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Abstract' 

Hodrick-Prescott (HP) filtering of (most often, seasonally adjusted) 
quarterly series is analysed. Some of the criticism to the filter are 
adressed. It is seen that, while filtering strongly affects.autocorrelations, 
it has little effect on crosscorrelations. It is argued that the criticism 
that HP filtering induces a spurious cycle in the series is unwarranted. 
The filter, however, presents two serious drawbacks: First, poor perfor
mance at the end periods, due to the size of the revisions in preliminary 
estimators) and, second, the amount of noise in the cyclical signal, which 
seriously disturbs its interpretation. We show how the addition of two 
model-based features (in particular, applying the filter to the series ex
tended with proper ARIMA forecasts and backcasts, and using as input 
to the filter the trend-cycle component instead of the seasonally adjusted 
series) can considerably improve the filter performance. Throughout the 
discussion, we use a computationally and analytically convenient alter
native derivation of the HP filter, and illustrate the results with an 
example consisting of 4 Spanish economic indicators. 





1 Introduction 

There are two different uses of trends in applied work. First, in short-term 
monitoring and seasonal adjustment, trends are equal to Pt = Xt - (St + Ut), 

where It is the observed series, St is the seasonal component, and Ut is the 
irregular component, that typically captures white (or close to it) noise behav
ior. Examples of these trends are the ones produced by the Henderson filters 
in Xl! or X12, or the ones obtained in the model-based decomposition of a 
series, as in programs STAMP or SEATS (see F indley et aI, 1998, Koopman 
et aI, 1996, and Gomez and Maravall, 1996). Since they only differ from the 
seasonally adjusted (SA) series by a highly erratic component, often they will 
contain variation of the series within the range of cyclical frequencies. As 
a consequence, these trends will only be of interest as a short-term signal to 
monitor, for example, period-to-period growth. An example is provided by the 
continuous lines in Figures l.la and l .lb: The gain of the filter extends over a 
wide range of cyclical frequencies, and the trend is seen to contain short-term 
cyclical oscillations. Throughout the paper, these short-term trend will be re
ferred to as trend-cycles, and denoted p,; on occasion, they will also be called 
"noise free" SA series. 

Figure 1.1. Short-term versus long-term trends 
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Figure l.1a Figure 1.1b 

The second use of trends 15 III business cycle analysis, where short-term 
trends cannot be used because they are contaminated with cyclical variation; 
longer-term trends are needed. Despite its importance, decades of attention 
have shown that formal modeling of economic cycles is a frustrating issue. 
Therefore, applied research and work at policy making institutions has relied 
heavily on ad-hoc filters, the most popular of which is the Hodrick-Prescott 

- 7 -



(HP) one (see Prescott, 1986). Thus a standard procedure to estimate eco
nomic cycles is to apply the HP filter to XU-SA series. The dotted lines 
in Figures 1 . 1a  and b represent the HP long-term trend gain and estimator. 
Long-term trends will be called simply trends, and represented by mt. 

The use of the HP filter for business-cycle estimation has been the subject 
of academic discussion. Criticisms are found in, for example, Canova (1998), 
Cogley and Nason(1995), Harvey and Jaeger(1993), King and Rebelo (1993), 
and Maravall ( 1995). Norwithstanding the criticisms, its widespread use in 
practice may evidence (besides its simplicity) the empirical fact that, as a first 
(or rough) approximation, analysts find the results useful. The decision of 
which is the cutting point between a trend and a cycle is, ultimately, arbitrary, 
and to some extent depends on the purpose of the analysis. For example, from a 
month to month horizon, a periodic lO-year component may well be considered 
trend; if business cycle is the objective, it should be considered cycle. 

Be that as it may, the HP filter presents some serious limitations. First, 
it is generally accepted that economic cycles have non-linear features (see, for 
example, Hamilton,1989); in this paper we do not deal with non-linear i(I1-

provements. We address, first, the well-known criticism of spurious results 
due to the ad-hoc character of the filter, and the (often ignored yet impor
tant) limitation implied by revisions, which produce imprecision in the cycle 
estimator for recent periods. Then, we show how the integration of some rela
tively simple ARIMA-model-based (AMB) techniques can produce important 
improvements in the performance of the cyclical signal. 

2 The Hodrick-Prescott filter: Wiener

Kolmogorov derivation 

We start by providing an alternative representation of the HP filter that pro
vides an efficient and simple computational algorithm and turns out to be 
useful for analytical discussion. Let Xt (t = 1 ,  . . . , T) denote an observed se
ries. The HP filter decomposes Xt into a smooth trend (mt) and a residual 
(Ct), where the trend is meant to capture the long-term growth of the series. 
and the residual (equal to the deviation from that growth) represents the cycli
cal component. For the moment we shall assume that the series contains no 
seasonality. 

The HP filter is a low-pass filter and can be seen as a Whittaker-Henderson 
type A filter and as a member of the Butterworth family of filters (see Gomez, 
1998). The filter was derived as the solution of a problem that balances a trade-
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off between fit and smoothness in the following way. In the decomposition 
Xt = mt + Ct, (2 .1) 

the HP filter provides the estimator of c ,  and m, such that the expression 
T T 

L: c; + oX L:('\7'm,)' 
t=1 t=3 

(2.2) 

is minimized ('J = 1- B is the difference operator, B is the backward operator 
Biz, = Z'-i, and F denotes the forward operator, Fiz, = z'+i) The first 
summation in (2.2) penalizes bad fitting, while the second one penalizes lack 
of smoothness. The parameter oX regulates the trade-off: when oX = 0, m, = x" 

when oX -4 00, m, becomes a deterministic linear trend. The solution to the 
problem of minimizing (2.2) subject to the restriction (2.1) is given by (see 
Danthine and Girardin, 1989) 

A = I+oXK'K, (2.3) 
where m and x are the vectors (mil"" mT)' and (XIl" " XT)' respectively, 
and K is an (n - 2) x n matrix with its elements given by Kii = 1 if i=j or i = 
j + 2, Kii = -2 if i = j + 1 ,  K;i = 0 otherwise. 

Clearly, the estimator of the trend for a given period depends on the 
length of the series. Consider the trend for period T, the last observed period. 
Application of (2.3) yields an estimator to be denoted mTIT, where the first 
subindex refers to the period under estimation, and the second to the last 
observed period. This estimator will be called the concurrent estimator. When 
one more quarter is observed and x becomes (Xl)" .,XT+l)', application of 
(2.3) yields a new estimation of mT, namely mTIT+'. As more quarters are 
added, the estimator is revised. It can be seen that, for large enough k, mTIT+k 
converges to a final or historical estimator, to be denoted mT. Therefore, 
for a long enough series, the final estimator may be assumed for the central 
periods, while estimators for the last years will be preliminary. This two 
sided interpretation of the HP filter seems unavoidable. Because additional 
correlated new information cannot deteriorate a projection, mTIT+I should 
improve upon mTIT. Moreover, actual behavior of the US  Business Cycle 
Dating Committee (or similar institutions) reveals in fact a two-sided filter, 
which starts with a preliminary estimator) and reaches the final �ecision with 
a lag of perhaps two years. 

