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Abstract

This paper investigates the market for lending to technology startups (i.e. venture lending) and 

examines two mechanisms that facilitate trade within it: the ’saleability’ of patent collateral 

and fi nancial intermediaries. We fi nd that intensifi ed trading in the secondary market for 

patent assets increases the annual rate of startup lending, particularly for startups with more 

re-deployable patent assets. Moreover, we show that the credibility of venture capitalist 

commitments to refi nance and grow fl edgling companies is vital for startup debt provision. 

Following a severe and unexpected capital supply shock for VCs, we fi nd a striking fl ight 

to safety among lenders, who continue to fi nance startups whose investors are better able 

to credibly commit to refi nancing their portfolio companies, but withdraw from otherwise 

promising projects that may have most needed their funds. The fi ndings are consistent with 

predictions of incomplete contracting and fi nancial intermediation theory. 

Keywords: fi nancing innovation, patent collateral, venture capital, market for patents.

JEL classifi cation: L14, L26, G24, O16, O3.



Resumen

Este artículo investiga el mercado para préstamos a nuevas empresas de tecnología 

(startups), y analiza dos mecanismos que facilitan acceso al crédito en este mercado: 

la posibilidad de la venta de las patentes comprometidas como activos de garantía en 

préstamos y la intermediación de empresas de capital-riesgo (venture capital) entre las 

startups y los acreedores. Encontramos que una mayor liquidez en el mercado secundario 

de patentes aumenta la tasa anual de préstamos de las startups, sobre todo para las 

startups con patentes de menor especifi cidad (más fácilmente asignables a usos o usuarios 

alternativos). Además, mostramos que la credibilidad de los compromisos de las empresas 

de venture capital para refi nanciar y hacer crecer startups es vital para que estas obtengan 

préstamos. Después de un shock en la oferta de capital del que las empresas de venture 

capital se nutren, mostramos que los acreedores continúan fi nanciando startups cuyos 

inversores pueden comprometerse con una mayor credibilidad para refi nanciar su cartera 

de startups, mientras que dejan de ofrecer préstamos al resto de proyectos, aunque estos 

sean igualmente prometedores. Los resultados son coherentes con las predicciones de la 

teoría de la contratación incompleta y la intermediación fi nanciera.

Palabras clave: fi nanciación de la innovación, patentes, capital-riesgo, mercado de patentes.

Códigos JEL: L14, L26, G24, O16, O3.
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1. Introduction 

Entrepreneurial activity is vital for technological progress and long-term productivity growth 

(Acs and Audretsch, 1990; Aghion and Howitt, 1992; Davis, Haltiwanger, and Schuh, 1998; 

Haltiwanger, Jarmin and Miranda, 2013). Yet entrepreneurs seeking to commercialize unproven 

technologies can find it difficult to attract external capital, particularly through debt channels 

(Leland and Pyle, 1977; De Meza and Webb, 1987). The market value of startup companies often 

rests on intangible assets that are hard to value ex ante and sell ex post. Equally challenging, the 

path to commercialization is risky and fraught with hazards. Even though loans would allow 

entrepreneurs to avoid additional dilution of their ownership stakes, external debt is widely cast as 

an unlikely way to fund risky projects absent tangible assets or stable cash flows to secure a loan 

(Hall and Lerner, 2010).  

Although technology startups and outside debt may seem poorly suited for one another in 

theory, a large and growing industry is supplying loans to early-stage companies. Ibrahim (2010) 

estimates that “venture lenders,” including leader Silicon Valley Bank and specialized non-bank 

lenders, supply roughly $5 billion to startups annually.1 In a recent survey, Robb and Robinson 

(2014) similarly report a “surprisingly high” debt reliance by startups with external equity owners, 

with loans representing 25 percent of the startup capital for 200 growth-oriented companies.  

This paper investigates the market for venture lending and factors that facilitate trade within it. 

Drawing on incomplete contracting and financial intermediation theory, we explore two 

mechanisms that could reduce informational and contracting frictions in venture lending: (1) 

increased liquidity in the secondary market for patent assets, which could alter lender expectations 

                                                        
1 Venture loans are typically arm’s length (formal) loans supplied by banks and other for-profit financial 

institutions to science and technology startups. Ibrahim’s market size estimates therefore do not include loans from 
government agencies or “insiders” (e.g., bridge loans from investors or alliance partners). 
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of salvage value, and (2) the ability of an intermediary (i.e., a venture capitalist) to credibly convey 

to a lender that he/she will refinance and grow the fledgling company.  

The effects of patent-market trading on innovative activity is a topic of heated academic and 

policy debate, as illustrated by recent reports from the U.S. Federal Trade Commission (2011, 

2012).2 If thicker trading in the secondary patent market expands entrepreneurial financing 

opportunities, it is of paramount importance to this debate. We take a first step toward investigating 

this relationship and quantifying its effect. Governments worldwide also are experimenting with 

ways to stimulate lending to technology startups (Harhoff, 2009). Understanding the micro-

underpinnings of the venture debt market could inform the design of such initiatives. 

Prior empirical research on venture lending has been impaired by a lack of reliable data: 

information about the loans and the parties involved is very sparsely reported.3 We use an indirect 

route, and identify startup-level lending through patents, a common form of collateral used to 

secure the loans. Venture lenders typically require a blanket lien on assets, including but not limited 

to patents (Gordon, 2013). When the collateral includes patents, lenders have strong incentives to 

record the security interest with the U.S. Patent and Trademark Office (USPTO). Doing so 

establishes secured-lender status, thus ensuring that the lender is first in line to be paid if assets are 

liquidated, and reveals that status to other potential lenders (Haemmeli, 1996; Mann, 1997). We use 

this paper trail of recordation to map startups to loans, thus revealing lending activity at the startup 

level that is difficult to glean from other sources.4  

                                                        
2 The main concern is that patent sales could stifle innovation incentives if rights are re-allocated to entities that 

extract “excessive” rents from technology users through litigation and hold-up. The FTC’s 2011 report, titled “The 
Evolving IP Marketplace:  Aligning Patent Notice and Remedies with Competition,” is available at: 
https://www.ftc.gov/reports/evolving-ip-marketplace-aligning-patent-notice-remedies-competition. The FTC’s 2012 
report, “Patent Assertion Entity Activities Workshop,” is available at:  https://www.ftc.gov/news-events/events-
calendar/2012/12/patent-assertion-entity-activities-workshop 

3 As Ibrahim (2010) notes, venture lenders are not required by regulators to disclose such information. Since the 
borrowing companies are small and private, the deals are underreported in lending databases such as DealScan. Our 
conversations with lenders further suggest that these transactions are insufficiently captured in standard VC databases. 

4 An obvious caveat, the approach requires a sample of companies with patents at risk for use in lending. 



BANCO DE ESPAÑA 9 DOCUMENTO DE TRABAJO N.º 1519

Our descriptive evidence reveals a widespread use of loans to finance technology startups, even 

in early stages of their development. The sample is drawn from the population of venture capital 

(VC)-backed companies founded from 1987 through 1999 in three innovation-intensive sectors: 

computer software, semiconductors, and medical devices.5 Among the 1,519 startups with patents, 

36 percent received venture debt by 2008 or prior to exit as evidenced by the USPTO security 

interest records. The annual likelihood of receiving venture debt climbs steadily over time, is lower 

prior to first receipt of a VC equity infusion (independent of startup age), and is higher if top-tier 

investors are involved as would be expected.  

Turning to friction-reducing mechanisms in the market, we find that venture lending is 

stimulated both by thicker trading in the secondary patent market and by VC-level factors. First, in 

estimates of the annual likelihood that a startup will receive a loan (i.e., the annual debt rate), we 

show that an increase in patent-market liquidity significantly boosts the annual debt rate, even 

controlling for numerous time-varying startup characteristics and differencing out permanent 

startup characteristics (e.g., wealthy founders) that could affect the likelihood of lending. 

Importantly, the effect is amplified when startups have patents that are more redeployable to 

alternative uses or users—a distinctive pattern predicted in incomplete contracting theory 

(Williamson 1988; Shleifer and Vishny, 1992; Benmelech and Bergman 2008, 2009; Gavazza, 

2011). At the mean “redeployability” value, a one-percent increase in patent trading boosts the 

predicted debt rate by 1.14 percentage points, or 15 percent the average annual debt rate in our 

sample. The magnitude of the effect dissipates when startups own patents that are highly firm-

specific and is amplified at the upper-distribution of redeployment value. Also consistent with a 

salvage-value interpretation, we find that observable characteristics of a startup’s patents (re-

                                                        
5 Our research design requires the inclusion of startups in information technology (IT)-related sectors (represented 

by semiconductors and software) as well as the life sciences (represented by medical devices). Including all IT and life 
science startups was infeasible due to manual cleaning of the patent assignment records.  
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deployable or firm-specific) have an economically meaningful impact on the debt rate only when 

the collateral asset market is liquid. 

Finally, we find that the credibility of a VC’s commitment to support a startup is vital for debt 

provision. To test this intermediary role (formalized in Holmstrom and Tirole 1997), we exploit 

differences in VC fundraising cycles when the U.S. “technology bubble” collapsed in early 2000, 

which led to an unexpectedly severe and prolonged decline in the supply of institutional capital to 

the VC asset class (Townsend, 2012). Given lumpiness in the VC fundraising cycle, this shock 

should impose more binding near-term constraints for VCs that had not recently closed a new fund 

at the time of the collapse. We therefore use the age of the most-recently raised funds managed by a 

startup’s investors in early 2000 as a source of variation in capital constraints that affects the 

credibility of VC commitment and implicit promise to repay lenders for reasons plausibly 

exogenous to the quality of a startup previously selected for VC funding. 

The results are striking. Following the technology bubble’s collapse, lending to startups with 

less capital-constrained investors (i.e., those that had recently closed funds as of early 2000) 

continued apace, increasing slightly to a per annum rate of 13 percent by 2002. In sharp contrast, 

lending to startups with more constrained investors (i.e., those that had not recently fundraised at 

the time of the collapse) plummeted, from an average rate of 17 percent in the three-year run-up 

period to a mere 1.5 percent three years following the crash. The estimates are based on IT startups 

active and independent in the six-year window surrounding the shock, and therefore are not 

explained by differences in time to exit. In more formal difference-in-difference (DD) tests, we 

show that the before-and-after shift in lending is large in magnitude and statistically significant. 

