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Abstract 

In this paper, we show that a simple model of smoothly state-dependent pricing generates a 

distribution of price adjustments similar to that observed in microeconomic data, both for low 

and high inflation. Our setup is based on one fundamental assumption: price adjustment is 

more likely when it is more valuable. The constant probability model (Calvo 1983) and the 

fixed and stochastic menu cost models (Golosov and Lucas 2007; Dotsey, King and 

Wolman 1999) are nested as special cases of our framework. 

All parameterizations of our model can be ranked according to a measure of state 

dependence. The fixed menu cost model has the highest possible degree of state 

dependence; the parameterization which best fits US microdata has low state dependence. 

The fixed menu cost model is inconsistent with the evidence both because it never 

generates small price adjustments, and because it implies a large fall in the standard 

deviation of price adjustments as trend inflation increases. Even though the state 

dependence of our preferred parameterization is almost as low as that of the Calvo model, it 

is well-behaved when we change the steady state inflation rate, matching the data at least as 

well as Golosov and Lucas' model. 

 

Keywords: Price stickiness, state-dependent pricing, stochastic menu costs, generalized 

(S,s), bounded rationality 
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Introduction

Sticky prices are an essential component of contemporary dynamic general equilibrium models, including those
used by central banks for policy analysis. Nonetheless, the way in which price stickiness is modeled remains as
controversial as ever. The Calvo (1983) formulation of a constant adjustment probability has become popular
due to its analytical tractability, but lacks the theoretical appeal of a microfounded model immune to the Lucas
critique. It has been criticized in an in�uential article by Golosov and Lucas (2007), who propose a model of
price stickiness based on a �xed �menu cost�of adjusting prices. They calibrate their model to match certain
features of the empirical distribution of price changes and �nd that it predicts much weaker and less persistent
real e¤ects of nominal shocks than the Calvo model.
Given this controversy, it is fortunate that a variety of micro-level evidence on pricing behavior has recently

become available, in papers by Klenow and Kryvstov (2008), Midrigan (2008), Nakamura and Steinsson (2008),
and Gagnon (2007), among others. These studies provide cross-sectional evidence on the distribution of price
adjustments in a variety of retail contexts, di¤ering in the range of sellers and the underlying in�ation rate in
the countries and time periods considered. Hopefully these new data will permit further progress in selecting a
useful, microfounded model of price rigidity.
In this paper, we study a general model of state-dependent pricing which nests a number of well-known

sticky price frameworks as special cases. We make one main assumption: a �rm is more likely to adjust its price
when adjustment is more valuable. The time-dependent model of Calvo (1983) is a limiting case of our model
in which the probability of adjustment is constant; the state-dependent menu cost model of Golosov and Lucas
(2007) is a limiting case of our model in which the probability of adjustment is a step function taking values zero
and one only. We investigate which version of our model works best by estimating its parameters and comparing
the pricing behavior it generates with the cross-sectional distribution of price adjustments observed in micro
data. Our estimation results allow us to address a number of questions: to what extent is price adjustment
state dependent rather than time dependent? How does the distribution of price adjustments change when the
underlying in�ation rate changes? What is the welfare loss associated with price stickiness?
Golosov and Lucas� study of these issues stressed the fact that �rm-level data show price increases and

decreases much larger than those that could be justi�ed by aggregate in�ation alone, which suggests that most
price adjustments are driven by idiosyncratic rather than by aggregate factors. They showed that incorporating
idiosyncratic shocks into their model helps it reproduce some price adjustment statistics, such as the average
absolute size of price changes. Furthermore, they stress that the combination of �xed menu costs with large
idiosyncratic shocks in their model implies a strong selection e¤ect� meaning that �rms which need to make
a larger price adjustment are more likely to adjust� which makes aggregate prices very sensitive (and real
quantities insensitive) to nominal shocks.
We share Golosov and Lucas�assessment that idiosyncratic shocks are the main driving force behind �rm-

level price adjustments. However, a closer look at the microeconomic evidence reveals a number of ways in
which their model�s predictions are inconsistent with observed price setting behavior. The histogram of price
adjustments generated by their model shows a large spike of price increases, a large spike of price decreases, and
nothing in between; the actual distribution of price adjustments is much smoother (Kashyap 1995, Midrigan
2008). Another, related, prediction of their model is that the standard deviation of price adjustments decreases
sharply as the in�ation rate rises, whereas cross-sectional data from periods of low and high in�ation like those
of Gagnon (2007) show a small, nonmonotonic change in the standard deviation of price adjustments with
increased in�ation. Both of these features of the data call for a model in which prices adjust more smoothly
than �xed menu costs imply.
Summarizing our main �ndings, an appropriately calibrated model in which (a) the probability of price

adjustment increases smoothly with the value of adjustment, and (b) �rms are subject to idiosyncratic shocks,
does a good job of matching the cross-sectional distribution of price changes. In contrast, the �xed menu
cost and Calvo alternatives (the two limiting cases of our general model) work poorly because they both fail
to reproduce the frequency of small price changes (see Figure 1). However, along several dimensions, our
estimated model is much closer to the Calvo speci�cation than it is to the �xed menu cost model. In particular,
we propose a measure of state dependence, based on the cross-sectional variance of the adjustment probability.
The parameters that best �t our model imply very low state dependence, almost as low as in the Calvo case.
Nonetheless, our estimated model is reasonably consistent with price adjustment data even at high rates of
aggregate in�ation under which the Calvo model breaks down.
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After a brief literature review, in section 2 we study a simple model of the partial equilibrium pricing decision
of an imperfectly competitive �rm, showing how it nests a variety of adjustment models. We then incorporate
our setup into a dynamic stochastic general equilibrium framework in section 3 and explain how to solve for the
steady state distribution of prices. In section 4 we estimate the parameters that best match the distribution
of price changes in the AC Nielsen dataset documented by Midrigan (2008), under two speci�cations of the
adjustment probability function, one of which is taken from Woodford (2008). We compare the distribution of
price changes implied by our model to the distributions observed under Calvo pricing and under the �xed menu
cost model, both for low and high steady state in�ation rates. In section 5 we brie�y consider a generalization
of our model that allows �rms to set a default in�ation rate. Section 6 concludes.

1.1 Related literature

A new empirical literature on pricing began with Klenow and Kryvtsov (2008), who analyzed a large dataset
of prices from the US Bureau of Labor Statistics. They showed that while price changes are large on average
(around 10% in absolute value), about 40% of price changes are less than 5% in absolute value. Similar results
are found by Midrigan (2008), based on scanner data from selected retail stores, and by Nakamura and Steinsson
(2008) using a more detailed dataset than Klenow and Kryvtsov (2008).
The high frequency of tiny price changes found in these studies is clearly at odds with the implications of the

standard one-sector �xed menu cost model of Golosov and Lucas (2007). A possible explanation is that some
sectors might have higher �xed costs than others. But Klenow and Kryvtsov (2008) �nd that even allowing for
67 sectors, each with a di¤erent �xed menu cost, the model still fails to match the distribution of price changes,
displaying a big hole in the middle of the distribution.1 Moreover, they show that large and small price changes
coexist within narrowly de�ned product categories too. That is, even in a sector-by-sector calibration, there is
a tradeo¤ between picking a high menu cost to match the large average (absolute) size of price changes and a
low menu cost to reproduce the small price changes in that sector.
Midrigan (2008) points out that this puzzle might disappear in a multi-product setting where �rms face

economies of scale when adjusting prices: once a �rm pays the menu cost to correct some large price misalign-
ment, they can also change other (less misaligned) prices on the same menu costlessly. He also emphasizes
the necessity of leptokurtic technology shocks in order to reproduce the excess kurtosis of the distribution of
price changes. But while Midrigan�s multi-product model seems like a plausible explanation of some small price
adjustments, it may take the existence of �xed menu costs too literally. We feel that on grounds of realism it
is essential to impose some smoothness on individual behavior. Our calibrated simulations show that simply
requiring the adjustment probability to vary smoothly with the value of adjustment su¢ ces to construct a model
that �ts microdata well, including the presence of frequent small price changes.
In other words, our simulations show that a pricing model like the stochastic menu cost setup of Dotsey, King,

and Wolman (1999) �ts well if it incorporates large idiosyncratic shocks (Dotsey et al. ignored idiosyncratic
shocks to simplify the calculation of aggregate dynamics). While Caballero and Engel (1993, 1999, 2006, 2007)
have long advocated a similar mechanism, calling it the �generalized (S,s) approach�, most of the new papers
on price stickiness have instead opted to assume �xed menu costs (including Golosov and Lucas 2007, Midrigan
2008, Nakamura and Steinsson 2008, and Gagnon 2007). Also, while Caballero and Engel (1999) begin by
writing their adjustment probability in terms of values, they mostly focus on a �semi-structural�setup in which
the adjustment probability is a function of the distance between the current policy and the optimal policy. We
hope to convince the reader that both the optimization problem and the distributional dynamics can be stated
in an elegant and numerically tractable way (see our matrix formulation in Sec. 3.5) if we treat the adjustment
probability as a function of the value of adjustment, which is anyway more correct.
Another recent paper with implications for the cross-sectional distribution of price adjustments is that of

Gertler and Leahy (2006), who construct a state-dependent pricing model that yields the same tractable Phillips
curve as that of the Calvo model. However, they make some strong assumptions to simplify the aggregation of
(S,s) policies, including a uniform distribution of idiosyncratic shocks (as in Danziger, 1999), implying a coun-
terfactual distribution of price changes. Woodford (2008) studies pricing decisions when information processing
is costly, and derives the implied functional form for the probability of adjustment, but does not calibrate his
model to microeconomic data. Dorich (2007) calibrates time-dependent and state-dependent pricing models to

1We reproduce Klenow and Kryvstov�s data and results in the last panel of Figure 1.
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measure the implied welfare losses due to stickiness. Caballero and Engel (2006) also calibrate their model to
the Nakamura and Steinsson data, and calculate the Calvo parameter that best matches the data.
In contrast to these recent related papers, we study how the various versions of our calibrated model (from

a low in�ation environment) perform as the steady state in�ation rate increases. In particular, we �nd that in
the presence of �xed menu costs, the histogram of price adjustments collapses from bimodality to unimodality
as in�ation increases, leading to a large decrease in the standard deviation of price changes. This contrasts
with Gagnon�s (2007) �nding in Mexican data that the standard deviation of price changes remains roughly
constant as the in�ation rate rises. In addition, our paper o¤ers a measure of the degree of state dependence,
according to which the Calvo model has the least state dependence, while the Golosov-Lucas model has the
most. We show that the data favor a parameterization that is quite close to the Calvo model in its degree of
state dependence.

