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Abstract 

We propose a model to compute short-term forecasts of the Euro area GDP growth in real-

time. To allow for forecast evaluation, we construct a real-time data set that changes for 

each vintage date and includes the exact information that was available at the time of each 

forecast. In this context, we provide examples that show how data revisions and data 

availability affect point forecasts and forecast uncertainty. 
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1 Introduction

Early assessments of the ongoing evolution of the economic activity are of crucial interest

for successful execution of economic agents decisions. In the Euro area, the lack of timely

information associated with the publication of the macroeconomic variables, the presence

of missing values in the historical time series, and the short length of the Euro-wide ag-

gregates, make the day to day monitoring of the economic activity especially problematic.

The objective of this paper is to provide a statistical method flexible enough to, dealing

with these shortcomings, allow for the analysis of the short-term economic growth in the

Euro area.

The generally accepted reference series to anticipate short-term economic developments

is the Euro area GDP growth rate. However, the “final” estimates of GDP growth, the

so called second release, is published with a delay of about 14 weeks after the end of

the respective quarter. Given this publication delay, forecasters and researchers try to

identify the current economic developments by using indicators which are more timely

available although exhibit similar economic fluctuations than the reference series. Natural

indicators are the two early announcements of the second release which are called flash

and first releases, respectively. Other candidates are monthly indicators which are based

on either economic activity data (hard indicators) or surveys (soft indicators) since they

exhibit much shorter publishing delay than the second releases.

For this purpose, we use a coincident indicator approach which is based on an extension

of the dynamic factor model described in Mariano and Murasawa (2003). Their baseline

model is flexible enough to deal with temporal aggregation, and short samples. However,

we extend the model in several directions in order to take into account the typical problems

affecting the real-time economic analyses such as dealing with variable reporting lags or

early announcements of the series of interest. In addition, since the original proposal was

developed to construct in-sample economic indicators, we adapt the model to compute

GDP growth rate forecasts in real time. Using these extensions, we examine the evolution

of the model uncertainty as new data with more accurate information become available in

real time since the model is updated each day that new data are released. Our proposed
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framework can also be viewed as a metric to measure the news associated with each

realization of the indicators. This measure is based on the effect that new releases have

on expected economic growth.

To understand how our proposal differs from the related literature it is worth empha-

sizing the double objective of our dynamic factor model. First, we construct the model

with the aim of forecasting quarterly growth rate of GDP which simplify the evaluation

(and accountability) of the forecasts versus other contributions, such as the (new) Euro-

coin indicator advocated by Altissimo et al. (2006), which focus on narrower definitions of

the “medium to long term” component of GDP growth whose forecasts are more difficult

to evaluate. In this sense, our paper situates among those in the literature which try to

use real-time data to continuosly update measurements and forecasts of lower frequency

objects (as GDP). This approach is different from the one of those papers which try to

measure high frequency objects (as real-time activity) on a daily or hourly bases. These

papers try to measure a latent variable (real-time activity) related but distinct from the

observed variable that we try to forecast (GDP). A good example of this approach is the

contribution of Aruoba, Diebold and Scotti (2008).

The second objective of our model is to evaluate the impact that the information con-

tained in the new releases of each indicator has on the short-term predictions of GDP

growth rates. Hence, full dynamic forecasts of each indicator should be used to discrim-

inate between the unpredictable and the predictable parts of the new data releases and

therefore to change the forecast of growth accordingly. For this purpose, we need a fully

specified dynamic factor model for all the variables included in the model. This requires

that GDP forecasts must rely on a single specification that accounts for the full dynamic

interactions among GDP, its announcements and the monthly indicators. Consequently,

we are precluded from using the univariate bridge equations employed by Runstler and

Sedillot (2003) and Dirhon (2006). Independent approaches to forecast Euro area GDP

growth are Angelini et. al (2008) and Banbura and Runstler (2007) which employ large

scale dynamic factor models to forecast European. However, in contrast to our specifica-

tion, in these empirical applications they assume that the idiosyncratic components of all

the indicators evolve as white noises. Additionally, none of them evaluate the forecasting 
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accuracy in real time.

In the empirical analysis, we develop several exercises which lead to many interesting

results. First, we accommodate the three Euro area GDP releases in a statistical model

to examine the impact of preliminary announcements and data revisions in real time fore-

casting. We find that when all the information whiting each quarter is properly combined,

the model improves upon the accuracy of preliminary announcements in forecasting GDP.

Second, we illustrate the importance of relying on current-vintage as opposite to end-of-

sample vintage data sets when analyzing forecasting accuracy in real time. The latter

implicitly make the unrealistic assumption that data revisions are not important in real

time which may lead to misleading results. Third, according to Banbura and Runstler

(2007), we find that suitable treatment of publication lags may lead business surveys to

provide important sources of information in predicting GDP beyond that of real activity

data. Business surveys are especially relevant in the months previous to the publication

of hard indicators. Fourth, we assess the evolution of forecast uncertainty in real time,

showing that the uncertainty about the GDP forecast continuously decreases during the

forecasting period. It falls about one third due to the publication of monthly indicators

and falls again significantly with the flash releases. However, falls in uncertainty provided

by first announcements are of much less importance.

Our final contribution has to do with the construction of the real-time data set that

include the vintages that were available at the time of each forecast. The data refer to the

piece of information that a forecaster would have had available at any given day in the past

five years. This allow us to evaluate the relative relevance of our forecasts compared with

some of the most popular Euro area GDP growth forecasts. Among them, we include the

forecasts from the Eurocoin, the European Commission macroeconomic forecasts, the Euro

area GDP growth projection of DG ECFIN, the IFO-INSEE-INSAE economic forecast,

and the Projections of the OECD Economic Outlook. In terms of mean squared errors, we

provide forecasts which are better than all of them for most of the forecasting horizons.

To sum up, in this paper we present a model which computes accurate short term

forecasts of Euro area GDP growth in real time. The forecasts rely on the literature on

coincident indicators which we extend to account for the specificities of real time forecast-
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ing and the full specification of the idiosyncratic component of each indicator. The name

of the proposal is then based on these features: a model that combines the Short Term

INdicators of Growth (STING).

The paper is organized as follows. Section 2 outlines the proposed methodology and

analyzes how to deal with mixing monthly and quarterly frequencies of flow data, how to

use early estimates of GDP growth and how to estimate the model. Section 3 evaluates

the empirical reliability of our method. Section 4 concludes and proposes several research

lines.

2 The model

In this section we develop a state space representation of a model to compute short term

forecasts of Euro area GDP growth in real time from a data set that may include mixing

frequencies and missing data.

2.1 Mixing frequencies

This paper deals with the problem of mixing monthly and quarterly frequencies of flow

data by treating quarterly series as monthly series with missing observations. Let Gt be

a quarterly series which is observable every third period and whose logs are integrated

of order one. In this paper, series with these characteristics are the time series of GDP

(second), its announcements (first and flash) and employment. These series are the quar-

terly aggregates of monthly series, Xt, which are assumed to be observable in this section.

