unlike MA regressions, incorporate this third effect due to the

persistence of x;, consider the LPs when h = 1:

Yir1 = 012 + &y (6)

where 6, = R(1)*F. The direct effect of x; on y;,; is 0. If 2; had no persistence, then &,

would be 0. However, when v # 0, we can use system (1) to express y;41 as a function of z;:

Y1 = OTpp1 + Uppr
= 9 ("}/l't + €t+1) + U1

= 5’}/3% + u;fk+17

where vy, = 6441 + upy1. This shows that the coefficient 6, in equation (6) will also recover
the persistence effect of x,: 6; = 67.'® The intuition is that between period ¢ and period
t+1, x; affects x411 when vy # 0. Since ;11 is not a regressor in equation (6), then this effect
is absorbed by ¢;.

When impulse responses are identified using MA regressions, the treatment of the persis-
tence of z; is different. To see it more clearly, consider a version of equation (4) expressed

in terms of ¢ + 1:
Yip1 = o1 + 011y + Osxyy + O30 + 04703+ ...+ €441 (7)

As noted earlier, the sequence of coefficients 0;, determines the response function. Consider

MA:91

the response when h = 1, i.e. R(1) Note that while we know from system (1) that

"We will incorporate them in our simulation exercises in the next subsection.
When augmenting system (1) so that y; has persistence as y; = py;_1 + dx; +uy, then the LPs coefficient
also recovers this additional effect: §; = dp + 7.
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_8521 = 0, the coefficient recovered by 6, is indeed 8%; = 0. That is, since the MA
Ti41

representation controls for x,,, the persistence effect of x, is accounted for.**

In other words, MA regressions identify:
R(h)MA =Eyinlze =1, Y1, Togn-1, s 1] — Elyegnlre = 0,1, en, -, T4
while LPs identify:
R(h)LP = E[yernler = 1, Q] — E[yenler = 0, Q4]

Note that the difference between R and R4 is positive (negative) when v > 0 (y < 0).

In empirical applications, v may be positive or negative.?’

3.2 Reestablishing the equivalence between MA regressions and
LPs

In this subsection we lay out two methods that can render the responses from MA regressions

and LPs identical, even under the presence of persistence.

3.2.1 Adapting LPs to exclude the effect of serial correlation

A researcher may be interested in recovering responses as if the shock were serially uncorre-
lated. However, we have shown that REF(h) #£ RMA(R) if 4 # 0 and h > 1.

Two apparent methods to avoid LPs picking up the effect of persistence in z; are: (i) to
include lags in the regression (5), or (ii) to replace z; with the error term that purges out

the persistence:

Et = Tt — YX¢_1. (8)

However, neither of these methods yields R*(h). The reason is that replacing z; with &; does
not include any further information between ¢ and ¢ + h, so the responses of the dependent
variable will still be affected by x;,,. This point is further developed in Appendix B.1.

A third potential method to exclude the effect of persistence would be recasting system (1)
as a VAR that includes the shock as an endogenous variable. However, since in this case
LPs and a VAR would identify the same impulse responses (see Plagborg-Mgller and Wolf
(2019)) the VAR responses would also include an effect due to the persistence of the shock—

we explore this in more detail in Appendix B.2.

9Tn practice, the researcher may compute an impulse response function analytically instead of estimating
equation (4), by simulating the path of y; using the first equation of system (1) and setting z; = 1 in time
t and z; = 0 for the rest of the periods. The results would be equivalent to those obtained from estimating
equation (4): in the first case the researcher naively ignores the existence of persistence and in the second
case the MA representation implicitly accounts for the effect of persistence.

20For example, v seems to be positive in Ramey and Zubairy (2018), and negative in Romer and Romer
(2004).
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Instead, we propose a method based on the inclusion of leads of the persistent shock

variable. In particular, given the DGP of equation (1), one should regress:

Yerh = Ono%r + On1Tir1 + Eighs 9)

where 05, is the h-horizon response identified by LPs that include leads of the shock x,
which we denote as R (h).

Proposition 2. Given the data generating process described by system (1), the response
function identified by modified LPs to a shock x; as described in equation (9) is equal to the
response as if the shock had no persistence (and to the response obtained from MA regressions
as in equation (4)), that is:

R(R)E =R(h)* = R(W)MAV ~ and h.

Proof. See Appendix A.2. O

Intuitively, leads of z; in equation (9) act as controls for the persistence of the shock, so
that the parameter 6y, o reflects the dynamic response to a counterfactual serially-uncorrelated
shock, that is, controlling for the effect due to 8%; # 0 built in system (1) when v # 0.

In more general processes, in which the autocorrelation of the shock may be of an order
larger than one, the optimal choice of leads can be derived adapting the procedure from Choi
and Kurozumi (2012). The most conservative procedure would be to include h leads of the
shock in each period h. We will revisit this issue in Section 4, when considering empirical

applications.

3.2.2 Adapting MA regressions to include the effect of persistence

As noted earlier, R(h)M4 = R(h)* regardless of the value of 7. However, in some instances
(we discuss this in the next subsection), the researcher may be interested in the response
that includes the effect of persistence (R(h)). In this subsection, we show how to adapt
MA regressions to recover these responses. Intuitively, the idea is to compute the impulse
responses in system (1) with respect to &; instead of z;.

Consider a recursive substitution of x; in system (1):

t
v = 0y'wo + 6 Z Ve + uy. (10)
i=0

The responses of y; to &, which we denote by R(h)M4P" can be obtained from the

coeflicients éh in:
i = Oper + 01611+ Ooey o+ 038, 3+ 0s50 4+ ...+ ey (11)

Proposition 3. Given the data generating process described by system (1), the response

function identified by MA regressions of y; to the innovation €, as described in equation (11)
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is equivalent to the response that includes the effects of persistence (and to the response
obtained from LPs as in equation (5)):
R(h)MA=rer = R(h) = R(h)EF V v and h.