The annual debt rate of IT startups backed by VCs with relatively old funds at the time of the crash 

declined by 18 percentage points post-shock relative to startups backed by VCs with more recent 

funds, even allowing for permanent and time-varying startup characteristics to affect the likelihood 
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of lending.6 In a “flight-to-safety,” lenders continued to finance startups backed by less capital-

constrained investors in the post-crash period, but withdrew from otherwise-promising projects that 

may have needed their funds the most.  

This paper provides the first systematic evidence of startup-level activity in the market for 

venture lending. In contemporaneous work, Mann (2014) reports that debt secured by patents is an 

important source of financing for R&D performed by established firms. We document similar 

lending in a context where its use is particularly surprising—young innovation-oriented companies. 

In doing so, we contribute to a small but emerging literature on venture debt, much of which is 

conducted by legal scholars (Mann, 1997; Ibrahim, 2011). We trace startup-level lending over a 

three-decade period, and provide novel evidence on the micro-underpinnings of the market. 

The study contributes to a related literature on the role of VCs as intermediaries in the 

development of startups with risky projects. Considerable evidence shows that venture capitalists 

help guide and professionalize young firms (e.g., Lerner, 1995; Hellmann and Puri, 2002) and 

provide access to superior resource networks (e.g. Hsu, 2004; Hochberg et al., 2007). 

Complementing this work, we highlight an intermediary role of VCs that has received limited 

empirical attention—opening access to debt channels of financing—and devise a lever for 

identifying its effects.  

Finally, we contribute to a broader literature on trading frictions and the mechanisms used to 

reduce them. The most compelling evidence that lender decisions are affected by conditions in the 

collateral resale market is based on physical assets in mature industries such as railroads 

(Benmelech, 2009) and commercial aircraft (Benmelech and Bergman, 2008, 2009; Gavazza 2011). 

Whether a similar effect arises in friction-filled markets for patents is unexamined in prior work, 

                                                        
6 The two groups of startups exhibit comparable trend-lines in the annual rate of lending in the pre-shock period. 

Also reassuring for our empirical strategy, placebo tests reveal differential sorting only when differences in VC 
fundraising cycles are likely to bind near-term capital sourcing.  
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largely due to data limitations and the difficulty of quantifying secondary-market activity for 

intangible assets. We introduce new measures and data sources that allow a first look into this 

issue. Separately, Lamoreaux and Sokoloff (1999) report that historic markets for buying and 

selling patents allowed inventors to specialize in the generation of new ideas sold to others for 

commercialization, potentially leading to efficiency gains in technology production (see e.g. Arora, 

Fosfuri and Gambardella, 2001; Serrano, 2011; Akcigit, Celik and Greenwood, 2014). Serrano 

(2010) and Galasso et al. (2013) document active trading in the modern market for patents, 

particularly for inventions originating from individuals and small firms. The implications of patent 

trading for innovation financing is unexplored in prior research, a gap that this study helps fill.  

The remainder of this paper is organized as follows. We first discuss relevant insights from the 

incomplete contracting literature and their relevance for venture lending. We then describe the 

sample and data sources. Finally, we present and discuss our empirical analysis and findings.   

2. Theoretical Framework and Background 

An extensive theoretical literature suggests that financing the innovation activities of new firms 

through formal debt is problematic. A common reason is financial frictions between lenders and 

debtors due to information asymmetries, which can reduce access to debt (Leland and Pyle, 1977; 

Stiglitz and Weiss, 1981). Among the mechanisms for reducing such frictions, collateral posting 

and financial intermediation have received prominent theoretical attention.  

Turning first to collateral posting, lenders typically demand collateral because the threat of 

asset liquidation can increase the debtor’s motives to avoid default, reducing the risk of the loans 

(Johnson and Stulz, 1985). If the debtor fails to repay the loan, lenders also have the legal right to 

seize and sell the collateral assets to offset losses. The amount that creditors expect to recover upon 

seizure of the collateral (i.e., the expected “liquidation” or “salvage” value of the assets) should 

thereby affect their incentives to lend (Williamson, 1988; Shleifer and Vishny, 1992).  
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The incomplete contracting literature typically assumes that lender expectations of salvage 

value are shaped by two inter-related factors:  (1) trading conditions in the secondary market for 

collateral assets such as the number of potential buyers and the costs associated with finding them; 

and (2) whether the assets pledged are firm-specific (e.g., tied to the human capital or commercial 

pursuits of the debtor) or likely to retain value if redeployed to alternative uses or users 

(Williamson, 1988). To elaborate, Benmelech and Bergman (2008, 2009) and Gavazza (2011) 

show that thicker trading (increased “liquidity”) in the collateral resale market increases liquidation 

values and, in turn, stimulates lending. When buyers are few and/or costly to locate, trading 

frictions reduce the gains anticipated from exchange and lower asset prices. In thicker markets, 

matching between sellers and buyers is more efficient; in turn, lenders expect more value to be 

retained in the event of exchange (Gavazza, 2011). If assets are highly firm-specific, however, their 

redeployment value is more limited by definition (Williamson, 1988). In this event, the effects of 

trading activity in the broader resale market should diminish. Consistent with this view, Benmelech 

(2008) finds that railroad companies with standard-width rather than site-specific track gauges (i.e., 

with more redeployable assets for use as collateral) were better able to obtain debt financing during 

the mid-1870s economic depression. Similarly, Benmelech and Bergman (2009) report a higher 

debt capacity for U.S. airlines that operate less specialized (more redeployable) fleets. 

A second mechanism—an intermediary’s credible commitment to support a risky venture, 

including financially—can also alleviate informational frictions with lenders. Holmstrom and 

Tirole (1997) model lending transactions that involve firms (entrepreneurs), informed 

intermediaries (venture capitalists), and uninformed outsiders (lenders). The entrepreneur’s 

borrowing capacity is limited as is the intermediary’s capital. The entrepreneur may lack the skills 

or incentives to manage projects diligently. Although the intermediary (VC) can monitor and guide 

the entrepreneur, his/her efforts are unobservable to the lender, thus creating a moral hazard 
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problem. As Holmstrom and Tirole (1997) show, an injection of capital by the intermediary is 

required to credibly convey to the lender that he/she will exert the effort to monitor the company: 

the intermediary, in seeking a return on its investment, has an incentive to engage in the 

unobservable effort to build and oversee the project. In Williamson (1983, 1988), equity infusions 

serve a similar incentive-alignment function, by “credibly committing” contracting parties to an 

endeavor. In turn, financial frictions arising from information asymmetries between the 

entrepreneur and uninformed outsider (lender) are reduced.7  

Of particular importance for our analysis, Holmstrom and Tirole (1997) further show that a 

negative shock to the capital supply, in which the availability of capital to financial intermediaries 

is reduced for reasons largely beyond their control, will limit debt access for entrepreneurial firms 

backed by those intermediaries. The intuition is simple. Less capital can be injected into the 

companies because the supply of capital to intermediaries is limited. As a result, financial 

intermediaries will find it more difficult to credibly convey to the lenders that they will continue to 

support the portfolio company, thus making it more difficult for the company to secure a loan. 

Implications for Venture Lending 

The use of formal debt to finance startups with risky projects is a situation rife with 

informational and contracting frictions. Success rests on entrepreneurial and managerial effort that 

is difficult for lenders to specify ex ante and monitor ex post, and commercialization requires 

upfront investments in projects likely to fail. As Ljungqvist and Richardson (2003) report, the 

average VC fund raised between 1981 and 1993 wrote-off more than 75 percent of its portfolio-

company investments.  

                                                        
7 In a recent model, Nanda and Rhodes-Kropf (2014) use similar reasoning to explain how a financial 

intermediary’s implicit promise to support the venture can affect lender expectations of loan repayment.  
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Challenges aside, parties involved in a typical venture lending transaction, lenders and the 

entrepreneurs and/or their investors, have much to gain from striking a deal. Venture lenders stand 

to earn interest on the loans, with bank-lenders earning additional fees for banking services 

rendered.8 For entrepreneurs and their investors, the main attraction is funding that does not require 

costly dilutions of equity. In turn, they gain added financial cushion, potentially increasing their 

abilities to maneuver in the event of commercialization setbacks or milestone delays. As depicted 

in Figure 1, venture debt is therefore marketed as a way to “extend the financial runway” of a 

startup (Gordon, 2013). The obvious drawback is the need to repay the loans, plus accumulated 

interest, within an agreed-upon time frame. In the event of default, entrepreneurs also stand to lose 

control over assets used to secure the loan, including patented inventions.  

 What mechanisms facilitate trade in the venture lending market? Industry descriptions and case 

studies highlight the importance of VC involvement (Mann, 1997; Ibrahim, 2010). Hardymon, 

Lerner and Leamon (2005, p4) aptly describe the VC role as follows: 

“Lenders rel[y] both on the investors’ ability to choose good firms and on their presumed 
willingness to support the investments with future funding, and thus tried to maintain a good 
relationship with the best venture capitalists. Further reducing the risk, the loan usually closed 
just after a major equity infusion, increasing the possibility that the debt would be paid off 
before the company’s money ran out.” 

As in our conversations with lenders, Hardymon et al. (2005) report that lenders outsource 

much of the due-diligence and valuation process to VCs, both for the applicant startup and its 

intangible assets. The quote further suggests that VC reputation (skill) is informative for lenders, 

both for ex ante (ability to identify and attract more promising startups) and ex post (ability and 

willingness to support the startup once funded) reasons. In either case, this discussion suggests that 
                                                        
8 Non-bank organizations in the venture debt landscape include specialized lenders like Lighthouse Capital, 

Hercules Technology Growth Capital, and Western Technology Investment. Banks tend to provide smaller loans, 
typically ranging up to $2-3 million, at lower interest rates than non-banks. As Ibrahim (2010) reports, banks typically 
require borrowers to deposit cash and use other financial services, thus producing a secondary source of revenues from 
fees while providing a monitoring function (of tracking changes in burn rates) for VC investors. Non-banks face less 
stringent regulatory restrictions than banks. In turn, specialized non-bank lenders typically incur higher risk, charge 
higher interest rates, and have higher maximum loan packages reaching the tens of millions.  
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venture capitalists help “harden” soft assets—technologies, skills, and other intangibles like 

patents—that startups would find more difficult to borrow against on their own. Ironically, venture 

lenders also may lower risks by funding startups in earlier stages of development, when VCs are 

more likely to secure follow-on resources for the company.  