2 Sticky prices in partial equilibrium

Before we describe the full general equilibrium structure of our economy, it is helpful to study the partial
equilibrium pricing decision of a monopolistic producer, to see how our model nests a variety of popular pricing
frameworks.
Like Golosov and Lucas (2007), we assume price changes are driven primarily by idiosyncratic shocks. If

�rms are entirely rational, fully informed, and capable of frictionless adjustment, they will adjust their prices
every time a new idiosyncratic or aggregate shock is realized. We instead assume that prices are �sticky�, in a
well-de�ned sense: the probability of adjusting is less than one, but is greater when the bene�t from adjusting
is greater. What we mean by �the bene�t from adjusting�becomes clear as soon as we write down the Bellman
equations that describe the �rm�s decision. There is a value associated with optimally choosing a new price
today (while bearing in mind that prices will not always be adjusted in the future); likewise there is a value
associated with leaving the current price unchanged today (likewise bearing in mind that prices will not always
be adjusted in the future). The di¤erence between these two values is the bene�t from adjusting (or the loss
from failing to adjust). The smoothly increasing function � (L) that gives the adjustment probability as a
function of the loss L from failing to adjust is taken as a primitive of the model.
There are at least two ways of interpreting this framework. It could be seen as a model of stochastic

menu costs, as in Dotsey, King, and Wolman (1999) or Caballero and Engel (1999). If rational, fully-informed
�rms draw an iid adjustment cost x every period, with cumulative distribution function � (x), then they will
adjust their behavior whenever the adjustment cost x is less than or equal to the loss L from failing to adjust.
Therefore, their probability of adjustment is � (L) when the loss from nonadjustment is L.
But perhaps this is an unnecessarily literal interpretation of the model. Alternatively, following Akerlof

and Yellen (1985), �stickiness�can be modeled as a minimal deviation from rational expectations behavior, in
which agents occasionally fail to make precisely optimal choices if the cost of such errors is small. Under full
rationality, full information, and zero adjustment costs, economic agents adjust to a new optimal setting of their
control variables in every period; here instead we assume that they sometimes fail to make this adjustment.
Perhaps failure to adjust occurs because information itself is �sticky� (as in Reis, 2006), or perhaps because
calculation requires e¤ort; rather than taking a stand on this, we simply regard our assumption as an axiom
that should be imposed on near-rational, near-full-information behavior.
For analytical tractability, many authors have implemented near rationality as Akerlof and Yellen did,

making most agents fully rational while assuming that a few others follow a rule of thumb. Here, instead, we
implement it by assuming all agents are close to full rationality, but not quite there. Our framework permits
us to deviate smoothly from full rationality, both because we can choose a � function that is close to one for
most L, and more importantly because large mistakes are less likely than trivial ones. To us, this version of
near rationality seems less arbitrary since there is no need to specify a rule of thumb (though we have to choose
a functional form for �), and also more realistic, especially in terms of its compatibility with microdata. The
main cost of our assumption is that the model requires a numerical analysis.

2.1 The monopolistic competitor�s decision

Suppose then, following Golosov and Lucas (2007), that each �rm i produces output Yit under a constant returns
technology, with labor Nit as the only input, and faces idiosyncratic productivity shocks Ait:
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Yit = AitNit

We assume �rms are monopolistic competitors, facing the demand curve Yit = #P��it , where # represents
aggregate demand, and that they must ful�ll all demand at the price they set. They hire in competitive labor
markets at wage rate W , so the period pro�t function is

�it = PitYit �WNit =

�
Pit �

W

Ait

�
Yit =

�
Pit �

W

Ait

�
#P��it

Since we focus in this paper on the cross-sectional distribution of price adjustments, we assume the aggregate
state of the economy is constant. That is, there are no aggregate shocks, and the distribution of productivity
shocks and prices across �rms has converged to a steady state.2 This is why we treat aggregate demand # and
the wage rateW as constants. We assume the idiosyncratic productivity shocks Ait are given by a time-invariant
Markov process, iid across �rms. Thus Ait is correlated with Ait�1 but is uncorrelated with all other �rms�
shock processes. The assumption that productivity shocks are the only shocks a¤ecting the �rm (other than the
random arrival of adjustment opportunities) is inessential for our methodology; we ignore more general cases
only to keep notation simple.
To implement our assumption that adjustment is more likely when it is more valuable, we must de�ne the

values of adjustment and nonadjustment. If a �rm fails to adjust (so that Pit = Pit�1), then its current pro�ts
and its future prospects will both depend on its productivity Ait and on its price Pit. Therefore these both enter
as state variables in the value function of a nonadjusting �rm, V (Pit; Ait). When a �rm adjusts, we assume
it chooses the best price conditional on its current productivity shock (of course, taking into account the fact
that it may not adjust in all future periods). Therefore, the value function of an adjusting �rm, after netting
out any costs that may be required to make the adjustment, is just V �(Ait) � maxP V (P;Ait). The value of
adjusting to the optimal price, written in the same units as the value function, is then

D(Pit; Ait) � max
P

V (P;Ait)� V (Pit; Ait)

Of course, we don�t want the real probability of adjustment to di¤er when values are denominated in euros
instead of pesetas. In order to treat the function � as a primitive of the model, we need to write it in the
appropriate units. Under either of the proposed interpretations of the model, the most natural units are those
of labor time. Under the stochastic menu cost interpretation, the labor e¤ort of changing price tags or rewriting
the menu is likely to be a large component of the cost. Under the bounded rationality interpretation, even
though we don�t explicitly model the computation process, we take the probability of adjustment to be related
to the labor e¤ort associated with obtaining new information and/or recomputing the optimal price. Therefore,
the function � should depend on the loss from failing to adjust, converted into units of labor time by dividing
by the wage rate. That is, the probability of adjustment is � (L (Pit; Ait)), where L (Pit; Ait) = D(Pit; Ait)=W
and � is a given increasing function.
Conditional on adjustment, we have assumed that the �rm sets the optimal price, P �(Ait) � argmaxP V (P;Ait).

For clarity, we will distinguish between the �rm�s beginning-of-period price, ePit = Pit�1, and the price at which
it produces and sells at time t, Pit, which may or may not di¤er from ePit. The adjustments are determined by
the function �:

Pit =

(
P �(Ait)ePit = Pi;t�1

with probability �(D( ePit; Ait)=W )
with probability 1� �(D( ePit; Ait)=W ):

Function � must satisfy �0 � 0. In particular, we will consider the class

� (L) �
��

��+
�
1� ��

� �
�
L

�� (1)

with � and � positive and �� 2 [0; 1]. This function equals �� when L = �, and is concave for � � 1 and S-shaped
for � > 1. We choose this class because it has fatter tails than the normal cdf, which may help it match the

2Studying the transitional dynamics of this economy, or its response to aggregate shocks, requires calculating the dynamics of
the distribution of �rm-level productivity and prices. This problem is interesting both for monetary policy and from the perspective
of numerical methodology. We address the dynamics in a companion paper, Costain and Nakov (2008b).
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fat tails of the observed price adjustment distribution emphasized by Midrigan (2008).3 Importantly for the
purposes of our estimation, with � = 0 the function becomes constant at ��, while with � !1 it approaches a
step function taking values 0 (when L < �) and 1 (when L > �). In this sense the Calvo and �xed menu costs
speci�cations are nested as (extreme) special cases of this more general hazard function. Also, as � goes to zero
or �� goes to one, � (L) equals one for all L, so the case of fully �exible prices is nested too.
We can now state the Bellman equation that de�nes the value of producing at any given price. It di¤ers

somewhat depending on whether we impose the stochastic menu cost interpretation of our model or the bounded
rationality interpretation; we begin with the latter because it is slightly simpler. Given the �rm�s price P and
its productivity shock A, current pro�ts are

�
P � W

A

�
#P��. The �rm anticipates adjusting or not adjusting in

the next period depending on the bene�ts of adjusting at that time. Therefore the Bellman equation is:

V (P;A) =

�
P � W

A

�
#P�� +R�1E

n
(1� � (L(P;A0)))V (P;A0) + � (L(P;A0))max

P 0
V (P 0; A0)

���Ao
where R�1 is the �rm�s discount factor and the expectation refers to the distribution of A0 conditional on A.
Note that on the left-hand side of this equation, and in the current pro�ts term, P refers to a given �rm i�s
price Pit at the time of production. In the expectation on the right, P represents the price ePi;t+1 = Pit at the
beginning of period t+ 1, which may (probability �) or may not (probability 1� �) be adjusted prior to time
t+ 1 production.
We can simplify substantially by noticing that the value on the right-hand side of the equation is just the

value of continuing without adjustment, plus the expected gains due to adjustment:

V (P;A) =

�
P � W

A

�
#P�� +R�1E fV (P;A0) + � (L(P;A0))D(P;A0)jAg (2)

or equivalently

V (P;A) =

�
P � W

A

�
#P�� +R�1E fV (P;A0) +G(P;A0)jAg (3)

where G(P;A0) � � (L(P;A0))D(P;A0) represents the expected gains due to adjustment. A natural solution
method for this equation is backwards induction on a two-dimensional grid of possible prices and productivity
shocks. However, we postpone discretizing the state space until Sec. 3.3, when we detrend the model to express
all prices in real terms.