As shown in King and Rebelo ( 1993), the HP filter can be given a model
based interpretation. Let c, in (2 . 1 )  be white noise with variance 11; and m, 
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follow the model 
( 2.4) 

where amt is a white noise variable (with variance Vm) uncorrelated to Ct. 
Throughout the paper, the expression "white noise" will denote a zero-mean 
normally identically independently distributed variable. Let A = Vo/V= so 
that, without loss of generality, we can set Vc = A, Vm = 1 .  The minimum 
mean squared error (MMSE) estimator of m, can be obtained in a straight
forward manner via the Kalman filter (see Harvey and Jaeger, 1993). The 
interpretation of A, the HP filter parameter, varies according to the rational
ization of the filter. It regulates the trade-off between fitness and smoothness 
when the function (2.2) is minimized, it is equal to the ratio of the cyele 
and trend innovations in the model-based approach, and, when expressed as 
a Butterworth type filter, it is equal to, A = [4sin'(wo/2)J-', where Wo is the 
frequency for which 50% of the filter gain has been completed (see Gomez and 
Maravall 1998,) .  

Alternatively, the same MMSE estimator can be obtained with the so
called Wiener Kolmogorov (WK) filter. In terms of the observations, the 
previous model can be rewritten as the IMA (2,2) model 

\1'x, = ( 1  + OIB + O,B')b, = OHP(B)b" ( 2.5) 

where bt are the innovations in the Xt series. The variance of btl Vb, and the 
OI,O,-parameters are found by factorizing the spectrum from the identity 

( 1  + OIB + O,B')b, = a=, + \1'c,. (2.6) 

As an example, for quarterly series the standard value of A is 1600, in which 
case 

OHP(B) = 1 - 1 .77709B + .79944B'; Yo = 2001 .4. (2.7) 

For an infinite realization of the series, the MMSE estimator of m, is given by 
(see, for example, Maravall, 1995) 

m, = 
k=(HP)OHP( B)

1
0HP(F )x, = vHP( B, F)x,. ( 2.8) 

where k=(HP) = V=/Yo. The filter v'j'ip(B, F ) is symmetric and, since (2.6) 
implies that OH p( B) is invertible, also convergent. Following Cleveland and 
Tiao ( 1976), for a finite series, expression ( 2.8 ) can still be applied, with x, 
replaced by the series extended with forecast and backcasts. A simple and 
efficient algorithm to apply the filter, based on that in Burman (1 980), is 
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given in the Appendix. For the estimator of the cycle, 
Ct = [1 - vHP(B, F)Jxt = vliP(B, F)x" (2.9) 

where vHP(B, F) is also a two-sided centered, symmetric, and convergent linear 
filter 1 which can be rewritten as, 

(2.10) 

where kc(HP) = Vc/Vb, and a bar over an operator denotes the same operator 
with B replaced by F. When properly applied, the Danthine and Girardin, 
the Kalman filter, and the WK solutions are numerically identical (see Gomez, 
1999). The last two are considerably more efficient than the first, and can be 
applied to series of any length. The WK filter turns out to be convenient for 
analytical discussion. 

For seasonal series, since the seasonal variation should not contaminate the 
cycle, the HP filter is typically applied to Xll SA quarterly series. Throughout 
the paper, "Xll" will denote the default linear filter for an additive decompo
sition, as in Ghysels and Perron (1993). To adjust a series, the filter Xll will 
always be applied (in the XllARIMA spirit) to the series extended at both 
extremes with ARIMA forecast and backcasts. We shall center attention, first, 
on historical (or final) estimation. If vXlI(B, F) denotes the Xll-SA filter, 
and v'j,p(B, F) the HP filter (2.9), let v'j,px(B, F) denote the convolution of 
the two. Because both, the Xll and the HP filters, are symmetric, centered, 
and convergent, so will their convolution. For seasonal series, the estimator of 
the cycle (2.9) should thus be replaced by 

(2.ll ) 

Throughout the paper we assume quarterly series and denote by S the annual 
aggregation operator, S = 1 + B + B' + so. Further, in all decompositions of a 
series into unobserved stochastic components, the components will be assumed 
orthogonal, and innovations in their models normally distributed. 

3 Revisions 

3.1 Preliminary estimation of end points and reVISIons 
If cTIT denotes the estimator of the cycle for the last observed period (i .e., 
the concurrent estimator ,) as new periods are observed the estimator will be 
revised to cTIT+l1 cTIT+2J'" until it converges to the final estimator CT_ The 

- 1 1 -



difference between the final estimator and the concurrent one measures the 
revision the latter will undergo, and can be interpreted as a measurement 
error in the concurrent (more generally, preliminary) estimator. Although the 
poor behavior of the HP filter for recent periods has often been pointed out (see 
Baxter and King, 1995), the revisions implied by HP filtering have not been 
analyz�d . Two main features of the revision are of interest: a) the magnitude, 
and b) the duration of the revision process (i.e., the value of k for which DrIT+k 
has, in practice, converged) . To look at these features we use the WK version 
of the filter. 

Assume the observed series follows the general ARIMA model 
¢( B)Xt = O( B)at, (3. 1 ) 

where, without loss of generality, we assume ¢( B) contains the factor Vd, 
° S d S 4. Because the numerator of vkp in (2.10) cancels the unit roots in 
Xt, the estimator of the cycle can be expressed as 

c, = �(B, F)a" (3.2) 
where the weights of the polynomial �(B, F) can be obtained through the 
identity �(B, F) ¢( B) = vkp(B, F)O(B). Expression (3.2) can be rewritten as 

C, = C(B)at + �+(F)at+" (3.3) 
where �-(B) = L.;>o �_;B;, and �+(F) = L.;>o �;F; are convergent polyncr 
mials . . The first one-contains the effect of the innovations up to and including 
period t, and the second one includes the effect of innovations posterior to 
period t. Because Et(at-j) = at_; when j � 0, and Et(at-j) = ° when j < 0, 
the concurrent estimator equal to the expectation at time t of the estimator 
(3.3), is given by the first term in the right hand side of the equation. The 
revision in the concurrent estimator will thus be given by 

k 
rtlt = C,lt - Ct = �+(F)at+l = L �;at+;, (3.4) 

j=l 
where the last equality uses a finite approximation based on the convergence 
of �+(F). From (3.4), it is straightforward to compute the variance and au
tocorrelations of the revision process. (We have focussed on the concurrent 
estimator; the analysis is trivially extended to any preliminary estimator cW.) 