Whether lending activity is shaped by expectations of the salvage value of patent collateral is 

more ambiguous. As an asset class, intangibles are more difficult to value and trade than tangibles 

like commercial aircraft. Indeed, the intangibility of a firm’s assets is a common proxy for low 

salvage value in the corporate finance literature. Legal scholars nonetheless report that lenders 

consider the tradable (salvage) value of patents when crafting loans, despite obvious valuation 

challenges (Mann, 1997; Ibrahim, 2010; Menell, 2007). Fischer and de Rassenfosse (2011) report 

similar findings in a survey of lenders.  

Anecdotal evidence further suggests that the secondary market for buying and selling patents 

has grown more active.9 In 1999, Intel Corporation launched its first patent purchasing program, 

formalizing the process by which it acquired patents either as standalone assets or through 

corporate takeovers (Chernesky, 2009). Intellectual Ventures (IV), the largest patent “aggregator” 

formed to date, was founded in the year 2000. By 2012, IV had spent over $2 billion to amass one 

of the world’s largest portfolios of 35,000 patents, primarily covering software, semiconductor and 

mobile computing inventions (Hagiu and Yoffie (2013). Hagiu and Yoffie (2013: 60) assert that, 

“[b]ecause of its size, Intellectual Ventures can single-handedly create liquidity in the market.” The 

patent-market liquidity measure we utilize, described below, indirectly captures this effect by 

tracking the intensity of patent trading in different invention classes, including semiconductors and 

software (where IV is particularly active) and medical devices (where it is not). 

                                                        
9 From 1983 to 2001, Serrano (2010) reports that about 13.5 percent of all U.S. patents issued were traded at least 

once prior to expiration, with higher trade rates for small companies and more important (highly-cited) inventions. 
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To summarize, the incomplete contracting and financial intermediation literature yield three 

testable predictions in the venture-lending context. First, if increased liquidity in the secondary 

patent market is altering lender expectations of the salvage value, the likelihood that a startup will 

receive a loan should increase with thicker trading in the market for buying and selling patents, 

particularly when a startup’s patents are more redeployable to alternative uses or users (less firm-

specific). Second, the likelihood of lending should increase following a startup’s first VC equity 

infusion, especially when reputable (skillful) VCs are involved. Finally, the likelihood of lending 

should depend on the ability of VC intermediaries to convey to lenders a credible commitment to 

monitor and support the risky project, including financially. 

3. Data Sources and Descriptive Findings 

As noted earlier, reliable startup-level data on venture loans is lacking. Novel to the field, our 

approach identifies loans to startups through patent collateral, thus revealing transactions difficult 

to glean from other sources. The approach requires a focus on startups with one or more patent 

assets at risk of being used to secure a loan; otherwise, the presence or absence of a loan is 

unobservable. The remainder of this section describes our “patenting startup” sample (Section 3.1), 

defines key variables and data sources (Section 3.2), and shows patterns revealed in the data 

(Section 3.3). We discuss identification challenges in Section 4. 

3.1. Sample Construction  

Our sample is drawn from the universe of U.S. venture capital-backed firms reported in Dow 

Jones’ VentureSource (aka “VentureOne”) database in three innovation-intensive sectors:  

software, semiconductor devices, and medical devices. Focusing on startups that eventually receive 

VC financing allows us to observe when each company first received a VC equity infusion and 

from whom they received such investment. We then select all startups founded from 1987, the first 
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year of comprehensive reporting in VentureOne, through 1999. The latter cut-off captures the 

youngest cohort at risk of being affected by the market crash in early 2000, and provides a common 

decade-long window for tracking the startups’ activities and outcomes. To better pinpoint when 

startups disband and leave the risk pool for lending, we supplement VentureOne data with 

information from Sand Hill Econometrics on the type and timing of entrepreneurial exits (Hall and 

Woodward, 2010). Each company is tracked through 2008, our last year of reliable financing data, 

or until exit. The initial sample comprises 3,414 companies.  

To identify startups with patents, we search the Delphion database for U.S. patents assigned to 

all current and former names listed for each startup as reported in VentureOne. Of the 3,414 

startups, 1,519 receive at least one U.S. patent by 2008 or exit, averaging 9.5 patents per company. 

In the combined set of 14,514 patents, 51 percent are issued to 483 medical devices companies, 23 

percent are issued to 197 semiconductor devices companies, and the remaining 26 percent are 

awarded to 839 software startups. The maximum portfolio size is 199 patents. The summary 

statistics and analyses below are based on this patenting-startup sample.  

The dataset is an unbalanced panel with 1,519 startups and 11,298 startup-year observations, a 

subset of which is used in our difference-in-differences (DD) analysis. Startups are retained in the 

sample through 2008 or the year in which they went public, were acquired, or were disbanded. 

3.2. Main Variables and Data Sources 

Our analysis requires measures of startup-level lending, patent-market activity, and VC 

investors. Appendix I summarizes these measures, and lists the sources used to compile them.  

Startup Receipt of Debt Financing 

Our outcome variable, , indicates if one or more patents owned by a startup is used to 

secure a loan in a given year. To obtain information on patent security assignments, we extend the 

method developed in Serrano (2010) and extract records for each of the 14,514 patents from the 
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USPTO Patent Assignment Database. We then identify, on a patent-by-patent basis, all instances 

where a patent “security interest” is assigned to a third party and is therefore pledged as collateral.10 

For each record, we track the date of the transaction (execute date), the date the transaction was 

recorded (recorded date), the entity that assigned the security interest (assignor), the entity that 

received it (assignee), and the patent numbers involved in the transaction.  

As expected, Silicon Valley Bank, a specialist in providing banking services for startups, is the 

most common lien holder. More specifically, Silicon Valley Bank supplies loans to 35.2 percent of 

the 547 startups with loans in our sample and an even larger share (42 percent) of the subset in IT-

related sectors. In total, we identify 239 annual debt deals between Silicon Valley Bank and 

patenting startups. Of those, only eight (3 percent) are listed in the VentureOne database.  

Patent Market Liquidity  

 Lender expectations of the salvage value of patents are unobservable. We therefore compute an 

indirect proxy, Patent Market Liquidityit, to capture the annual likelihood that patents in a startup’s 

portfolio will be traded.11 The measure and the premise behind it follows recent work by Gavazza 

(2011) on aircraft leasing:  in decentralized markets, where buyers and sellers face fixed costs to 

search for the right trading partner, market thickness should facilitate reallocation to next-best use, 

thus increasing the salability of collateral assets. Despite the recent rise of aggregators like 

Intellectual Ventures, the market for buying and selling patents remains highly fragmented (Hagiu 

and Yoffie, 2013). The analogy therefore applies. 

To compute the measure, we identify a pool of potentially tradable patents relevant in a 

startup’s sector using invention classes and subclasses compiled by USPTO examiners as reported 

in Appendix I. We then tally the annual count of U.S. patents awarded in each set of classes and 

                                                        
10 Common terms used to describe patent security agreements in USPTO patent assignments include “security 

interest”, “security agreement”, “collateral assignment”, “collateral agreement”, “lien”, and “mortgage.”  
11 Patent sales recorded at the USPTO do not include transaction prices. 
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calendar year and, using patent sales data provided by RPX Corporation, the share involved in 

subsequent transactions.12 Consistent with Serrano (2010) and Galasso et al. (2013), patent sales 

are defined broadly to include sales of patents as standalone assets and transfers bundled through 

corporate acquisitions, a common route through which patent assets are transferred to new 

owners.13 Serrano (2010) also shows that the vast majority of patent sales occur within eight years 

of issue and that the likelihood of a sale declines over the lifetime of a patent. As a final step, we 

therefore restrict the pool of potentially tradable patents to those issued eight years prior to year t, 

and adjust the probability of sale based on the calendar year the patents were applied for and the 

age profile of the startup’s portfolio of patents. Patent Market Liquidityit therefore represents 

startup i's combined probability (averaged across patents in the portfolio of startup i as of time t) 

that a patent issued in the prior eight-year window in the startup’s sector will be traded in year t. 

Firm-Specificity of Patent Assets 

Discerning the firm-specificity (or redeployability) of patent assets is also challenging. The 

ideal measure would capture the extent to which patent collateral is likely to retain value if the 

company fails and the assets are sold to others. At one extreme, the assets could be perfectly “firm-

specific” in the classic sense of Williamson (1988):  rendered worthless if the company fails or the 

team disbands. This outcome could arise if the patent rights hold no value absent access to the 

underlying human capital. A startup’s patents could also be highly “firm-specific” if they cover 

inventions that are nonviable on the market and/or hold no value if enforced (e.g., see Galasso et 

al., 2010). At the other extreme, the patent rights could be highly redeployable (saleable) if the 

company fails. To illustrate, e-commerce patents owned by Commerce One sold for $15.5 million 

                                                        
12 As per Serrano (2010), the RPX data are drawn from USPTO Assignment data and omit transaction types 

unrelated to patent sales, including the assignment of legal title from employees to their employers and security 
agreements with lenders. These data enable us to trace patent sales for U.S. patents over the full sample period. 

13 To illustrate, Berman (2014) estimates that $7 billion of the $12.5 billion Google paid to acquire Motorola 
Mobility in 2011 was for the company’s portfolio of 17,000 patents. Following the takeover, Google divested Motorola 
Mobility’s core product unit (mobile handsets) but retained most of the patents transferred through the deal.  



BANCO DE ESPAÑA 21 DOCUMENTO DE TRABAJO N.º 1519

at the startup’s bankruptcy auction in 2005. Novell, an established software company, reportedly 

purchased the patents to ensure that they would not be used against it in future license negotiations 

or lawsuits (Markoff, 2005).   

To capture the firm-specificity of patents assets, we compute the share of citations to a startup’s 

patents that originate from follow-on patents issued to the focal company (i.e., the proportion of 

follow-on patent references that are “self-cites”). More specifically, Firm-Specificityit is the share 

of citations that a startup’s patents receive within three years of being granted that are self-citations. 

