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ABSTRACT

This paper provides an updated survey of a burgeoning
literature on testing, estimation and model specification in the
presence of integrated variables. Integratéd variables are a specific
class of non-stationary variables which seem to characterise
faithfully the properties of many macroeconomic time series. The
analysis of cointegration develops out of the existence of unit roots
and offers a generic route to test the validity of the equilibrium
predictions of economic theories. Special emphasis is put on the

empirical researcher's point of view.
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Mechanisms.
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1. INTRODUCTION

Economic theory generally deals with equilibrium
relationships. Most empirical econometric studies are an attempt to
evaluate such relationships by summarising economic time series using‘
statistical analysis. To apply standard inference procedures in a
dynamic time series model we need the various variables to be
stationary, since the majority of econometric theory is built upon the
assumption of stationarity. Until recently, this assumption was rarely
guestionad, and econcmetric analysis proceeded as if all the economic
time series were stationary, at least around some deterministic trend
function which could be appropiately removed. However, stationary
series should at least have constant unconditonal mean and variance
over time, a condition which appears rarely to be satisfied in
economics. The importance of the stationarity assumption had been
recognised for many years, but the important papers by Granger and
Newbold (1974), Nelson and Kang (1981) and Nelson and Plosser (1982)
allerted many to the econometric implications of non-stationarity.
Integrated variables are a specific class of non-stationary variables
with important economic and statistical properties. These are derived
from the presence of unit roots which give rise to stochastic trends,
as opposed to pure deterministic trends, with innovations to an
integrated process being permanent instead of transient. For example,
the presence of a large permanent component in aggregate output
conficts with traditional formulations of both Keynesian and Classical
macroeconomic theories in terms of countercyclical policies, implying,
in addition, that the welfare costs and benefits of policy actions are
far different than when output movements are seen as transitory

deviations from a slowly growing natural level.

The presence of, at least, a unit root is implied by many
economic models by the rational use of available information by

economic agents. Standard applications include futures contracts,



stock prices, yield curves, real interest rates, exchange rates, money
velocity, hysteresis theories of unemployment, and, perhaps the most
popular, the implications of the permanent income hypothesis for real

consumption.

Statisticians were well aware of the existence of
integrated series and, in fact, Box and Jenkins (1970) argue that a
non-stationary series can be transformed into a stationary one by
successive differencing of the series. Therefore, from their point of
view, the differencing operation seemed to be a pre-requisite for
econometric modelling both from an univariate and a multivariate
perspective. However Sargan (1964), Hendry and Mizon (1978) and
Davidson et al. (1978), among others, have criticised on a number of
grounds the specification of dynamic models in terms of differenced
variables only, especially because it is then impossible to infer the

long—run steady state solution from the estimated model.

Granger (1983) and Granger and Weiss (1983), resting upon
the previous ideas, point out that a vector of variables, all of which
achieve stationarity after differencing, may have linear combinations
which are stationary without differencing. Engle and Granger (1987)
formalise the idea of variables sharing an equilibrium relationship in
terms of cointegration between time series, providing us with tests
and an estimation procedure to evaluate the existence of equilibrium
relationships, as implied by economic theory, within a dynamic
specification framework. Standard examples include the relationship
between real wages and productivity, nominal exchange rates and
relative prices, consumption and disposable income, long and
short—-term interest rates, money velocity and interest rates,

production and sales, etc.

In view of this epidemic of martingales in economics, a
voluminous literature on testing, estimation, prediction, control and

mocdel specification in the presence of integrated variables has



developed in the last few yearsl. The purpose of this survey is to
provide a useful guide through this increasingly technical literature,
paying special attention to the point of view of the applied
researcher, who being a non-specialist in this particular subject
wants to get a unified coverage of the main techniques available in

this field.

The paper is organised as follows. The concepts of
cointegration and unit roots are introduced in Section 2. In Section 3
we survey several alternative tests for the existence of unit roots,
including cases where seasonality is present. Section 4 deals with
alternative definitions of integration. Section 5 examines the
application of some of the previous tests to determine the existence
of cointegrating relationships. Finally, Section 6 contains a review
of some new test procedures for cointegration. Finally, brief

conclusions follow in Section 7.
2. UNIT ROOTS AND COINTEGRATION

Wold's (1938) decomposition  theorem states that a
stationary time series process with no deterministic component has an
infinite moving average (MA) representation. This, in turn, can be
represented approximately by a finite autoregressive moving average

(ARMA) process (see, e.g. Hannan, 1970).

However, as was mentioned in the Introduction, some time
series need to be appropiately differenced in order to achieve
stationarity. From this comes the definition of integration (as
adopted by Engle and Granger, 1987): A variable Y is said to be
integrated of order d [or Yo ~ I(d)] if it has a stationary,
invertible, non-deterministic ARMA representation after differencing d
times. Thus, a time series integrated of order zero is stationary in
levels, while for a time series integrated of order one, the first
difference is stationary. A white noise series and a stable
first-order autorregressive [AR(1)] process are examples of I(0)

series, while a random walk process is a example of an I(1) series.



Granger (1986) and Engle and Granger (1987) discuss the
main differences between processes that are I(0) and I(1l). They point
out that an I(0) series: (i) has finite variance which does not depend
on time, (ii) has only a limited memory of its past behaviour (i.e.
the effects of a particular random innovaiion are only transitory),
(iii) tends to fluctuate around the mean (which may include a
deterministic trend), and (iv) has autocorrelations that decline
rapidly as the lag increases. For the case of an I(1l) series, the main
features are: (i) the variance depends upon time and goes to infinity
as time goes to infinity, (ii) the process has an infinitely long
memory (i.e. an innovation will permenently affect the process), (iii)
it wanders widely, and (iv) the autocorrelations tend to one in

magnitude for all time separations.