Proof. See Appendix A.3. [

Proposition 3 establishes a direct equivalence between the coefficients obtained from equa-
tion (11) and those obtained from LPs in equation (5): 6, = 6, ¥ h. The former are also
related to the coefficients estimated from the MA representation in terms of x;, as in equa-
tion (4): 0y = Oy = 0, 01 = 0, — by, ...,0, = 0, — v0,_;. Intuitively, the response of yp
to a; has an overall effect of §; = 6y, which includes (i) the direct effect of z; on y,41 (0, in
our simple case) and (ii) the effect on y; 1 that is due to the persistence in x; (given by 7J).
The standard MA estimation from equation (4), since it accounts for the evolution of z; over
the response horizon, is implicitly subtracting the part of the response that is given by the

persistence of x; from the overall effect.

3.3 Examples

In this subsection, we perform stochastic simulations of the asymptotic behavior of the im-
pulse response functions using both LPs and MA regressions. Our goal is twofold. First, to
evaluate quantitatively the conclusions reached in the previous subsection using a plausible
calibration of the parameters that determine the model. Second, to consider a slightly more
complex (and realistic) version of the data generating process that includes richer features
frequently present in real empirical applications. In particular, we consider the following

process:
Yo = pY—1 + Boxy + Brwy_1 + uy
Ty = YTi-1 + &y, (12)

where E(g;_sus_,) = 0 Vs,r > 0, and u; and &; follow N(0,1) distributions.?! We set
By=15,B =1, p=0.9, and 02 = ¢2.
Compared to system (1), the new DGP described in system (12) includes persistence in
the outcome variable through p, and allows the shock z; to have lagged effects on 1, through
B, .22
We simulate the system above during 100 million periods and recover the dynamic re-

sponses of ; to the shock x; using LPs:

Yirh = PYt—1 + Bro®e + BraTe—1 + B f i1 + Epn- (13)

2'When 7 = 0, this model is similar to the (truncated) moving average representations of the effects of tax
changes of Romer and Romer (2010), but with fewer lags of the shock. When ¥, is a vector, this specification
is often referred to as VAR-X o VAR with exogenous variables. See, for example Alesina et al. (2015) or
Mertens and Ravn (2012).

22We introduce this extra lag of the shock to make explicit the distinction between the effect due to the
persistence of the shock and the effect of lagged values of the shock on current outcomes.
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We consider three cases: (i) no persistence (y = 0), without including leads in the
estimation (i.e., setting /5 ; = 0); (ii) some persistence (y = 0.2) and still £, ; = 0; (iii) some
persistence (y = 0.2), including a lead of the explanatory variable (i.e. allowing (), s # 0).%

Note that equation (13) must include a lag of shock z; to effectively capture the effect of
By in system (12). However, this does not control for the potential persistence of shock zy,
as will be apparent in the simulations.

Figure 1 shows the results of our simulations. In case (i) (dark-blue solid line), the
response has a contemporaneous effect of 31,0 = 1.5 and peaks at the following period due
to the the fact that both p and B; have positive values. Using the language of the previous
section, the impulse response function estimated by LPs with no persistence is asymptotically
equivalent to the one obtained directly from equation (13), that is, R(h)“F — R(h)*.

In case (ii) (red solid line), the introduction of persistence in the shock x; results in a larger
effect on y, on all horizons after impact. This has potentially important implications: if a
macroeconomist is interested in the effects of a serially-uncorrelated shock (as in most general

equilibrium models), but naively estimates equation (13), implicitly setting 3, = 0, then the

Figure 1: Simulated responses using LPs

— 0

— 2 ()

~v #0 & leads

This figure shows the response of a simulated outcome variable to a shock with different degrees of persistence,
using LPs. The dark blue line shows the results of estimating equation (13) assuming v = 0 in equation (12).
The red line shows the same estimation when v = 0.2. The dashed grey line shows the response after including
leads of the shock as in equation (13) and still assuming v = 0.2.

dynamic response is upwardly biased due to the persistence of the shock, i.e. R(h)EF > R(h)*
for h > 0. Given the assumptions on the autocorrelation of the process x;, the bias is
particularly large in the short and medium run. Higher values of the persistence parameters

~ and p would increase the difference between both responses (blue and red lines in Figure 1).

23The choice of v = 0.2 is based on an empirical application that we will present in the next section. Of
course, larger values of p would yield higher biases due to the persistence of the process.
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In case (iii) (dashed grey line in Figure 1), we see that the inclusion of leads of x; renders
the response of the outcome variable to a persistent shock identical to the one obtained when
considering a shock without persistence, i.e. R(k)Y — R(h)*. In Appendix B.3 we provide
an alternative simulation where the shock z; in (12) is taken from the actual data.

Next, we use these simulations to show that the computation of impulse responses using
MA regressions always yields the same estimates regardless of the persistence in x;, that is,
RMA(h) — R*(h) for any value of .

First, note that, since p < 1, system (12) can be inverted and re-written as:

ye = (1 —pL) " (By+ BiL) &y + (1 — pL) "y, (14)

where L represents the lag operator.
Given the independence of u; and x;, the representation from equation (14) suggests that
the dynamic responses of y; from x; can be obtained from the coefficients 9, in the following

regression:

Y = Voxy + Vw1 +Voxio + 3043+ ... + Igaipg + &, (15)

where H is the response horizon.?*

Figure 2: Simulated responses using MA regressions

3~

— = ()

y#0

This figure shows the response of a simulated outcome variable to a shock with different degrees of persistence,
using MA regressions. The dark blue line shows the results of estimating equation (15) assuming v = 0 in
equation (12). The dashed grey line shows the same estimation when v = 0.2. The red line shows the
response when substituting z; in equation (15) by &;, an OLS estimate of ; (see equation (8)), where serial
correlation has been removed.

24Baek and Lee (2019) show that for autoregressive distributed lag models, setting the lag order to H is a
necessary condition to achieve consistency.
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We estimate equation (15) fo three different cases: (i) assuming that 7 = 0 in the data
generating process described in system (12), (ii) assuming that v = 0.2 and (iii) substituting
x; by & in equation (15) (i.e. following equation (11)).

The results are shown in Figure 2. Cases (i) and (ii) are displayed in blue and dashed grey
lines, respectively. As argued earlier, since equation (15) controls for all potential dynamic
effects of x;, including its persistence, the coefficients ¥, reflect the responses to a shock as
if the variable x; showed no persistence, regardless of the value of y. Hence, we have that
R(h)MA — R(h)* for any . Note that these impulse response functions are the same as
those obtained with LPs (R(h)*") when v = 0, or when we include leads in the LPs (R(h)F).