2.2 Alternative sticky price frameworks

1. Calvo pricing (Calvo 1983): Suppose prices adjust each period with constant exogenous probability ��.
This corresponds to a special case of our hazard function (1) with � = 0. The Bellman equation is the
limiting case of (2) in which � (L) reduces to the constant function:

� (L) � �� (4)

2. Fixed menu costs (Golosov and Lucas 2007; Mankiw, 1985): Suppose the cost of adjusting prices in
any given period is � units of labor (where � is an exogenous constant called the �menu cost�). This
corresponds to a special case of our hazard function (1) with � !1 and � = �: The Bellman equation is
the same as (3), with expected gains function equal to

G(P;A0) = 1 fL(P;A0) � �g (D(P;A0)� �W ) (5)

That is, the adjustment probability � is given by the indicator function � (L) = 1 fL � �g, which takes
value one when L � � and zero otherwise. The gain function G also subtracts o¤ the term � (L)�W , that
is, the �rm anticipates paying the nominal menu cost �W with probability � (L).

3We started with the speci�cation �(L) = L=(� + L), which is (1) with � = 0:5 and � = 1, but found we needed more degrees
of freedom to match the data. Upon reading Woodford (2008), we realized that by including the three parameters �, �, and � we
could explicitly nest the Calvo and �xed menu cost setups into our general model.
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3. Stochastic menu costs (Dotsey, King, and Wolman, 1999): Suppose the cost of adjusting prices in any
given period is � units of labor, where � is an i.i.d. random variable with cdf. �(�). Then the Bellman
equation is the same as (3), setting the expected gains function to

G(P;A0) = �(L(P;A0))[D(P;A0)�WE(�jL(P;A0) > �)] (6)

That is, with probability � (L), the �rm realizes nominal gains D, and it pays the (conditional) expected
menu cost WE(�jL > �).

Thus, the only di¤erence between the �bounded rationality�interpretation of our model and the stochastic
menu cost interpretation is that in the latter case, the conditional expected menu cost WE(�jL > �) is netted
out of the �ow of gains G. Note also that the Calvo model can be written as a stochastic menu cost model too,
by assuming the menu cost � takes value 0 with probability �� and value 1 with probability 1� ��; in this case
the �ow of expected menu costs is zero.
It is also useful to consider how our framework compares to some alternative price adjustment mechanisms:

1. Generalized (S,s) model (Caballero and Engel 1999): while their setup is initially de�ned in terms of
stochastic menu costs, Caballero and Engel go on to write � as a function of the distance between the cur-
rent price and the optimal price. This �semi-structural�formulation (as they call it) is an approximation
to the behavior of a stochastic menu cost model.

2. Information processing (Woodford 2008): Woodford shows that under certain conditions, optimal
information processing implies adjustment according to the following probability function:

� (L) �
��

��+
�
1� ��

�
exp (� (�� L))

(7)

where � and � are positive constants and �� 2 [0; 1]. This suggests another possible functional form for
use in our model.

3. Quadratic adjustment costs (Rotemberg 1982): this model is substantially di¤erent since all agents
make a partial adjustment instead of some agents making a complete adjustment. As for the aggregate
implications, quadratic adjustment costs imply that the average deviation from the optimal price converges
linearly to zero over time. In our model, convergence is faster for large deviations, but slower for small
deviations.

2.3 Measuring state dependence

As we have emphasized, the Calvo model and the �xed menu cost model are both limiting cases of our general
model, corresponding to di¤erent versions of the function �. The Calvo model is purely time dependent because �
does not vary with the bene�t of adjusting; the Golosov and Lucas model is state dependent because adjustment
occurs if and only if the bene�t from adjusting exceeds a given threshold.
Since we have ignored adjustment mechanisms that vary explicitly with time (as in Taylor, 1979), the Calvo

model is in fact the only version of our model that is entirely time dependent; all other cases have some degree
of state dependence. Interestingly, if we take the variance of the adjustment probability as a measure of state
dependence, then the Golosov and Lucas model places an upper bound on the degree of state dependence, and
all other variants of our model can be ranked between the Calvo and Golosov-Lucas extremes. This motivates
the following de�nition.

De�nition. Let �� = E(�i) be the mean adjustment probability across �rms i in the population; let

�2� = E
��
�i � ��

�2�
be the corresponding variance. Then the degree of state dependence S is

given by

S =
�2�

��
�
1� ��

�
The Calvo model and the Golosov-Lucas model provide lower and upper bounds on the degree of state

dependence, as stated in the following proposition.
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Proposition. The degree of state dependence satis�es S 2 [0; 1], with S = 0 in the Calvo model,
and S = 1 in the �xed menu cost model.

Proof. Since �2� is a variance, it is nonnegative; it equals zero in the Calvo model. Let f (�i) 2 [0; 1] be
the cross-sectional frequency of the adjustment probabilities �i 2 [0; 1] across �rms i in the population. Then
(writing expectations with sums, under the assumption that there are a �nite number of values of �i in the
population)

�2� = E
�
(�i)

2
�
� ��2 =

X
�i

f (�i)�
2
i � ��

2
=
X
�i

f (�i)�i
�
�i � ��

�
=

X
�i<��

f (�i)�i
�
�i � ��

�
+
X
�i>��

f (�i)�i
�
�i � ��

�
�
X
�i>��

f (�i)�i
�
�i � ��

�
�

�
1� ��

�X
�i

f (�i)�i =
�
1� ��

�
��

Thus we have an upper bound for the cross-sectional variance of �i. In the case of the �xed menu cost model,
�i only takes values 0 or 1, and �� = f(1). In this case, �2� = f(0) � 0 � (0� ��) + f(1) � 1 � (1� ��) =

�
1� ��

�
��.

Therefore S = 1 in the �xed menu cost model. QED.

3 General equilibrium

We next embed this partial equilibrium decision framework in a dynamic New Keynesian general equilibrium
like that in Golosov and Lucas (2007). In addition to the �rms, there is a representative household and a
monetary authority that chooses the money supply.

3.1 Households

The household�s period utility function is

u(Ct)� x(Nt) + v (Mt=Pt)

discounted by factor � per period. Consumption Ct is a Spence-Dixit-Stiglitz aggregate of di¤erentiated prod-
ucts:

Ct =

�Z 1

0

C
��1
�

it di

� �
��1

Nt is labor supply, and Mt=Pt is real money balances. The household�s period budget constraint isZ 1

0

PitCitdi+Mt +R
�1
t Bt =WtNt +Mt�1 + Tt +Bt�1 +�t

where
R 1
0
PitCitdi is total nominal spending on the di¤erentiated goods. Bt is nominal bond holdings, with

interest rate Rt � 1; Tt represents lump sum transfers received from the monetary authority, and �t represents
dividend payments received from the �rms.
Assuming households choose fCit; Nt; Bt;Mtg1t=0 so as to maximize expected discounted utility subject to

the budget constraint, we obtain the following necessary conditions. Optimal allocation of consumption across
the di¤erentiated goods implies

Cit = (Pt=Pit)
�Ct

where Pt is the following price index:

Pt �
�Z 1

0

P 1��it di

� 1
1��
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Given this consumption allocation, we can also write nominal spending as PtCt =
R 1
0
PitCitdi. Optimal labor

supply and money holdings imply the �rst-order conditions

x0(Nt) = u0(Ct)Wt=Pt

�0
�
Mt

Pt

�
= u0(Ct)(1�R�1t )

and the Euler equation is

R�1t = �Et

�
Ptu

0(Ct+1)

Pt+1u0(Ct)

�

3.2 Monetary policy and aggregate consistency

We assume the growth rate of the money supply follows an autoregressive process:

Mt = �tMt�1

where �t�� = �
�
�t�1 � �

�
+"�t , � = E [�t] � 1, and "

�
t � i:i:d:N(0; �2�) is a money growth shock. Seigniorage

revenues are paid to the household as a lump sum transfer. Therefore aggregate consistency in the money
markets requires Mt =Mt�1 + Tt, while aggregate consistency in the bond market is simply Bt = 0.
Market clearing for good i implies the following demand and supply relations for �rm i:

Yit = AitNit = Cit = P �t CtP
��
it

This is consistent with our description of the �rm�s problem if we set #t = P �t Ct. We can then also calculate
total labor demand:

Nt =

Z 1

0

Cit
Ait

di = P �t Ct

Z 1

0

P��it A
�1
it di

3.3 Discrete detrended steady state

Since our focus in this paper is the distribution of prices and price adjustments across �rms, we restrict our
simulations to steady-state cross-sectional implications. To obtain a steady state, we have to detrend with
respect to the money supply, which is nonstationary. So next we rewrite all nominal variables in real terms by
dividing by the money supply. We de�ne the real aggregate price level as pt = Pt=Mt and the real wage as
wt = Wt=Mt; we write the real production price of �rm i at time t as pit = Pit=Mt, and its real price at the
beginning of t as epit = ePit=Mt.
Furthermore, for numerical tractability we assume that real prices pit and epit can only lie in a discrete grid