Consider now two time series yt and xt which are both
I(d) (i.e. they have compatible long—-run properties). In general, any
linear combination of vy, and x, will be also I(d). If, however,

t t
there exists a vector (1,-B)', such that the combination

z, =y, - B X, (1

is I(d-b), b>0, then Engle and Granger (1987) define N and X, as
cointegrated of order (d,b) [or (yt,xt)‘ ~ CI(d,b)], with

(1,-B)' called the cointegrating vector.

The concept of cointegration tries to mimic the existence
of a long-run equilibrium to which an economic system converges over
time. If, e.g., economic theory suggests the following long-run
relationship between yt and xt

=a + B x

Yy ¢ (2)

then z, can be interpreted as the equilibrium error (i.e., the

distance that the system is away from the equilibrium, given in this

case by the constant o).



Engle and Granger also show that if Yy and Xy are

cointegrated CI(1,1), then there must exist an error correction model
. . 2
(ECM) representation of the following form

Ay, = 90 + 61 z +L 6, .0 «x + L6 .0y + € (3)

t t-1 21 t-i 31

where A denotes the first-order time difference (i.e A ytzyt—ytnl) and
whare {et} is a sequence of independent  and identically
distributed random variables with mean zero and variance oi

(i.e. e, ~ iid(O,Uﬁ)). Furthermore, they prove the converse result

t
that an ECM generates cointegrated series.

Note that the term Zt~1 in equation (3) represents the
extent of the disequilibrium between levels of y and x in the previous
period. The ECM states that changes in yt depend not only on changes

in X but also on the extent of disequilibrium between the levels

of ytland x. The appeal of the ECM formulation is that it combines
flexibility in  dynamic specification with desirable long-—-run
properties: it could be seen as capturing the dynamics of the system
whilst incorporating the equilibrium suggested by economic theory (see

3
Hendry and Richard, 1983) .

Based upon the concept of cointegration (and on its closely
related concept of ECM representation), Engle and Granger suggest a
2-step estimation procedure for dynamic modelling which has become
recently very popular in applied research. lLet us assume that Ve and
X, are both I(1), then the procedure goes as follows:

(i) First, 1in order to test whether the series are

cointegrated, the "cointegrating regression'

yp =0+ B X + 2z (4)
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is estimated by ordinary least squares (OLS) and it is tested whether
the "cointegrating residuals" Qt:yt—&~§ xt are I(0). Stock

(1987) has shown that if two I(1) series are cointegrated, then the
OLS estimates from equation (4) provide "super—consistent" estimates
of the cointegrating vector, in the sense that they converge to the
true parameter at a rate proportional to the inverse sample size,

1 T—1/2

T 7, rather than at as in the ordinary stationary case

The intuition behind this remarkable result can be seen by analysing
the behaviour of the OLS estimator of B in (4) (where the constant
is eliminated for simplicity), when zt ~ iid(O,ci) and xt
follows a random walk:

.. 2
Boxy=ey 3 (xy=0, e,~i1d(0,0,)) )

t.

Integrating (5) backwards we get

2 5 -2
and therefore var (xt) =t O exploding as o™, Nevertheless, T 2

2 . -
Lx converges to a random variable. Similarly the cross-—-moment

R 7

2 L x, z will explode, in contrast to the stationary

t 7t
case, where it is asymptotically normally distributed. In the I(1)
1 ) .
case 1 X X, Z, converges also to a random variable. Both

random variables are functionals of Brownian Motions or Wiener
processes, which will be denoted henceforth, in general, as f(W) (sece
Phillips (1987), Phillips and Perron (1988) and Park and Phillips
(1988) for a general discussion on convergence of the above mentioned
distributional limits). Since the OLS estimator of B is given by

A 2
B-B =L x Zt / L Xt

t

it follows from the previous discussion that T(gmﬁ) is

asymptotically the ratio of two non-degenerate random variables, and



it is in general not normal. Thus, standard inference cannot be
applied to B, even if it is "super—consistent'", a question to which

we will come back in Section 6.

ii) Finally, the residuals 2t are entered into the ECM.
Now, all the variables in equation (3) are I(0) and conventional

modelling strategies can be applied.
3. TESTING THE ORDER OF INTEGRATION OF THE RELEVANT VARIABLES

Orce the relevant set of variables suggested by economic
theory has “ren  ddentified, the first stage in testing for
cointegration between those variables is to determine the order of

integration of the individual time series.

Several statistical for unit roots have been developed to
test for statiomarity in time series. Since many macroeconomic series
have been found to be integrated of order one (see, e.g. Nelson and

Plosser, 1982), we will only consider tests for a single unit root

The search sequence is as follows: first test for the
existence of a unit root in the levels of the series. If the unit root
is not rejected by the data, the time difference of the series would

then be tested for the presence of a second unit root and so on.

3.1. Tests of Unit Roots

(i) Dickey and Fuller (1979, 1981) present a class of test
statistics, known as Dickey—Fuller (DF) statistics, generally used to

test that a pure AR(1) process (with or without drift) has a unit root.