Although the filter vkp(B, F) is fixed, the coefficients of the forward filter 
�+(F) depend on the ARIMA model for the observed series. Without loss of 
generality, we set Var(at} = 1 ,  so that the variance of the revision 

k 
Varht) = L(�;)2 (3.5 ) 

j=l 
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is then expressed as a fraction of the variance of the series innovation Va._ To 
give some examples of the magnitude of the revision error, for a random walk 
series cr{r'I') = .91cr., and for the IMA{2,2) model (2.5) with the parameters 
equal to (2.7) , the model for which the HP  filter is optimal, cr{r.I') = .34cr •. 

Defining convergence as having removed 95% of the revision variance, in both 
examples it takes 9 quarters for the estimator to converge. Of more empirical 
relevance is the case of the HP  filter applied to Xll-SA series (i .e. ,  the filter 
vXHP{B, F)). It is well known that Xll, another two-sided filter, also produces 
revisions. Therefore, the revisions associated with the filter VXHP will reflect 
the combined effect of the two filters. For illustration, we select the so-called 
"Airline model" , discussed in Box and Jenkins (1970), given by the expression 

VV4x, = {I + O,B)(1 + 04B4)a,. (3.6) 
The model fits well many series with trend and seasonality (see the results for 
14000 series from 17 countries in F ischer and Planas, 1998), and has became a 
standard example. For the most relevant range for the parameters 0, and 04, 
Table 3.1  presents the fraction cr{revision) /cr{a,) and the number of periods 
(r) needed for convergence. The standard deviation of the revision represents 
between .4 and 1 .5  of cr{a,) ,  and convergence takes, roughly, between 2 and 
5 years. Given that 0, close to -1 implies very stable trends, while 04 close 
to -1 implies very stable seasonals, what Table 3.2 shows is that series with 
highly moving trends and seasonals will be subject to bigger, longer lasting, 
revisions. It is worth pointing out that, for the range of values most often found 
in practice which is the botton right corner, the revision period lasts between 
9 and 15 quarters. The two examples clearly indicate two features. First, that 
the revision error is quantitatively important, of a magnitude often comparable 
to that of the I-period-ahead forecast; and, second, that the revision period 
lasts more than 2 years. 

84 - 0 84 - -.2 84 _ -.4 84 - -.6 84 - -.8 

(jr/Ua. T ar/ua. T ur/(ja. r ar/aa. r (jr/(ja. T 

8, - .4 1.53 19 1.44 18 1.36 17 1.28 9 1.21 9 

8, = .2 1.34 19 1.26 18 1.18 17 1.12 9 1.06 9 

8, = 0 1.15 19 1.08 18 1.02 16 0.96 9 0.90 9 

8, = -.2 0.97 19 0.91 18 0.85 15 0.80 9 0.76 9 

8, = -.4 0.79 18 0.74 17 0.70 14 0.65 9 0.61 9 

8, = -.6 0.64 15 0.60 14 0.55 9 0.51 9 0.47 9 

8, = -.8 0.52 9 0.48 9 0.44 9 0.40 9 0.36 9 

Table 3.1. Revisions implied by the HP-Xll filter. 
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3.2 An example 
An application, that will also be used in later sections, will complete the dis
cussion. We consider four quarterly Spanish economic indicators that could be 
related to the business cycle. The series are the industrial production index 
(IPI), cement consumption (CC), car registration (CR) and airline passengers 
(AP), for the 26-year period 1972/1 - 1997/4, and contain 104 observations. 
(For the IPI series, the first 12 observations were missing and the period was 
completed using backcasts). The series were log transformed (following proper 
comparison· of the BIC criteria) , and the application will be discussed for the 
additive decomposition of the logs. So as to facilitate comparisons, we stan
dardize the 4 logged series to have zero mean and unit variance. The 4 series 
are represented in Figure 3.1j their trend and seasonal features are clearly 
discernible. ARIMA modeling of the 4 series produced similar results: the 

Figure 3.1. Short-term economic indicators:original series 
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models were of the type (3.6) and a summary of results is given in Table 3.2; 
none of the series appeared to be in need of outlier adjustment. (Estimation 
was made with the program TRAMO run in an automatic mode, see Gomez 
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and Maravall, 1996). Using the ARIMA models to extend the series, the Xl! 
filter was applied to obtain the SA series. Then, the HP (oX = 1600) filter was 
applied. The 4 cycles obtained are displayed in F igure 3.2. For the series CC 
and CR the short-term contribution of the cyclical variation is relatively more 
important than for the series IPI and, in particular, AP. 

Parameter Estimates Residual BL test 
9, 9. Variance Va Q( < xl.) 

CC -.405 -.957 .175 18.4 
IPI -.299 -.721 .054 23.3 
CR -.387 -.760 .156 18.7 
AP -.392 -.762 .017 21.1 

Table 3.2. Summary of ARIMA estimation results. 

Figure 3.2. X11-HP cycles 
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The cycles of Figure 3.2 are a combination of concurrent, preliminary, and 
final estimators. Since, on occasion, the filter is treated as a one-sided filter 
(see Prescott, 1986), an interesting comparison is the following. Using the 
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first and last 22 periods for safe convergence of the Xll and the H P  filters, we 
obtained the sequence of concurrent and final estimators of the trend and cycle 
for the 60 central periods of the 4 series. Then, we evaluated the standard loss 
function of the H P  filter, given by (2.2), for the concurrent and final estimators 
of the trend and cycle; the results are given in Table 3.3. 

CC IPI CR AP 
Concurrent Final Concurrent Final Concurrent Final Concurrent Final 

624.7 13.3 172.8 2.9 513.4 11.9 43.2 1.0 

Table 3.3. HP loss-function for concurrent and final estimator 

The improvement achieved by using final estimators instead. of concurrent 
ones is indeed large. Figure 3.3 compares the series of concurrent and final 
estimators, for the cycle. A clear phase effect in the concurrent estimator can 
be observed for the 4 series, a well-known feature of one-sided filters. 

0.5 
0 

-0.5 
-1 

0 

o 

Figure 3.3. Concurrent versus final cycle estimator 
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A point of applied relevance is to asses the imprecision of the estimator of 
the cycle for recent periods, as measured by the standard error of the revision. 
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In so far as the revision represents a measurement error, its variance can be 
used to build confidence intervals around the cycle estimator. Figure 3.4 dis
plays the 95% confidence interval for the 4 series. Direct inspection shows that, 
although the estimators converges in 2 (at most 3) years, for recent periods it 
is unreliable. This large increase in the measurement error of the most recent 
signals implies that forecasts would be of little use. 