Case (iii) is shown in the red line in Figure 2. As argued in the previous subsection,
when computing the impulse response with respect to g;, we are allowing the MA regressions
to pick up the effect that is due to the persistence in z;. In other words, since we do not
implicitly control for the leads of x; but for those of ¢, in the MA representation, we are
not taking into account the persistence of x;. In this case, the responses are equal to those
obtained from LPs when ~y # 0: R(h)MA~7er = R(h)EP — R(h).

3.4 Local projections with instrumental variables

Recently, there has been an increased attention to the use of external sources of variation as
instruments in LPs or VARs.?° In this section, we investigate how persistence may affect the
estimation of dynamic effects when using instrumental variables in local projections (LP-IV).

Stock and Watson (2018) provide the conditions under which a researcher can exploit
external variation to estimate impulse response functions. A valid instrument z, should be
both relevant and contemporaneously exogenous, that is, z; should not be correlated to any
shock in the system except with the one that the researcher is interested in. Lastly, Stock
and Watson (2018) impose a restriction called lead/lag exogeneity, which implies that the
instrument should not be correlated with any lead or lag of any of the shocks in the system.

Consider the following data generating process:

Y = Bgi+

U = My + ay

g = Arg+(1—XN)my (16)
2y = X+

Ty = YTy-1 T+ &,

where a;, v; and &; follow independent N (0, 1) distributions. A researcher may be inter-

ested in estimating the dynamic effects of variable g; on y; (e.g. the effects of government

25See Mertens and Ravn (2013) for a implementation of this method within a VAR (known as Proxy-SVAR)
or Ramey and Zubairy (2018) for an example in a context of LP. Related to this, Ramey (2016) discusses
the distinction between shock, innovation, and instrument.
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spending on output). However, g; is endogenous due to the presence of an omitted variable
my. The researcher may have the availability of an instrument z;, which is contemporane-
ously exogenous by construction and relevant when \ # 0. This instrument, since it depends
directly on the shock x;, displays persistence when v # 0. When there is persistence in
the instrument (and the shock), the lead/lag exogeneity condition mentioned above is not
satisfied. To illustrate this point, we simulate system (16) setting 8 = 2 (and different values

of A and ~y) for 100 million periods, and estimate the dynamic effects of ¢g; on y; using LP.

Figure 3: LPs with instrumental variables

Panel A) v =0 Panel B) v = 0.2

e No endogeneity e No endogeneity, y=0
— O S m— OLS, 7=0.2
L\ = = V,4=0.2

IV with leads, v=0.2

25 25

0.5 0.5

0

0 -

1 2 3 4 5 1 2 3 4 5
This figure shows the response of a simulated outcome variable to a shock using local projections with
instruments, with an underlying DGP given by system (16) and calibrated for different degrees of persistence
in the shock (7 = 0 in panel A and v = 0.2 in Panel B). In both panels, red lines refers to estimation using
LPs estimated using OLS and green dashed lines refer to LPs estimated using instrumental variables, when
the DGP generates endogeneity. For reference, the blue solid lines (in both panels) display responses when
the DGP does not generate persistence or endogeneity. In Panel B, the grey pointed line displays responses
estimated using instrumental variables in LPs and including leads of the shock.

We first consider the case of ¥ =0 and A = 1, that is, there is no problem of endogeneity
or persistence. The estimated effect of g, on y, recovered by LPs is represented by a solid
blue line in Panel A of Figure 3. As expected, the contemporaneous impact of government
spending on output is equal to 2. When considering A = 0.5 (but still no persistence, i.e.
v = 0), LPs that employ OLS will deliver biased estimates of the contemporaneous effect of
gr (solid red line). The difference between the red and the blue lines in the first period is a
measure of the endogeneity bias. The problem of endogeneity can be addressed by using z;
as an instrument for g; to recover the exogenous variation in government spending (given by
x;). This result (still considering v = 0) is represented by the dashed grey line in Panel A
of Figure 3, which shows how the use of LP-IV can overcome the presence of endogeneity,
delivering a response function identical to the benchmark case without omitted variables
bias.

Next, we repeat the previous exercise but now we allow for persistence in the instrument

(due to persistence of the shock); in particular, we set v = 0.2. The results are shown in
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Panel B of Figure 3 (we still represent, in solid blue line, the benchmark case of vy = A = 1 for
reference). When there is endogeneity and persistence, LPs estimates of the dynamic effects
of g, are affected by both an endogeneity bias on impact, and by the effect of persistence in the
instrument during the rest of the response horizon (as shown in the previous section). This
result is displayed by the solid red line in Panel B of Figure 3, which is different from zero after
impact. Now consider estimating the dynamic effects using LP-IV with instrument z; (that
displays persistence). The results (dashed green line) show that the use of the instrument
addresses the problem of endogeneity (on impact, the effect from the LP-IV estimates is able
to recover the true effect of § = 2). However, the dynamic effect from the rest of the response
horizon still reflects the presence of persistence.

As discussed above, persistence in the instrument violates the lead/lag exogeneity condi-
tion. Stock and Watson (2018) state that, in general, this condition could be satisfied by the
inclusion of further controls in the LP-IV regression. If the source of persistence is strictly
restricted to the instrument, Stock and Watson (2018) show that the lead/lag exogeneity
condition could be reestablished by including lags of the instrument. However, in cases like
system (16), where the instrument inherits its persistence from the shock, lags of the instru-
ment will not satisfy the lead-lag exogeneity condition. We build on intuition laid out by
Stock and Watson (2018) and adapt it to the problem of persistence by including leads of
the instrument in the set of exogenous variables in the LP-IV estimates. The results, shown
in dashed grey lines in Panel B of Figure 3, corroborate this intuition: despite the presence
of both endogeneity and persistence, enhancing the LP-IV estimates with leads of the shock
allows to recover the dynamic effects as if the instrument were not serially correlated.

In sum, the presence of persistence can potentially violate the lead-lag exogeniety as-
sumption, invalidating inference under LP-IV. The solution to reestablish this condition will
depend on the source of persistence in the model. When the instrument inherits its peristence
from the shock, our proposed solution builds on the general intuition from Stock and Watson
(2018), showing that the inclusion of leads of the instrument can deliver valid inference under
LP-1V.