Let the time series UM satisfy the following data

generating process (DGP)



= 6
Yy BO + Bl t+p Yooy t & (6)

where e,~iid(0,6%), t is a time trend and the initial,

condition, yo, is assumed to be a known constant (zero, without loss

of generality). Equation (6) can also be written as

t e t i t £
v, =B, L p l 4B T jp Tt 4+ L e p (7)
t 0 . 1 ]
i=1 i=1 j=1
while in the case that p=1
= W S ¢ t(t+] 4 S
Y, BO t + B1 (t+1)/2 + S, (8)
t
where S, = L ¢,
t j=1 j]

Dickey and Fuller (1979) consider the problem of testing
the null hypothesis HO: p =1 versus H]: p <1, i.e.
non-—-stationarity wvs. stationarity around a deterministic trend,

suggesting OLS estimation of a reparameterised version of (6), i.e.

By, =By +B t Yy , +e (9)

where HO: p=1 is equivalent to HO: Y=0 (since Y = p-1).

The test is implemented though the usual t-statistic of ?, denoted
here as TT. In addition, Dickey and Fuller (1981) suggest and

F-statistic for the joint  null hypothesis BO= Blz Y =0 and

Blz Y =0, denoted  as §2 and §3 respectively. Note  that

under the null hypothesis TT, §2 and §3 will not  have
the standard t and F distributions, instead they are functions of
Brownian motion; we must use the asymptotic distributions tabulated in
Fuller (1973, p. 373) and in Dickey and Fuller (1981, p. 1.063)

respectively. If BI: 0 (Boz 0) in (9), the t and F statistics,



corresponding to HO: Y=0 and Hl: Boz Y =0, are denoted
Tu(r) and @1 respectively and the corresponding critical
values are also given in the previous references. In all cases the
critical values given there crucially depend upon the sample size. It
should also be noted that the critical values depend upon the
"nuisance'" parameters contained in the model and in the DGP. To
discuss this more formally, consider the sample variance of Yy when

it is generated by (8) (i.e. p=1)

-1 2 1 2 .2 2 4 2 3
T L yy =T L[(BO+BI/2) t o+ (81/2) t o+ 8 +(BO+B1/2)B1 t

+2 (BB /2) t S+ B, 2 5] (10)

From the distibutional results in Park and Phillips (1988), it is
L a2 2 ~B/2 ] ~7/2 2

known that T "2 St' T Lt St and T Lt St tend to f(W), hence,

by taking probability limits in (10), we get

1y yi => Bf/zo oty + (By+B,/2)B, /4 0(T3) + 8 fw) o(r>’? (11)

' (Bo+31/2)2/3 o (17 + 2(B+B,/2) F(W) o™’%y 4 FW) o(T)

whereby it is seen that

-5 22 .

T £y, = 85/20 if B, #0

-3 2 2 e .

 zyl = 83 if By #0, B, =0

725y = fw) if B =B, =0
yt— 1 0— 1...

That is, if the unit root process contains a linear trend

or a drift, its variability will be dominated by a quadratic or a
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linear trend which, appropiately normalised, converges to constants.
It is only when BO=BI=O that it converges to a non-standard
distribution. This means that for example, if Blio in (8) and
the model is estimated as in (9), the quadratic term in (10) will
dominate the integrated process and ndfmality of the TT will
follow. Similarly if BO¢O in  (8) (with BI=O) and only a
constant appears in (9), the linear trend will dominate and normality
of Tu will also f0110w7. It is only when Bozﬁlzo, both
in the DGP and in the model, that the non-standard distribution will
desinate. This implies that in order to use the DF critical values if
a linear trend is included in the maintained hypothesis (9), the
relevant null  hypothesis should be a random walk with drift
(BO¢O), whilst if only a drift is included in (9), the relevant

null hypothesis is a random walk without driftB.

From the previous discussion we consider that the following
testing strategy 1is most appropiate. First, start by the most
unrestricted mode (9), (BO#O,Blio) if it is suspected
that the differenced series has a drift. Then use TT to test for
the null hypothesis. If it is rejected there is no need to go further.
If it is not rejected, test for the significance of the trend under
the null. If it is significant, then test again for a unit root using
the standarised normal. If the trend is not significant in the
mantained model, estimate (9) without trend (B]:O). Test again for
the unit root wusing t . If the null hypothesis is rejected,
again there is no need tougo further. If it is not rejected, test for

the significance of the trend under the null hypothesis and so on.

(ii) In the analysis of the DF tests, we have assumed that

the DGP is a pure AR(1l) process. If instead, the DGP is AR(p)

P
Yy = BO + Blt +iE1 Py Yo 5 ey (12)



let

p .
R.p——Epi?\.plr—‘O (13)

be the characteristic equation of the time series, where
hi(izl..p) are the eigenvalues of the process. Dickey and Fuller
(1979, 1981) consider the problem of testing the null hypothesis
H @ A =1 and IR2l<1 for i=2,.. p, suggesting oLs

0 1
estimation of the reparameterised regression model

p—1
+ L
i=1

Ny, =28

t + B, t+Y

1 1 Yieq Oy, . + ¢ (14)

0 YZi t-1 t

where p is large enough Lo ensure that the residual series ey is
~

white noise. The tests are based on the t-ratio on Yl and are

known as "Augmented Dickey Fuller" (ADF) statistics. The critical

values are the same as those discussed for the DF statistics, since

the § . (i=1... p-1) estimates converge to their true values at a

' 172

rate O(T ), being asymptotically dominated by the distribution of

A -1
Y] which, as we mentioned in (4), 1is O(T ). The same testing

strategy discussed above, applies in this caseg

The sample distribution of the ADF statistics critically
depend on the assumption that the time series Yy is generated by a
pure AR process. However, since there is evidence that many
macroeconomic series contain moving average (MA) components (see
Schwert, 1987), we would want to consider also the possibility of an
MA component in the DGP, so that the null hypothesis would be that the
data are generated by a mixed autoregressive integrated moving average

(ARIMA) process.