Figure 3.4. 95% confidence intervals for cycle (based on revisions) 

cc IPI 
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4 Spurious results 

While the problem of revisions has been often overlooked, the danger of obtain
ing spurious results induced by HP filtering has been frequently mentioned. 
The squared gain of v'j;px(B, F) is shown in Figure 4. 1 .  It displays zeros 
for the zero and seasonal frequencies. The application of this fixed structure 
brings the possibility of spurious results. On the one hand, it will affect the 
autocorrelation structure of the series and spurious correlations between series 
may be obtained (in the line of Granger and Newbold, 1974). On the other 
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hand, the first peak may induce a spurious periodic cycle. 

, . S 

, .. 

" 

' . 2 

, , 

Figure 4.1. Squared gain: Convolution of HP and X11 filters 

, .S 1 . 5 2 
lrequ.ncy 

2.' 

4.1 Spurious crosscorrelation 
We performed a simulation in MATLAB, whereby 10.000 independent ran
dom samples of 600 observations each were drawn from a N(O, 1) distribution. 
Each white-noise series was filtered through the Xll and HP filters and the last 
100 values were selected. Next, 10.000 lag-zero crosscorrelation between two 
series were sampled (in what follows, all crosscorrelations are lag-zero ones). 
The same exercise was performed to generate independent random walks se
ries. Table 4 .1  presents the first four moments of the distribution of Po, the 
crosscorrelation estimator between the original series and between the cycles. 

a. White Noise Mean Std.deviation Skewness Kurtosis 

Original -.001 .11 -.03 2.9 
Cycle -.001 .11 -.05 2.9 
b. Random Walk Mean Std. deviation Skewness Kurtosis 

Original -.000 .10 -.04 2.9 
Cycle .000 .19 -.01 2.8 

Table 4.1. Crosscorrelation between filtered series 

Clearly, for the white-noise case no spurious crosscorrelations has been induced. 
For the random walk model the zero-mean normality assumption can still be 
accepted but the spread of the distribution of Po for the cycle becomes wider. 
A spurious, though moderate, crosscorrelation effect can thus be detected. A 
similar simulation was performed for the more complex airline model (3.6) ,  
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with the parameter values set at 0, = -.4 and 0, = -.6. Figure 4.2 plots the 
densities of the crosscorrrelation estimator for the stationary transformation 
of the original and SA series and of the Xll-SA and HP detrended series. The 
filter Xll is seen to have virtually no effect while, as before, the HP filter 
induces a small increase in the spread of the distribution. Still, the HP-Xll . 
filter seems to induce a small amount of spurious crosscorrelations and hence 
the detection of relatively large crosscorrelation between cycles obtained with 
it is unlikely to be spurious. (Although the filter will have distorting effects 
when the series are correlated; see Cogley and Nason, 1995.) 

Figure 4.2. Density for correlation coefficient: Airline model 
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4.2 Spurious autocorrelation; calibration 

Assume that a theoretical economic model implies that an economic variable 
follows the 4-year cycle AR(2) process: 

(1 - 1 .293B + .490B')c, = ad, Var(a,,) = 1, (4.1) 
with act a white-noise innovation, and that simulations of the model yield in 
fact an ACF for the variable equal to the theoretical ACF of (4.1), shown in the 
second column of Table 4.2. The basic idea behind calibration is to validate 
the economic model by comparing the previous ACF with the one implied by 
the observed economic variable. To compute the latter, the non-stationary 
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trend and seasonal component need to be removed. (Besides, seasonality and 
often the trend are typically excluded from the theoretical economic model.) 

Lag-k ACF True X11-HP filtered MMSE 
component component estimator 

Vp .1, Vp .1, Vp I Vp _ .1, 
V, ==.1 V, = 1 V, = 1 V, = 1 

k_1 .S7 .71 .19 .37 .S3 
k=2 .63 .44 .22 .30 .43 
k=3 .39 .10 -.06 .00 -.02 
k=4 .20 -.05 .22 .IS -.35 
k=5 .06 -.25 -.23 -.15 -.45 
k=6 -.01 -.30 -.19 -.16 -.43 
k=7 -.05 -.34 -:27 -.26 -.31 
k=S -.06 -.27 -.01 -.07 -.20 
k=9 -.05 -.25 -.IS -.20 -.10 

k=IO -.04 -.19 -.12 -.16 -.04 
k=l1 -.02 -.16 -.17 -.20 -.00 
k=12 -.01 -.09 .06 -.03 -.02 
k=13 -.00 -.OS -.07 -.12 -.03 
k=14 -.00 -.05 -.03 -.OS -.03 
k=15 -.03 -.04 -.11 -.13 -.02 
k=16 -.00 -.01 -.13 .05 -.01 

Table 4.2 Theoretical ACF of the component model and of its estimators 

Let the observed series be generated by the cycle given by (4.1), contaminated 
by a random walk trend (p,) and a seasonal component (s.) as in the Basic 
Structural Model of Harvey and Todd (1983). Thus the observed series x, is 
given by c, + p, + s" where c, is generated by (4.1) ' and \lp, = ap" Ss, = a" , 
with act, apt and ad mutually orthogonal innovations, with variances Vc, Yp and 
v,. Seasonally adjusting with Xl l  and detrending with the HP filter the ob
served series, the estimator of the cycle is obtained. Its variance and ACF 
(the "observed moments" in the calibration comparison) are straightforward 
to derive analytically; they are given in the third, fourth and fifth column of 
Table 4.2, for the three cases v;, = v, = .1; v;, = .1, V, = 1; and v;, = v, = 1. 
Comparing these columns with the second, although the theoretical model is 
perfectly correct, the second moments obtained from the observed series would 
seem to indicate the contrary. The distortion that seasonal adjustment and 
detrending induce also occurs when the components are estimated as' MMSE 
estimators in a model based approach; the ACF of the cycle obtained in this 
case is given in the 6" row of Table 4.2. Still, the distortion induced by MMSE 
estimation is considerably smaller than that induced by HP-Xll filtering. Cal
ibration of models using filtered series seems, thus, an unreliable procedure. 
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If the theoretical economic model is correct, then calibration should not look 
for similarities between the ACF of the theoretical model and of the empirical 
series. It should compare instead the empirical moments with the theoretical 
ones that include the effect of filtering the data. Performing this comparison, 
however, requires incorporating into the model trend and seasonality. 