Accordingly, we can construct quarterly time series from monthly series by adding the

monthly values of the corresponding quarter

Gt = 3

µ
Xt +Xt−1 +Xt−2

3

¶
, (1)

which means that the quarterly levels are three times the arithmetic mean. However,

handling with this definition would imply using non-linear state space models, which is

rather troublesome. Mariano and Murasawa (2003) avoid this problem by approximating

BANCO DE ESPAÑA       12 DOCUMENTOS DE TRABAJO N.º 0807 

 



the arithmetic mean with the geometric mean. It is worth noting that if monthly changes

are small the approximation error is almost negligible.1 In practice, monthly changes of

production and employment are small (less than a percentage point) so the geometric

approximation is appropriate.

In this context, Proietti and Moauro (2006) and Aruoba, Diebold and Scotti (2008)

propose dynamic factor models that permit exact filtering which avoids the approximation

proposed by Mariano and Murasawa (2003). However, their proposals are not exempt of

problems. The former authors develop an exact filter in a non-linear framework which

involves approximations in its own. The latter authors propose a filter that is developed

in a dynamic factor model where all the indicators used in the filter have to be assumed

to have a polynomial trend.

Hence, we assume that the flow data at any quarter is three times the geometric mean

of the monthly issues within the given quarter:

Gt = 3 (XtXt−1Xt−2)
1/3 , (2)

which yields

lnGt = ln 3 +
1

3
(lnXt + lnXt−1 + lnXt−2) . (3)

Taking the three-period differences for all t and after some algebra, we can express the

quarter-on-quarter growth rates (gt) of the quarterly series as weighted averages of the

monthly-on-monthly past growth rates (xt) of the monthly series

gt =
1

3
xt +

2

3
xt−1 + xt−2 +

2

3
xt−3 +

1

3
xt−4. (4)

2.2 Flash, first and second GDP growth rates

Eurostat revises two times the GDP figures that correspond to a given quarter. The first

estimate of GDP growth rate in the Euro area, yft , is released about 45 days after the end

of the respective quarter and this is the so-called flash estimate. Although it is very useful

to have an early estimate of GDP, the disadvantage of this flash estimate is that it is based
1For example, even if we assume a high constant growth of 1% each month (annual growth rate of more

than 12%), the difference between the arithmetic and the geometric means is less than 0.4 percentage

points.
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on incomplete information. Using more comprehensive information, the revision of this

figure is published about 20 days after the flash and this is the so-called first estimate,

y1stt . In addition, as new information is available, the second estimate of GDP growth

rate, y2ndt , incorporates an additional revision about 40 days after the first and this is the

so-called second estimate. According to this revision process, let us call e1 the revision

between the flash and the first, and e2 the revision between the first and the second.

Due to data constraints (flash and first estimates are just available since 2003.1 and

1998.3, respectively), we are precluded from developing formal tests in order to discrim-

inate between the news and noise versions of the revisions as described in Mankiw and

Shapiro (1986). In spite of this limitation, we follow Evans (2005) to propose that

yft = y2ndt + e1t + e2t, (5)

y1stt = y2ndt + e2t, (6)

where e1t and e2t are independent mean zero revision shocks with variances and σ2e1 and

σ2e2 , respectively.
2

2.3 State space representation

To consider the notion of comovements among the GDP series and the economic indica-

tors, the time series are modelled as the sum of two orthogonal components. The first

component is the common factor, ft, and reflects the notion that the series dynamics

are driven in part by common shocks. The second component captures the idiosyncratic

behavior of each series.

For clarity in the exposition, let us start by assuming that all variables are always

observed at a monthly frequency. Monthly growth rates of quarterly series and monthly

growth rates of hard indicators are assumed to exhibit a direct relation with the common

factor which measures the common component of the monthly growth rates of these series.

However, the relation between the common factor and the soft indicators is treated in a

2For simplicity, we assume that e1t and e2t are uncorrelated. Adding correlation between errors is

straightforward, but we think that the available sample of flashes and firsts is still too short to formulate

elaborated models.
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different manner. European Commission (2006) acknowledges that each confidence indi-

cator is calculated as the simple arithmetic average of the balances of answers to specific

questions chosen from the full set of questions in each individual survey. The selection of

questions is guided by the aim of achieving an as high as possible coincident correlation of

the confidence indicator with the reference series, such as year-on-year growth in industrial

production, at euro-area level. Accordingly, we relate the level of soft indicators with the

year-on-year common growth rate which can be written as the sum of current values of

the common factor and its last eleven lagged values.

Let us collect the rh hard indicators in the vector Zh
t and the rs soft indicators in

the vector Zs
t . Let lt be the quarterly employment growth rate, and let u1t, u2t, U

h
t ,

and Us
t be the scalars and rh-dimensional and rs-dimensional vectors which determine the

idiosyncratic dynamics of GDP, unemployment and the economic indicators, respectively.

The measurement equation can be defined as

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y2ndt

Zh
t

Zs
t

lt

y1stt

yft

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

β1
¡
1
3ft +

2
3ft−1 + ft−2 +

2
3ft−3 +

1
3ft−4

¢
β2ft

β3

11X
j=0

ft−j

β4
¡
1
3ft +

2
3ft−1 + ft−2 +

2
3ft−3 +

1
3ft−4

¢
β1
¡
1
3ft +

2
3ft−1 + ft−2 +

2
3ft−3 +

1
3ft−4

¢
β1
¡
1
3ft +

2
3ft−1 + ft−2 +

2
3ft−3 +

1
3ft−4

¢

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
3u1t +

2
3u1t−1 + u1t−2 +

2
3u1t−3 +

1
3u1t−4

Uh
t

Us
t

1
3u2t +

2
3u2t−1 + u2t−2 +

2
3u2t−3 +

1
3u2t−4

1
3u1t +

2
3u1t−1 + u1t−2 +

2
3u1t−3 +

1
3u1t−4

1
3u1t +

2
3u1t−1 + u1t−2 +

2
3u1t−3 +

1
3u1t−4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

0

0

e2t

e1t + e2t

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (7)

where Uh
t = (v1t, ..., vrht)

0, Us
t = (vrh+1t, ..., vrt)

0, and r = rh + rs. The factor loadings,

β =
³
β1 β02 β03 β4

´0
, measure the sensitivity of each series to movements in the

latent factor and have dimensions that lead them to be conformable with each equation.

8
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The dynamics of the model is achieved by assuming that

ft = a1ft−1 + ...+ am1ft−m1 + �ft , (8)

u1t = b1u1t−1 + ...+ bm2u1t−m2 + �u1t , (9)

vjt = cj1vjt−1 + ...+ cjm3vjt−m3 + �
vj
t , (10)

u2t = d1u2t−1 + ...+ dm4u2t−m4 + �u2t , (11)

where �ft ∼ i.i.d.N
³
0, σ2f

´
, �u1t ∼ i.i.d.N

¡
0, σ2u1

¢
, �vjt ∼ i.i.d.N

³
0, σ2vj

´
, with j = 1, ..., r,

and �u2t ∼ i.i.d.N
¡
0, σ2u2

¢
. All the covariances are assumed to be zero. The identifying

assumption implies that the variance of the common factor, σ2f , is normalized to a value

of one.