3.5 Discussion

In the presence of persistence, a researcher has to determine first what object she wants to
identify and, second, what estimation method to use. Table 2 summarizes the adjustments
required in LPs and MA regressions depending on the choice of identification and estimation.

Regarding the decision on the estimation method, MA regressions and LPs have different
strengths. LPs impose fewer restrictions and do not rely on a dimension-reduction approach.
However, the fact that LPs impose fewer restrictions translates into less precise responses.
On the contrary, the MA representation often imposes strong assumptions on the linearity of
the underlying data generating process (the most typical case is the estimation of standard

VARs). When this restriction on the functional form is true, then the dynamic response
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Table 2: Adapting LPs and MA regressions when shocks are persistent

Object of interest / Method LPs MA regressions
Response as if no persistence (R(h)*) include leads no action needed
Response with persistence (R(h)) no action needed replace x; with ¢

computed from the VAR through the MA representation results on more efficient and precise
estimations. However, small mistakes in the functional form when specifying a VAR will be
compounded throughout the response horizon, due to its iterative nature, contrary to what
occurs in impulse-responses computed through LP.

Regarding the decision on the object that needs to be identified, the researcher has to
take into account that standard MA and LPs methods identify different dynamic effects when
shocks display persistence (v # 0), as shown in the previous section. Would the researcher
want to identify the response as if the shock were uncorrelated (R(h)*) or the response that
includes the effect of persistence (R(h))? The identification of responses as if the shock were
uncorrelated (implemented by LPs with leads or using MA) is perhaps the most conceptually
appealing option for some applications.

First, a shock that generates responses as R(h)*, regardless of the persistence of the
process, is akin to Ramey’s definition of what an empirical shock should be. This is because
persistence is an undesired feature of a (weakly-defined) shock, and the researcher may not
want this to influence the estimation of dynamic responses.

Second, when the researcher wants to compare the effects of different shocks (e.g. whether
fiscal or monetary policy is more effective in stimulating output, or how different are oil
and technology shocks), these may have different underlying data generating processes. For
example, it may be the case that fiscal shocks tend to show more persistence or that a given
identification procedure tend to generate shocks with less persistence. To the extent that
computing responses R(h)* effectively standardizes the dynamic responses of shocks with
different data generating processes, it may be desirable to employ LPs with leads or MA
regressions. 2

However, computing responses that contain the effect of persistence from the (weakly-
defined) shock R(h) could still be informative in some contexts. A researcher interested in
estimating the most likely dynamic response of a variable to a shock according to the historical
data, may be interested in including all the data features of such shock (e.g. persistence).
This argument is similar to the one posed by Fisher and Peters (2010) and Ramey and Zubairy
(2018) to support the use of the cumulative multiplier (the ratio of the integral of the output

response to that of the government spending response) to evaluate the effectiveness of fiscal

26This would be also the case when comparing the same shock, identified with the same methods, using data
from different countries. Since the data generating process of the shock in each country may be different, the
standardization provided by R(h)* should become particularly useful to establish cross-country comparisons.
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policies. If we consider the effects of a monetary policy (weakly-defined) shock that cuts
the policy rate by 1 percentage point, it is important to note that if that shock displays
persistence, then the total monetary policy action (the evolution of the nominal interest
following the initial tightening) may be different to what would occur if the shock were iid.

Additionally, some researchers may not agree to the above definition of shocks. That is,
they may define shocks as innovations that potentially can contain persistence.?” In such
applications, a researcher may consider the responses under standard LPs or using modified
MA regressions, as shown in the last row of Table 2.

To sum up, we argue that the researcher may need to take decision on both the identifi-
cation and the estimation of impulse-responses when shocks present persistence. The latter
is determined by a bias-efficiency trade-off, while the former requires to consider what is the
effect that the researcher is ultimately interested in. In the next section, we revisit some
prominent empirical applications where the shocks are persistent and show that accounting

for its persistence on the impulse responses may have a sizable impact.

4 Applications

In this section, we revisit some empirical papers that have used persistent shocks, and show

how accounting for that persistence affects the estimated impulse responses.

4.1 Government spending shocks (Ramey and Zubairy (2018))

Ramey and Zubairy (2018), building on previous work by Ramey (2011) and Owyang et al.
(2013), produce a series of announces about future defense spending between 1890q1-2014ql1,
scaled by previous quarter trend real GDP.?® This series, plotted in panel D of Figure D2,
has a positive autocorrelation of 18.4% (47.0% in the subsample after WWII).?

Ramey and Zubairy (2018) use LPs to estimate the response of output and government
spending to a shock in future defense spending. We follow their same approach and sample

and estimate the following equations for output (y;) and government spending (g;):

P h
wn = [jshock; + Z 05 nZt—j + Z vrnshockyyr + &

j=1 f=1
P h
Ggin = Bjshock, + Z 05 nZt—j + Zf)/f7h5hOth+f + &4, (17)
j=1 f=1

27See for example Halac and Yared (2014).

ZRamey and Zubairy (2018) estimate trend GDP as sixth degree polynomial for the logarithm of GDP
and multiplier by the GDP deflator. In fact, it is the use of the GDP deflator and trend GDP as a way
to scale the shocks what seems to induce the persistence. The persistence is also present when the shock is
scaled by previous-quarter GDP, as in Owyang et al. (2013).

29This positive autocorrelation is significant at a confidence level of 90% when considering standard errors
that are robust to the presence of heteroskedasticity and persistence (with more than one lag) for the whole
sample. For the subsample starting after WWII, the autocorrelation is significant at any level.

BANCO DE ESPANA 26 DOCUMENTO DE TRABAJO N.° 1944



where z; includes P lags of 1, ¢g; and shock;. Note that, following our method described
in the previous section, we include h leads of the variable shock,.?® In particular, for each
horizon A we include h leads.

To replicate Ramey and Zubairy (2018)’s estimates, we set s, = 0, V f, h. The black,
solid line in Figure 4 represents the estimated responses of output (left panel) and government
spending (right panel) to the shock.3! The results closely resemble those in Ramey and
Zubairy (2018) (Figure 5 of their paper).3?

Next, we allow 77, # 0. In the red lines in Figure 4, we observe that the responses
change considerably when the leads are included. For example, after two years, output and
government spending are 40% lower than in Ramey and Zubairy (2018)’s estimates.