The three-year window is a time-horizon likely to be relevant in startup lending and is consistent 

with recent studies (e.g., Lerner et al., 2011). A higher self-cite share is assumed to correlate with 

higher “firm-specificity” levels and hence, more limited redeployability of the assets in the 

secondary market.14 The measure is similar in spirit to an internal-focus proxy used in Hoetker and 

Agarwal (2007)’s study of failed disk drive companies:  the authors report a steeper decline in 

follow-on citations (invention use) following exits of companies with high self-citation shares in 

the pre-exit period. Marx et al. (2009) use a similar citations-based measure to gauge the firm-

specificity of skills among employee-inventors. 

VC-Related Variables 

We examine the effects of VC involvement from several vantage points and with multiple 

measures. The first measure, Post VCit, is an indicator that switches from zero to one in the year 

that the startup receives its first VC equity infusion. First receipt of VC financing is determined 

based on close dates reported in VentureOne.  

A second measure, Has Top-Tier VCit, captures whether and when a startup receives funds from 

a top-tier (highly reputable) VC, thus exploiting heterogeneity among VCs in reputational capital 

                                                        
14 Perhaps more intuitively, if a startup’s patents are extensively cited by outside parties in follow-on inventions, 

we assume that it is more likely that those patents could sold in the secondary market if the startup fails than if the 
startup is the only sole party building on and citing the focal patents.   
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and skill. To identify top-tier VCs, investor names in VentureOne are matched to reputation scores 

computed by Lee, Pollock, and Jin (“LPJ” 2011).15 Computed annually for VCs active from 1990 

through 2010, the LPJ scores range from 0, for fringe/new investors, to a maximum of 100, with a 

median value of 5.7 out of 100. Consistent with Gompers et al. (2010), Has Top-Tier VCit is set to 

one if a startup has backing from one or more VCs in the top 25 percent of the annual LPJ score 

distribution given high skew in VC reputation and skill levels. Use of a more stringent top-

percentile threshold yields similar results. Of the 1,519 sample startups, 1,075 (71 percent) receive 

funds prior to exit from a VC with a top 25 percentile score while 444 (29 percent) do not. Kleiner 

Perkins and Sequoia Capital, venerable Silicon Valley investors, both fall in the top percentile of 

the distribution, with average annual scores of 77 and 62 respectively.  

A third VC-related measure, Recent Fundi, is required for the DD analysis that exploits 

variation among VCs in fundraising cycles. The measure, defined more fully in Section 4, is based 

on the vintage of VC funds most recently raised by the startup’s collection of investors as of early 

2000, when the technology bubble collapsed. Although VentureOne identifies VC firms investing 

in a startup and their rounds of participation, it does not track the individual funds from which 

those investors make investments. To map investors to funds, we obtain supplemental data from 

Private Equity Intelligence (PREQIN) on the vintage (close year) and size of funds raised by VC 

investors. According to PREQIN, $72.3 billion in VC funds were raised worldwide between 1987 

and 1999. Of that, $67.6 billion (93 percent) matched investors backing startups in our startups. 

Investors represented in our study thus control the vast majority of VC funds in the industry. 

 

                                                        
15 Each VC’s score is a composite measure based on years in operation, the average number of funds under 

management in the prior 5 years, the number of startups it has funded in the prior 5 years, the total amount of funds 
invested in the prior 5 years, and the number of companies taken public in the prior 5 years. The scores are posted at: 
http://www.timothypollock.com/vc_reputation.htm. Not surprisingly, a VC’s reputation score is slow moving in time. 
We therefore use a VC’s score in 1990 to impute values in years (1987-1989) that pre-date the LPJ series.  
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Other Measures 

Appendix I lists other control variables and data sources. Patent Portfolio Size (citation-

weighted)it is a time-varying measure of a startup’s patent portfolio size in year t, normalized by the 

citations those patents receive within three years post-grant to capture the overall “importance” of 

those inventions. Funds Raised Last Equity Roundit measures the millions of US dollars raised by 

the startup in its last equity round, which could affect the need for debt financing. Founding Yeari  

is the startup’s year of establishment, thus capturing age/cohort effects. Sectorij indicates whether 

the startup’s primary sector is medical devices, semiconductor devices, or software. Finally, Time 

Periodt allows for differences in entrepreneurial funding climates in the pre-boom (1987-1997), 

boom (1998-1999) and post-boom (2000-2008) periods. As is well-known, entrepreneurial capital 

was unusually plentiful in the late 1990s, an era known for “money chasing deals.”  

3.3. Descriptive Findings  

 Table 1 reveals that debt financing is commonly used among the startups in our sample. As 

shown in Table 1A, 36 percent of all patenting-startups received at least one loan pre-exit as 

evidenced by the USPTO patent security records. The percentages are similar across the three 

sectors. Of the 14,514 U.S. patents awarded to the startups by 2008 or prior to exit, more than 25 

percent were involved in one or more security interest agreements. The percentage is highest for 

software startups, where almost one-third (32 percent) of the patents were used in lending. Panel B 

further shows that security agreements tend to cover most patents in a startup’s portfolio:  on 

average, the startups have liens on 92 percent of their patents by the year of the last reported loan 

transaction. As noted earlier, venture lenders typically take a blanket lien on all company assets 

when securing a loan, so this statistic is not surprising.  

Table 2 compares observable characteristics of startups that do (n=545) versus do not (n=974) 

secure loans with their patents. Although the mean age is similar across the groups, startups with 
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loans tend to raise more equity capital than those without, have more (and more highly cited) 

patents on average, and are more frequently backed by top-tier investors. Nonetheless, the IPO rate 

for startups with loans is lower than that for those startups without (13 versus 21 percent), and a 

higher share of debt-financed companies (27 versus 20 percent) remained private by 2008. A 

similar pattern holds for the subsample of startups founded in the late 1990s. Qualitatively, the 

pattern in Table 2 resonates with claims that venture lending is particularly useful when VCs seek 

to “extend the financial runway” of portfolio companies without resorting to new rounds of equity 

investing. As in media reports (e.g., Tam, 2007), these loans may have enabled VCs to keep 

otherwise-promising companies afloat during a cold period in the venture capital market. 

Patent Market Liquidity and Venture Lending Activity 

Table 3 reports patent sales and the intensity of trading (Patent Market Liquidity) by sector and 

time period, alongside the annual debt rates for sample startups. Panel A shows that, between 1987 

and 2008, 295,438 patents less than eight years old at the time of transaction were sold across the 

three sectors. Of those, 212,643 transactions (72 percent) were sold between 2000 and 2008. Patent 

sales have increased over time in all sectors, but the rise is especially noticeable in software, an 

effect partly due to disproportionate growth in the patenting of software inventions shown in prior 

studies (e.g., Cockburn and MacGarvie, 2011). 

In Panel B of Table 3, we adjust for the pool of patents available for trading, thus normalizing 

sector-level differences in the annual supply of patents. The average Patent Market Liquidity value 

is 0.039, which indicates that the combined sample probability that a patent issued within the last 

eight years will be sold in a given year is 3.9 percent. Estimates range from 5.1 percent in medical 

devices to 3.8 and 2.7 percent in the software and semiconductor devices sectors, respectively.16 

                                                        
16 By comparison, Serrano (2010) reports an annual trade rate that ranges from 2.8 to 1.6 in the first eight years 

for patents granted to both U.S and foreign individuals from 1985-2000. The higher aggregate trade rate in our IT 
sectors is likely due to the inclusion of the post-2000 period. 
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Again, the upward time trend is most visible in software, where the intensity of patent trading 

increased by 75 percent (from 2.8 to 4.9 percent) from the pre- to post-boom periods. These 

patterns are consistent with claims of increased trading activity in secondary patent markets, 

particularly for software inventions (e.g., Hagiu and Yoffie, 2013).  

Finally, Panel C of Table 3 shows the annual rate of lending to sample startups in equivalent 

time periods. In the frothy entrepreneurial and IPO climate of the late 1990s, industry insiders 

forecast that the venture lending market would collapse if VC funding became less plentiful (Gates, 

1999). Indeed, the growth rate in lending between the pre-boom and boom period in Panel C is 

striking. The sample probability that a startup secured a loan in a given year (i.e., the average 

annual “debt rate”) almost doubled, from 4.7 to 9.0 percent. Post-boom, however, the within-

sample debt rate remained relatively stable, at 8.4 percent. This persistent reliance on debt 

financing could stem from multiple factors, including increased demand for non-equity sources of 

entrepreneurial financing when VC sources dwindled. Regardless, we find no evidence of market 

collapse following the “money-chasing-deals” era. 

In unreported estimates (available upon request), we compute the correlation between the 

annual patent-market liquidity and annual startup debt rate in each sector. Not surprisingly, given 

evidence in Table 3, the correlations are positive and significant, ranging from 0.87 in software to 

0.54 and 0.37 in medical devices and semiconductors respectively.   

VC Investors and Venture Lending Activity 

Are lending rates higher following a startup’s first VC equity infusion and, conditional on 

receipt of such financing, for those with top-tier investors? The short answer is “yes.” As shown in 

Figure 2, the average debt rate is much lower for startups before (versus after) first receipt of VC 

financing, at 3.0 versus 8.4 percent. The gap is wide and visible across the startup-age distribution.  
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Table 4 further distinguishes startups with top-tier VCs from those backed by lower-tier 

investors, and revisits time patterns. Conditional on receiving VC financing, the debt rate for 

startups with top-tier VCs is higher than that of startups backed solely by lower-tier investors, at 

9.1 versus 7.1 percent. This pattern is consistent across time, except in the pre-boom (1987-97) 

period. Interestingly, Table 4 also shows a steady climb over time in the debt rate for sample 

startups in periods before they receive VC financing, thus suggesting increased activity (albeit at 

much lower levels) in early phases of the entrepreneurial life cycle.  