More compactly, one can use the expression for the measurement equation

Yt = Hht + wt, (12)

with wt ∼ i.i.d.N (0, R). In addition, the transition equation can be stated as

ht = Fht−1 + ξt, (13)

with ξt ∼ i.i.d.N (0, Q). An extensive description of how these equations look like for the

empirical model has been stated in Appendix A.

To handle with missing observations, we substitute the missing observations with ran-

dom draws θt from N(0, σ2θ) which are independent of the model parameters. The sub-

stitutions allow the matrices to be conformable but they have no impact on the model

estimation since the Kalman filter uses for them the data generating process of the normal

distribution. In that sense, the missing observations add just a constant in the likelihood

function of the Kalman filter process. Let Yit be the i-th element of the vector Yt and Rii

be its variance. Let Hi be the i-th row of the matrix H which has α columns and let 01α

be a row vector of α zeroes. In this case, the measurement equation can be replaced by

9
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the following expressions

Y ∗it =

⎧⎨⎩ Yit if Yit observable

θt otherwise
, (14)

H∗
it =

⎧⎨⎩ Hi if Yit observable

01α otherwise
, (15)

w∗it =

⎧⎨⎩ 0 if Yit observable

θt otherwise
, (16)

R∗iit =

⎧⎨⎩ 0 if Yit observable

σ2θ otherwise
. (17)

This trick leads to a time-varying state space model with no missing observations so the

Kalman filter can be directly applied to Y ∗t , H
∗
t , w

∗
t , and R∗t . Let ht|τ be the estimate of

ht based on information up to period τ and let Pt|τ be its covariance matrix. With this

notation, the prediction equations are

ht|t−1 = Fh
t−1|t−1 , (18)

Pt|t−1 = FPt−1|t−1F
0 +Q. (19)

The prediction errors are ηt|t−1 = Y ∗t −H∗
t ht|t−1 with covariance matrix ζt|t−1 = H∗

t Pt|t−1H
∗0
t +

R∗t . Hence, the log likelihood can be computed in each iteration as

lt = −
1

2
ln
³
2π
¯̄̄
ζt|t−1

¯̄̄´
− 1
2
η0t|t−1

³
ζt|t−1

´−1
ηt|t−1. (20)

The updating equations are

ht|t = ht|t−1 +K∗
t ηt|t−1, (21)

Pt|t = Pt|t−1 −K∗
tH

∗
t Pt|t−1, (22)

where the Kalman gain, K∗
t , is defined as K

∗
t = Pt|t−1H

∗0
t

³
ζt|t−1

´−1
. The initial values

of h0|0 and P0|0 used to start the filter are a vector of zeroes and the identity matrix,

respectively. Note that when at any date τ all the elements of the vector Yτ are not

observed, the updating equation is hτ |τ = hτ |τ−1 and time τ does not change the estimated

dynamics of the model. This feature can be used to easily compute forecasts by adding

missing data for all the variables in the model at the end of the sample.

10
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It is worth noting that the Kalman filter allows for computing the contribution of

each series to GDP forecasts. Substituting the prediction errors ηt|t−1 and (18) into the

updating equation (21), one obtains

ht|t = (I −K∗
tH

∗
t )Fht−1|t−1 +K∗

t Y
∗
t . (23)

Now, when the Kalman filter is close to its steady state, this expression becomes

ht|t =M∗
t (L)Y

∗
t , (24)

with the elements of the matrix of lag polynomial M∗
t (L) = (I − (I −K∗

tH
∗
t )FL)

−1K∗
t

measuring the effects of unit changes in the lags of individual observations on the inference

of the state vector ht|t. Letting M∗
jt be each of these matrices, the inference on the state

vector can be decomposed into a weighting sum of observations

ht|t =
∞X
j=0

M∗
jtY

∗
t−j . (25)

In this sense, M∗
t (1) = (I − (I −K∗

tH
∗
t )F )

−1K∗
t is a matrix that contains the cumulative

impacts of the individual observations in the inference of the state vector.

Combining this relation with the first row of equation (7) which shows that GDP

can be decomposed into the sum of its unobservable components, one can compute the

cumulative impact of each indicator to the forecast of GDP growth. For the empirical

illustration stated in Appendix A, this measure can be easily obtained as follows

ψt = β1

µ
1

3
m∗1t +

2

3
m∗2t +m∗3t +

2

3
m∗4t +

1

3
m∗5t

¶0
+

µ
1

3
m∗13t +

2

3
m∗14t +m∗15t +

2

3
m∗16t +

1

3
m∗17t

¶0
,

(26)

where m∗it is the i-th row of M∗
t (1), and ψt is a vector which contains the cumulative

forecast weight of each indicator.

3 Empirical results

3.1 Data description

The variables entering the proposed model are listed in Table 1 and plotted in Figure

1. For its interest in real time forecasts, the particular date on which these series are

11
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published and the samples that they cover are also shown in the figure. Note that the day

on which the paper was written, 02/11/08, GDP growth and its announcements for the

third quarter of 2007 are available, but none of these figures are available for the fourth

quarter of 2007.

The list of indicators which are included in the dynamic factor model can be classified

into three groups. The first group contains quarterly indicators. Apart from the second

release of GDP and its early estimates (flash and first), the quarterly series of employ-

ment is included in this group. The second group of indicators is formed by monthly hard

indicators which are based on economic activity data. In particular, they are the Euro

area Industrial Production Index (IPI, excluding construction), the Industrial New Or-

ders index (INO, total manufacturing working on orders), the Euro area total retail sales

volume, and the extra-Euro area exports. Table 1 shows that these indicators exhibit

large publication delays that range from 35 to 52 days. The last group of time series is

constituted by soft indicators, which are based on survey data. The included soft indica-

tors are the Euro-zone Economic Sentiment Indicator (ESI), the German business climate

index (IFO), the Belgian overall business indicator (BNB), and the Euro area Purchasing

Managers confidence Indexes (PMI) in the services and manufactures sectors. The main

characteristic of soft indicator is that they are promptly available and can be observed in

Table 1 since these indicators are available timely within the reference month.

To consider the full dynamic specification of all the variables included in the model, we

deal with a relatively reduced number of indicators. However, it is not necessarily a dis-

advantage compared with large scale models. The problem of a prior selection of variables

is not fully solved in the generally proposed large scale models for the Euro area, because

none of them use all the information available in real time at all levels of disaggregation

for all the countries and regions used in the analysis. Hence, prior to constructing the

forecasts, the exercise of selecting the indicators used in the analysis have to be developed

in any case. In addition, the level of complexity that large scale models incorporates to

real time analysis is not always justified. In the context of forecasting, Boivin and Ng

(2006) have recently suggested that the forecast accuracy does not necessarily increase

with the number of series included in the model and Banbura and Runstler (2007) find

12
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that most of the predictive content of their large scale model is contained in a small set

of variables.