Said and Dickey (1984) extend the ADF test by exploiting
the fact that an ARIMA (p,1,g) process can be adequately approximated



- 16

L1/3
by a high-order autoregressive process, AR(L), where 2=0(T )

as TTw. In practice the test proceeds as before with p in (12) and
(14) equal to 2. This approach permits to test the null hypothesis
of the presence of a unit root without knowing the orders of p and .
However, it involves the estimation of additional nuisance parameters
which reduces the effective number of observations due to the need for

extra initial conditions.

When p and g are known, Said and Dickey (1985) present a
test for the hypothesis that the process is ARIMA (p,1,q), i.e.

HO: gLy o y, = O(L) €,

where @(.) and ©(.) are pth and qgth order polynomials in the lag
operator L, versus the alternative hypothesis that it is ARIMA (p,0,q)

Hot B(L) (1-pL)y, = O(L) e,

To perform the test of p=1, we specify initial estimates
of the parameters that are consistent under the null and alternative
hypothesis. We next perform a one-step of the Gauss—Newton numerical
estimation procedure (see, e.g., Harvey, 1981 p. 17). The t-statistic
associated with p, after applying the iteration has the limiting
distribution of v, tabulated by Fuller (1976, p. 373). Similarly if
the series mean y is substracted from each observation of yt prior

to analysis, the t-statistic has the limiting distribution of <
. K

(iii) An alternative approach, based upon the DF procedure
has been presented by Phillips (1987) and Phillips and Perron (1988),
While the ADF statistics are based upon the assumption that the
disturbance term et is 1identically and independently distributed,
they suggest amending these statistics to allow for weak dependence
and heterogeneity in € Under such general conditions, a wide

class of DGP's for et, such as most finite order ARIMA (p,o0.,q)
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models, can be allowed. The procedure consists of computing the DF
statistics and then use some non-parametric adjustment of Tu and
TT in order to eliminate the dependence of their limiting
distributions on additional nuisance parameters stemming from the
ARIMA process followed by the error terms.\fheir adjusted counterparts

are denoted Z(ru) and 2(11), respectively.

For the regression model (9), with Blzo, Phillips and
Perron (PP) define

~ - T
P Y < 2 = 2 ,-1/2
Z(’tu)....(s/sTm)w.u O.b(sTm s T {sTm ? (y_t y«l) } (15)

where T is the sample size and m is the number of estimated

T ~
autocorrelations; Jﬁl = (T—-l)m1 L Yoy 32 and Tu are, respectively,
’ 2

the sample variance of the residuals and the t-statistic associated
. ) . . 2 .

with Y from the regression (9) (with B]:O); and Sop 18 the

long-run variance estimated a31

. T 2 T .
s =T D el 2T W B e e, (16)
t=1 sz t=s-+1

where € are the residuals from the regression (9) and where the

triangular kernel
wsm = [1-s(m+1)], s =1... m (17)

is wused to ensure that the estimate of the variance éim is
positive (see Newey and West, 1987)

When Bl¢0 in (9), the corresponding statistic is
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e ~2 ~2..3 ~ 1/2,-1
Z(TT) = (s/sTm)TT —(sTm - s)T {4 sTm[3 Dxx] } (18)
where s and 3 are defined as above, but with the residual e

Tm
obtained from the estimation of (9) -with Blfo. DXx is  the

determinant of the regressor cross—product matrix, given by

22,2 2 2
D =[T(T°-1)/121 Ly | - T(E ty_ )

2

+ T+ Tty L ST ) 2T+ /67Ty, ()7

Vi1
The Phillips and Perron statistics have the same limiting
distributions as the corresponding DF and ADF statistics, provided

4
that mTo as Tto, such that m/Tl/ 10.

(iv) Simulation evidence in Molinas (1986) and Schwert
(1986, 1989), shows that the tests proposed by Dickey and Fuller and
by Phillips and Perron are affected by the process generating the data
in large finite samples. In particular, when the underlying process is
ARIMA (0,1,1) with a MA parameter close to one, the ADF and PP
statistics have critical values that are far below the Dickey-Fuller
distributions (i.e. these tests will lead to the conclusion that
economic data are stationary too frequently). The intuition behind

this result is that if the DGP of yt is
A = (1-6L
Y ( )et (19)

if © is close to one, (1-L) will tend to cancel on both sides of
(19), giving the impression that Yo behaves like a white noise.
However, the Said and Dickey (1984) high—order autoregressive t test
for the wunit root, with & suitable choice of &, has size close to
its nominal level for all values of the MA parameter. Schwert suggests
searching for the correct specification of the ARIMA process before

testing for the presence of a unit root in the AR polynomial and
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provides the relevant critical values for the Said and Dickey (1984),
Phillips (1987) and Phillips and Perron (1988) tests based on Monte
Carlo experiments.