�p �
�
p1; p2; :::p#p

	
(we use superscripts to indicate grid elements, and #p is the number of points in the

grid). It is convenient to set �p so that it is evenly spaced in logarithms: log(pi=pi�1) = �p > 0 for all integers
i 2 f2; 3; :::;#pg. Likewise, we assume the �rm�s productivity always takes one of a �nite number of values:
Ait 2 �a �

�
a1; a2; :::; a#a

	
for all i and t. Therefore, if the aggregate economy is in a steady state, any given

�rm�s real state is summarized by a point in a �nite, two-dimensional grid: (pit; Ait) 2 �p��a. Let the fraction
of �rms in state (pj ; ak) 2 �p��a at the time of period t production be  t

�
pj ; ak

�
. Similarly, using tildes again

to represent variables prior to adjustment, let the fraction of �rms in state (pj ; ak) 2 �p � �a at the beginning
of t be e t �pj ; ak�. In other words, distribution e t involves the beginning-of-period prices epit, and distribution
 t involves the prices pit at the time of production.
Convergence to a steady state means that the distribution of prices and productivity across �rms converges

to two alternating ergodic distributions: e t (p;A) ! e (p;A) at the beginning of the period, and  t (p;A) !
 (p;A) at the time of production, where we indicate steady states by suppressing time subscripts. Likewise,
aggregate variables converge to steady states: pt ! p, wt ! w, Ct ! C, Nt ! N , and Rt ! R. In this steady
state, the Euler equation becomes

R�1 = �=� (8)
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The household�s �rst-order conditions converge to

x0 (N) = u0 (C)w=p (9)

�0 (1=p) = (1� �=�)u0 (C) (10)

In steady state, the demand for a product produced by a �rm with price pit is Cit = p�Cp��it . Thus we can
express labor market clearing in terms of the distribution of prices and productivity at the time of production,
as follows:

N = p�C

#pX
j=1

#aX
k=1

�
pj
��� �

ak
��1

 
�
pj ; ak

�
(11)

Aggregate consumption must satisfy

C
��1
� =

#pX
j=1

#aX
k=1

h
p�C

�
pj
���i ��1�

 
�
pj ; ak

�
(12)

and the price level must satisfy

p1�� =

#pX
j=1

#aX
k=1

�
pj
�1��

 
�
pj ; ak

�
(13)

It is straightforward to verify that the last two equations are equivalent, so only one of them will be needed for
calculating equilibrium.

3.4 Firm behavior in a discrete detrended steady state

Previously we wrote the value function in nominal terms. We next restate the �rm�s problem in steady state
general equilibrium, detrending in the same way we detrended the rest of the model, dividing nominal quantities
by the nominal money supply. Thus, the real value function v must satisfy:

V (Pit; Ait) =Mtv

�
Pit
Mt

; Ait

�
=Mtv (pit; Ait)

Likewise, the detrended versions of the di¤erence function and the expected gains function that appear in the
Bellman equation must satisfy

D(Pit; Ait) = Mtd

�
Pit
Mt

; Ait

�
=Mtd (pit; Ait)

G(Pit; Ait) = Mtg

�
Pit
Mt

; Ait

�
=Mtg (pit; Ait)

Writing the Bellman equation in detrended notation also requires us to treat time t and time t+1 quantities
in a consistent way. Since the money stock is multiplied by the factor � from one period to the next, calculating
the real price at the beginning of t+ 1 requires division by �:

epit+1 � ePit+1
Mit+1

=
Pit

Mit+1
=

Mit

Mit+1

Pit
Mit

= pit=�

Then for any real state (pit; Ait) = (pj ; ak) 2 �p � �a, the Bellman equation (3) that nests all versions of our
model can be written as

v(pj ; ak) =
�
pj � w

ak

�
C

�
pj

p

���
+ �E

�
v(��1pj ; A0) + g(��1pj ; A0)jak

	
Here we have rewritten real aggregate demand as #=M = Cp�. As before, prices on the left-hand side refer to
the time of production, while prices inside the expectation on the right-hand side are those at the beginning of
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the next period, which is why they are de�ated by �. The expectation is taken with respect to next period�s
productivity shock (written as A0), conditional on this period�s productivity, Ait = ak.
Note that our notation implicitly assumes that ��1pj is a grid point in �p. This is not a problem, because

we are free to choose the steady state in�ation rate and the distance between grid points. By choosing money
growth so that log� is an integer multiple of the step size in the grid, we ensure that ��1pj will be a grid point.
That is, if log� = #��p, where #� is a positive integer, then ��1pj = pj�#� 2 �p. Therefore, to simplify
notation, from here on we assume log� is an integer multiple of �p.4

3.5 Firm behavior: matrix formulation

Given that the real dynamics are constrained to a discrete grid, our Bellman equations can be written in an even
more compact notation which will also help us write down the distributional dynamics explicitly and concisely.
The key is to notice that we can track the dynamics of the exogenous state (productivity) separately from
the dynamics of the endogenous state (prices). The discrete Markov process that governs productivity can be
summarized by a matrix S with row m, column k element

Smk = prob(Ai;t+1 = amjAit = ak)

where am; ak 2 �a. Similarly, the real period t price pit is de�ated to epit+1 = ��1pit at the beginning of period
t+ 1. This adjustment can be summarized by a matrix R in which the row l, column j element is

Rlj = prob(epi;t+1 = pljpit = pj)

Since we have assumed that trend money growth equals #� steps in the price grid (where #� is an integer),
column j of matrix R must have a one in row j �#�, and zeros elsewhere (assuming j > #�). For columns
j � #�, de�ating by factor � would leave prices outside of the grid �p. Therefore, we instead assume that any
prices which fall o¤ the grid are automatically rounded up to the minimum price p1 (that is, columns j � #�
of matrix R have a one in the �rst row and zeros elsewhere.) This assumption is made for numerical purposes
only, and has negligible impact on the equilibrium as long as we choose a su¢ ciently wide price grid �p.
For conformability with this matrix notation, it makes sense to write the value function as a matrix too,

corresponding to the values of all prices and productivities in our discrete grid. Let V be the matrix with the
value of state

�
pj ; ak

�
2 �p � �a in row j, column k:

vjk = v
�
pj ; ak

�
Similarly, let G be the matrix with the row j, column k element

gjk = g
�
pj ; ak

�
for all prices and productivities in our grid. Finally, let U be the #p � #a matrix of current payo¤s, with
elements ujk =

�
pj � w

ak

�
C
�
pj

p

���
for all

�
pj ; ak

�
2 �p � �a. Then it is easily veri�ed that Bellman equation

(3) simpli�es to
V = U+ �R0 � (V +G) � S (14)

where � denotes matrix multiplication.5
To write the distributional dynamics in matrix notation, let 	 be the #p�#a matrix in which the row j,

column k element
 jk =  

�
pj ; ak

�
represents the fraction of �rms in state

�
pj ; ak

�
2 �p � �a at the time of production. Likewise, let e	 represent

the beginning-of-period distribution, so that the row j, column k element is

e jk = e �pj ; ak�
4We emphasize that this assumption is for notational simplicity only. It is not required for our calculations, and we do not

always impose it on our calculations.
5To clarify, we emphasize that (14) contains an expectational term even though no Et operator is seen. The expectation over

future idiosyncratic productivity Ai;t+1 conditional on Ait is captured by multiplying by the matrix S.
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Now, since rows relate to prices, and columns relate to productivities, the price dynamics can be represented
by left multiplication, and the productivity dynamics by right multiplication. Therefore, the relation between
the time t distribution and the time t+ 1 beginning-of-period distribution is simply

e	t+1 = R �	t � S0 (15)

Likewise, the relation between the beginning-of-t distribution and the distribution at the time of production
in period t can also be summarized in matrix notation. Let E be a #p � #p matrix of ones. Let �(D=w)
be a #p � #a matrix with element (j; k) equal to �(d

�
pj ; ak

�
=w), where

�
pj ; ak

�
2 �p � �a, representing

the probability of adjustment from any beginning-of-period state. Also, for any ak 2 �a, de�ne l(k) so that
pl(k) = argmaxp2�p v

�
p; ak

�
. Then let P be the #p �#a matrix with a one in row l(k) of each column k, and

zero elsewhere. Then the production-time distribution 	t is calculated from the beginning-of-period distributione	t as follows:
	t = (E��(D=w)): � e	t +P: � (E � (�(D=w): � e	t)) (16)

where (as in MATLAB) the operator :� represents element-by-element multiplication, and � represents ordinary
matrix multiplication.

3.6 Computing steady state equilibrium

Steady state equilibrium is described by the �rst-order conditions (9) and (10), the aggregate consistency
conditions (11) and (13), and the matrix formulation of the �rm-level dynamics, (14), (15), and (16). These
equations su¢ ce to determine the four scalars p, C, w, and N , and the three matrices V, 	, and e	.
This system of equations is easily converted into a two-dimensional �xed point problem in p and N . But

our simulations will focus on the even simpler case where the disutility of labor is linear, x (N) = �N . In this
case, the equilibrium calculation reduces to a one-dimensional �xed point problem:

1. Guess p.

2. Use (10) to calculate C, then (9) to calculate w; then construct U.

3. Find the �xed point V of (14), then construct P from the optimal policy associated with V.

4. Find the �xed points 	 and e	 associated with (15) and (16).

5. Use (13) to determine a new p, and return to step 2.

Note that in this calculation, R and S are known ex ante, and G and �(D=w) are just abbreviations denoting
transformations of the value function V.