4.3 Spurious periodic cycle 

4.3.1 Random-walk input 

We consider the simplest case of a model with trend, namely the random-walk 
model, \lx, = a,; for which, the cycle is estimated through (2.12). Letting 
W denote the frequency in radians, if vHPX(w) is the Fourier transform of 
vHPx(B, F), the spectrum of the estimator of the cycle is given by, 

flHPX(w) = [VHPX(W)J29x(W)' (4.2) 
where 9x(W) is the pseudospectrum of x, (see Harvey, 1989); thereafter the 
term spectrum will also be used to refer to a pseudospectrum. (To simplify 
notation, all spectra will be implicitly expressed in units of 1/2".) Figure 4.3 
plots the spectra of the series (dotted line) and of the cycle (continuous line). 
The latter displays a peak for a frequency in the cyclical range associated 
with a period of 31-32 quarters, Of, approximately, 8 years. Yet, by its own 
definition, does it make sense to see a. random walk as generated by a trend 
and a 8-year cycle? Is it not rather a case of "overreading" the data? The 
answer to this question is not quite so obvious, as we proceed to discuss. 
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Figure 4.3. Spectrum of cycle component in a random walk 
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4.3.2 Spectral characteristics of the cycle 

The cycle obtained with Xl1-HP filtering displays a stochastic structure which 
depends on the ARIMA model followed by the observed series, and on the A
parameter of the HP filter. To look, first at the effect of the model, we set 
A = 1600. Figure 4.4 compares the cycles obtained when the series follows 
the IMA(I,I) model \7x, = (I + BBja" with Va = 1, for a range of values 
for B. In all cases, the period associated with the spectral peak of the cycle 
is approximately constant, and very close to 8 years. The amplitude of the 
cycle varies, adapting to the width of the spectral peak for w = 0 in the series 
model, which is determined by the parameter B. 

Figure 4.4. Spectrum of cycle in IMA(1, 1) as a func1ion of theta 
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The relative constancy of the period with respect to the model parameter 
is also shown in Table 4.3 for a MA(1) and an IMA(2,1) models. What the 
table seems to indicate is that, for a fixed value of A, the period of the cycle 
is determined fundamentally by the order of integration of the series, rather 
than by the model parameters. As the order of integration increases. so does 
the period of the cycle. 

Theta 0 -.3 -.6 
MA(I) 2 3 3.2 
IMA(l,l) 7.9 7.9 7.9 
IMA(2,1) 10.5 10.5 10.5 

Table 4.3. Period of cycle (in years). 

When the HP filter is applied to an Xl1 SA series, a similar effect is seen 
to occur. For the Airline model (3.6) we computed the period associated with 
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the spectral peak of the cycle for the range - .9 < 01 < .5 and -.9 < O. < O. 
and in all cases the period was approximately equal to 10 years. For fixed 
parameter A, three conclusions emerge: (1) Given the type of ARIMA model 
for the series, the associated cyclical period becomes roughly fixed. (2) The 
period seems to be mostly determined by the order of integration at the zero 
frequency; the stationary part of the model has little influence. (3) For most 
actual time series containing a trend (d=1 or 2), the standard value of A = 1600 
implies a period between 8 and 10 years. 

Fixing now the model to that of a random walk, the dependence of the 
cycle period on A is shown in Figure 4.5. The line represents the value of A 
associated with the period of the spectral peak of the cycle when only the HP 
filter is applied. It can be seen that the convolution of Xl! has little effect 
on the period of the cycle spectral maximum (in fact the two figures would 
be indistinguishable). The relationship between this period and A is highly 
nonlinear. When A is small (and the period of the cycle relatively short) small 
changes in ). have a very strong impact on the period; for long cycles, very 
large values of A need to be used. 

Fig. 4 . .5. Period of cycle as a function of lambda 
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The effect of A is illustrated in Figure 4.6, which compares the spectra 
of the cycles obtained with A = 1600 and A = 25000 for the same random 
walk series (the periods associated with the spectral peaks are about 8 and 
15 years, respectively). The figure shows that the longer period implies a 
stochastic cycle more concentrated around its peak (i.e., a more stable cycle). 
The estimators of the trend and cycle for the two A values are compared in 
Figures 4 .7 and 4.8, respectively. The difference between the two trends is seen. 
to consist of a cycle with a relatively long period. Comparison of the cycle 
shows that its short-term profile remains basically unchanged, the main effect 
being a "pulling away" from the zero line, which allows for longer cycles. 
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As a consequence, the use of the Xll-HP filter (or simply the H P  filter) 
to measure the cycle implies an a-priori choice: The analyst should first decide 
the length of the period around which he wishes to measure economic activity. 
Then, given d (the number of unit roots at the zero frequency in the series) , 
he can choose the appropiate value of A. For example, a business cycle analyst 
involved in policy making may be interested in using 8 or lO-years cycles; an 
economic historian looking at several centuries, may be interested in spreading 
activity over longer periods. Viewed in this way, the H P  cycle cannot be seen 
as spurious but as an arbitrary yet perhaps sensible way to look at the data. 
This statement will be made more precise at the end of Section 6. 
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Figure 4.6. Spectrum of a cyle in a random walk 
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Figure 4.7. Estimated trends 
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Figure 4.6. Estimated cycles 
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5 Improving the Hodrick-Prescott filter 

In Section 3 we saw that the filter implies large revisions for the last 2 years. 
The imprecision in the cycle estimator for the last ,quarters implies, in turn, a 
poor performance in the detection of turning points. Further, direct inspection 
of Figure 3.2 shows another limitation of the filter: the cyclical signal it pro
vides seems rather uninformative. Seasonal variation has been removed, but a 
large amount of noise remains in the signal. Averaging over the 4 series, the 
number of times the series crosses the zero line is 31 times, over a period of 26 
years! In the next two sections, we show how these two shortcomings can be 
reduced with relatively simple modifications. 

5.1 Reducing revisions 

Estimation of the cycle for the end periods of the series by the HP filter 
implies a truncation of the filter. In terms of the model based interpretation, 
this truncation is equivalent to the assumption that model (2.5) is always the 
model that generates forecasts to extend the series at both end points. The 
assumption will in general be false, and proper optimal forecasts (obtained 
with the appropriate ARIMA model for the series) can be used instead to 
improve the filter extension. This idea is the same as the one behind Xl! 
ARIMA (see Dagum, 1980) and the HP filter applied to the series extended 
with ARIMA forecasts will be referred as the Hodrick-Prescott ARIMA (HPA) 
filter. The poor performance of the HP filter at the end of the series has been 
often pointed out (see, for example, Apel et ai, 1996 and Baxter and King, 
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1995) and application of the filter to series extended with forecasts is often 
recommended in practice (see EU Commission, 1995). 