4. Estimating the effects of patent markets and VC investors on startup lending 

Establishing whether patent trading activity and/or venture capitalists causally facilitate 

startup-level lending poses numerous identification challenges. Prior evidence suggests, for 

example, that entrepreneurs with prior IPO exits are more likely to secure external funds for their 

new ventures and from highly reputable VCs (Gompers et al., 2010). Such entrepreneurs also are 

likely to have better assets and financial resources unobservable to the econometrician that could be 

used to guarantee a loan, thus increasing the likelihood of debt financing at their new companies. If 

this was the case, the presence of top-tier VC backing and of debt might be correlated, but not 

causally related. Similarly, VCs could simply select “higher quality” ventures that in turn are better 

candidates for lending. Below, we describe our approaches for dealing with these issues, report 

results, and conduct robustness checks with these and other identification challenges in mind.  

4.1. Baseline econometric model and results 

To start, we estimate the likelihood that a startup will obtain debt financing in a given year with 

a simple linear probability model: 

  (1) 

As explained earlier, DEBTit indicates if startup i receives a loan in year t, Patent Market 

Liquidityit captures the intensity of secondary-market trading for patents owned by startup i in year 
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t (adjusted by the annual age profile of the portfolio), and PostVCit switches to one in the year the 

startup first receives VC financing. The term τt captures period differences in funding climate, 

while Xit represents time-varying startup characteristics that could affect the baseline probability of 

lending, including a company’s age, funds raised in its last equity round, and patent portfolio sizes 

(citation-adjusted to capture the overall importance of the inventions). uit is the residual component. 

The term θi in Equation (1) represents startup fixed effects, thus allowing us to difference out 

permanent startup characteristics (e.g., unobserved wealth endowments of founders) that might 

correlate with lending. In Equation (1), β1 therefore captures the change in the probability that a 

startup obtains debt financing in a given year (i.e., its annual debt rate) due to shifts in patent-

market trading not otherwise explained by the control variables and the fixed effects. Similarly, the 

coefficient γ1 captures the added change in the predicted annual debt rate following first receipt of 

VC financing that is not explained by the controls. Expanding Equation (1), we then add the Firm-

Specificity proxy and interact it with Patent Market Liquidity. The interaction term tests whether 

lending is less responsive to patent-market changes when a startup’s patent assets are more firm-

specific. Finally, we add the Has Top-Tier VC indicator to test whether the probability that a startup 

receives a loan is further heighted by equity infusions from investors that are especially reputable 

or skillful. Since PostVC is in Equation (1), Has Top-Tier VC acts as a step-function and captures 

whether the change in a startup’s probability of receiving a loan post-VC financing is significantly 

higher when top-tier investors are involved, whether initially or in later rounds of financing.  

The estimation sample is an unbalanced panel with 1,519 startups and 11,298 startup-calendar 

year observations. Table 5A shows summary statistics at the startup-year unit of observation. The 

statistics are in line with evidence reported in prior tables. Table 6 reports OLS estimates of the 

likelihood that a startup receives a loan in a given year. Columns 1-3 focus on the two main 

variables in Equation (1), Patent Market Liquidity and PostVC, and test the robustness of the 
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estimates to different specifications. Columns 4 and 5 further probe the patent market effect, while 

Column 6 tests for added effects due to top-tier investors.   

The coefficients on PostVC and Patent Market Liquidity are positive and statistically significant 

both in Column 1 of Table 6, the parsimonious specification, and Column 2, which adds controls 

for the entrepreneurial funding climate, the startup’s sector, and annual characteristics of each 

company (age, innovative output, and equity funds last raised). Column 3 adds startup fixed effects, 

thus identifying effects from within-startup variation. The PostVC and Patent Market Liquidity 

coefficients remain positive, significant, and comparable in magnitude. A Hausman test rejects the 

null hypothesis that the startup effects are random.17 Replacing the period-wide controls with 

calendar year dummies yields similar results.18  

In combination, Columns 1-3 show that—even controlling for numerous time-varying factors 

and allowing for company-specific differences among startups (e.g., wealthy founders)—the annual 

debt rate is significantly higher following a startup’s first VC equity infusion and when the market 

for buying and selling patents is more liquid.  

It is natural to question whether the “patent market liquidity” effect is due to an omitted 

variable that simultaneously drives changes in patent-market trading and affects the likelihood of 

startup lending. For example, a positive opportunity shock could increase the demand for patents 

and/or human capital in a sector, thus intensifying trading activity in the market for patents. The 

same opportunity shock could increase the value of inventions produced by a startup and, in turn, 

increase the startup’s viability as a candidate for lending. Due in part to this concern, our 

specification includes a time-varying control for the overall “value” of each startup’s patent 

                                                        
17 To perform the test, we run random effects panel regression with covariates. We also run a fixed effect panel 

regression with the sub-sample of time-variant covariates. The coefficient on VC in the random effects specification is 
0.03756 (p-value<0.01). The estimate from the fixed effects specification is 0.0428. A Hausman test rejects that the 
estimated coefficients are equal (χ =43.73), indicating that a random coefficients estimator would be inconsistent. 

18 Similar results were obtained when we use a fixed-effects Logit model. 
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portfolio. As is standard in the innovation literature (e.g., see Hall et al., 2005), patent value is 

proxied by the total number of citations those patents receive in a given time window. In addition, 

we include sector-level fixed effects and time period dummies. In supplemental tests (available 

upon request), we obtain similar findings in specifications that replace the time period dummies 

with more granular annual fixed effects and that interact the sector and annual effects, thus 

allowing for sector-specific yearly shocks.  

To probe the patent market effect more fully, we exploit differences among startups in the 

redeployability of their patent assets. If increased liquidity in the secondary market for patents 

shifts (unobservable) lender expectations of salvage value, we should find a disproportionate boost 

for startups with patent assets that are more redeployable to alternative uses or users (Williamson 

1988; Benmelech and Bergman 2008, 2009). Put differently, lending should be less responsive to 

collateral-market conditions when patent assets are firm-specific. A priori, it is unclear why an 

omitted opportunity shock would yield this distinctive pattern. 

The evidence in Columns 4 and 5 is consistent with this salvage-value interpretation. In 

Column 4, the coefficient on Firm-Specificity is negative and statistically significant, suggesting 

that lending rates are lower for startups with more firm-specific (less redeployable) patent assets. 

More importantly, in Column 5, the coefficient on the interaction, Firm-Specificity x Patent Market 

Liquidity, is negative and statistically significant:  startups with firm-specific patent assets 

experience lower annual debt rates when patent market liquidity is high than startups with patents 

more likely to retain value if redeployed to alternative uses or users. Interestingly, the main effect 

of Firm-Specificity is trivial in magnitude and statistically insignificant in Column 5. This result is 
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also consistent with a salvage-value interpretation: absent liquidity in the patent market, the 

specificity (or redeployability) of patent assets should not affect the probability of startup lending.19 

To interpret the magnitude of the interaction effect in Column 5, we calculated the estimated 

effect of a one percentage point increase in patent-market liquidity from its mean value (0.0448) at 

different points in the firm-specificity distribution—highly redeployable (bottom 10 percentile of 

the specificity distribution), average redeployability (mean value), and firm-specific (top 10 

percentile)—with controls held at mean values.20 When redeployability is high, a one percentage 

point increase in patent-market liquidity predicts an increase in the annual debt rate by 0.0131, or 

1.31 percentage points. When patent assets are firm-specific (redeployability is low), the magnitude 

of the effect is much smaller:  an equivalent patent-market change increases the annual debt rate by 

0.004, or only 0.4 percentage points. At the mean firm-specificity value, the estimated effect is 

0.0114, which is a 1.14 percentage point boost in the annual rate of startup lending. This marginal 

effect is large, corresponding to about 15 percent of the sample mean of the annual debt rate. In 

combination, we interpret these results as evidence that increased trading in the secondary market 

for patent rights is shifting lender expectations of salvage value, expanding the financing 

opportunities of innovative companies. 

Turning more closely to VC effects, Column 6 of Table 6 adds Has Top-Tier VC to the 

specification. The coefficient on Has Top-Tier VC is positive and significant, suggesting that the 

lending likelihood is heightened further by the presence of equity investment by highly reputable 

VCs. Based on coefficients in Column 6, the first receipt of VC financing (PostVC) increases the 

                                                        
19 The results in Table 6 are robust to use of alternative firm-specificity proxies. Instead of a self-citation-based 

measure, we computed the number of distinct companies citing the patent portfolio of the startup in an equivalent three-
year window relative to the startup’s patent portfolio size. In the spirit of Shleifer and Vishny (1992), more citing 
parties are assumed to represent more potential buyers and thus a higher likelihood of redeployment. Given high skew 
in the patent value distribution within firms (e.g., Hall et al., 2005), we also re-compute firm-specificity based solely on 
a startup’s patents with above-median citation counts that are likely to attract more interest in the resale market. Not 
surprisingly, the various specificity measures are highly correlated and yield similar findings.  

20 For the bottom and top percentiles, estimates are based on the mean within-percentile specificity value. 
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annual debt rate by 2.8 percentage points, from 5.2 to 8.0 percent, almost doubling the rate 

predicted at the mean. Backing from a top-tier investor, whether in an early or later round, 

increases the predicted debt rate by an additional 2.8 percentage points, a large added boost. As 

before, the results are robust to inclusion of year (versus period) and sector-year effects. 

While interesting, these VC-related findings are prone to multiple interpretations. Consistent 

with financial intermediation theory, VCs could be serving an intermediary role: by credibly 

committing to build and monitor portfolio companies through equity infusions, VCs could reduce 

financial frictions originating from information asymmetries between entrepreneurs and lenders. In 

this view, the relationship between the presence of VCs and startup lending is causal. Relatedly, 

being selected for funding by a VC, particularly one that is highly reputable or skillful, could alter 

lender expectations of the otherwise difficult-to-discern quality of the startup, similarly altering 

expectations of repayment in a causal manner.  