4 Results

4.1 Parameterization

We can now compute the steady state of our model, parameterizing it to �t cross-sectional microeconomic data
on price changes. In particular we seek to match the distribution of price changes in the AC Nielsen dataset of
household product purchases documented by Midrigan (2008). Therefore we will simulate our model at monthly
frequency, and we report all parameters at monthly frequency unless otherwise speci�ed. Furthermore, we set
the steady state growth rate of money to 0%, consistent with the zero average price change in the AC Nielsen
dataset. Also, since Midrigan removes price changes attributable to temporary �sales�, our simulation results
should be interpreted as a model of �regular�price changes unrelated to sales. This is also consistent with the
frequency and methodology of Klenow and Kryvstov (2008) and Nakamura and Steinsson (2008).
We take our utility parameterization from Golosov and Lucas (2007), setting the discount factor to � =

1:04�1=12. Consumption utility is CRRA, u(C) = 1
1�
C

1�
 , with 
 = 2. Labor disutility is linear, x(N) = �N ,
with � = 6. The elasticity of substitution in the consumption aggregator is � = 7. Finally, the utility of real
money holdings is logarithmic, v(m) = � log(m), with � = 1. But � is just a normalization for our purposes,
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because changing it a¤ects the wage and the aggregate price p, but does not alter the distribution of relative
prices or price adjustments.
Given these parameters, we can calibrate the idiosyncratic productivity shock process and the adjustment

process to match the distribution of regular price changes. We assume productivity is AR(1) in logs:

logAit = � logAit�1 + "
a
t

where "at is a mean-zero, normal, iid shock. The free parameters here are � and �2", the variance of the
innovation "at . Since our numerical method requires us to treat A as a discrete variable, we use Tauchen�s
method to approximate this AR(1) on a discrete grid �A. As for the adjustment process (1), it has three free
parameters, ��; � and �. We estimate all �ve parameters by minimizing a criterion consisting of two terms:
(1) the distance between the average frequency of adjustment in the data and that in the model, and (2) the
distance between the distribution of log price changes in the data and that in the model. We search for the
optimal parameter vector with a global constrained minimization routine initialized from a grid of alternative
starting values.
For the frequency of adjustment, we choose to match the median monthly frequency of regular price changes

of 10% reported by Nakamura and Steinsson (2008). This is lower than the 20% mean frequency of regular price
changes reported by Midrigan (2008), both because Nakamura and Steinsson control more carefully for sales,
and because the median frequency is less driven by outliers than the mean. We prefer Nakamura and Steinsson�s
number for its apparent robustness. The parameter �� is closely linked to the frequency of adjustment, so our
estimate of �� is always close to 0.1. For the distribution of price adjustments, we use a histogram of 25 equally
spaced bins representing log changes from -0.5 to 0.5 in the AC Nielsen data, and we measure the distance
between the histograms in the data and the model as Euclidean distance. We then divide the distance by the
number of bins (25) so that the frequency term and the distribution term in our minimization criterion are
comparably weighted.

4.2 Estimating the degree of state dependence

Table 1 and Figure 1 summarize our main estimation results. The table reports the best estimate for each
speci�cation, along with a number of statistics describing the implied distribution of price changes. Clearly
many of these measures are correlated, but we report them all because di¤erent empirical studies have focused
on di¤erent statistics. The last four columns reproduce the corresponding statistics reported by Midrigan (2008)
for his AC Nielsen and Dominick�s datasets, as well as those from Nakamura and Steinsson (2008) and Klenow
and Kryvstov (2008).
The columns marked SDSP (for �state-dependent sticky prices�) are based on estimating the two parameters

of the productivity process and the three parameters of the baseline adjustment process (1). We run the estimate
both on a 25-by-25 grid and on a 101-by-101 grid; there is little di¤erence in the results.6 The estimated model
matches our target adjustment frequency of 10% per month almost exactly, and also does a good job of hitting
the moments of the distribution of price adjustments. The mean absolute price change is 10% in the model,
and 10.5% in the data; the median is slightly lower in both cases because the distribution has fat tails. In
the model, the standard deviation of the distribution of price changes is 11.9%, and the kurtosis is 2.7; in the
data they are 13.2% and 3.5. Half of all price adjustments in the data are increases, and we obtain very nearly
the same �gure in the model. The �t of the distribution is also illustrated by the fourth panel of Figure 1,
which shows the histogram of nonzero log price adjustments for the AC Nielsen data (shaded), together with
the corresponding histogram from our model. The �t is especially good in the middle range, though the tails
are somewhat fatter in the data than in the model, as the di¤erence in kurtosis indicates.
Our baseline SDSP estimate is further illustrated in Figure 2, which shows equilibrium objects like the value

function V, the value of adjustment D, and the adjustment probability �, graphed as functions of inverse
productivity A�1it and price pit.7 The fourth and sixth panels show the beginning-of-period distribution e	
and the distribution at the time of production, 	; the sharp ridge seen in distribution 	 represents the mass

6 In the coarser estimate, �A is a grid of 25 points covering plus or minus 2.5 standard deviations of log A. The price grid �P

extends 10% past the prices that would be chosen at the highest and lowest values of A if prices were fully �exible. In the �ner
estimate, �A covers �5 standard deviations, so the distance between grid points (0.015) is half that in the coarser estimate (0.031).

7The axes of the graph are shifted so that a �rm at the origin has the mean productivity level and has the price that a
�exible-price �rm would choose at that productivity.
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of �rms that have just changed their prices. The eighth graph compares the price policy function under our
estimate to that of a �rm with perfectly �exible prices (the dotted line). Note that a sticky-price �rm prices
�conservatively�: if its productivity strays far away from the mean, it will adjust its price by less than a
�exible-price �rm, anticipating mean-reversion in productivity.
Table 1 also shows estimates of the �xed menu cost model, � = 1 (marked MC), and the Calvo model,

� = 0.8 The productivity process is allowed to di¤er in each estimate. These models do a good job of replicating
the frequency of price adjustments, but fare less well at matching the absolute size of price changes, measured
as the mean or the median of the absolute (log) price change. In particular, the absolute price changes predicted
by the menu cost model are too large on average, while in the Calvo model they are too small.
Moreover, both models fail dramatically in one respect. In the AC Nielsen data, 25% of the absolute price

changes are smaller than 5%, whereas the Calvo model implies twice this many small changes, and in the �xed
menu cost model there are no changes of this size whatsoever. This can also be seen from the model-generated
histograms in the top panels of Figure 1. In the menu cost model (top left panel), the lack of small price
adjustments is seen as a big hole in the middle of the histogram. That is, generating the large price changes
found in the data requires such a high �xed menu cost that small price changes become prohibitively expensive.
On the other hand, the Calvo model (top right panel) generates too many small price changes, implying a
unimodal distribution of adjustments, in contrast with the mildly bimodal distribution in the data.
While these inconsistencies may at �rst sound like irrelevant details, they are potentially important in terms

of welfare and policy analysis. In particular, given the observed frequency of adjustment, the fact that the
�xed menu cost model underpredicts the incidence of small price adjustments means that it overpredicts the
occurrence of (more valuable) large ones. Figure 3 illustrates this, showing the distribution of losses L (at the
time of production), together with the adjustment probability function � (L). We see that the distribution is
truncated on the right in the menu cost speci�cation, eliminating all the most costly failures to adjust. Therefore
the MC model is likely to exaggerate aggregate �exibility and also to understate �rms�lost value due to price
stickiness.
The di¤erence in losses can also be seen at the bottom of Table 1. The table shows both the median and

average loss L from failure to adjust, as a percentage of the median value V of a �rm, in each of the calibrations.
The median losses are small, ranging from a 0.042% loss in the �xed menu cost model to a loss of 0.114% in
the Calvo case. The median loss under SDSP (0.074% of median �rm value) lies in between these two. But the
loss distribution is highly skewed in all cases except the �xed menu cost speci�cation, where the long right tail
of uneliminated losses is truncated. Therefore mean losses are always several times larger than median losses,
except under �xed menu costs. Thus while median losses di¤er by less than a factor of three, average losses
range from 0.086% of median �rm value for MC, to 0.271% for SDSP, and 0.393% for Calvo: average losses
di¤er by a factor of 4.6.
To sum up, our preferred calibration of the SDSP model does a good job of matching the cross-sectional

distribution of price adjustments, and it works much better than either of the extreme special cases. Both
the menu cost model (� = 1) and the Calvo model (� = 0) have particular di¢ culty capturing the frequency
of the smallest price adjustments, while the simulated distribution under our preferred value of � (the middle
left panel of Figure 1) very closely resembles the data of Midrigan (2008). For comparison, we also show, in
the bottom left panel of Figure 1, the distribution produced by Midrigan�s (2008) model of multiproduct �rms
with �xed menu costs. The bottom right panel graphs the data of Klenow and Kryvstov (2008) together with
the distribution from their �xed menu cost model with heterogeneity across sectors. Evidently allowing the
probability of adjustment to vary smoothly with the value of adjustment is more useful for matching data on
price changes than either of these sophisticated generalizations of the �xed menu cost model.
While neither of the extreme cases of the model �ts well, many �ndings point to the conclusion that the

Calvo speci�cation gets closer to the data than the �xed menu cost speci�cation does. The data favor an
adjustment function that allows sizeable fractions of small and large price changes to coexist. This requires
a value of � substantially below one, meaning that the probability of adjustment rises rapidly at zero and is
fairly �at thereafter, resembling the Calvo model over most of the range of observed adjustments. This is also
re�ected in our measure of state-dependence: the estimated SDSP model scores much closer (0.025) to the
Calvo model (0), than to the �xed menu cost model (1). Given these results, it is reasonable to expect that

8When � = 0, the �menu cost�parameter � is unidenti�ed, and when � =1, the �Calvo�parameter � is unidenti�ed. Therefore
we estimate these two speci�cations e¢ ciently, which is to estimate the model (4) or the model (5) directly, instead of estimating
(1) subject to a parameter restriction.
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under our preferred calibration, monetary shocks will cause large real e¤ects on output and labor, like those in
the Calvo speci�cation. We study impulse responses to monetary shocks in a companion paper, Costain and
Nakov (2008).