(v) Hall (1989) proposes a new approach to testing for a
unit root in a time series with a moving average component based on an

instrumental variable (IV) estimator

Let yt be generated by the DGP

y, = B 4-81 t+py

¢ 0 . + O(L) et (20)

t-]
when ©(L) is again a ¢g-th order lag polynomial. Then, the IV

estimator for model (20) is defined as follows

T
~ o~ TV . A
By pyl = (i Zy X (i Zyovy) (21)

where zltz(l’t’yt~k) and X]t:(l,t,ytw]), k=(q+1) (see  Dolado
(1989) for the choice of optimal IV in this framework). For the model

(20) when leo, the IV estimator is given by

~ ~ T T
A R

where now ZZt = (1, ytwk)' X1t = (1, ytml)

~ o~ TV ~T IV
Let t(p1 ) and t(pz ) be the t—-statistics associated with

the null hypothesis p=1 in (19) (with and without trend), then Hall

proves that

~ ~ o~ TV ~
Ty, = S T(pl ) /s = L (23)
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and

~ ~ o~y -
TIV =5, t(p2 Y / s => ru (2?)

~

2 ~2 2 , , .
where sE, s and s are consistent estimators of the variances of & and

the long-run variance e(=9(L)e) obtained as in (16) and (17).

(vi) As it might have been noticed, one important
limitation of all of the previous testing procedures is that they are
not ‘ndependent  of  the nuisance parameters contained in  the
deterministic component of the time-series process. The disappearence
of this limitation has produced an alternative strand in the
literature orn testing. In this respect, Bhargava (1986) has developed
most  powerful invariant  (MPI) tests Ffor the null hypothesis
corresponding to DGP (9) (with and without trend). These tests are
valid in small samples and are independent of the nuisance parameters,
but only valid for the AR(1) case. They are based upon transformations
of Von Neumann type ratios, as for example the Durbin-Watson appproach
emphasised by Sargan and Bhargava (1983) in a different context, as
discussed below. The statistics proposed to test HO: p=1, when
BI:O and Blto, are given by

T T

w 2 -2 K
Ry =L By)" /7 E (ye-y) (25)
2 2
and
T 2 1L
R, = [L (A y)"=(T-1) " LAy /D (26)
2 !

.
where D=(T-1)"" E[(T-1)y, = (t=1)y; = (T=t)y, = (T=1)(5-0.5(y, +y- )’
1



The corresponding critical values are given by Bhargava
(1986, p. 378). The test is found to have slightly greater power than
the tests proposed by Dickey and Fuller, when the data are generated
by an AR(l) process. ,

(vii) Another limitation of all the previous testing
procedures is that the distributions of the corresponding statistics
are non-standard and hence a different set of critical values has to
be used in each case. This problem has originated a new strand of
research (see Phillips and Ouliaris, 1988), which exploits the fact
that differencing a stationary series induces a unit root in the
moving average representation. This fact provides a diagnostic for
testing whether the series is I(0) or I(1), by using the long-run
variance of the first difference of the time series Y- To clarify

the interpretation of the test, let us assume that yt is generated by

i) Yy = G(L)et ; O(L) = (1m91L)9'(L)

Then the long-run variance of Ayt is szoi 6(1)2.
If @lil and 6'(1)%0, then 02 is finite, whilst if
01:1, 02 is zero. In other words, if the time series Ve is

1(0), Ayt will  have 02:0, whereas if it is I(1), ozﬁo.

Therefore the null hypothesis is HO: Uzﬁo or HO:TZ:GZ/Uiio, getting
rid of the units of measurement. Obtaining an estimate of 02 as in
(16), Phillips and Ouliaris prove that

ml/z(%zwrz)/rz ~ N(0,1) (27)

Since only the alternative hypothesis is a simple

. . 2 cqq s N
hypothesis, i.e. Hl: T =0, Phillips and Ouliaris propose a
bounds procedure based upon the corresponding confidence interval in

(27), yielding

12/[1+(zc/m1/2)] < 12/[1~(zd/m1/2)] (28)



where z, is the (1-a) percentage point of the standard normal
distribution. According to the bounds test, Ho is rejected if the
upper limit of 12 in (28) 1is sufficiently small. Similarly HO is
non rejected if the lower bound is suffic}ently large. Phillips and
Ouliaris recommend using 0.10 as the rejection point for the upper and
lower bound. Simulation results show, however, that the suggested
value can be very conservative in some instances. For example if the
DGP is ARIMA (1,1,1) with parameter values in the interval (-0.6,

0.6), the average upper bound is 0.45 wheress the value of the lower

bound is close to 0.10.

A very nice implication of this type of tests is that,
given their asymptotic normality, they can be applied to deal with
very general trend-cycle models (e.g piecewise linear functions of
time, any type of impulse or step dummy). All that is needed is to
perform the previous test on the differenced residuals of the

regression of yt on the general trend function.

3.2. Integration and Seasonality

Due to the fact that many economic time series contain
important seasonal components, there have been several developments in

the concept of seasonal integration.

Osborn et al. (1988) amend the Engle and Granger (1987)
definition of integration to account for seasonality: a variable yt,
is said to be integrated of order (d,D) [or yt ~ I(d,D)], if it
has a stationary, invertible, non—deterministic ARMA representation
after one-period differencing d times and seasonally differencing D

times.

Following Pierce (1976), let us assume that seasonality has

both deterministic and stochastic components, then a seasonal observed
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series yt can be seen as the sum of & purely stochastic process xt

and a purely deterministic seasonal component e

Yt = Xg + Ui (79)
where
q-1
ut = BO + Bl t + j§1 sz Sjt (30)
where &, are zero/one seasonal dummies, and ¢g=12 for monthly data,

jt
g=4 for quarterly data and so on.