For any positive integer k, write the final estimator of the cycle as 
00 00 

c, = vHP(B, F)x, = L Vi+kX'+k-i + L Vi+kX'+k+i, (5.1) 
j=O j=1 

and assume a series long enough so as to ignore starting values. Because the 
preliminary estimator Ctlt+k is a projection onto a subset of the set onto which 
C. is projected, it follows that c'lt+k = E'+k(C.) = E'+k(C.), or 

00 00 

Ctlt+k = L: lIj+kXt+k_j + L Vj+kEt+k(XHk+i) , 
j=O j=1 

(5.2) 

which expresses the preliminary estimator as a function of the series extended 
with forecasts. Substracting (5.2) from (5.1) ,  the revision in C'It+k is equal to 

00 

r'lt+k = L Vj+ke'+k(j) , 
;=1 

where et+k(j) denotes the forecasts error associated with forecasting j periods 
ahead the variable at time t + k. It follows that, reducing these forecasts 
errors, revisions should decrease (and early detection of turning points should 
improve). 

We performed a simulation exercise. First, we consider the IMA(I,I)  
model for different values of the 8-parameter. Then, we consider the ARIMA 
(2,1,1) model, where the AR(2) polynomial is given by ( 1 - .16B+ .35B').  This 
polynomial is the one found in Jenkins(1975) for the mink-muskrat Canadian 
data, and contains a cycle of period 4.4. The AR(2) structure will therefore 
produce an increase in the number of turning points. (In order to avoid effects 
due to the SA filter, no seasonality was entered into the models. )  Again, 
different values of the 8-parameter were considered. A total of 14.000 series of 
length 100 each were simulated, and for each series the HP filter was compared 
to the HPA one extended with 16 ARIMA forecasts and backcasts. Table 5 .1  
compares the variances of the revision in the concurrent estimator and in the 
estimator revised after 1 ,  2, 3 and 4 more years of data are added. It is 
seen that, in all 70 cases, the HPA filter reduces considerably revisions. This 
is particularly noticeable for the ARIMA(2,1,1) model, where the use of the 
standard HP filter may more than triplicate the revision variance. 

As for the detection of turning points, we use the following simple criterion 
(along the lines of method B in Boldin, 1994): a turning point is the first of at 
least two successive periods of negative/positive growth. Table 5.2 compares 
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Concurrent L 1 year rev. 2 year rev. 1 3 year rev. I· " year rev. 

Model HPA HP I HPA HP I HPA HP I HPA HPJ HPA HP 
IMA( I , I )  
9 _ -.8 .31 .41 .08 .10 .02 .03 .01 .01 .00 .01 
9 = -.5 .94 1.34 .24 .33 .07 . 1 1  .03 .06 .02 . .04 
9 = -.3 1.58 2.54 .39 .63 . 1 1  . 1 9  .06 . 1 2  .04 .08 

9 = 0  2.86 4.84 .71 1 . 1 8  .21 .39 . 1 2  .24 .08 .15 
9 = .3 4.51 8.29 1 . 1 1  2.03 .32 .64 .19 .38 .13 .24 
8 = .5 5.14 .11.02 lAO 2,62 .44 .86 .26 .50 . 1 7  .32 
8 = .8 7.33 14.89 1.87 3.70 .60 1 . 17 .34 .70 .22 .46 

ARIMA(2,1,1) 
8 _  .8 .12 .55 .05 .14 .01 .03 .00 .01 .00 .01 
8 = -.5 Al 1.27 .15 .33 .04 .09 .01 .04 .00 .03 
8 = -.3 .74 2.23 .25 .56 .06 .15 .02 .08 .01 .05 

8 = 0 1.35 4.26 .14 1.09 .12 .29 .03 . 1 5  .02 .10 
8 = .3 2.06 7.00 .71 1.77 .18 .46 .05 .25 .03 . 1 8  
9 = .5 2.75 9.68 .95 2.14 .23 .64 .06 .33 .03 . .22 
8 = .8 3.70 12.95 1.20 3.25 .31 .88 .09 .17 .05 .33 

Table 5.1. Variance of the revision in estimator. Values are multiplied by 100. 

the performance of the HP and HPA filters in the first and last 8 observations 
of the simulated series, both in terms of the mean number of turning points 
that are dated on the original series and missed by the filtered one, and in 
terms of the mean number of turning points detected on the filtered series 
but not present in the original one ("peaks" and "throughsl! are considered 
separately) . Of the 56 comparisons ,  in 53 cases the gain from using the HPA 
filter is substantiaL Table 5.3 compares the performance of the two filters when 
all observations in each series are considered, in terms of correctly detected 
turning points and spurious turning points (indicated by the filtered series 
and not present in the original one). Fo is the relative frequency of cases 
in which the two filters coincide, Fl denotes the relative frequency of cases 
in which HPA performs better, while F_l denotes the relative frequency of 
cases in which HP performs better. The HPA filter performs (in all 56 cases) 
consistently better. 

Original Missed False Alarms 
Peaks 1 Throughs Peaks Throughs Peaks Throughs 

IMA(I , l) HPA HP HPA HP HPA HP HPA HP 
8 _  .8 1.49 1.50 .10 .16 .10 .15 .18 .19 .19 .20 
8 = -.5 1.51 1.52 . 1 8  .22 . 1 9  .23 .29 .31 .26 .28 
9 =  -.3 1.52 1.52 .22 .28 .24 .30 .36 .37 .38 .39 

8 = 0  1.62 1.59 .23 .32 .25 .37 .19 .51 .17 .19 
8 = . 3 1.69 1.72 .29 .10 .29 Al .19 .59 .55 .63 
8 = .5 1 .77 1.79 .32 .16 .29 A l  .54 .68 . 5 1  .63 
8 = .8 1 .83 1.86 .30 .43 .34 .18 .52 .65 .54 .69 

Table 5.2. Mean number of turning points (First and last 8 observations). 
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ARIMA(2,l,I) Table 5.2 cont. 
8 .8 1.78 1.79 .05 .13 .05 .13 .21 .18 .19 .18 
8 = -.5 1.78 1.77 .09 .19 .11 .19 .25 .24 .26 .26 
8 = -.3 1.84 1.77 .12 .23 .10 .20 .25 .31 .25 .30 

8 = 0  1.87 1.84 .13 .25 .16 .27 .27 .38 .26 .36 
8 = .3 1.93 1.89 . 1 7  .27 .20 .31 .25 .40 .25 .41 
8 = .5 1.94 1.96 .18 .31 .17 .32 .24 .40 .25 .42 
8 = .8 2.02 1.95 .18 .32 .16 .31 .22 38 .24 .41 

Table 5.2. Mean number of turning points (First and last 8 observations). 