Including or not leads also has implications for inference. The 95% confidence intervals
when leads are included (shown in dashed lines in Figure 4) are substantially narrower than
when they are not (grey areas in Figure D3). The latter are around 50% broader after two
years, and more than twice as big after three years.

The dynamic responses of output and government spending are informative about the
expected path of these variables after a shock. To obtain a measure of the efficiency of fiscal
policy (i.e. the increase of output per each dollar increase in government spending), Ramey

and Zubairy (2018) use the cumulative multiplier, computed as: 33

h Yy
My, = 2= (18)

We find that this statistic is not substantially affected by persistence of the shock (Fig-
ure D4). Given that both output and government spending react similarly when including
leads of the shock, taking the ratio of the two variables attenuates the differences between

both specifications.?*

Non-linear effects. We now investigate whether the effect of persistence in the shock

can affect the responses in a non-linear setting, i.e. if government spending multipliers are

30We include lags of the shocks as in the original paper by Ramey and Zubairy (2018). Note that, as
explained above, these lags do not account for the persistence of the shock, and hence their inclusion does
not have a noticeable impact on the results.

31Figure D3 also replicates the original 95% confidence intervals computed using the Newey-West correction.

32We drop the last h observations of the sample, so that the specifications with and without leads can be
fully comparable. This does not have any discernible effect when replicating the original results from Ramey
and Zubairy (2018).

33Ramey and Zubairy (2018) shows that the cumulative multiplier can be obtained in one step yielding
identical results to those obtained combining equations (17) and (18).

34However, despite the effects of a serially-correlated and serially-uncorrelated shock are similar in terms of
efficiency (multipliers), the fact that the expected responses are quantitatively different is very relevant from
a policy -maker point of view. To see this point (which goes beyond considerations about normalizations of
shocks), note that the the same shock could generate responses of output and government spending that differ
in an an order of magnitude when accounting for the persistence, but still yield exactly the same multiplier.
However, a higher response of government spending is likely to be relevant from a policy standpoint, as it
can affect other important variables such as public debt or taxes.
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Figure 4: Output and government spending responses, with and without leads
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Black lines show the results of estimating the system (17) without including any lead (as in Ramey and
Zubairy (2018)). Red solid lines represent the results of estimations when including h leads of the Ramey
and Zubairy (2018) news variable (with 95% confidence intervals).

different in expansions and recessions.* For this, we follow Ramey and Zubairy (2018) and

estimate a series of non-linear LPs:

P h T
Trpn = St |an+ Y pagnzi—j + Banshock, + > Sapnshockyy|+
j=1 f=1 |
P h T
(1 — St—l) QB h + Z PA,jhZt—j + ﬂB’hShOth + Z 5B,f,h5h00k3t+f + §t+h; (19)
J=1 =1 J

where x; is either output or government spending and S; is a binary variable indicating the
state of the economy. When S; = 1, the economy is booming and, when S; = 0, the economy
is in recession, which is defined as when the unemployment rate is above the threshold of
6.5. In this setting all the variables (including the constant), are allowed to have differential
effects during expansions and recessions.

We first replicate the non-linear responses of output and government spending during
booms and recessions obtained by Ramey and Zubairy (2018). Hence, we estimate equa-
tion (19) setting 64 5n = 6p,rp = 0 Vf, h. Our results, shown in Figure 5 in black lines,

resemble very closely those from the authors. Next, we repeat the experiment accounting

35See Ramey (2019) for a recent summary of this debate. For example, an influential study by Auerbach
and Gorodnichenko (2012) finds that government spending multipliers are higher during recessions using a
non-linear VAR. Alloza (2018) highlights the role of the information used to define a period of recession, and
finds that output responds negatively to government spending shocks in a post-WWII sample under different
identification and estimation approaches.
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for potential persistence, that is, including leads of the shock. The results are shown in red
lines in Figure 5. While relatively similar in the case of expansions, the responses are quan-
titatively different during recessions. The estimates that include leads lie outside of the 95%
confidence bands during much of the response horizon. The results suggest that ignoring the
effect of persistence could yield responses during recessions that, after 2-3 years, are twice
as large as the responses that account for the effect of persistence.

In Figure 6, we show how these responses map into estimates of non-linear fiscal mul-
tipliers. In the case of expansions, the results do not change much depending on whether
the persistence is accounted for (red solid line) or not (black solid line). In either case, they
resemble those in Ramey and Zubairy (2018) (see Figure 6 of their paper). In recessions,
however, the results change substantially depending on whether the persistence is controlled
for or not. If it is not (black solid line) the multiplier has a negative value upon impact and
substantially falls in the following quarter to a value of -2. It becomes positive before the
end of the first year, and fully converges to the value of the multiplier during expansions
after six quarters. If the persistence is not controlled for (red dashed line), the multiplier
shows a less puzzling behavior in the short run. After impact, the cumulative multiplier is -1
(instead of -2) and becomes positive after the first year. However, the multiplier during re-
cessions remains lower than the multiplier during expansion for a much longer period. When
the persistence is ignored this convergence is achieved after 6 quarters, as mentioned above.

However, when including leads of the shock, this convergence is not fully reached during our

Figure 5: Responses during expansions and recessions, with and without leads
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Black lines show the results from system of equations (19) without including any lead (as in Ramey and
Zubairy (2018)). Grey areas represent 68 and 95% Newey-West confidence intervals for these estimates. Red
solid lines represent the results of estimations when including h leads of the Ramey’s news variable. Red
dashed lines represent the 95% Newey-West confidence intervals for these estimates.
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Figure 6: Government spending multiplier during expansions and recessions, with and with-
out leads
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The black solid and dashed lines show the cumulative multiplier during periods of expansion and recession,
respectively, without including any lead (as in Ramey and Zubairy (2018)). The red solid and dashed lines
show the cumulative multiplier during periods of expansion and recession, respectively, when including leads
of the shock.