By regressing Y on o we can remove the

t t’
deterministic seasonality, using the residuals from that regression as
if they were the true Xt' Then, the following tests can be applied
for testing I(d,D) integration, where we present the case for g=4

(i.e. we are dealing with quaterly data).

(i) Dickey et al. (1984) present a test for the presence of
a single unit root at a seasonal lag. The null hypothesis is
HO: I(0,1) and the alternative is Hl: 1(0,0). The test is a 3-step

procedure as follows

1. The regression equation

is estimated by OLS, where A4 X, = X, — X
2. Using the estimates él' )

) A _ ..,A 5 ‘A p
zp = O(L) x, = (18, L-... B LP) x



3. Run the regression

and compute the t-ratio on EO' This sample statistic, denoted

Tuq is compared to the tabulated critical values given in Table
7 of Dickey, Hasza and Fuller (1984, p. 362).

(ii) Dickey et al. (1986, Appendix B) show that the
limiting distribution of the unit root statistics is not affected by
removal of seasonal means from autoregressive series. Therefore, We

can use the ADF statistic from the regression equation

p

+ L Y, DNx, .+ (31)

Boxg =Yy Boxg 2i © Reei T %
i1

t 1

to test the null hypothesis HO: Xe ™ I(1,0) versus the
alternative H]: Xp ™ I(0,0). The relevant critical values are

given by Fuller (1976, p. 373) for Tu.

(iii) Engle et al. (1987) present the following 3-step
procedure to test for seasonal unit roots in the possible presence of
a zero frequency unit root.

1. Compute O(L) as for the Dickey et al. (1984) statistic

2. Compute

N
il

~ 2 3
1t O(L) (1+L4L +L ) Xy

8L (142 X,

N
1

2t



A Z
Zy, = -O(L) (1-L7) Xy

3. Run the regression

and compute the values of the t-ratios on %1' ﬁz and %3‘
The critical values are given in Table 2.1 of Engle et al. (1987, p.
14). If Xe ™ 1(0,0), then all theree of these statistics should
be significant. If the test statistic for wlzo not significant,
then xt ~ I(1,0). If either of the test statistics for ﬂzxo or

ﬁS:O is not significant, then xt ~ I(0,1)

(iv) Oshorn et al. (1988) present an alternative 3-step

test procedure:

1. Run the regression

and compute Wl' WZ""' b

2. Compute Zye T Y(L) A4 X and zg, = ¥(L) A Xy where Y(L)=

~

_ oy _ 3 p
==Y L= ... vp )

3. Run the regression

DAy %y =0 24



and compute the F-statistics for the null hypothesis HO: ¢1: ¢2 =0, and
the t-ratio on 51 and 32. The null hypothesis for both type of
statistics is H_: X, ™ I(1,1) with alternative hypothesis

0

le Xe ™ I(0,0) or HZ: Xe ™ I(0,1). The critical values of these

statistics are given in Table A.1 of Osborn et al. (1988, p. 376).
4. OTHER FORMS OF INTEGRATION

In this section, we review alternative forms of integration
based upon e possibility that the model parameters are allowed to
vary (periodic integration) or the possibility of using non-integer
differencing orders Lo achieve stationarity in the data (fractional
integration). Both ideas have received recent attention in the

literature

4.1. Periodic Integration

Osborn et al. (1988), building upon the framework developed
by Tiao and Grupe (1980), investigate the use of a periodic model
(whose parameters are allowed to vary according to the time at which
observations are made) as an alternative to the conventional

approaches to modelling for seasonal data

The non-deterministic periodic AR(l) process is given by
the following expression
q
L

w, S € (32)

Yy i %5t Vet &

j=1

or

+€ (33)



when t falls in season j. As in equation (30), Sjt are seasonal
dummy variables corresponding to season j(j=1...q). Equation (33)
states that yt is seasonal, seasonality arising not from any direct

dependence of y, ony , but from the annual variation in the

t—q )

autoregressive coefficients mj‘ This dependence can arise, for
example, if the allocation of expenditure over the year reflects
seasonal tastes and hence seasonality in the underlying utility

function (see Osborn, 1988).

Osborn et al. (1988) define periodic integration as
follows: A variable Yi is periodically integrated of order one
[or Yo~ PI(1)] if U is non-stationary and 8j N is stationary, where
the generalised difference operator 8i is defined as

4

5j y, =y, - (34)

t i Ye-1

the product m1 mz.‘. wq being equal to one.

Osborn et al. (1988) propose two ways of testing for

periodic integration:

(i) After regressing Yoo oonouy (as defined in (30)) to
remove conventional deterministic seasonality, & non-deterministic
periodic AR(1) process (as defined in (33)) is fitted to the residuals
Xe: This case is referred to as the removed deterministic
seasonality case.

(ii) The case of included deterministic seasonality is
given by fitting the following periodic AR(1) process to the original
observations yt

A = () -+ = e,
y Qj + mj yt~i e, (j=1, q)

t
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To allow for the possibility of a periodic disturbance
variance, they suggest a 2-step estimation procedure for both cases.
In the first step, the appropiate equation is estimated by OLS applied
to observations on each of the g seasonal realisations. (i.e. four for
quaterly data); then the equation is transformed by dividing each
variable by the appropiate seasonal residual standard deviation
estimated in this first stage regression. Using the transformed data,
in the second step the periodic AR(1) model is estimated in its two
versions (i.e. removed and included deterministic seasonality), with

imposition of the restriction ©, wz...m = 1.

Finally, the tests (i) to (iii) in Section 3.2 are applied

to the residuals of the periodic AR(1) model.