In this paper, the selection of indicators is based on the advice of professional fore-

casters. Once we defined a set of core variables which were chosen by most of forecasters,

we decided to include an additional variable when it increases the percentage of variance

explained by the common factor. In that sense, we declined the inclusion of different

financial indicators such as term premium and risk premium and other commonly used

real variables such as registration of vehicles.

Depending on the nature of the data, these time series are transformed in different

ways.3 GDPs and employment are used in quarterly growth rates. Hard indicators are

transformed by taking monthly growth rates. However, soft indicators are included in

levels. In addition, to be included in the dynamic factor model, all of these series have

been normalized to have zero mean and unit variance.

Following the method outlined in Section 2, missing data are conveniently replaced

by random numbers which have been generated from N(0, 1). Figure 2 provides a clear

outlook of the importance of missing data in the Euro area forecasting exercises. First,

many series start too late. Retail sales, industrial new orders, exports, employment, BNB

and PMI start in the second half of the nineties, and flash and first are just available for

the last four and nine years, respectively. Second, hard indicators exhibit a publication

delay of one or two months which leads to missing data at the end of the sample. Finally,

quarterly series do not contain monthly issues and, apart from the standard publication

delays, they are available just the third month of each quarter.

3.2 In-sample analysis

The in-sample analysis have been carried out with the most updated data set available on

February, 11th 2008. To facilitate the reader inspection of the differences in release dates,

the last rows of the data set have been reported in Table 2. In this table we can observe

the particularities of real-time forecasting. Data for quarterly series appear just in the

third month of each quarter and, although the vintage refer to 2008, their figures for the

3These transformations imply that although some series are integrated they are not cointegrated.
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fourth quarter of 2007 are not available yet. Soft indicators contain data until January

2008 while hard indicators exhibit their typical publication delays of one and two months.

In the next forecasting dates but not in this vintage, preliminary advances of GDP growth

(flash and first) will be available for the last quarter of 2007.

To understand how our proposed method predicts, recall that our interest is on short

term forecasting. For this purpose, the model has been developed to forecast a rolling

window of nine months that are moving according to the publication date of the second

estimates. The day we wrote the paper, the last available second release of GDP was the

third quarter of 2007 which was released on January, 9th 2008. Hence, from this date

until April, 9th 2008 (the release date for GDP second of the last quarter of 2007) the

forecast of GDP that our model produces include the period from October 2007 to June

2008 (fourth quarter of 2007, first quarter of 2008 and second quarter of 2008). From April

9th 2008 the previsions will cover the nine months from January 2008 to September 2008

(first three quarters of 2008). Since second estimates are part of the observed variables

in the measurement equation, these nine-month forecasts can be obtained directly from

the Kalman filter iterations by imposing nine months of missing observations after the

last figure that is available for second releases. Accordingly, the in-sample vintage of data

reported in Table 2 shows missing observations for GDP growth from October 2007 to

June 2008.

The model adopted in this paper is based on the notion that comovements among

the macroeconomic variables have a common element, the common factor, that moves

according to the Euro area business cycle dynamics. To check if the estimated factor

agrees with the Euro area business cycle, Figure 2 plots the factor (left scale) and the

Eurocoin (right scale) published by the CEPR which is probably the leading coincident

indicator of the euro area business cycle. The similarities between their business cycle

dynamics are striking suggesting that they track the same business cycle pattern.

The maximum likelihood estimates of the factor loadings, which reflect the degree

to which variation in each observed variable can be explained by the latent series, are

reported in Table 3.4 In all cases, the estimates are positive and statistically significant,

4Other maximum likelihood estimates are available from the authors upon request.

14

BANCO DE ESPAÑA       21 DOCUMENTOS DE TRABAJO N.º 0807 

 



indicating that these series are procyclical, i.e., positively correlated with the common

factor.5 Although all the series contain incremental information about the Euro area

business cycle pattern, there are some differences in the absolute sizes of the corresponding

factor loadings. Our estimates show that real activity data exhibit the highest loading

factors. In particular, the highest impact of the common component is on industrial

production (0.21), closely followed by industrial new orders (0.19) and second (0.12).

However, loading factors of soft indicators tend to be lower than those of real activity

data and all of them are below 0.07. As we will examine later on, this result does not

necessarily should be interpreted as evidence in contrast to survey data. These in-sample

estimates may reflect the fact that ignoring the timely advantages of soft indicators would

diminish their role in factor models when hard indicators are available.

Second GDP forecasts can be examined in Figure 3 and Table 4. Figure 3 plots

the monthly estimates of GDP quarterly growth rates along with their actual values.

According to the methodology employed in this paper, the Kalman filter anchors monthly

estimates to actual whenever GDP is observed. Hence, for those months where GDP

is known, actual and estimates coincide. Table 4 (Panel A) shows how our proposal

anticipates the next future issues of the Eurostat data release process. The key issues are

the second GDP growth rates for quarters 2007.4, 2008.1 and 2008.2, which we call lagged,

current and future forecasts, respectively. In addition, this table presents the predicted

values for the next three quarters of flash and first estimates and their standard deviations.

In addition, recall that one of the differential advantage of our model is that it proposes

a complete dynamic specification for all the indicators. This allows us to compute accurate

forecasts not only for GDP but also for the whole set of indicators that are used to estimate

the dynamic factor model. These forecasts are crucial for forecasting exercises about

the expected changes in second predictions against different possible next values of these

indicators.6 Table 4 (Panel B) shows the forecasts for the next unavailable month of each

indicator.
5This is not surprising and is in agreement with conventional views of the business cycle.
6 Imposing white noise idiosyncratic dynamics will produce very naive forecasts since it would restrict

them to be proportional among the set of indicators, with constants of proportionality equal to the factor

loadings.
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Let us move to examine the cumulative forecast weights of each indicator. Table

5 shows the evolution of the last months of cumulative forecast weights (normalized to

add one) on GDP growth. Firstly, we concentrate on quarterly series. According to the

anchoring characteristic of our proposal, rows labelled as 2007.06 and 2007.09 reveal that,

when second is published, the cumulative forecast weights of all the indicator series on

GDP forecasts are zero.7 In addition, cumulative weights for quarterly series are zero for

the first two months of each quarter since they are missing observations and do not add

any information to the Kalman filter. It is important to notice that, using this specific

data set, flash, first and employment have always weights zero. These series only have

weights during the periods in which they are available but the corresponding GDP second

is not.8

Secondly, note that the last four rows of Table 5 are rows of zeroes and that they refer

to missing data in all the series included in the model. In these cases, GDP predictions

are computed from dynamic projections since no new data is incorporated in the model.

Then, the cumulative forecast weights of all the indicators fall to zero.