4.3 Fixing the technology process

The estimates in Table 1 give each model its best shot at matching the histogram of actual price changes,
because in addition to estimating the adjustment parameters, we also reestimate the productivity process for
each speci�cation. In particular, the standard deviation of the productivity process is 0.165 in our Calvo
estimate, as opposed to 0.148 in the baseline SDSP estimate. Therefore, to isolate the e¤ect of the di¤erent
adjustment mechanisms themselves, we also report estimates of each adjustment speci�cation conditional on
the same productivity process (the one that was obtained for the SDSP baseline).
The results are shown in Table 2. The main thing to notice is that the statistics in Table 2 are very similar to

those reported in Table 1. Thus the contrasting �ndings we emphasized earlier derive mainly from the di¤erent
price adjustment mechanisms in the menu cost, Calvo, and SDSP models, and owe little to di¤erences in the
estimated productivity process.

4.4 Estimating Woodford�s speci�cation

Up to now, we have only considered our baseline adjustment probability function (1). Woodford (2008) instead
advocates the following speci�cation, on the basis of a model of information processing:

� (L) �
��

��+
�
1� ��

�
exp (�(�� L))

: (17)

This nests the Calvo model (� ! 0) and the �xed menu cost model (� ! 1) (with menu cost � = �) in the
same way our baseline speci�cation does. The di¤erences between the speci�cations involve their implications
when the loss L from failure to adjust is very large or very small. Woodford�s model implies that the probability
of adjustment converges to one exponentially as L ! 1, whereas in our baseline speci�cation it converges
polynomially. Since the latter convergence is slower, in principle it may allow larger losses to persist in our
model than in Woodford�s. At the same time, Woodford�s model allows for a strictly positive probability of

�adjustment�, �(0) =
�
1 + 1��

�
e�a
��1

, even in the limit of no loss. In contrast, the probability of adjustment

at zero loss is always zero in our baseline speci�cation: limL!0 �(L) = 0 for all strictly positive �: This means
that convergence to the Calvo model (as � ! 0) is pointwise in our SDSP speci�cation, whereas it is uniform
in the model of Woodford.
Estimates of Woodford�s speci�cation are shown in the columns marked �Woodf� in Table 1 (where we

reestimate the productivity process too) and Table 2 (where the productivity process is assumed the same as
in the benchmark SDSP estimate). Overall, Woodford�s model has success in matching the data similar to that
of our SDSP model. In particular, Woodford�s model does a somewhat better job of capturing the tails of the
distribution of price changes (and it gets the kurtosis statistic right), whereas our model works better in the
middle of the histogram (especially for the lower frequency of very small price changes).
Looking at the adjustment probability function in Figure 3 helps clarify what is going on in the estimation

of Woodford�s model. His model implies that �(L) has a positive limit at L = 0, and the data appear not
to favor an adjustment probability near one anywhere in the observed range of adjustments. Therefore, the
estimated function �(L) is remarkably �at over its whole observed range. As a consequence, its measure of state
dependence is 0.008, even closer to a Calvo model than our SDSP estimate (state dependence 0.025). That is,
even though �(L) approaches one exponentially in Woodford�s speci�cation, this is irrelevant over the observed
range of losses. This makes large losses somewhat more frequent, so the mean and median losses due to price
stickiness are slightly larger in Woodford�s case than in SDSP, almost as large as in the Calvo model.9

9 In fact, in Table 1 the losses in the Woodford speci�cation are even larger than those in the Calvo speci�cation. But this is
due to larger estimated shocks. As Table 2 shows, if we �x the productivity process, then the biggest losses occur under the Calvo
model.
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4.5 E¤ects of steady state in�ation

While our model is quite successful in reproducing the observed distribution of price changes, a more interesting
and more demanding way of testing it is to change the steady state in�ation rate, as in Golosov and Lucas
(2007). Useful evidence for evaluating the e¤ects of a change in in�ation is reported by Gagnon (2007), who
analyzes the distribution of price adjustments in Mexico at times of substantially di¤ering in�ation rates (annual
rates of 4.6%, 29%, and 63%). Gagnon�s data on the distribution of price adjustments at each of these in�ation
rates are shown in Figure 5.
Table 3 and Figure 9 show how the various versions of our model behave when the in�ation rate changes

from its baseline rate of 0% to a high rate of 63% per annum. In the MC, SDSP, and Woodford models, all the
calculations are based on the estimated parameters from Table 1, changing only the aggregate rate of money
growth. The upper panel of Figure 9 shows how the frequency of price adjustment rises with the in�ation rate.
Going from 5% to 63% in�ation, the adjustment frequency increases from 10.3% to 14.3% (a 33% log di¤erence)
in our smoothly state-dependent model and from 10.6% to 18.2% (a 54% log di¤erence) in the menu cost model.
For comparison, in Gagnon�s data (see the �rst panel of Figure 9) an increase in in�ation from 5% to 63% raises
the monthly frequency of price changes from 25% to 41% (a 49% log di¤erence), lying between the predicted
changes from the MC model and the SDSP model.10

The Calvo speci�cation is omitted from Figure 9 because it is not even possible to compute equilibrium at
all these in�ation rates under our baseline parameterization. The problem, of course, is that the Calvo model
treats the adjustment probability as a "deep" parameter, una¤ected by trend in�ation. But with the baseline
calibration � = 0:1, average losses from failure to adjust rise quickly, to 0.99% of median �rm value at 4.6%
annual in�ation, 3.9% of �rm value at 10% in�ation, and 10.1% of �rm value at 15% in�ation. Equilibrium
fails to exist at 29% and 63% in�ation, because the value of the �rm becomes negative if we keep � �xed at
these in�ation rates. For illustrative purposes only, Table 3 reports a calculation of the Calvo model with a
63% in�ation rate in which we have arbitrarily changed the adjustment probability to � = 0:25. Even with this
adjustment rate, the Calvo model implies huge losses from inaction, averaging 49% of median �rm value.
While the �xed menu cost model does a good job of modeling how the adjustment frequency varies with

in�ation, it is inconsistent with another implication of increased in�ation. In Figure 5, and in the second panel
of Fig. 9, we see that the standard deviation of price adjustments is roughly unchanged in Gagnon�s data as
the in�ation rate rises from 5% to 63%.11 In the �xed menu cost model, on the other hand, this change in the
in�ation rate causes the strongly bimodal distribution of price changes (like the top left panel of Fig. 1) to
collapse to an almost unimodal distribution as (see the top left panel of Figure 6). As the distribution collapses
to a single peak, there is a large decrease in the standard deviation of price adjustments, from 18.7% to 12.4%
(a 41% log di¤erence), in contrast with the Mexican data.
The SDSP model, unfortunately, su¤ers from the opposite problem: the standard deviation of price changes

increases from 12.3% to 19.3% under the same increase in in�ation. This problem is even more severe in our
estimate of the Woodford model, where the standard deviation of price changes increases from 14.4% to 28%.
The fact that the SDSP model and especially the Woodford model err in the opposite direction from the MC
model suggests that our preferred estimate may be somewhat understating the true degree of state dependence
in the data (while the MC estimate overstates it). Therefore a careful approach to parameterizing a model for
policy analysis may require using comparable data from periods with more than one in�ation rate in order to
correctly calibrate the degree of state dependence. Nonetheless, even though our estimate may be somewhat too
close to the Calvo model, the contrast between its performance and that of the Calvo model is remarkable. It is
inappropriate in principle to analyze a change in steady state in�ation while keeping � �xed, and in practice we
see that doing so gives absurd results long before we reach a hyperin�ationary environment. The SDSP model,
on the other hand, yields reasonable results over the whole range of in�ation rates observed recently in Mexico,
with an overall quantitative performance no worse than that of Golosov and Lucas (2007).

10There is a level shift of the frequency of adjustment in Gagnon�s data compared to our models, because his data are from a
di¤erent country and because he does not control for sales. Therefore we focus on the change in frequency caused by in�ation,
instead of comparing the levels.
11 In fact the data are mildly nonmonotonic: the standard deviation of price adjustments at �rst decreases from 12% to 10% and

then rises again to 11%.
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5 Sticky recursive plans

As we have just seen, our SDSP estimate from a low in�ation environment performs reasonably well in predicting
pricing behavior under higher in�ation rates. But under higher in�ation rates, the losses from inaction increase.
At 63% in�ation, the average loss is 3.2% of median �rm value, giving �rms a fairly strong incentive to look for
a more adequate class of policies. In particular, if we take seriously the bounded rationality interpretation of
our model instead of the stochastic menu cost interpretation, then what is costly for the �rm is not changing
prices per se, but making new plans. Therefore, it might be better for the �rm to make a simple plan that can
take in�ation into account, such as choosing a pair (Pi; �i) consisting of a price level Pi, together with a default
in�ation rate �i that it automatically applies to determine next period�s price whenever it is unable to fully
reoptimize:

(Pit+1; �it+1) = ((1 + �it)Pit; �it)