Capt. peaks I (.;apt. Through. I False peaks I False Throughs 
Model Fl Fo F_l I Fl Fo L l  I Fl Fo F_l I Fl Fo F_l 

IMA(I,I)  
8 _  .8 .07 .92 .01 .07 .93 .00 .06 .91 .03 .05 .91 .04 
8 = -.5 .07 .91 .02 .07 .89 .04 .09 .85 .06 . 1 0  .84 .06 
8 = -.3 .11 .84 .05 . 1 0  .86 .04 . 1 2  .81 .07 .13 .78 .09 

8 = 0  .14 .80 .06 .16 .80 .04 .15 .74 . 1 1  .15 .74 . 1 1  
8 = .3 .17 .78 .05 .17 .78 .05 .22 .68 .09 .20 .70 .10 
8 = .5 .18 .76 .06 .19 .74 .07 .23 .68 .09 .20 .70 · .10 
8 = .8 . 1 8  .76 .06 .20 .75 .05 .25 .64 .11 .24 .65 .11 

ARIMA(2,1,1) 
8 _ .8 . 1 1  .88 .01 . 1 1  .88 .01 .07 .86 .07 .06 .84 .10 
8 = -.5 .14 .84 .02 .13 .84 .03 .10 .80 .10 .10 .81 .09 
8 = -.3 .17 .79 .04 .16 .80 .04 .15 .77 .08 .14 .78 .08 

8 = 0  .18 .77 .04 . 1 8  .77 .05 .19 .74 .07 .19 .75 .06 
8 = .3 .18 .77 .05 .20 .73 .07 .28 66 .06 .25 .67 .08 
8 = .5 .21 .73 .06 .23 .71 .06 .23 .70 .07 .23 .70 .07 
8 = .8 .21 .74 .05 .22 .73 .05 .28 .66 .06 .25 .69 .06 

Table 5.3. Relative performance of HP vs HPA: captured and spurious turning points. 

In summary, the results of the simulation exercise show that applying 
the HP filter to the series extended at both ends with appropriate ARIMA 
forecasts and backcasts is likely to provide a cycle estimator for recent periods 
that requires smaller revisions and improves detection of turning points. 

5.2 Improving the cyclical signal 

Concerning erraticity of the cycle estimator, illustrated in Figure 3.2, one 
possible improvement could come from using a more appropiate SA procedure. 
Since the width of the spectral peaks associated with seasonal frequencies vary 
across series, fixed filters such as Xli may over or underestimate seasonality. 
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Having obtained an ARIMA model for the series, one could use, instead of Xll ,  
an ARIMA-model-based (AMB) type of adjustment, following the approach 
of Burman (1980) and Hillmer and Tiao (1982). We use the program SEATS 
(Gomez and Maravall, 1996) to seasonally adjust the 4 series of the example in 
Section 3. Figure 5.1 compares the cycles obtained by applying the HP filter 
to the AMB and Xll  SA series, and Figure 5.2 exhibits the spectra of the two 
cycles for the 4 series. It is seen that the estimates of the cycle obtained with 
the two SA series are close: Turning points are basically unchanged and the 
cyclical signal remains very noisy. (Figure 5.2 illustrates the overestimation 
of seasonality implied by the Xll  filter for the case of the CC series: The 
"holes" that XII induces for the seasonal frequencies are obviously too wide. 
The AMB method, instead, adjusts the width of the hole to the width of the 
peak.) 

Figure 5.1  . HP cycle based on X11 and SEATS SA series 

CC 

0.5 
o�����-b���� 

-0,5 
-1 

-1 .5'-----,.,,------..J o 50 1 00 
periods 

CR 

_1 '-----------------J o 50 1 00 
periods 

IPI 
0.6 ,-------------------, 
0.4 
0.2 

o����MP���+-�� 
-0.2 
-0.4 

o 50 
periods 

AP 

100 

0.4 ,-----------., 

_0.4 '----------..J 
o 50 100 

periods 

Given that the SA series produces a cyclical signal with too much noise 
it would seem that this signal could be improved by removing the noise from 
the SA series, nt. Thus we decompose nt as in 

. 
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Figure 5.2. Spectrum of cycle based on X1 1 and SEATS SA series 
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where for the case of the Airline model, the trend-cycle Pt follows an IMA (2,2) 
model, say, 

(5.4) 
where apt is white-noise and the polynomial 8p(B) can be factorized as (I -

",B) ( I  + B), with the second root reflecting a spectral zero for the frequency 
7r, and Q not far from l .  The irregular Ut, and the component innovations a.d} 
and apt are mutually orthogonal white noises. If 8(B) = (I + 8tB)(1 + 8,B'), 
the MMSE estimator of Pt is given by, 

" [k 8p( B)S 8p( F)S] (5.5) Pt = 
p 8(8) IJ(F) x" 

whith kp = v,,/V •. From (5.3), the trend-cycle component p, is seen to be the 
noise-free SA series. Using the HP filter on the trend-cycle estimator p" the 
estimated cycles are displayed in Figure 5.3 (continuous line). The use of the 
trend-cycle instead of the SA series drastically improves the cyclical signal, 
which becomes much cleaner. F igure 5.4 compares the spectra of the cycles 
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obtained with the two series (Pt and n,l. The difference is due to the fact that 
the cycle based on p, has removed variance associated with frequencies of no 
cyclical interest and, as shown in Figure 5.5, the spectrum of the difference 
is close to that of white noise. So to speak, the band-pass features of the 
cycle are much better defined. This improvement of the cyclical signal allows 
for a clearer comparison of cycles among series, as is evidenced by comparing 
Figures 5.6 and 5.7. (Figure 5.3 showed that for the series AP the cyclical 
component has become very small and hence it is not included. l Figure 5.7 
shows that the series CC, IPI, and CR have fairly similar cyclical patterns, 
moving roughly in phase. 