Finally, the evolution of the weights of monthly indicators dramatically depends on the

nature of the indicators and the date on which they are computed. Cumulative weights to

forecast second values up to 2007.11 are high and concentrated on hard indicators, basically

IPI and INO. However, the reported weights for soft indicators are typically smaller for

those forecasts. In line with the results of Banbura and Runstler (2007), this should not

be interpreted as a failure of soft indicators to incorporate useful forecast information

about GDP growth. It just means that they contain limited information beyond the real

activity data when the latter are already published. Once their more timely publication

takes place in short term forecasts, business surveys gain importance. Accordingly, the

table reports significant improvements in the cumulative weights of soft indicators in the

forecast of GDP growth for 2007.12. In this month, IPI, INO and Exports are not available

and the two highest weights refer to soft indicators (weights of PMIs are 0.30 and 0.21 for

manufactures and services, respectively) followed by Sales (weights of 0.19). In 2008.01,

7The intuition behind this result is that once GDP is available, its figure is a sufficient statistic to

forecast GDP.
8 In these cases flash and first cumulative weights are about 0.8.
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hard indicators are no longer available so only survey data exhibit positive weights to

forecast GDP.9

Figure 4 illustrates how the model can be used to evaluate the reaction of GDP fore-

casts to different next issues of the indicators. The ESI indicator was lastly updated on

01/31/08, the expected value of ESI for that date was 104.2, and the estimate of GDP

growth rate for 2008.1 which was associated to this expected value was 0.47. The day be-

fore the ESI realization, we call the Kalman filter with the last vintage of ESI but where

the observation of January 2008 was filled in with simulated with values from about −15

to 220. The figure plots the GDP forecasts associated to these simulated values of ESI

and shows the GDP forecast changes due to potential ESI departures from its expected

value. The actual realization of ESI was 101.7 which implied a decrease in the predicted

GDP growth of about 0.06.

It is worth noting the logistic shape of GDP responses in Figure 4. The intuition

behind these responses is simple. Recall that the state vector updates according to two

sources of variation, the prediction error and the Kalman gain which decreases as the

variance of the state vector increases. As the generated values of ESI separates from the

expected value, the forecast error increases but, for extreme departures of the indicator

simulations from its expected value, the Kalman gain becomes negligible and the state

vector remains almost unchanged so the forecasts of GDP growth become flat.

3.3 Real-time analysis

As Croushore and Stark (2001) pointed out, developing a real-time data set is simple in

concept. However, producing real-time data require a great amount of effort in practise

since one has to handle with old and physical sources of data. In addition, the data set

should always follow the principle of plugging what data were available at what time in the

corresponding cell in order to use each day of the forecast just the time series information

available at those days. According to this principle, we have constructed a data set that

gives the forecasters a picture of the data that were available at any given day in the past

four years (2004-2008).

9We will come back to the role of soft indicators in real-time forecasting in the next section.
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Each day that a particular series of our data set was updated, we collect the whole

set of time series available at this moment in “vintages” that were called vint-mm/dd/yy.

These vintages were kept fixed until the day that a new series was updated. Hence, we

compile different vintages which contain just the information that was available at the

days of the vintages so we can mimic the forecasting procedure that a forecaster would

have done during the last years. The first vintage for which we could collect data for all

indicators was vint-01/02/04 therefore we start the real-time analysis with the forecast of

GDP growth in the last quarter of 2003, which was still not available at that time. We

end up with 424 different vintages for the period 01/02/04 to 02/05/08.

Using the first vintage of our data set, called vint-01/02/04, we estimate the model and

compute the nine-months forecasts of GDP that include lagged (2003.3), current (2004.1)

and future (2004.2) forecasts as described in the in-sample exercise. In order to keep

the exercise feasible, we use the estimated parameter in the next 28 vintages until the

second release for the last quarter of 2003 is published on 04/16/04. The model is then

re-estimated and the procedure is then recursively repeated until the last vintage of our

data set, vint-02/05/08, that was also used to perform the in-sample analysis.

To illustrate how the real-time forecasting exercise is developed in each forecasting

period that includes the nine-months forecasts, we plot in Figure 5 the real time forecasts

that were made each day of two different forecasting periods. The chart on the top

includes all the last forecasts of GDP growth for 2007.4, i.e., forecasts made from 07/12/07

(publication day of 2007.1 GDP) to 02/11/08 (today). To evaluate uncertainty, the figure

also displays the associated one standard deviation error bands. With this chart we can

examine the model’s reactions to the financial turbulences that took place during the

summer of 2007. PMI services and manufactures were the first series to incorporate in

our model information about the business climate. In September 2007, these series fell

about −3.82 and −1.13 points, with the former figure representing the larger decline in

the history of PMI services. In addition, BNB, IFO and ESI also exhibited strong declines

of about −1.8, −1.6, −3.1, respectively. As can be observed in the figure, the declines

in GDP growth forecasts came soon after. As soon as these data were introduced in the

model, GDP forecast falls 0.3 percentage points. After one month of low forecasts, the
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recovery of most of the survey data and the relatively better news that came from real

activity data (especially from IPI which grew about 0.5% in August) let GDP forecasts

up to partially compensate the summer’s falls.

The bottom chart of Figure 5 plots the forecasts of the second forecasting exercise.

The figure shows the real time forecasts of GDP for 2006.3 over the period from 04/12/06

to 01/10/07. This period is particularly interesting since, being a recent period, reflects

the revisions process suffered by second GDP growth. The revision of this quarter appears

in the difference between the data that has actually been published as it was available in

real-time (bottom horizontal line) and the data as it appears in the current revision (top

horizontal line). Although both flash and first were about 0.52 which roughly coincides

with the figure issued on 01/11/07, we were forecasting almost a second growth of 0.58

for 2006.3. However, Eurostat has revised up this figure to 0.58 in the GDP time series

published on 01/09/08. This example is very illustrative to show the importance of truly

real-time exercises by using current-vintage data sets instead of end-of-sample vintage data

sets to asses real-time forecasting performance.10 In addition, the exercise illustrates that,

as suggested by Orphanides and van Norden (2002), real-time forecasts must be compared

with the last vintage as final data in the measurement of output.

The relation between the incoming of new and updated information and the forecast

error is examined in Figure 6. This figure plots the sample average of the standard errors

associated to each GDP forecast of any of the 275 days that last each forecasting exercise.

Although the standard errors may vary somewhat from quarter to quarter, on average the

uncertainty about the GDP forecast continuously decreases during the forecasting period.

The forecast uncertainty falls about one third during the first 200 days as information

from the indicators become available to compute the forecasts. The variance then falls

significantly following the flash releases. However, the falls in uncertainty provided by the

first releases are of much less importance. This pattern indicates that the first releases

provides less new information about GDP growth beyond that already contained in the

flash estimates.