We call this a recursive plan since next period�s plan (Pit+1; �it+1) is determined by this period�s plan
(Pit; �it) without the need for any new information or new decision-making. If the reason for nominal stickiness
is the cost of planning, rather than the cost of changing prices, then we can imagine that �rms follow a given
plan as long as this is relatively close to optimal behavior. More precisely, as in our previous model of sticky
prices, it is natural to assume that a �rm�s probability of changing plans is a smoothly increasing function of
the value of changing plans. This leads to a Bellman equation similar to the ones we have seen already, except
that the sticky policy is now a pair (Pit; �it) instead of a single number Pit.
As before, we study an aggregate steady state. We detrend nominal variables by dividing by the current

money stock, so that the price at the time of production in period t is pit � Pit=Mit. In real terms, the relation
between today�s plan and the plan at the beginning of the next period (indicated by tildes) is:

(epit+1; e�it+1) =  ePit+1
Mit+1

; e�it+1! = � (1 + �it)Pit
Mit+1

; �it

�
=

�
(1 + �it)Mit

Mit+1

Pit
Mit

; �it

�
=
�
��1(1 + �it)pit; �it

�
Therefore, a �rm�s real value of producing under its current plan (p; �), given productivity A, is described by
the following Bellman equation:

v(p; �;A) =
�
p� w

A

�
#p�� +R�1E

�
v(��1(1 + �)p; �;A0) + g

�
��1(1 + �)p; �;A0

�
jA
	

(18)

where primes indicate next period�s values. In the boundedly rational interpretation of our model, the gains
function is

g
�
��1(1 + �)p; �;A0

�
� �

�
d(��1(1 + �)p; �;A0)

w

�
d
�
��1(1 + �)p; �;A0

�
where

d(��1(1 + �)p; �;A0) � max
p0;�0

v(p0; �0; A0i)� v(��1(1 + �)p; �;A0)

The alternative interpretations of the model impose other functions g analogous to those we saw earlier.
Again, for numerical tractability, we restrict dynamics to a �nite grid in real terms. This time, the grid

is three-dimensional: (pit; �it; Ait) 2 � � �p � �� � �a, where �p, ��, and �a are grids of size #p, #�, and
#a describing the possible values of pit, �it, and Ait, respectively. Again, we write the distributions 	 ande	 and the value function V as matrices with each row representing a possible policy (p; �) and each column
representing a possible shock A, so that the matrices have size #p#� �#a. The general equilibrium Bellman
equation and distributional dynamics are then formally identical to the sticky price model we studied earlier:

V = U+ �R0 � (V +G) � S

	t = (E��(D=w)): � e	t +P: � (E � (�(D=w): � e	t))e	t+1 = R �	t � S0
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As before, matrix S describes the exogenous dynamics, so its de�nition is unchanged. Matrix R, of size
#p#� � #p#�, now combines three steps that relate time t production prices pit and time t + 1 beginning-
of-period prices epi;t+1: detrending with respect to the monetary growth rate �, in�ating by the idiosyncratic
default in�ation rate �it, and rounding o¤ stochastically to the nearest grid points in �p. To be precise, consider
a �rm with policy (pl; �m) at the time of production in period t. Then, the only policies that may be in place
at this �rm with nonzero probability at the beginning of t+ 1 are given by

prob(epi;t+1 = pn; �i;t+1 = �mjpit = pl; �it = �m) =8>><>>:
1 if ��1pl � p1 = pn�

��1(1+�m)pl�pn�1
pn�pn�1

�
if p1 < pn = minfp 2 �p : p � ��1(1 + �m)plg�

pn+1���1(1+�m)pl
pn+1�pn

�
if p1 � pn = maxfp 2 �p : p < ��1(1 + �m)plg

These transition probabilities describe the matrix R for this case (note that R is huge, but contains mostly
zeros, so in the computation we treat it as a sparse matrix). Finally, matrix P identi�es the optimal policy.
Column k of matrix P has a one in the row that represents the optimal policy:

(p�k; ��k) � arg max
p2�p;�2��

v(p; �; ak) (19)

and zeros elsewhere.

5.1 Results of the recursive plans model

We simulate the sticky recursive plans model using the productivity process and adjustment probability function
we estimated for our sticky price model SDSP. We augment the grid of productivities and prices with an evenly-
spaced grid of 25 possible default in�ation rates around the steady-state in�ation rate (from -12 to +12 steps
of 0.002 from the steady-state in�ation rate). Figure 10 shows that �rms optimally choose to exploit both the
price margin and the in�ation margin of the planning space. Given our AR(1) technology speci�cation, it is
optimal for a �rm that experiences a very high productivity shock to set a low price, but also to set a relatively
high default in�ation rate �. Thus the price tends to trend back to the mean over time, tracking the expected
dynamics of the productivity shock.
We simulate the model both for low and high in�ation rates. Some sample paths are shown (in real and

nominal terms) in Fig. 11, and statistics on price adjustments and the cost of errors are presented in Table 4.
Interestingly, at low in�ation (4.6% annually), choosing a recursive plan instead of choosing a price only has
little e¤ect on pro�ts. But for high in�ation (63% annually), the recursive plan speci�cation implies a large
increase in value relative to sticky prices: the average loss is 3.2% of median �rm value under sticky prices, but
only 0.65% under sticky plans. That is, average and median losses rise much more slowly with the in�ation rate
under recursive plans, giving �rms a strong incentive to move to a policy like that of the recursive plans model
if the in�ation rate rises.
Nevertheless, this model does a poor job of matching the distribution of price adjustments. While a small

fraction of �rms may optimally choose �it = 0, if trend in�ation is positive the vast majority of �rms at any point
in time set a nonzero default in�ation rate. Therefore, the frequency of price adjustment in our simulations
is over 90% at a 4.6% trend in�ation, and is virtually 100% per period at 29% or 63% in�ation. Also, the
distribution of price adjustments is tightly clustered around the monthly in�ation rate (see Figure 12). Thus,
93% of the monthly price changes are less than 5% in absolute value in the low in�ation simulation, and even
at 63% annual in�ation, more than 65% of price changes are less than 5% in absolute value.
An obvious problem with this version of the model is that it is written as if there were an unambiguous

de�nition of one �period�, which we interpret in our simulation as one month. Since prices are updated once
per period in the model, even when the plan is unchanged, the model overpredicts the monthly probability of
price adjustment. Perhaps a more �exible interpretation of the model would be more reasonable, since it is not
clear how to de�ne one period in the data. But for now we conclude that the sticky price model does a better
job of describing microdata on price adjustments than the sticky plans model, even at high in�ation rates that
give �rms a nontrivial incentive to adopt more sophisticated policies.
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6 Conclusions

In this paper, we have estimated a model of state-dependent pricing that nests both the exogenous timing
(Calvo 1983) and �xed menu cost (Golosov and Lucas 2007) models as limiting cases. Our model is based on
two assumptions which we consider undeniably realistic: we assume the probability of adjustment is a smooth
function of the value of adjustment, and we assume �rms face idiosyncratic shocks. The model �ts steady state
microdata better than that of Golosov and Lucas, and also provides a simple alternative to extensions of the
�xed menu cost framework like Midrigan�s (2008) multiproduct setting with leptokurtic shocks and Klenow and
Kryvstov�s (2008) model with sectoral heterogeneity.
By �tting our model to the microdata reported in Midrigan�s paper, we �nd that the probability of adjust-

ment is nonzero even for small errors, but that it converges very slowly towards one. That is, the behavior of
our estimated model is much closer to that of a Calvo model than it is to that of a �xed menu cost model. In
particular, we calculate that the degree of state dependence, measured in terms of the variance of the adjust-
ment probability, is close to the Calvo case. While our measure of state dependence (based on cross-sectional
variation) di¤ers from that of Klenow and Kryvstov (who use a measure based on time series variation), we
provide further support for their claim that state dependence is low in US data.
While our �ndings constitute a partial defense of the Calvo model, this should not be taken as a green light to

apply the Calvo model in all policy analysis contexts. We think the low state dependence in our estimated model
helps explain why nominal shocks are observed to have such large real e¤ects. But since the Calvo adjustment
probability is not a "deep" parameter, there are many policy questions which cannot even be addressed using
the Calvo framework. We have seen that the Calvo model fails completely when we consider changes in steady
state in�ation as large as those observed in recent Mexican data.
Therefore, while the Calvo model will surely continue to serve as a workhorse in many studies, we believe

further exploration of monetary policy under state-dependent pricing is important and is likely to prove fruitful.
This will require macroeconomists to face the time-varying distributions that a general equilibrium model
of state-dependent pricing implies, perhaps via analytical approximations or perhaps via numerical methods
designed to compute equilibrium distributional dynamics. In a companion paper (Costain and Nakov 2008), we
argue that calculating distributional dynamics is more tractable than is commonly believed, and we study the
e¤ects of monetary policy shocks in simulations calibrated on the basis of this paper�s estimates.
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Table 1. Baseline Estimates, Simulated Moments and Evidence (zero trend in�ation)

SDSP (101x101):
�
�2"; �;

��; �; �
�
= (0:0049; 0:8808; 0:1091; 0:0310; 0:2900)

SDSP (25x25):
�
�2"; �;

��; �; �
�
= (0:0049; 0:8812; 0:1089; 0:0311; 0:2937)

Woodford:
�
�2"; �;

��; �; �
�
= (0:0085; 0:8596; 0:0946; 0:0609; 1:3341)

Calvo:
�
�2"; �;

��; �
�
= (0:0072; 0:8576; 0:10; 0)

Menu cost:
�
�2"; �; �; �

�
= (0:0059; 0:8469; 0:0631;1)

Model MC Calvo Wdfd SDSP Evidence
� =1 � = 0 101x101 25x25 MAC MD NS KK

Frequency of price changes 10 10 10 10 10 20.5 19.2 10 13.9

Mean absolute price change 18.3 6.4 10.1 10.1 10 10.5 7.7 11.3
Median absolute price change 17.9 5.0 8.0 8.7 8.7 8.0 5.3 8.5 9.7

Std of price changes 18.8 8.2 13.2 12.1 11.9 13.2 10.4
Kurtosis of price changes 1.3 3.4 3.7 2.8 2.7 3.5 5.4

Percent of price increases 54.8 50.1 50.2 50.5 50.3 50 65.5 66 56

% of price changes �5% in abs value 0 49.7 35.4 25.2 25.4 25 47 44

Flow of menu cost as % of revenues 1.46 0.50

Mean abs distance from optimal price 5.4 5.9 7.7 6.4 6.4
Median abs dist. from optimal price 4.7 4.4 5.7 4.8 4.8

Mean loss as % of median �rm value 0.086 0.393 0.504 0.271 0.262
Median loss as % of median value 0.042 0.114 0.134 0.073 0.074
Std of loss as % of median �rm value 0.098 0.717 0.912 0.576 0.506

State dependence metric [0; 1] 1 0 0.008 0.025 0.025

Note: All statistics refer to regular consumer price changes excluding sales, and are stated in percent.