considered response horizon. These results suggest that during the short and medium-run
the government spending multiplier could be lower during recessions than during expansions,
and part of this difference may be attributable to the presence of persistence in the shock.
One of the main advantages of LPs is that they allow to accommodate non-linear set-
tings, as those in equation (19). This is particularly useful since, contrary to threshold
VARs, LPs do not impose any restriction on the evolution of state S; (while non-linear VARs
that interact the shock with a state dummy do assume that S; remains fixed during the
response horizon).The framework explained in the previous section allows to consider addi-
tional macroeconomic experiments that can help understand how restrictive this condition is.
In particular, by including leads of the state S; in equation (19) we are identifying the coun-
terfactual response to a fiscal shock when the underlying state of the economy is not allowed
to change (as in threshold VARs). We perform this experiment and report the multipliers
during booms in recessions in green lines in Figure D5. We observe that when the state is
not allowed to change, the multiplier during recessions is slightly higher in the short run, but
essentially unchanged at medium and longer horizons. This exercise allows us to illustrate
how the use of leads of variables in conjuction with LPs can help understand interesting

counterfactual exercises.
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4.2 Fiscal consolidations (Guajardo et al. (2014))

In this subsection we explore the relevance of our results in the context of episodes of fiscal
consolidation, as produced in Guajardo et al. (2014). The authors employ a panel of OECD
economies to analyze the response of economic activity to discretionary changes in fiscal
policy motivated by a desire to reduce the budget deficit and not correlated with the short-
term economic outlook.?® As mentioned in Table 1, this measure of fiscal changes exhibits
some degree of persistence.?”

To explore the effects of persistence in this context, we compute the responses estimating

a series of LPs:38
h

Yit+h = Mhi + Ang + Broshock; ; + Z Bh,rshock; iy p + Bns Xis + iths (20)
f=1
where y;; is a measure of economic activity (either private consumption or real GDP). pp,;
and A, represent country and time fixed effects, respectively. X, is a vector of variables that
includes a lag of the shock, output and private consumption, and a deterministic trend. In
our setting, responses to the fiscal shocks are given by the estimates of coefficients 3, o for
different horizons h.

We first estimate equation (20) by setting 55 s = 0 Vh, f. The results, shown in black
solid lines in Figure 7 qualitatively replicate the benchmark results of Guajardo et al. (2014),
with a fiscal consolidation shock significantly reducing output during the first 6 years.?”

Next, we estimate equation (20) but allow 5 s # 0 (red lines in Figure 7). Three points
are worth noting regarding these results. First, when accounting for the effects of persistence,
the point estimates are smaller in absolute value. On average, the new responses are 35%
lower during the first six years after the shock. Two years after a fiscal consolidation, output
is almost 60% smaller when accounting for persistence (-0.2 vs -0.5).

Second, when including leads of the shock, the estimates are more precise, which translates
into smaller confidence intervals (set at 90% as in the original paper of Guajardo et al.
(2014)). During the first six years, these intervals are about 20% smaller on average in the
specifications that include leads of the shock.

Third, these narrower intervals now include zero for most of the response horizon. Ignoring

the persistence of the shock would lead to the conclusion that the output contraction after

36 A detailed description of these shocks can be found in Devries et al. (2011).

3TRegressions of the fiscal consolidations measure (expressed as % of GDP) on its own lags and including
time and country fixed effects reveal persistence in the previous two or three years (depending on the number
of lags included). Intuitively, some degree of persistence is expected in these series since they often involved
multi-year plans, as noted in Alesina et al. (2015) and Alesina et al. (2017).

3¥Note that Guajardo et al. (2014) do not construct responses using LPs and hence their computed re-
sponses do not show the effect of persistence, as noted in the previous section. There are, however, a number
of studies that employ their fiscal consolidations dataset with LPs (see, for example, Barnichon and Matthes
(2017) or Goujard (2017)).

39Guajardo et al. (2014) focus on the dynamic effects of output and private consumption during 6 years
after the shock. We also compute results for private consumption, shown in Figure D6 in Appendix D. As
in the original paper, we also find a significant reduction in this variable during the first 6 years after a
consolidation shock.
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Figure 7: Output response to a fiscal consolidation shock, with and without leads
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Black lines show the results from equation (20) with output as dependent variable and setting Sy, 5 = 0 Vh, f,
i.e. without including any leads of the shock. Grey areas represent 90% Newey-West confidence intervals for
these estimates (same interval as reported in Guajardo et al. (2014)). Red solid lines represent the results of
estimations when allowing £, 5 # 0 and including % leads of the consolidations variable.

a fiscal consolidation is significant throughout the six years after the shock. However, when
accounting for persistence, the effect of the shock is significant only during the first year after
the shock, while it seems less plausible to conclude that the effect is statistically different

from zero during the rest of the response horizon.

4.3 Tax shocks (Romer and Romer (2010))

What happens when including leads of non-persistent shocks? In this section we conduct
a placebo test based on Romer and Romer (2010), who investigate the output effects of
legislated tax changes. Romer and Romer (2010) identify exogenous changes in tax revenues
by classifying fiscal reforms according to their motivation (i.e. whether or not they are the
response to changing macroeconomic conditions). As discussed in Section 2, it is the only
shock considered here for which we unambiguously fail to reject the null hypothesis of no
persistence. Hence, the inclusion of leads of the shock should not have a discernible impact
on the estimation of dynamic responses.

To empirically demonstrate this, we estimate the response of output to exogenous tax
changes following Romer and Romer (2010). We adapt the original estimation from the
authors (a single equation with no controls estimated by OLS) to the LPs setting:*°

h

Yerh =t _ g, oshock, + > Bugshocky s + &in.

(21)
Yt—1 —

40 Adding controls such as lags of output or the own shock do not affect the obtained results shown next.
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In our first exercise, we set 5, ; = 0 Vh, f in equation (21) to replicate the results from
Romer and Romer (2010). The results are shown Figure 8 (black lines). The response of
output is similar to that in Romer and Romer (2010): it falls persistently after a tax hike of
1% of GDP, with a peak effect reached in the 10th quarter.*!

Next, we allow for ;s # 0. The results, shown in Figure 8 (red lines), suggest that
the inclusion of leads does not significantly affect the results. The point estimations with
and without leads of the shock overlap each other for most of the response horizon and only

diverge slightly during the quarters 8 to 11th.

Figure 8: Response of output to Romer and Romer (2010) tax shocks, with and without
leads

percent

quarter

Black solid line shows the responses to a tax shock estimated from equation(21) with g, = 0, i.e. without
including any lead. Grey areas represent 68 and 95% Newey-West confidence intervals for these estimates.
Red solid line shows the responses to a tax shock estimated from equation (21) with S 5 # 0 and including
h leads of the shock. Red dashed lines represent 95% Newey-West confidence intervals for these estimates.