One additional interesting exercise is to examine the forecasting accuracy of our model

10The out-of-sample data sets are based on final data that are cut in some date and sequentially enlarged.
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with respect to the preliminary announcements of GDP growth. For this purpose, we

report in Table 6 the Mean Squared Errors (MSE) which refer to forecast comparisons

among the preliminary announcements and the revised values of second GDP (vintage

01/09/08) along with the MSE from Euro-STING forecasts which were made on different

days of the forecasting process: the days before and after flash and first releases. According

to this table, the Euro-STING forecasting accuracy on the days before flash releases (MSE

of 0.027) is similar but slightly worse than that of the preliminary announcements (MSE of

0.024 and 0.025).11 However, the MSE of the Euro-STING forecast on the day on which

the flash is released is 0.022 which reduces the MSE of the flash estimates themselves.

Something similar happens with the first releases. But in this case, incorporating the

information of first releases in the model leads to dramatic reductions in MSE which falls

to 0.014. Accordingly, preliminary announced GDP cannot be considered as the most

accurate forecasts of the revised GDP figures. Using the upcoming information from all

the indicators is important to improve upon the forecasting accuracy in real time.

Before ending the real time forecasting section, let us take up again the issue of the

importance of the timely information contained in soft indicators. Figure 7 plots the rela-

tive cumulative forecast weights of all the observations corresponding to the first quarter

of 2007 on the forecast of GDP for that current quarter.12 As we can observe, on the

publication day of BNB for January (01/24/07) it was the only indicator available in that

quarter to infer the GDP growth of that period. Accordingly, BNB receives the 100% of

the relative forecast weight. As new information from other indicators is available, the rel-

ative forecast weights decrease until BNB is published in February (02/24/07) when there

is a new peak. The intuition for this peak is that there are two values of the BNB that

affect the inference of GDP for that quarter but only at most one issue for the rest of the

monthly indicators. Following the same reasoning, BNB weights decrease until the new

11 It is worth pointing out that the main gain of flash releases comes only from just one quarter, 2005.4.

Taking out this quarter, there is no additional information in the flash which is not already contained in

the Euro-STING model.
12We use 2007.1 because we wanted to analyze the weights evolution of a single series and after this

date, PMI were released before BNB. Weights for PMI are more difficult to interpret since they refer to

manufactures and services.
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peak corresponding to March 2007. After this peak, there is a long decline in BNB weights

as hard indicators become available. The last dramatic decline refer to the publication of

the flash estimate for this quarter on 05/15/07. Finally, weights collapse to 0 when second

GDP growth for 2007.1 is published on 7/12/07. This real-time exercise reinforces the

previous results that survey data contain valuable information to forecast GDP growth

apart from that contained in real activity data once their more timely publication is taken

into account.

3.4 Forecasting accuracy

Figure 8 provides a visual inspection of the good real-time forecast accuracy of our model.

This figure plots the forecasts for the most immediate quarter of GDP growth of our nine-

month forecasting exercise which were predicted every day of the real-time forecasting

period. The figure also displays the last available GDP growth figures (vintage vint-

02/05/07) which include the data revisions. In general, final values of GDP growth become

within the two-standard errors bands that appear in shaded areas.

To asses the relative forecasting accuracy of the real-time forecasts, we show in Ta-

ble 7 the mean squared errors of our forecast and those of a list of well-known forecasts

of Euro-area GDP growth rate. Among them, we include the Eurocoin forecasts, the

IFO-INSEE-INSAE economic forecasts, the European Commission macroeconomic fore-

casts, the projections of the OECD Economic Outlook, and the Euro-area GDP growth

projection of DG ECFIN.13

The Euro-STING forecasts are updated daily and that each of these days the model

computes GDP growth forecasts of the next nine months. However, its competitors publish

the forecasts with lower frequency and only some of them compute forecasts at different

horizons. For this reason, the first three columns of this table refer to forecast comparisons

which are made with different leads and lags with respect to the GDP figure that the

competitors are trying to forecast. It is worth noting that forecast comparisons have

been made carefully in the sense of comparing forecasts that refer to the same forecasting

horizon and that are available on the same day in which the competitor publishes its

13See Appendix B for a description of these forecasts.
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release. Note that this framework goes against our interest because the Euro-STING could

obtain better forecasts since it is updated daily and could use more updated information

than its competitors which do not change the forecasts during a whole month or even a

quarter.

In terms of mean squared forecast error, our simple and automatized model beats

most of its competitors. As shown in Table 7, the Euro-STING model outperforms the

Eurocoin forecasts, the IFO-INSEE-INSAE economic forecasts and the European Com-

mission macroeconomic forecasts. Relative to the projections of DG ECFIN, the Euro-

STING shows better forecasting performance as the forecasting horizon increases. The

Euro-STING forecasts are also comparable with those of the best of its competitors, the

projections of the OECD Economic Outlook.

In spite of the good forecasting performance, we are precluded from computing pairwise

comparison with the standard statistical tests due to data constraints. However, we are in

the condition to affirm that the Euro-STING forecasting performance is as good as that

of most familiar Euro area GDP growth forecasts in the forecasting arena. One significant

advantage of the Euro-STING forecasts relies on its promptly publication. Forecasts

are updated daily as new information become available which permits the day to day

monitoring in the Euro area.

4 Conclusion

Monitoring the Euro area economic developments in real time has been, continues to be,

and will be the source of many debates. How to deal with lacks of timely information

associated with the publication of the macroeconomic variables, how to fill in missing

values in the time series, how to use short Euro-wide aggregates, and how to open some of

the black-box proposals is still an open question. Our paper contributes to this literature

by providing a method that handles with all of these problems but keeping the model

sufficiently tractable to develop economic analyses in real time.

Using this model, we elaborate several empirical contributions. First, we construct

a new coincident indicator of the Euro area economy that evolves according to the Euro
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area business cycle dynamics. Second, we put some examples to illustrate that the analysis

of the forecasting accuracy in real time should rely on current-vintage data sets and not

on end-of-sample vintage data sets which may lead unrealistic results. Third, we show

that monthly indicators and flash announcements contain valuable information to reduce

forecast uncertainty. Finally, we find that once the timely publication of survey indicators

takes place in short term forecasts, business surveys gain importance with respect to

economic activity data.

We consider that the construction of a real-time data base is also a useful contribution.

The data base contains 424 different vintages which collect just the information that was

available to construct real time forecasts each day of the last five years. With this data

base we evaluate the forecasting accuracy of our model in a horse-race analysis against

the most familiar forecasts of the Euro area GDP growth rate. We find empirical support

in favor of our proposal.

The model developed in this paper provides a solid ground to take into account (at

least) two natural extensions. The former has to do with the pre-seasonally adjustment

of the series that is made by Eurostat. The usefulness of extending the baseline model

to handle with non seasonally adjusted series, which would follow the lines suggested by

Harvey and Shephard (1993), is twofold. First, it would allow researchers to examine

how different procedures handling with seasonality may affect forecast performance in real

time. Second, it would constitute an unified model for forecasting macroeconomic series

in those countries that produce non seasonally adjusted aggregates.