Figure 5.3. HPcycie based on SEATS trend an on X1 1 SA series 
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Figure 5.4. Spectrum of cycle ( SEATS trend and X l l SA series) 
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Figure 5.5. Difference between cycles ( S EATS trend and X1 1 SA series) 
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Figure 5.S. HP cycles based on X1 1 SA series 
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Figure 5.7. HP cycles based on SEATS trend 
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One further advantage of using the more stable signal p, is that it produces 
a decrease in the size of the revisions in the cyclical estimate for the last periods, 
as shown in Figure 5.S. Although the full revision process takes close to 10 
years, in practice after two years most of the revision has been completed. 
F inally, F igure 5.9 displays the 95% confidence interval for the cycle estimator 
for the full period, based on the associated revisions when the trend-cycle 
component is used as input. In our view ; if cyclical analysis of the 4 series had 
to be summarized in one figure, Figure 5.9 would be the appropiate choice. 
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Figure 5.8. Standard deviation of revision from concurrent to final estimation 
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Fig 5.9. 95% CI for HP cycle (based on HP revisions) 
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6 Final Remarks 

We have seen how two serious drawbacks of the standard application of HP
Xll  filtering to estimate cycles, namely the poor behavior of the estimator 
at the end of the series and the excessive noise in the cyclical signal, can 
be significantly reduced with two modifications that are straightforward to 
incorporate. The "modified HP filter" consists of appliying the HPA filter to 
the trend-cycle component of the series, which requires extending the trend
cycle with optimal backcasts and forecasts. One simple way to implement the 
procedure is to run first TRAMO-SEATS in an automatic manner (this also 
yields forecasts of the trend-cycle) ;  then, to apply the HP filter to the extended 
trend-cycle series. The two steps can be done as a single one in the following 
manner. Let the model identified for the series be 

(6. 1 )  
where 8(B) i s  invertible. Convoluting the HP filter (2.10) with the filter (5.5) 
for the trend-cycle component yields the estimator of the cycle as a linear filter 
of the observations, 

(6.2) 

where k = v"k,(HP). (In the discussion, we use the expresion for the final 
estimator. For preliminary estimators it is assumed that the series has been 
extended with the appropriate ARIMA forecasts.) Direct inspection shows 
that the filter in (6.2) is the autocovariance function (ACYF) of the stationary 
model 

(6.3) 
with Var(b,) = k. It is well-known (see, for example, Maravall, 1987) that if 
an ARIMA model is decomposed into signal plus white noise, the filter that 
yields the MMSE estimator of the noise is given by the ACYF of the inverse 
model (multiplied by the variance of the noise). The inverse model is the one 
that results from interchanging the AR and MA parts, that is, the expression 
in brackets in (6.2) is the ACYF of the inverse model of 

(6.4 ) 
It follows that Ct, given by (6.2), is the estimator of the noise in the decom
position of (6.4) into signal plus white-noise when the variance of the latter 
is k. This model-based interpretation of the modified HP filter provides a 
convenient algorithm (ACYF of ARIMA models are easy to compute; see the 
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appendix in BOi<, Hillmer and Tiao, 1978), but does not provide a sensible 
interpretation since, to start with, the cycle is not white noise. A full model
based interpretation of the complete decomposition into trend, cycle, seasonal, 
and irregular components, where the last two are the same as in the standard 
AMB decomposition, the trend and the cycle aggregate into the trend-cycle 
component of the AMB decomposition, the cycle is the modified HP filter ad
vocated in this paper, and the components aggregate into the model specified 
for the series, is presented in Kaiser and Maravall (1999). Basically, mean
ingful model-based interpretations of the filter can be found by noticing that 
(6.2) is also the MMSE estimator of a cycle that. follows the model 

(6.5) 
when the ARIMA model for the series is (6.1) and Var(a,,)/Var(a,) = k .  
Figure 6 .1  displays the spectrum of the series X, and of the cycle C,. Figure 
6.2 shows what is left of the series once the cycle is removed. In all 4 cases it 
consists of a stable trend, seasonal effects, and noise. This brings us back to 
the spuriousness issue. Assuming the ARIMA model identified for the series is 
acceptable, so will be the decomposition of Figures 6 .1  and 6.2, which aggregate 
into the series spectrum. One may prefer other components, but there would 
be nothing spurious about the results. 

Figure 6.1. Spectra of the series and of the cycle 
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Figure 6.2. Spectra of the difference (original series minus cycle) 
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Appendix 

Wiener-Kolmogorov version of the Hodrick-Prescott 

filter 

We present an algorithm to compute the HP trend with the Wiener Kol
mogorov filter applied to the finite series [x!, . . .  , XT] using an approach sim-
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ilar to the one in Burman (1980). The algorithm is explained in Kaiser and 
Maravall (1999). 

I.  Prior computations 

a)Given >. (the HP-filter parameter), from (2.6) the system of equations 
(I + 91 + 9nv" = I + 6>' 
0, ( 1  + O,)v" = -4>. 
0, v" = >. 

yields the parameters 0,, 0, and v". [They can also be easily obtained from the 
spectral factorization of (2.6).1 For >. = 1600, the solution is given by (2.7) .  
Removing the subscript " HP" , the WK filter to estimate m" given by (2.8), 
can be expressed as 

km [G(E) G(F) ] v(E, F) 
= O(E)O(F) = 

km OlE) + O(F) , (A.I) 

where G(E) = 90 + 9, E + 9,E'. Removing denominators in the above identity 
and equating the coefficients of the terms in EO, E' and E', yields a system 
of equations that can be solved for 90 , 9, and 9,. If 

the solution is given by 

o 0 ] [ 0  
I 0 + 0 
0,  I 0, 

o 0, ] 
0, 0, , 
0, I 

[9' 9, 9o]' = A-' [O 0 I]'. (A.2) 
(For >. = 1600 , one obtains 90 = -44.954,9, 

= 
1 1 . l41 ,  and 9, = 56.235.) 

Compute the matrix 

H _ [ �  �2 
�2 � ] -' 

- I 0, 0, 0 
o I 0, 0,  

Thus the expressions O( E) , km, G( E) and H are obtained simply from the value 
of >.. They can be stored for further use, since they will be the same for all 
senes. 

b) Using an ARIMA model for the series x" extend the series with 4 
backcasts and 4 forecasts. The extended series is given by 

[X_3, . . .  , Xo, Xl, ' . . J XT, XT+l , " "  XT+4] ' 
When the ARIMA model is correctly specified, the HPA filter is obtained; 

-40 -



when model (2.5) and (2.7) are used, the filter becomes the standard HP filter. 

II. The Algorithm 

Step I. For t = 1, . . .  , T  + 2, compute 

Yt = 90Ie + gtxt+l + g2It+2 ,  

[xf+" , . . , xfHI' = H[O, 0, YT+h YT+21', 

a.nd, for t = T, . . .  , I, obtain recursively 

xf = -8Ix[+1 - 82Xi+2 + Ye· 

Step II. For t = - 1 , 0, 1 , . . .  , T + 4 compute 

and, for t = 1, . . .  , T + 4, obtain recursively 

xf = -BIXf_1 - (hX�_2 + Zt -
Step III. For t = 1, . . .  , T  + 4, obtain 

m'lT = km[x; + xf] · 
This yields the MMSE estimator of the trend for the sample period t = 

1, . . . , T, and the forecasting period t = T + 1 ,  . . .  , T + 4, equal to E(m, I 
XI ,  . . . , XT) .  The algorithm is fast and reliable, even for a series with (say) 
a million observations. It is remarkable that 4 forecasts and backcasts are 
enough to reproduce the full effect of the infinite filter. 
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