While, given the results of Table 1 we should not expect a change in the point estimates
(which we have corroborated) the same cannot be say about issues regarding inference. How-
ever, Figure 8 shows that confidence bands are not distinguishable between both specifications
during the first seven quarters and differ only slightly afterwards.

In sum, this placebo exercise is reassuring in that the inclusion of leads only matters when
the explanatory variable displays some persistence. These results suggest that including leads
in LPs is a conservative way to address the effects of persistence when there is a suspicion

that the shock is persistent.

41 The difference with the original estimations from Romer and Romer (2010) are only quantitative: the
peak tax multiplier is about 3 in the 10th quarter. Our estimations suggest a peak multiplier of 2.25 also
reached in the same quarter.
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5 Conclusions

In this paper, we have shown that persistence results in the estimation of different responses
when using LPs versus traditional methods based on MA regressions. In particular, for a
researcher interested in the response as if the shock were not persistent, MA regressions yield
the desired object, but LPs need to be adapted. We have proposed a method based on the
inclusion of leads of the shock to address this issue.

Accounting for persistence is particularly relevant from a policy standpoint. The compar-
ison of the effectiveness of different shocks should be based on the assumption that the data
generating processes underlying the shocks are comparable. Otherwise, the researcher could
inadvertently overestimate the effect of shocks that shows with high persistence. However,
there might be applications where including all the features of the data (e.g. persistence) may
be advantageous. The aim of our paper is to show that these features are treated differently
depending on the method used to identify the dynamic effects.

The use of leads has an additional advantage in LLPs beyond addressing concerns about
persistence. As it has been shown, the inclusion of leads of a variable effectively shuts down
the transmission channel that operates through that variable due to its persistence. For
example, one may be interested in the effects of monetary policy shocks on output due to a
particular instrument while holding other variables constant (e.g. changes to fiscal policy).
In the context of LPs, leads of a selected variable (e.g. tax changes) will deliver responses
holding that variable constant. This methodology allows to separate the direct (due to the
impact through the regressor of interest) and indirect effects (due to other variables in the
regression). This has often been used in the context of VARs, by imposing restrictions on
the coefficients of selected impulse responses.*? The inclusion of leads achieves a similar goal
in LPs, hence allowing to construct interesting macroeconomic experiments. We leave these

questions for future research.

42Gee for example: Bernanke et al. (1997), Sims and Zha (2006), or Bachmann and Sims (2012).
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Online Appendices

A  Proofs

A.1 Proof of Proposition 1

Consider equation (5) (rewritten here for convenience):

Yirh = OnTe + Eighs (A1)

where &, = R(h)*F represents the impact of variable z; on %, (the response function).

Since 0, is the linear projection coefficient of equation (A.1):

coU(Yryn, )
= I T A2
g var(xy) (4.2)

The dynamic effect of x; on y,,j, can also be obtained from MA regressions as in equa-
tion (4):
Y = Oy + 01241 + Ogxy o + O35 + 0444 ... + Uy

Since this expression holds V¢, it can be written as:
Yerh = O0Tipn + 0101101 + O2Zipn—2 + O32pn—3 + ... + Ohxy + s,

where the coefficient 6, = R(h)M4 represents the impulse response in period h, obtained

from:
N cov(Yetn, T4)

On = var(xy) (A.3)

Tt+1,--Tt+h

When v = 0 in the process described by system (1), we have that z; = &, ~ white noise(u., o2),

SO:
_ cov(Yeyn, Tt)

Tt+1y-yLt4h o Ua?“(ﬂ?t)

0, — coU(Yryh, Tt)
= s T
var(xy)

In this case, §;, = ), and LPs and MA yield the same responses: R(h)*X = R(h)MA Vh.
Note that R(h)M4 = R(h)* Vh,~ since (under linearity):

_ CoV(Yern, L)

Tt41)--Tt+h var(xt) Tt41y--Tt+h

«_ Oy
R(h)" = 8;+th

When v # 0, equation (A.2) becomes (using the equations in system (1)):

cov(Yrn, Tt)  COV(OTyyp + Urin, Tr)  COV(Tyyn, T)

O = = = =" A4
h var(x;) var(x;) var(xz;) v (A4)
using the expression:
h—1
Tiph = "yh.fEt + Z ’}/jSH_h_j. (A5)
j=0
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However, the dynamic response obtained from MA regressions is:

cov(Yiin, Tt) _ 5cov(mt+h, xy)
var(zy)  l@etewen var(zy)  loeeemon

0, =

-5 cov(xe,xt

When h = 0, the above expression becomes 6, mr(xt)) = 0. For h > 0, we have

that §), = <) = 0. This shows that when v # 0, we have that R(h)“" =

var(xy) Tty Tesh

R(R)MA if and only if h=0. W

A.2 Proof of Proposition 2

Consider equation (9) (rewritten here for convenience):

Yirh = On0%t + On1Tit1 + Eevn,s (A.6)

where 85,0 = R(h)" represents the impact of the shock z; on y;,, when including leads
of the former. Since Jj ¢ is the linear projection coefficient of equation (A.6), then:

Sh o — coU(Yryn, Tt)
hO0 — — /N

)

_ 5cov(a:t+h, xy)
var(zy) leea var(zy) oo

(A7)

Note that the data generating process in system (1) considers that x; is an AR(1) so it
can be represented in terms of ;1 (see equation (A.5)).! Then, we have that MA regressions
and LPs with leads recover the same object:
cov(ZTyyp, Ty)

=)—— = 0p0-

9, — oV (Yens Tt)
Tt+415--Tt+h var(:ct) Tt+1

var(xy)

To see this, note that in period A = 0 we have that:

_ cov(yy, xy)
var(xy)

_ cov(yy, )
Lt41y-3Tt4h UaT'(Z't)

:5:500.