Although qualitative accounts of venture lending suggest that VCs serve an economically 

meaningful intermediary role, non-causal explanations for the VC findings in Table 6 are also 

plausible. To elaborate, recall the error term  in Equation (1). VC backing could correlate with 

this error term in either a negative or positive direction. A negative correlation could arise if a 

successful but cash-constrained startup suffers a negative shock to patent rights that reduces the 

tradability of those assets in the secondary market. Absent redeployable assets to pledge as 

collateral, equity arrangements could offer a more viable financing option, thus increasing the 

likelihood of VC financing while decreasing the likelihood of debt. Alternatively, and more 

troublesome given the directionality of our findings, a positive shock to the value of the technology 

underlying the startup could increase the company’s growth opportunities in ways unobservable to 

us, increasing the likelihood of both debt and VC financing—a possibility that we turn to below. 
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4.2. Difference-in-Differences Analysis 

In a final set of analyses, we develop a novel method for identifying whether VCs serve an 

intermediary (causal) role in the market for venture lending. Our aim is to test an intermediary 

function of particular salience in incomplete contracting theory (Holmstrom and Tirole, 1997; 

Williamson, 1988):  By credibly committing to lenders that they will exert future effort to build and 

refinance a portfolio company, VCs could facilitate exchange between lenders and startups with 

risky projects. In this view, VCs add value as intermediaries in debt transactions beyond the ex ante 

screening of projects, whether via independent due diligence, which is likely, or from updates 

simultaneously known to lenders.  

Identification Strategy and Background 

To isolate a potential “VC credible commitment” effect, we exploit an unexpectedly severe and 

negative shock to the supply of capital to VC firms—the collapse of the technology bubble in early 

2000—and differences in VC fundraising cycles at the time of that shock. As explained below, VCs 

that had not recently closed a new investment fund at the time of the shock should face more 

binding capital constraints in the post-shock period than VCs with recently closed funds, for 

reasons unrelated to the quality of a given startup previously selected for funding. We use this 

plausibly exogenous source of variation among VCs to test a core prediction in the Holmstrom and 

Tirole (1997) model: following a negative capital-supply shock, financial intermediaries with 

binding constraints will find it difficult to convey to lenders that they will continue to support and 

monitor a portfolio company, thus reducing a startup’s likelihood of receiving a loan. 

The technology bubble’s collapse is often pegged to March 2000, when Nasdaq shares 

plummeted from an unprecedented run-up in prices in the prior two years. Often referred to as the 

collapse of the “internet” or “dot.com” bubble, the steep fall in valuations had major ramifications 

across the IT sector. As one example, Cisco Corporation, a large computer networking company, 
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lost more than 80 percent of its market capitalization in the one-year period following the shock. 

Not surprisingly, new VC investments in IT startups also suffered a precipitous decline. According 

to data from VentureOne, the amount of VC funds raised by software and semiconductor startups 

fell from $6.6 billion in Q2 of 2000 to $2.6 billion in Q2 of 2001—a 60 percent one-year drop—

and declined further, to $1.5 billion, by Q2 of 2002.21 As Townsend (2012) and others document, 

the bubble’s collapse significantly reduced the willingness of pension funds, wealthy individuals, 

and university endowments to commit funds to the VC asset class, particularly for IT-related 

investments, thus reducing the supply of institutional capital available for VC investing. 

Although shockwaves were felt throughout the IT sector, VCs that had not yet closed a recent 

fund at the time of the crash should be particularly constrained in the near-term sourcing of capital. 

VC firms raise legally separate individual funds, typically organized as Limited Partnerships, in 

overlapping sequences over time. At the start of each fund’s life, the VC firm secures lump-sum 

commitments from institutional investors for investment over an agreed-upon payback period. 

During the timeframe of our study, the standard lifespan of a VC fund was typically 10-12 years 

(Dow Jones, 2007). By the end of this period, the VC must realize returns through exits of portfolio 

companies by selling shares at IPO or to acquirers, and distribute the proceeds back to their 

institutional investors. Given this finite lifespan for a fund, the Limited Partnership fund 

agreements typically limit the period for pursuing new investment opportunities (referred to as the 

“investment period”) to 5 years (Dow Jones, 2007). As the investment period of an existing fund 

draws to a close, VCs begin fundraising for a follow-on fund from which they will undertake future 

                                                        
21 In contrast, VC investments in the life sciences were relatively stable. Medical device and biopharmaceutical 

startups received $1.3 billion in new VC funds in Q2 of 2000, a comparable $1.29 billion in Q2 of 2001, and a slightly 
higher $1.6 billion in Q2 of 2002. In medical devices alone, the amounts were $597 million in Q2 of 2000, $500 
million in Q2 of 2001 and $577 in Q2 of 2002. Estimates are quarterly amounts of VC dollars raised in each sector, as 
reported in VentureOne. 



BANCO DE ESPAÑA 34 DOCUMENTO DE TRABAJO N.º 1519

investments over the subsequent five-year period. As a result, VC funds are typically spaced three 

to five years apart (Gompers and Lerner, 1999; Hochberg et al., 2014). 

When an exogenous event—such as the collapse of the technology bubble in early 2000—

restricts the ability of the VC firm to close a new fund, the VC’s ability to make new investments 

will be constrained:  Investments in the existing fund will face added competition for the remaining 

dollars from existing portfolio companies and new investment opportunities, as the coffers cannot 

be replenished. A VC firm that was attempting to fundraise at the time of the bubble’s collapse, or 

that needed to do so in its immediate aftermath, would find it particularly difficult to source capital 

in the post-bubble period. As noted above, the VC fundraising cycle is largely determined by the 

timing of prior funds, and the timing and severity of the collapse was unexpected. We thus use 

heterogeneity in VC fundraising cycles at the time of the crash as a plausibly exogenous source of 

variation with which to identify the effect of VC credible commitment on startup lending.  

Supplemental Fund-Vintage Data, Estimation Sample, and Descriptive Evidence 

To implement this methodology, we identify investors in a startup’s most recent syndicate prior 

to the bubble’s collapse and compute the age of those investors’ most recent VC funds as of the 

year 2000 using data from PREQIN.22 We create three versions of a RecentFund variable, setting it 

equal to one when the average age of the most recent funds within the syndicate is less than either 

two, three or five years in early 2000. This approach allows the capital-constraints introduced by 

the market’s collapse to be less (more) binding when a startup’s investors have relatively recent 

(older) funds at the time of the crash. Since the typical investment period of a VC fund is five 

years, our main RecentFund variable uses the less-than-five-year threshold. As shown below, we 

                                                        
22 PREQIN reports information on all private equity funds raised worldwide, including but not limited to VC 

funds. Consistent with Hochberg et al. (2014), we classified “VC funds” if the fund focus in PREQIN was listed as 
startup, early-stage, development, late-stage, or expansion investments, venture capital (general), or balanced.  
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find similar results using alternative two- and three-year thresholds that allow for shorter cycle-

times in VC fundraising during the boom years of the late 1990s.  

Our main analysis focuses on startups that (a) compete in sectors most affected by the 

technology bubble’s collapse (i.e., are in IT-related sectors), (b) have received VC funds prior to 

early 2000, thus allowing us to observe VC investors and the vintage of funds they manage, and (c) 

are at risk of receiving a loan over the entire 6-year period surrounding the crash. The last 

restriction allows us to test differential before-and-after shifts in startup-level lending. In 

combination, these criteria yield an estimation sample of 119 semiconductor and software startups 

at risk of receiving a loan between 1997 and 2002. Of these companies, 96 (eighty percent) had 

syndicates with funds averaging less than five years old at the time of the crash, while 23 did not. 

The average age of new funds managed by syndicate partners in these startups was 2.62 (std. dev. 

3.23) years at the time of the crash.  

As previewed earlier, we find a dramatic shift in startup lending patterns post-shock that 

correlates with differences in VC fundraising cycles. In the three years prior to 2000, IT startups 

backed by investors with more recent VC funds at the time of the crash (i.e., with RecentFundi=1) 

had an average annual debt rate of 10 percent. From 2000 through 2002, the annual debt rate for 

this group of startups increased slightly, to 13 percent. In sharp contrast, the average annual debt 

rate in the comparison group (i.e., IT startups with RecentFundi=0) fell from 17 percent in the 

1997-1999 period to 1.5 percent in the post-bubble period, a steep drop of 15.5 percent. 

Table 7 suggests that this pattern is not due to simple differences between groups in the 

presence or absence of top-tier investors. The share with top-tier VCs pre-crash is comparable 

between groups at 53 (RecentFund=1) and 57 (RecentFund=0) percent. On average, startups with 

recent-fund syndicates had raised more equity and received more patent citations in the three years 

prior to the crash. Table 7 shows, however, that the differences in mean values are not statistically 
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significant. Both a Wilcoxon-Mann-Whitney test, the non-parametric analog of the independent 

sample t-test, and Kolmogorov- Smirnov test of distributional differences yield similar findings. 

Econometric Specification and Results  

To test the differential effect of VC fundraising cycles (VC credible commitment) on startup 

lending more formally, we use a difference-in-differences estimator:  

 (2) 

As above, DEBTit indicates if startup i receives a loan in year t, and RecentFund is an indicator 

set equal one when the most recent funds managed by startup i’s investors are less than five years 

old on average in early 2000. After indicates startup-year observations in the three-year window 

following the bubble’s collapse; the omitted category is a comparable three-year “pre-shock” 

period. The term Wit represents observable time-varying characteristics of startups that could affect 

the baseline probability of debt financing: Has Top-Tier VC, Patent market liquidity, Firm-

specificity of patent assets, Funds raised and Patent portfolio size (citation-weighted). As before, 

startup fixed effects, represented by θi, allow for time-invariant, company-specific, differences 

among startups to influence lending. The effects in Equation (2) are therefore identified from 

within-startup changes in the annual debt rate during the six-year window. 

The coefficient of interest, , tests for differential changes in the annual debt rate for startups 

backed by investors with recent versus older funds when the bubble collapsed. Under the 

assumption that changes in the annual debt rate would be comparable for the startups had the 

bubble not collapsed, Equation (2) allows us to identify the causal effect of VC credible 

commitment on the rate of lending. The identification assumption is that VC capital constraints 

post-crash, as proxied by RecentFund, are largely exogenous to unobservables in the debt financing 

equation. Since the vintage year of a VC firm’s most recent fund at the time of the crash is 

plausibly exogenous, this assumption seems reasonable. 
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Table 8 reports results of the DD estimator of changes (before versus after the technology 

bubble’s collapse) in startup lending based on the fundraising cycles of VCs at the time of the 

crash. The unit of analysis is a startup-calendar year estimated in the six-year window surrounding 

the technology bubble’s collapse, with 714 startup-year observations and 119 startups in the IT-

related sectors. Column 1 includes time-invariant startup controls only, while Column 2 uses 

startup fixed effects and time-varying covariates.   