4.2. Fractional Integration

As was seen in Section 2, one of the main characteristics
of the existence of unit roots in the Wold representation of a time
serries is that they have "long memory" (i.e. shocks have a permanent
effect on the level of the series). In general it is known that the
coefficient on st«j in the MA representation of any I{d) process
has a leading term j (for example, the coefficient in a randoem
walk is wunity, since d=1). This implies that the variance of the
original series is O(tZdwl). So, all that is needed to have
"long-memory", in the sense that the variance explodes as tTw, is a
degree of differencing |[d|>0.5. Thus, it 1is clear that a wide
range of dynamic behaviour is ruled out a priori if d is restricted to

integer values.

Granger and Joyeux (1980) and. more recently Diebold and
Rudebusch (1989) have proposed a new family of "long-memory"
processes, denoted by ARFIMA (autoregressive fracticnally integrated
moving—-average processes), of which the ARIMA processes are particular

cases: A variable yt is fractionally integrated of order d



d .
for Ve ™ FI(d)] if Vi is non-stationary and A is
stationary, where the operation ﬂd, using a binomial expansion, is

as follows

(1»~L)d =1 - dL + d—%—}ll - g—@:—?,id—"2)~ vl (35)

where d belongs to the rational set of numbers and d>0.5.

Note that these processes can always be constrained to
belong to the open interval (0.5,1.0) by substracting the integer part
of the differencing order. So if the degree of diferencing is, for
example, 1.7, we can always redefine the degree of differencing as d-1

(0.7 in this case).

Diebold and Rudebusch (198) propose the following method of

testing and estimation for fractional integration:

(i) First difference the relevant series denoted
gt:(le)yt. As d of the level series equals 1+&1 a value of d
equal to zero corresponds to a unit root in Yy Thus, we wish to

estimate d in the model

-0y, = eLye, (36)

(ii) Estimate by OLS the following regression

.2 . 1/2
ln[I(hj)] = BO"BI In {4 sin (Rj/Z)} + nj, j=1,..., T / (37)
where hj:Zﬂj/T (j=0...7-1) denote the harmonic ordinates of
the sample and I(Rj) denote the periodogram at ordinate j (see
Harvey, 1981, p. 66). Geweke and Porter-Hudak (1983) prove that El
is a consistent and asymptotically normal estimate of d. Furthermore,

the variance of the estimate of Bl is given by the usual OLS
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estimator, which can be used to test the null hypothesis
Ho: d=0[i.e. Ve ™ I(1)]. Moreover they show that the variance of
the disturbance nj is know to be equal to ﬂ2/6, which can be

imposed to increase efficiency.

(iii) Given an estimate of d we transform the series Ve
by the "long-memory" filter (35%), truncated at each point to the
available sample. The transformed series is then modelled as in (36)
(or in the ARMA representation) following the traditional Box and

Jenkins (1970) procedure.
5. TESTING FOR STATIONARITY IN THE COINTEGRATING RESIDUALS

In the two previous sections we have discussed procedures
to test for the order of integration of individual time series. This
is, as we mentioned in Section 2, a first stage in the estimation and
testing of cointegrating relationship. The reason is a matter of
"integration or growth accounting" in the words of Brusch and Pagan
(1989) (i.e. the left and right hand sides of an equation, such as (4)
must be of the same order of integration, otherwise, the residual will
not be slationary). If for example, the dependent variable is I(1),
the independent variables need to be I(1) and not cointegrate among
themselves to an I(0) variable or, perhaps, be I(2) and cointegrate

among themselves to an I(1) variable.

In order to illustrate testing for cointegration, we will

consider a bivariate case where say, vy, and xt have been found to

t
contain a single unit root at the regular frequency (i.e. both are
I(1)). Then, the following part of the cointegration test is to
estimate the cointegrating regression (4) and test whether the

"cointegrating residuals" (?t: yt~&»§ Xt) are I(0).

Engle and Granger (1987) suggest seven alternative tests

for determining if ?t is stationary. Here we will consider only two
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of their suggested tests, namely the Durbin-Watson statistic for the
cointegration equation (CRDW) and the ADF statistic for the
cointegrating residuals (CRADF).

The DW statistic for equation (5) will approach zero if the
cointegrating residuals contain an autoregressive unit root, and thus
the test rejects the null hypothesis of non-cointegration if the CRDW
is significantly greater than zero. The intuition underlying this test
can be understood by means of a simple example. Suppose that zt is
assumed to follow an AR(1) process wilth coefficient p. Then the null
hypothesis of norn—cointegration 1is HO: p=1. Since it can be shown
that the DW statistic is such that DW ~ 2(1-p) (see, e.g. Harvey,
1981, p. 20), the previous null hypothesis can be translated into
HO: DW=-0 versus the alternative Hl: DW>0. Engle and Granger (1987,

p. 269) present the critical values of this test for 100 observations.