The latter extension has to do with anticipating changes on business cycle regimes. Dy-

namic factors models are probably the most appropriate framework to combine the two key

features of the business cycle: the idea of comovements among macroeconomic aggregates

and the dichotomy between expansions and recessions. Following the economic arguments

suggested by Diebold and Rudebusch (1996), the extension would try to unify the lin-

ear dynamic factor model proposed in this paper and the non-linear Markov-switching

methodology.

To sum up, we thing that the model presented in this paper, which describes and

evaluates what we call Euro-STING forecasts, is a good forecasting tool. It has good
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forecasting record, it is automatically updated when new information become available, it

constitutes a way of measuring the effects of news in the indicators on GDP growth rate,

and it allows for extensions that could embrace in the same framework several problems

such as seasonality and non-linearities that historically have been analyzed separately from

the forecasting exercise.
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Appendix A
To illustrate how the matrices stated in the measurement and transition equations look

like, let 0i,j be a matrix of (i× j) zeroes, Ir be the r-dimensional identity matrix, and

⊗ be the Kronecker product. According to the empirical application, let us assume that

m1 = m2 = m4 = 6, m3 = 2, rh = 4, and rs = 5. For simplicity, let us assume that all

variables are always observed at a monthly frequency.

In this example, the measurement equation, Yt = Hht + wt, with wt ∼ i.i.d.N (0, R),

can be expressed as

Yt =
³
y2ndt Zh0

t Zs0
t lt y1stt yft

´0
, (27)

wt = 01,r+4, (28)

R = 0r+4,r+4, (29)

ht = (ft, ..., ft−11, u1t, ..., u1t−5, v1t, v1t−1, ..., vrt, vrt−1, u2t, ..., u2t−5, e1t, e2t)
0 . (30)

The matrix H is in this case

H =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

H11 01,6 H12 01,8 01,10 01,6 0 0

H21 0rh,6 0rh,6 H22 0rh,10 0rh,6 0rh,1 0rh,1

H31 H31 0rs,6 0rs,8 H32 0rs,6 0rs,1 0rs,1

H4 01,6 01,6 01,8 01,10 H12 0 0

H11 01,6 H12 01,8 01,10 01,6 0 1

H11 01,6 H12 01,8 01,10 01,6 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (31)

where

H11 =
³

β1
3

2β1
3 β1

β1
3

2β1
3 0

´
, (32)

H12 =
³

1
3

2
3 1 1

3
2
3 0

´
, (33)

H22 = Irh ⊗
³
1 0

´
, (34)

H32 = Irs ⊗
³
1 0

´
, (35)

H4 =
³

β4
3

2β4
3 β4

β4
3

2β4
3 0

´
, (36)

H21 is a (rh × 6) matrix of zeroes whose first column is β2, and H31 is a (rs × 6) matrix

whose columns are β3.
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Using the assumptions of the underlying example, the transition equation can be stated

as follows. Let Q be a diagonal matrix in which the entries inside the main diagonal are

determined by the vector

q =
³
σ2f 01,11 σ2u1 01,5 σ2v1 0 ... σ2vr 0 σ2u2 01,5 σ2e1 σ2e2

´0
, (37)

The matrix F becomes

F =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a 012,6 012,8 012,10 012,6 0 0

06,12 b 06,8 06,10 06,6 0 0

08,12 08,6 ch 08,10 08,6 0 0

010,12 010,6 010,8 cs 010,6 0 0

06,12 06,6 06,8 06,10 d 0 0

01,12 01,6 01,8 01,10 01,6 0 0

01,12 01,6 01,8 01,10 01,6 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (38)

where

a =

⎛⎜⎜⎜⎜⎜⎜⎝
a1 ... a6 ... 0 0

1 ... 0 ... 0 0
...

...
. . .

...
...
...

0 ... 0 ... 1 0

⎞⎟⎟⎟⎟⎟⎟⎠ , (39)

b =

⎛⎜⎜⎜⎜⎜⎜⎝
b1 ... b5 b6

1 ... 0 0
...

. . .
...

...

0 ... 1 0

⎞⎟⎟⎟⎟⎟⎟⎠ , (40)

ci =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c11 c12 ... 0 0

1 0 ... 0 0
...

...
. . .

...
...

0 0 ... cr1 cr2

0 0 ... 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (41)
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d =

⎛⎜⎜⎜⎜⎜⎜⎝
d1 ... d5 d6

1 ... 0 0
...

. . .
...

...

0 ... 1 0

⎞⎟⎟⎟⎟⎟⎟⎠ . (42)

Appendix B

All the indicators used in the forecasting analysis can be found at the following links:

1. EuroCoin:

http://www.cepr.org/data/eurocoin/

2. DG_ECFIN:

http://ec.europa.eu/economy_finance/indicators/euroareagdp_en.htm

3. EC_Macroeconomic_Forecast:

http://ec.europa.eu/economy_finance/about/activities/activities_keyindicatorsforecasts_en.htm

4. IFO_INSEE_ISAE:

http://www.cesifo-group.de/portal/page/portal/ifoHome/a-winfo/d2kprog/30kprogeeo

5. OCDE:

http://www.oecd.org/department/0,3355,en_2649_34109_1_1_1_1_1,00.html
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Table 1. Data description 
 

Euro Area Indicators Variables (a) (b)

Name Definition Observations Reporting lag (c)

Quarterly Flash GDP Euro Area GDP 19 45 days
Hard Indicators First GDP Euro Area GDP 37 60 days

Second GDP Euro Area GDP 66 102 days
Employment Euro Area Total Employment 66 102 days (d)

Monthly IPI Euro Area Industrial Production Index (excluding construction) 200 42 days
Hard Indicators Sales Euro Area  Total Retail Sales Volume 155 35 days

INO Industrial New Orders Indices. Total manufacturing working on orders 154 52 days
Exports Extra- Euro Area Exports 200 45 days

Monthly
Soft Indicators BNB Belgium Overall Business Indicator 202  -8 days

ESI Euro-Zone Economic Sentiment Indicator 202 0 days
IFO Germany IFO Business Climate Index 202  -8 days
PMI Manufactures Euro Area Manufacturing Purchasing Managers Index 128 1 day
PMI Services Euro Area Services Purchasing Managers Index 115 5 days

Notes:
(a) All hard indicators data (indicators of real activity) are growth rates of the seasonally adjusted series. 
Soft Indicators (based on opinions surveys) are first differences of the seasonally adjusted series.
(b) Euro area refers to EMU-12 until december 2006 and EMU-13 (includes Slovenia) after that date.
(c) Aproximately. It can marginally change as a function of weekends or number of days of the month.
(d) Starting in 2007.1 the reporting lag is 45 days  

 
 