The difference-in-differences coefficient in Column 2, our preferred specification with fixed-

effects and a full-set of controls, is 0.18. This coefficient indicates that the annual debt rate of 

startups backed by VCs with relatively recent funds at the time of the crash (Recent Fund=1), 

relative to that of the startups backed by VCs with older funds (i.e., with more capital-constrained 

investors), increased by 18 percentage points during the post-shock period. Put differently, the 

striking shift in the trajectories of pre- versus post-shock lending shown earlier is wide and 

statistically significant even controlling for permanent and numerous time-varying startup factors.  

Figure 4 plots estimates from a more general empirical specification that allows the treatment 

effect to vary on an annual basis, with coefficients normalized to 1999, the year prior to the shock. 

In years prior to the collapse, the estimated coefficients are statistically indistinguishable from zero, 

thus revealing parallel trends pre-treatment. Following the bubble’s collapse, however, the 

estimated treatment effects are positive in all three years, which implies a differential shift in 

trajectories. The DD coefficient for the year of crash, which includes two months preceding the 

crash, is a positive 0.15, but is not statistically significant (p-value=0.14). In the first and second 

year immediately following the shock, however, the coefficients are positive 0.19 and 0.21 and are 

statistically significant (p-values 0.05 and 0.03, respectively).23  

                                                        
23 As an added check on the DD identification, we allowed each group to exhibit a different time trend by adding 

an interactive dummy between RecentFund and the time trend variable in each of the difference-in-differences 
regressions. The estimated effect of the DD coefficient is robust to this test. 
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In combination, this evidence reveals a dramatic “flight to safety” among lenders in the wake of 

the technology bubble’s collapse in early 2000. Following the collapse, lending continued apace 

and even increased slightly for startups backed by investors with relatively recent funds, but fell 

sharply for startups with more capital-constrained investors. The large magnitude of the effect not 

only highlights the contracting challenge involved in lending to startups but also how investors 

with relatively recently-raised funds can overcome this problem during a major capital illiquidity 

event, whereas the more capital-constrained cannot. This result resonates with the predictions in 

Holmstrom and Tirole (1997): that those investors with less capital, particularly in times when 

capital is scarce, find it more difficult to credibly convey to the lenders that they will continue to 

support the portfolio company, thus making it more difficult for the company to obtain a loan. 

Robustness checks and alternative explanations 

In robustness and placebo tests described below, we experiment with alternative measures and 

estimation samples, and investigate factors unrelated to VC credible commitment that could explain 

our findings. First, we re-estimate the effects with alternative treatment assignment measures. 

Because the typical investment period for a VC fund is five years, our benchmark DD estimation 

assigned RecentFundi=1 to startups when the mean age of the most recent funds managed by their 

investors as of the year 2000 was less than five years. It is commonly known that during the late 

1990s the time between fund raises for some firms was reduced, as VCs capitalized on the 

heightened interest of institutional partners in the VC asset class. A potential concern for our 

identification approach is that the RecentFund variable may be simply capturing VC firms that did 

not raise capital during the five years prior to the bubble collapse due to lower quality or poorer 

performance. To rule out this concern, Columns 3 and 4 in Table 8 replicate our preferred 

specification in Column 2 with two- and three-year cutoffs that allow for faster cycle-times in VC 

fundraising. The estimated DD coefficients remain positive at 0.11 and 0.10, and are significant at 
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the 5-percent level. While the magnitude of the effect is smaller than the one obtained in the 

benchmark DD specification in Column 2, the confidence intervals of the coefficients overlap. 

Thus, the estimates of the model specification with two- and three-year cutoffs do not differ 

qualitatively from the benchmark specification. 

A separate concern is that “smarter” or better-connected CEOs could obtain venture debt 

regardless of the state of affairs in the VC industry and simultaneously better predict the timing and 

severity of the market collapse, leading them to seek investors with younger (investment-mode) 

funds. Although the mainstream view is that the timing and severity of the market’s collapse was 

unexpected, this possibility could explain a positive correlation between startups with access to 

investors with recently raised funds and higher debt rates in the post-shock period.  

To investigate this alternative “smart CEO” explanation for our findings, we reset the treatment 

assignment (RecentFundi=1) based solely on the fund-raising state of the investors in the startup’s 

first VC financing round. Typically, first-round investors continue to participate in later rounds to 

preserve ownership stakes and control; if they decide not to reinvest, it casts a negative signal about 

the prospects of the startup, making it difficult for the startup to raise money. Thus, the 

capitalization of these initial investors should still matter for the startup’s ability to raise debt after 

the technology market’s collapse. At the same time, it is highly unlikely that even “smart” CEOs 

choose early investors with an eye to capital shortages that they anticipate in an uncertainly timed 

future post-bubble period. As shown in Column 5 of Table 8, the DD coefficient is a positive 0.13 

when RecentFund is based on the vintage of funds managed by first-round investors, and remains 

statistically different than zero (p-value=0.03). The confidence intervals of this coefficient and our 

baseline DD specification in Column 2 of Table 8 overlap, which is reassuring. 

If our results are driven by the abilities of VCs to credibly commit to the continued financing of 

a startup, we should expect a differential shift in lending only in the aftermath of a negative and 
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severe capital-supply shock and in sectors most affected by the shock. In turn, in the absence of 

such a shock, differences in the fundraising cycles of VCs should not alter lender expectations of 

loan repayment. Columns 6 and 7 in Table 8 report placebo tests with this logic in mind. 

In Column 6, we replicate the DD estimator for IT startups in non-crisis periods (1992-1997 

and 2002-2006).24 Neither period had a major shock to the supply of institutional capital available 

for VC investing. The non-overlapping panels are stacked to increase the number of observations 

available for the estimation. In total, 302 semiconductor and software startups were VC-backed and 

active in the two periods combined. As Column 6 shows, the DD coefficient in our preferred 

specification (fixed-effects with controls) is positive and small (0.028) in the non-crisis periods, 

and is not statistically significant in the non-crisis periods (p-value=0.33). We obtain similar results 

if the effects are estimated separately for each non-crisis period, albeit with smaller sample sizes. 

Finally, Column 7 retains the six-year period surrounding the technology bubble’s collapse, but 

tests effects for startups relatively shielded from the run-up and collapse. As shown earlier, new VC 

investments in IT startups plummeted in the wake of the bubble’s collapse, while new investments 

in life science startups remained relatively stable. It is unlikely that the IT-driven shock imposed 

binding constraints in the sourcing of capital for life science startups, including but not necessarily 

limited to the medical device startups represented in our sample. Column 7 therefore replicates our 

preferred specification using a placebo sample of medical device startups that were VC-backed by 

early 2000 and active in the six-year window surrounding the crash (n=99). Reassuringly, the DD 

coefficient is not significant at conventional levels (p-value=0.46). 

The placebo tests suggest that VC fundraising cycles shift lender expectations only when the 

capital constraints of the startup’s VC investors are likely to be binding. Combined with the parallel 

pretreatment trend-lines shown in Figure 4, this evidence allays concerns that our main DD results 
                                                        
24 In light of the U.S. banking crisis, which began in 2007 and worsened in 2008, we conservatively restrict the 

second window to a 5-year period that ends in 2006.  
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are explained by unobserved time-varying characteristics of startups that could affect lending and 

investor matching in a non-causal manner:  It is unclear why the effect would arise solely for IT 

startups, and specifically in the crisis period. 

5. Conclusion 

This study provides novel evidence on the market for venture lending, a surprisingly active yet 

unexplored arena for innovation financing. Consistent with contract theory, we find that thicker 

trading in the secondary market for patent assets and intermediation by equity-owners are 

mechanisms that facilitate lending to startups with risky projects. 

We find that the annual debt rate increases when the secondary market for buying and selling 

patents grows more liquid, particularly for startups with more redeployable (less firm-specific) 

patents. This result resonates with classic predictions by Williamson (1988), Shleifer and Vishny 

(1992) and others: lender expectations of salvage value should affect the willingness to supply 

funds in the presence of contracting frictions. Although prior studies document this effect for 

tangible assets such as railroads (Benmelech, 2009) and commercial aircraft (Benmelech and 

Bergman, 2008, 2009; Gavazza, 2011), it is widely assumed that the market for patents is too 

illiquid to sway lender expectations. Our findings challenge this assumption, and suggest that 

patent assets and their exchange play a meaningful friction-reducing role in innovation financing.  

As is well known, intangible assets underpin the market value of modern U.S. corporations, 

many of which invest heavily in R&D and patent-related activities. A natural question is whether 

the increased “salability” of patent assets affects the financing opportunities for this wider swath of 

companies, and if so, how the magnitude of the effect varies by sector. In the policy arena, the 

emergence of “patent assertion entities” and large “aggregators” such as Intellectual Ventures has 

fueled concern that the acquisition and enforcement of patents by such organizations is imposing an 

ex post tax on innovation (U.S. White House, 2013; Hagiu and Yoffie, 2013). If these 
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intermediaries increase the salability of patent assets, by increasing liquidity in the market, 

innovation-oriented companies could find it easier to borrow against their patents. This ex ante 

effect on innovation financing should be weighed, ideally with evidence from more companies and 

sectors, against the ex post distortions that may arise from patent trading and enforcement.  

The ability of informed investors to credibly commit to the future support and monitoring of 

risky projects serves a central contracting function in financial intermediation theory (Holmstrom 

and Tirole, 1997). Identifying this causal relationship empirically is difficult:  intermediaries and 

lenders may simultaneously see updates unobservable to researchers that increase the attractiveness 

of projects both for equity financing and lending. Our approach, which exploits differences in VC 

fundraising cycles at the time of a capital-supply shock, provides a useful lever for discerning this 

“credible commitment” effect of widespread theoretical interest in the field.  