)

In periods h > 0, we can rewrite equation (A.7) as:

5o = 5cov(xt+h,mt) _ gy cov(Tyi1, Ty) _o (A.8)
’ var(zy) o var(zy) e
Similarly, equation (A.3) becomes:
0, — cov(Ypyn, T4) _ &Yhflcov(xtﬂ,xt) _0 (A.9)
var(xy) e e var(zy) e

So we have R(h) = R(h)MA V hyy. And we know that R(h)M4 = R(h)* , from the

section above. W

!Note also that the results easily generalize to cases when z; is an autoregressive process of higher order.

BANCO DE ESPANA 40 DOCUMENTO DE TRABAJO N.° 1944



A.3 Proof of Proposition 3

Consider a version of equation (11) rewritten here for convenience:

Yt = Ooct + Orer 1+ Ooey o+ Ose, 3+ 0450 4. .+ Ug, (A.10)

where QNO = R(h)MA*pe’" represents the impact of variable ¢; on ;.. Note that &; is
not observable but can be obtained if we know the data generating process described in
system (1). Since equation (A.10) represents the linear projection of y; on &, and its lags,
with &; ~ id (., 02), we have:

g, — cov(Yi i, Et) _ cov(Yiyn, )
L = — e

_ _ 5cov(xt+h, £t)
var(ey)  lesriogipn var(g;) var(g))

(A.11)

This expression is equivalent to equation (A.2) which implies that 6, = 0, and R(h)
R(h)EP. To see this, substitute for ;. in equation (A.11) using expression (A.5) and sys-
tem (1):

hel
; hcov(xt + Zj:(} YV €thj;Et) B p COV(Ty, €¢)

h =0 = oy (A.12)

var(g;) B var(et)

Note that the above expression yields the same result as equation (A.4), which shows
that 6, =6, Vh. W
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B Further results

B.1 Responses in LPs using variables adjusted for serial correla-
tion

An apparent potential alternative to the use of leads proposed in the main text might be to
adjust the shock z; so that it does not display persistence (e.g. by regressing z; on its own
lags and using the resulting residual). Once the persistence is removed, one may expect the
dynamic responses not to include the effect due to the persistence of the shock. However,
this is not the case in a LPs setting, as we show next.

Consider the case where we obtain a variable adjusted for serial correlation: ¢, = x; —
~vxi—1, as shown in equation (8). Then, g; can be used as substitute of the original shock z;.

Assuming By = 0 in system (12) (for simplicity) consider the following series of LPs:

Yirh = PrYi—1 + Aner + Evn- (B.1)

To obtain the dynamic responses of y; to the shock &, (adjusted for persistence), we
rewrite the first equation in system (12) as a function of £, and compute the relevant partial

derivatives. For the cases of h = 0 and h = 1 these are:

0Yit1
A p— f— B
0 oz, 0
3yt+1 8% a$t+1
1= P, t Bogo— = rBo+ Boy oy + p) (B.2)

That is, even after correcting for the persistence in shock z;, conventional LPs yield
responses that still contain the effect of persistence of the shock.

While this result may seem counter-intuitive, it arises from the fact that LPs do not have
an explicit dynamic structure as an MA representation. Hence, removing the persistence
from z; does not eliminate its effect on y;11, Y10, ete.

To empirically show this point, we simulate series of y;, and z; following system (12) and
the calibration used in Section 3.3 (we now allow B; # 0). We then obtain the residuals &;

as an estimate of ¢; described above and estimate the following equation:

Yith = PYi—1 + Anoct + Ap1€i—1 + g (B.3)

Results are shown in Figure B1. The simulations corroborate the above results and we
find that the use of a variable adjusted for serial correlation as &; in equation (B.1) fails to

retrieve an impulse response as the one obtained when v = 0 in equation (12).
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Figure B1: Simulated responses using &,

— = ()

——

-—\\ v#0& &

This figure shows the response of a simulated outcome variable to a shock with different degrees of persistence.
The dark blue line shows the results of estimating equation (B.3) assuming v = 0 in equation (12). The red
line shows the same estimation when v = 0.2. The dashed grey line shows the response when including a
predicted regressor where persistence has been removed as explanatory variable (as in equation (B.1)).

B.2 Including the shocks as endogenous variables in a VAR

A researcher may consider including a shock with persistence as an endogenous variable in a
VAR. Does this approach eliminate the effect of the persistence of the shock on the impulse
responses? A VAR, since it explicitly models the persistence of the shock, includes this
effect in the estimated impulse responses and, hence, yields the same dynamic effects as LPs
(contrary to what is obtained when including the shock as a MA structure within a VAR).!

To see this in an intuitive way, consider the data generating process given by system (12)

and rewritten here for convenience (with a slightly different notation):

Y = pYi—1 + 0ot + O1xiq + €Y
Ty = YT+ ey (B.4)

This process can be recast as a structural VAR of the form AyY; = B*Y,_; + €;, with:

1 0f |z O |z40— e¥
=] T (B.5)
—00 1| | 0 pl |y £

'Romer and Romer (2010), Ramey (2011), and Bloom (2009) are examples of studies that include shocks
as endogenous variables in a VAR. Plagborg-Mgller and Wolf (2019) formally show that VARs and LPs
identify the same impulse responses. Here we illustrate that when one of the endogenous variables in the
VAR is a persistent shock, this effect will be carried over to the dynamic responses.
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An econometrician would estimate the following reduced-form VAR:
Y, = BY; 1 +w, (B.6)

where B = A;'B*; and u, = A;'e, are reduced-form residuals. Since the data generating
process given by equation (B.4) already incorporates restrictions on the contemporaneous
behavior of the variables, a researcher may identify the structural impulse responses by
computing the Choleski decomposition (when z; is ordered first) of the variance-covariance
matrix of reduced-form residuals ;.

However, note that, when « # 0, the response of y; to €/ will include an effect due to
the persistence of the shock x;. Intuitively, consider the case of p = d; = 0. In this scenario,
a researcher may be interesting in recovering a one-off shock to z;. However, the response
of y, will be given by R(h)VA% = 6, Y 07 et ,, that is, the one-off shock will still have
effects along the response horizon because of the peristence of z; (when 7 # 0).

To see this point in a more general way, consider the same calibration as used in the main
text (i.e. p=0.9, &g = 1.5, 6; = 1, and either v = 0 or v = 0.2). We compute the impulse
responses of variables y; and z; (the measured shock) to €7, shown in Figure B2. We also
estimate the same impulse-response functions for 1, using LPs, as in Section 3.3.

The results illustrate that,