 
Table 2. Data set available on 02/11/08 

 
Second IPI Sales INO Export ESI BNB IFO PMIM PMIS Employment First Flash

2007.06 0.31 0.01 0.67 4.41 2.52 111.10 5.50 107.00 55.56 58.33 0.58 0.35 0.34
2007.07 na 0.65 0.35 -3.09 -0.57 110.40 4.20 106.40 54.90 58.34 na na na
2007.08 na 1.15 -0.03 0.92 2.73 109.40 3.30 105.70 54.34 58.04 na na na
2007.09 0.76 -0.86 0.17 -1.17 -1.35 106.30 1.50 104.10 53.21 54.22 0.33 0.71 0.71
2007.10 na 0.54 -0.64 2.54 1.22 105.40 -0.10 103.90 51.52 55.81 na na na
2007.11 na -0.45 -0.66 2.72 0.26 104.10 1.40 104.20 52.80 54.14 na na na
2007.12 na na -0.09 na na 103.40 -1.90 103.00 52.56 53.14 na na na
2008.01 na na na na na 101.70 -0.80 103.40 52.77 50.56 na na na
2008.02 na na na na na na na na na na na na na
2008.03 na na na na na na na na na na na na na
2008.04 na na na na na na na na na na na na na
2008.05 na na na na na na na na na na na na na
2008.06 na na na na na na na na na na na na na  
 
 
Notes. See Table 1 for acronyms. Figures labelled as “na” refer to either missing data or 
data that are not available on 02/11/08. 
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Table 3. Factor loadings 
 

 
 

Notes. See Table 1 for acronyms. Standard errors are in parentheses. Data set ends on 
02/11/08. 

 
Table 4. Last day forecast (February 11th 2008) 

 
Panel A Panel B

Series 2007.4 2008.1 2008.2 Series Next month
IPI 0.41

FLASH 0.40 0.38 0.38 Retail Sales 0.247
(0.05) (0.06) (0.07) INO -1.825

Exports 0.716
FIRST 0.39 0.36 0.36 ESI 100.712

(0.07) (0.07) (0.08) BNB -2.978
IFO 102.565

SECOND 0.41 0.37 0.37 PMI Man 52.567
(0.10) (0.11) (0.14) PMI Serv 50.844

Employment 0.194  
 

Notes. See Table 1 for acronyms. Standard errors are in parentheses. Data set ends on 
02/11/08. 

 
Table 5. Cumulative weights 

 
Second IPI Sales INO Exports ESI BNB IFO PMIM PMIS Employment First Flash

2007.06 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2007.07 0.00 0.32 0.06 0.29 0.09 0.04 0.04 0.02 0.09 0.06 0.00 0.00 0.00
2007.08 0.00 0.32 0.06 0.29 0.09 0.04 0.04 0.02 0.09 0.06 0.00 0.00 0.00
2007.09 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2007.10 0.00 0.32 0.06 0.29 0.09 0.04 0.04 0.02 0.09 0.06 0.00 0.00 0.00
2007.11 0.00 0.32 0.06 0.29 0.09 0.04 0.04 0.02 0.09 0.06 0.00 0.00 0.00
2007.12 0.00 0.00 0.19 0.00 0.00 0.13 0.12 0.05 0.30 0.21 0.00 0.00 0.00
2008.01 0.00 0.00 0.00 0.00 0.00 0.15 0.15 0.06 0.37 0.27 0.00 0.00 0.00
2008.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2008.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2008.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2008.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2008.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00  

 
 

Notes. See Table 1 for acronyms. Data set ends on 02/11/08. 
 

Second IPI Sales INO Exports ESI BNB IFO PMIM PMIS Employment
0.15 0.21 0.06 0.19 0.12 0.05 0.06 0.05 0.07 0.07 0.10
(0.03) (0.04) (0.03) (0.04) (0.01) (0.01) (0.01) (0.01) (0.04) (0.02) (0.04)
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Table 6. Accuracy of preliminary announcements  
 
 

Indicator Day of the forecast  MSE 
Flash estimators  0.024 
First Estimators  0.025 
Euro-STING Day before Flash 0.027 
Euro-STING Day after Flash 0.022 
Euro-STING Day before First 0.022 
Euro-STING Day after First 0.014 

 
Note. Entries are mean squared errors in forecasting the last revised values of second 
GDP (vintage 01/09/08). First two rows refer to preliminary announcements and last 
four rows are forecasts from the Euro-STING model which are computed the days 
before and after flash and first releases. 
 

 
 

Table 7. Real-time forecasting evaluation 
 

1 Month lag 2 Month lag 3 Month lag Total
Eurocoin 0.083 0.046 0.042 0.057
Euro-Sting 0.075 0.030 0.016 0.040

1 Months lag 2 Months lead 5 Months lead Total
IFO-INSEE-ISAE 0.060 0.071 0.069 0.067
Euro-Sting 0.044 0.048 0.037 0.043

3 Months lead 6 Months lead 9 Months lead Total
European Commission 0.055 0.086 0.068 0.070
Euro-Sting 0.028 0.071 0.033 0.044

3 Months lag 0 Months 3 Months lead Total
OECD 0.019 0.049 0.036 0.035
Euro-Sting 0.019 0.048 0.037 0.034

1 Month Lag 2 Months lead 5 Months lead Total
DG ECFIN 0.045 0.044 0.107 0.065
Euro-Sting 0.046 0.033 0.052 0.044  

 
 

Notes. Entries are mean squared errors. Forecasting period refer to 2003.4 to 2007.3. 
Last column is the simple average. See Appendix B for data description. 
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Figure 1. Time series used in the model 
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Figure 1. Time series used in the model (continued)

70

80

90

100

110

120

91.01 94.05 97.09 01.01 04.05 07.09

85

95

105

91.01 94.05 97.09 01.01 04.05 07.09

IFOESI

Sample 91.01-08.01. Vintage 01/31/08 Sample 91.01-08.01. Vintage 01/24/08

120000

125000

130000

135000

140000

91.2 93.2 95.2 97.2 99.2 01.2 03.2 05.2 07.2

Employment

Sample 95.1-07.3. Vintage 01/09/08

Sample 91.01-08.01. Vintage 01/24/08

BNB PMI Manufactures

Sample 97.06-08.01. Vintage 02/01/08

-30

-20

-10

0

10

91.01 94.04 97.07 00.10 04.01 07.04
42

52

62

91.01 94.04 97.07 00.10 04.01 07.04

60

70

80

90

100

110

120

130

91.01 94.05 97.09 01.01 04.05 07.09

Exports

Sample 99.01-07.11. Vintage 01/17/08

BANCO DE ESPAÑA       41 DOCUMENTOS DE TRABAJO N.º 0807 

 



34

Figure 1. Time series used in the model (continued)

Figure 2. Common factor and Eurocoin
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Notes. See Table 1 for acronyms. Charts refer to data available on 02/11/08.
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Figure 3. GDP second growth rate: actual and estimates

Figure 4. GDP forecast in 2008.1 and  ESI potential releases

Notes. GDP growth rates are estimated from 1992.04 to 2008.06 with information on 
02/11/08. Dots over the line refer to actual data (third month of each quarter; last one in 
2007.3).
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Figure 5. GDP second growth rate in real-time
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Figure 7. Cumulative forecast weights for BNB in real-time
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Figure 8. Real-time lagged forecasts of GDP
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