We document a dramatic flight to safety among lenders following the collapse of the U.S. 

technology bubble in early 2000: they continued to finance startups backed by investors with less 

binding capital constraints following the collapse, but withdrew from otherwise-promising projects 

that may have needed the funds the most. A reallocation of risk capital has been shown in response 

to other unexpected and severe economic shocks (Caballero and Krishnamurthy, 2008). Bernanke 

(1993), for example, shows that in the Great Depression of the 1930s, banks rushed to compete for 

safe high-grade assets yet withdrew funds from many borrowers with otherwise good projects. Our 

analysis reveals a flight-to-safety episode undocumented in prior studies. This finding suggests that 

the credibility of VC commitment is vital both for venture lending and for policies aimed at 

stimulating entrepreneurial-firm innovation through debt channels. Absent a well-developed 

infrastructure of venture capitalists and institutional investors, our results suggest that the economic 

effects of such initiatives will be muted.  
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All
Medical 
Devices

Semiconductor 
Devices

 Software

Share of startups with loans secured by patents 0.36 0.36 0.38 0.35

Number of startups 1,519 483 197 839

All
Medical 
Devices

Semiconductor 
Devices

Software

Share of all patents awarded to sample startups by 
2008 or exit used to secure a loan 

0.27 0.26 0.24 0.32

Share of patent portfolio used as collateral by last 
transaction year (average for startups with loans)

0.92 0.88 0.89 0.94

Total # U.S. patents awarded to sample startups by 
2008 or exit year

14,514 7,435 3,288 3,791

TABLE 1.  Patent Security Interests

B.      Patent-Level Analysis

A.      Startup-Level Analysis  

Sectors
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All Sample Startups With 
Patents

Subsample with Patent-
backed Debt

Subsample without Patent-
backed Debt

Backed by Top-Tier VC (%) 0.71 0.74 0.69
Total VC Funds raised ($ million) 27.1 33.3 23.7
Patent Portfolio Size 9.55 11.7 8.3
Patent Portfolio Size, citation weighted 62.17 73.6 55.8
Founding Year 1994.9 1994.8 1995.0

Startup status as of 2008 (%)
          IPO 0.18 0.13 0.21
          Disbanded (Failed) 0.21 0.21 0.20
          Still Private 0.22 0.27 0.20
          Acquired 0.39 0.40 0.39

Number of Startups 1,519 545 974

TABLE 2.    Summary Statistics: Patenting Startups with vs. without Patent-backed Debt

Note: The sample includes VC-backed startups in three sectors (medical devices, semiconductor devices, and software) awarded at least 
one U.S. patent by 2008 or exit. Startups with (without) patent-backed debt have (do not have) at least 1 patent-backed security agreement 
recorded at the PTO through 2008 or exit. Backed by Top-Tier VC is the percentage of startups that eventually receive equity financing 
from a VC investor with reputation above the top 25 percentile of the annual distribution of scores reported in LPJ2011; Total VC Funds 
raised is the cumulative amount of funds that the startup receives from VC investors through 2008 or exit. Appendix I reports the rest of 
the variable definitions and data sources.  
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Pre-boom Boom years Post-boom
All years 1987-1997 1998-1999 2000-2008

Medical devices 46,632 11,994 5,109 29,529

Semiconductors 28,778 3,553 2,451 22,774

Software 220,028 39,359 20,329 160,340

All three sectors 295,438 54,906 27,889 212,643

Medical devices 0.051 0.043 0.060 0.060

Semiconductors 0.027 0.018 0.036 0.036

Software 0.038 0.028 0.047 0.049

All three sectors 0.039 0.030 0.048 0.048

Medical devices 0.069 0.052 0.069 0.080

Semiconductors 0.076 0.041 0.082 0.091

Software 0.080 0.043 0.105 0.085

All three sectors 0.076 0.047 0.090 0.084

TABLE 3. Patent Sales, Patent-Market Liquidity, and the Annual Startup 
Debt Rate Across Time and Technology Sectors

NOTE: In Panel A,  "Patent sales" is a running stock of U.S. patents less than eight 
years old that were sold by year t. Sector-level tallies are based on USPTO invention 
class-subclass lists. In Panel B, "Patent Market Liquidity" adjusts the sales 
(transactions) counts by the pool of patents available for trading, defined as all U.S. 
patents issued in the same set of PTO class-subclasses for the sector in the prior eight 
years. In Panel C, "Annual startup debt rate" is the sample probability that a startup 
secures patent-backed lending in a given year. See Appendix I for data sources.

B. Patent Market Liquidity

A. Patent Sales

C. Annual Startup Debt Rate (within-sample)
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Not Yet VC-
Backed

VC backed:  
Has Top-Tier 

VC

VC backed:  
Lacks Top-

Tier VC

T-test:  Has vs 
Lacks Top-tier VC   

(p-value)

Pre-boom (1987-97) 0.022 0.064 0.056 0.50

Boom years (1998-99) 0.041 0.116 0.080 0.06

Post-boom (2000-08) 0.045 0.093 0.073 0.00

All years 0.030 0.071 0.091 0.00

Note: Debt rate is the sample probability that a startup secures a loan in a given year. Has Top-Tier 
VC is equal to 1 if the startup has already secured VC financing from at least one investor with 
reputation score in the top 25 percentile of the annual distribution of scores reported in LPJ2011. 

TABLE 4. Startup Debt Rate and VC backing:  Startups with vs. without Top-Tier VC

Time periods

 

Mean S.D. Min Max # Startups
# Startup- 
Year Obs.

Debt 0.08 0.26 0 1 1,519 11,298
Post VC 0.84 0.36 0 1 1,519 11,298
Has Top-Tier VC 0.55 0.50 0 1 1,519 11,298
Patent Market Liquidity 0.045 0.017 0 0.085 1,519 11,298
Firm-Specificity of Patent Assets 0.089 0.156 0 1 1,519 11,298
Patent Portfolio Size (Citation Weighted) 47.57 133.91 0 3,639 1,519 11,298
Patent Portfolio Size 7.29 12.24 0 199 1,519 11,298
Funds Raised Last Equity Round (million $) 8.82 11.13 0 122 1,519 11,298
Founding Year 1994.81 3.55 1987 1999 1,519 11,298
Primary sector = software 0.52 0.50 0 1 1,519 11,298
Primary sector = semiconductors 0.13 0.34 0 1 1,519 11,298
Primary sector = medical devices 0.35 0.48 0 1 1,519 11,298
Pre-boom period (1987-1997) 0.25 0.43 0 1 1,519 11,298
Boom period (1998-1999) 0.15 0.36 0 1 1,519 11,298
Post-boom period (2000-2008) 0.60 0.49 0 1 1,519 11,298

Debt 0.11 0.32 0 1 119 714
Post VC 0.88 0.32 0 1 119 714
Has Top-Tier VC 0.63 0.48 0 1 119 714
Patent Market Liquidity 0.044 0.016 0 0.070 119 714
Firm-Specificity of Patent Assets 0.07 0.11 0 0.67 119 714
Patent Portfolio Size (Citation Weighted) 45.72 77.55 0 648 119 714
Patent Portfolio Size 7.52 11.33 1 86 119 714
Funds Raised (million $) 21.70 23.80 0 144.6 119 714
Founding Year 1994.16 2.94 1987 1999 119 714
Primary sector = software 0.75 0.43 0 1 119 714
Primary sector = semiconductors 0.25 0.43 0 1 119 714
Recent Fund 0.81 0.40 0 1 119 714

NOTE:  Appendix I reports variable definitions and data sources. 

TABLE 5. Summary Statistics at the Startup-Calendar Year Unit of Analysis

A.  Main Analysis (all three sectors, years = 1987-2008)

B.   Difference-in-Differences Analysis (semi and software sectors only; years=1997-2002)
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Figure 1.  Venture Lending as a Way to “Extend the Financial Runway” of a 
Startup 

 
Source:  Hardymon, Lerner, and Leamon (2005). 

 
 
Figure 2. Average annual debt rate before and after first VC equity infusion: overall 
and by age thresholds 

 
 

 
 

Note:  Average annual debt rate is the sample probability of startups securing a loan in 
a given year. 
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Figure 3. Non-Parametric Differences in Differences 
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APPENDIX I  
Table A.1.  Main Variables and Data Sources 

 Definition Data Source 
Dependent Variable 
DEBTit Indicator set to 1 if at least one patent awarded 

to startup i is involved in a “security interest” 
agreement (i.e., used to secure a loan) in year t 

USPTO 
Assignments Data 

Main Independent Variables 
Post VCit  Indicator that switches from zero to one in 

the year that the startup first receives VC 
financing 

VentureOne 

Has Top-Tier VCit  1 if the startup is backed by a VC in the top 
25 percent of the annual LJP reputation score 
distribution (sometimes time-invariant; see 
notes on output tables) 

LPJ2011 

Recent Fundi 1 if the average age of the youngest funds 
managed by a startup’s investors in the year 
2000 is less than 5 years old  

PREQIN 

Patent Market Liquidityit startup i’s combined probability (averaged 
across patents in its portfolio as of year t) 
that patents issued in the prior 8 years in its 
sector are traded by year t 

USPTO 
Reportsa; Graham 
and Vishnubhakat 

(2013)b; RPX 
Corp 

Firm-Specificityit Proxy for degree to which the value of 
startup i’s patents are “firm-specific”; 
measured as the share of patents citing 
startup i’s patents within three years that are 
made by the focal startup (i.e., are “self-
cites”). In the few instances where no patents 
within a startup’s portfolio are cited within 
three years, we set the variable to zero. 

USPTO 
patent data 

Additional Startup-Level Covariates 
Patent Portfolio Size 
(citation weighted)it 

Cumulative # successful U.S. patent 
applications of startup i by year t, weighted 
by the # of citations each patent receives 3-
years post-grant 

Delphion 

Funds raised last equity 
round it 

Millions of US$ raised in startup i’s last 
equity financing round as of year t, 

VentureOne 

Founding Yeari Year startup i was founded  VentureOne 
Sectori Startup i’s primary sector:  medical devices, 

semiconductor devices, or software  
VentureOne 

Time Periodt  Indicates if year is in pre-boom (1987-1997), 
boom (1998-1999), or post-boom (2000-
2008) period 

VentureOne 

 
a The list of class-subclass combinations relevant for medical device inventions is available from the 

USPTO website at:  http://www.uspto.gov/web/offices/ac/ido/oeip/taf/meddev.htm. A parallel list for 
semiconductor devices is at: http://www.uspto.gov/web/offices/ac/ido/oeip/taf/semicon.htm.  

b The class-subclass list relevant for computer software invention, equivalently compiled by USPTO 
examiners, is reported in Graham and Vishnubhakat (2013) on page 75, footnote 7. 
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