The last four columns reproduce the statistics reported by Midrigan (2008) for AC Nielsen (MAC) and Dominick�s (MD),

Nakamura and Steinsson (2008) (NS), and Klenow and Kryvtsov (2008) (KK)
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Table 2. Estimates with a Fixed Productivity Process (zero trend in�ation)

SDSP (101x101):
�
�2"; �;

��; �; �
�
= (0:0049; 0:8808; 0:1091; 0:0310; 0:2900)

SDSP (25x25):
�
�2"; �;

��; �; �
�
= (0:0049; 0:8812; 0:1089; 0:0311; 0:2937)

Woodford:
�
�2"; �;

��; �; �
�
= (0:0049; 0:8808; 0:0887; 1:8� 10�6; 1:7489)

Calvo:
�
�2"; �;

��; �
�
= (0:0049; 0:8808; 0:10; 0)

Menu cost:
�
�2"; �; �; �

�
= (0:0049; 0:8808; 0:0591;1)

Model MC Calvo Wdfd SDSP Evidence
� =1 � = 0 101x101 25x25 MAC MD NS KK

Frequency of price changes 10 10 10 10 10 20.5 19.2 10 13.9

Mean absolute price change 17.2 6.0 8.3 10.1 10 10.5 7.7 11.3
Median absolute price change 16.7 4.8 6.5 8.7 8.7 8.0 5.3 8.5 9.7

Std of price changes 17.6 7.7 10.7 12.1 11.9 13.2 10.4
Kurtosis of price changes 1.2 3.5 3.5 2.8 2.7 3.5 5.4

Percent of price increases 54.3 50.7 50.1 50.5 50.3 50 65.5 66 56

% of price changes �5% in abs value 0 52.2 41.4 25.2 25.4 25 47 44

Flow of menu cost as % of revenues 1.38 0.50

Mean abs distance from optimal price 5.2 5.5 6.5 6.4 6.4
Median abs dist. from optimal price 4.5 4.1 4.8 4.8 4.8

Mean loss as % of median �rm value 0.078 0.349 0.317 0.271 0.262
Median loss as % of median value 0.043 0.103 0.096 0.073 0.074
Std of loss as % of median �rm value 0.089 0.646 0.544 0.576 0.506

State dependence metric [0; 1] 1 0 0.005 0.025 0.025

Note: All statistics refer to regular consumer price changes excluding sales, and are stated in percent.

The last four columns reproduce the statistics reported by Midrigan (2008) for AC Nielsen (MAC) and Dominick�s (MD),

Nakamura and Steinsson (2008) (NS), and Klenow and Kryvtsov (2008) (KK)
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Figure 1. Distribution of monthly non-zero price changes*
(zero trend in�ation)
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* Horizontal axis: log price change. Vertical axis: frequency.

Shaded area: actual data. First �ve panels: AC Nielsen data provided by Midrigan (2008).

Last panel: BLS data from top 3 CPI areas provided by Klenow and Kryvtsov (2008).

Solid line: model simulations. First row: �xed menu cost (left) and Calvo (right);

Second row: Woodford (left) and SDSP (right);

Third row: Midrigan (left), and Klenow and Kryvtsov (right).
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Figure 2: Value function, distributions, and related objects (SDSP)*
(zero trend in�ation)
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*Simulations from SDSP model. First line: value V, adjustment gain, and adjustment probability lambda, as functions of real price and productivity shock.

Second line: beginning of period distribution, adjustment distribution, and distribution at time of production, as functions of real price and productivity shock.

Third line: adjustment probability as function of the loss from inaction, policy function, and distribution of monthly non-zero price changes.
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Figure 3. Distribution of losses from failure to adjust and adjustment function*
(zero trend in�ation)
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*Horizontal axis: average loss L from failure to adjust, as percentage of median �rm value V. Vertical axis: frequency.
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Figure 4: Policy functions: �rm�s price as a function of productivity shock*
(zero trend in�ation)
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*Dashed line shows policy function under �exible prices (log price as function of log inverse productivity)

Solid line shows policy function under sticky prices.
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Figure 5: Distribution of monthly non-zero price changes in Mexico (Gagnon 2007)*
(annualized in�ation rates 4.6%, 28.9%, 63.2%)
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*Monthly log price changes of nonregulated goods, including some sale prices,

from three months with low, medium, and high in�ation rates. Data provided by Etienne Gagnon (2007)

Horizontal axis: percent price change. Vertical axis: frequency.
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Table 3: Simulations with High In�ation (63% annual)

SDSP (101x101):
�
�2"; �;

��; �; �
�
= (0:0049; 0:8808; 0:1091; 0:0310; 0:2900)

SDSP (25x25):
�
�2"; �;

��; �; �
�
= (0:0049; 0:8812; 0:1089; 0:0311; 0:2937)

Woodford:
�
�2"; �;

��; �; �
�
= (0:0085; 0:8596; 0:0946; 0:0609; 1:3341)

Calvo:
�
�2"; �;

��; �
�
= (0:0072; 0:8576; 0:25; 0)

Menu cost:
�
�2"; �; �; �

�
= (0:0059; 0:8469; 0:0631;1)

Model MC Calvo Wdfd SDSP
� =1 � = 0 101x101 25x25

Frequency of price changes 18.2 25 12.8 14.3 14.2

Mean absolute price change 24.9 16.3 34.9 29.1 29.6
Median absolute price change 24.7 12.1 31.7 26.2 26.4

Std of price changes 12.4 14.5 28 19.4 20.3
Kurtosis of price changes 10.0 8.7 2.4 3.3 3.3

Percent of price increases 93.8 99 87.2 95.4 93.9

% of price changes �5% in abs value 0.002 18.3 10 5.5 6.4

Flow of menu cost as % of revenues 2.7

Mean abs distance from optimal price 7.6 12.6 20.6 16.2 16.5
Median abs dist. from optimal price 6.6 7.9 15.6 11.7 11.1

Mean loss as % of median �rm value 0.099 49.1 3.25 3.2 3.3
Median loss as % of median value 0.049 0.207 0.673 0.316 0.299
Std of loss as % of median �rm value 0.116 1e5 5.82 13.5 14.1

State dependence metric [0; 1] 1 0 0.068 0.051 0.053

*All statistics are stated in percentage points. Structural parameters are the same as in Table 1,

except for Calvo, where Calvo parameter is raised to 0.25 to ensure equilibrium existence.
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Figure 6: Distribution of monthly nonzero price changes*
(trend in�ation = 63% annual )
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*Horizontal axis: log price change. Vertical axis: frequency.

Note: in Calvo speci�cation, adjustment parameter is raised to 25% monthly.
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Figure 7: Distribution of losses from failure to adjust
(trend in�ation = 63% annual)
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*Horizontal axis: average loss L from failure to adjust, as percentage of median �rm value V. Vertical axis: frequency.
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Figure 8: Policy functions: �rm�s price as a function of cost shock
(trend in�ation = 63% annual)
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*Dashed line shows policy function under �exible prices (log price as function of log cost). Solid line shows policy function under

sticky prices.

Note: in Calvo speci�cation, adjustment parameter is raised to 25% monthly.
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Figure 9: E¤ect of trend in�ation on frequency and size of adjustments
(Gagnon low, medium and high)
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*Bold black line: Mexican data provided by Etienne Gagnon. Other lines: model simulations.

Horizontal axis: annualized in�ation rate. Top graph shows frequency of nonzero price changes (on a log scale);

bottom graph shows standard deviation of log price change.
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Table 4. Recursive (p; �) plans (low. medium, and high in�ation)

SDSP:
�
�2"; �;

��; �; �
�
= (0:0049; 0:8812; 0:1089; 0:0311; 0:2937)

Annual in�ation rate
� = 4:6% � = 28:9% � = 63:1%

Frequency of price changes 90.3 100 100

Mean absolute price change 1.58 3.01 5.71
Median absolute price change 0.369 2.12 4.08

Std of price changes 3.97 3.8 5.5
Kurtosis of price changes 3330 2980 2150

Percent of price increases 92.3 93.1 93.7

% of price changes �5% in abs value 93.4 85.9 65.5

Mean loss as % of median �rm value 0.321 0.285 0.654
Median loss as % of median value 0.131 0.123 0.252
Std of loss as % of median �rm value 0.553 0.449 0.909

Note: All statistics refer to regular consumer price changes and are stated in percent.
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Figure 10. (p; �) policy functions: price and in�ation as function of cost shock
SDSP, � = 4:6%
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Figure 11. Simulation: price paths under recursive (p; �) policies
Ten price histories, � = 4:6% Ten price histories, � = 63:1%
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Figure 12 Distribution of monthly nonzero price changes:
recursive (p; �) policy with SDSP parameters
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