The CRADF statistic is based upon the OLS estimation of

12

B2=Y 2  +IY, DZ . +e (38)
where again p is selected on the basis of being sufficiently large to
ensure that et is i close approximation to white noise. The
t-ratio statistic on Yl is the CRADF statistic. We cannot use the
critical values tabulated by Fuller (1976) to test for a unit root in
the cointegrating residuals. Intuitively, since OLS estimation of the
cointegrating regression equation I(0) chooses & and % to minimise
the residual variance, we might expect to reject the null hypothesis
HO: z, ~ I(1) rather more often than suggested by the nominal
test size, so that the critical values have to be raised in order to
correct the test bias. Engle and Granger (1987, p. 269) present the

critical values for the CRADF statistic generated from Monte Carlo

simulations of 100 observations.
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Note that the critical values for both CRDW and CRADF
statistics are for the bivariate case (i.e., for one dependent and cne
independent variable in the cointegrating regression), and for 100
observations. Engle and Yoo (1987) produce expanded critical values
for CRDW and CRADF statistics for 50, 100 and 200 observations, and

for systems of up to five variables.
6. SOME NEW DEVELOPMENTS IN COINTEGRATION

In this section we survey some new test procedures for
cointegration that have recently been proposed in the literature. Most
of these procedures extend the testing and estimation approach
introduced in Section 2 to a multivariate context where there may
exist more than a single cointegrating relationships among a set of n
variables. For example, among nominal wages, prices employment and
productivity, there may exist two relationships, one determining
employment and another determining wages (see, inter alia, Hall, 1986,

and Jenkinson, 1986).

In general, if Xt represents a vector of n I(1) variables

whose Wold representation is

A\ )(t = C(L) €y (39)
where now et ~ nid(0,L), being L  the covariance matrix of
€y and C(L) in an invertible matrix of polynomial lags. If there
exists a cointegrating vector @, then, permultiplying (39) by «a',

we obtain
a' A Xt = a'[C(1) + CX(L) (1—L)]et (40)
whefe C(L) has been expanded around L=1 and CX(L) can be shown to be

invertible (see Engle and Granger, 1987). If the linear combination

a‘Xt is stationary, then a'C(1)=0 and then (1-L) would cancel
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out on both sides of (40). If (39) is represented in AR form, we have
that

A(L) C(L) = (1-L)I (41)
where I is an identity matrix, and hence
A(l) C(1) =0 (42)

This 1implies that A(Ll) can be written as A(1)=Y a'. If there were r
cointegrating vector (r<n-1), then A(1)=BI'"', where B and T are
(nxr) matrices which collect the r different Y and o vectors.
Testing the rank of A(1) or C(1) constitutes the basis of the

following procedures.

(i) Jchansern (1988) and Johansen and Juselius (1988)
develop a maximum likelihood estimation procedure that has several
advantages on the 2-step regression procedure suggested by Engle and
Granger. It relaxes the assumption that the cointegrating vector is
unique and it takes into account the error structure of the underlying

process.

Johansen considers the p-th order autoregressive

representation of Xt
X, =1, X + I, X +.. .+ Hp X + € (43)

which, following a similar procedure to the ADF test, can be

reparameterised as

DX =T' AX_ _ +...+0' _AX - I !
t 17 Tl pet DX g T X ot ey

where ﬁlp = - II(1) (= - (H1 +o0 + Hp)). To estimate i

maximum-likelihood, we estimate by OLS the following regressions
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3 + e
t 01 t-1 Ok-1 t—-k+1 ot

and

Xe p =T DX g 4o+ T DX i ¥ ot

and compute the product moment matrices of the residuals

The likelihood ratio test statistic of the null hypothesis

HO: H'p:BF', i.e. there are at most r cointegrating vectors is

p

=2 In(Q) = - T L (lwhi) (45)
i=r+1
@ N e t — lest eigenvalue [ S
where hr+1 hp are the p-r smallest eigenvalues of 810 00 SO1
with respect to 811, obtained from the determinant
-6, 8 6 | =
A S1J 10 T00 Ol| 0

Under the hypothesis that there are at most r cointegrating
vectors, Johansen (1988) shows that the likelihood ratio test (45) 1is
asymptotically distributed as a functional f(W). Johansen (1988, p.
239) provides a table with various quantiles of the distribution of
the likelihood ratio test for r=1,2,...5. He also shows that these
quantiles can be obtained by approximating the distribution by ¢
xz(f) where ¢=0.85-0.85/f, and xz(f) is a central chi-square
distribution with f’::2(p—~r)2 degrees of freedom.
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(ii) Stock and Watson (1988) focus on testing for the rank
of C(1) in (40) and denote their approach as a "common trends"
approach, by noticing that if there exists r cointegrating vectors in

. 11
(40), then there exist a representation such that

= ¥
xt C(1) ¢ Tt + C¥(L) et

where & is an nx(h-r) matrix and Tt is an n-r vector random
walk. In other words, xt can be written as the sum of n-r common
trends and an I(0) component. Estimating (39) as a multivariate ARMA
(1,q) model, the null hypothesis that there are r cointegrating
vectors is equivalent to the null hypothesis that there are n-r
"common trends". This implies that, under the null hypothesis, the
first (n-r) eigenvalues of the autoregressive matrix should be unity
and the remaining eigenvalues should be smaller than one. The test is

based on 1Kﬁh r+1~1) and the critical values can be found in Stock

and Watson (1988, p. 1104).

Phillips and Ouliaris (1988) have also proposed &
multivariate extension of their unit root test, as discussed in
Section 3, based upon the eigenvalues of the long—run variance of the

differenced multivariate series.

(iii) As discussed in Section 2, when concentrating on a
single equation estimator in the case of a single cointegrating C(1,1)
relationship, the OLS estimator of the slope in the static regression
(4) is 'super—consistent" but its distribution is, in general,
non-normal and in finite samples is biased (see Banerjee et al., 1986

and Gonzalo, 1989).

This bias and non-normality stem from the I(1) character of
the regressor and its possible correlation with the I(0) disturbance
zt. Phillips (1988) bhas shown that in the case where xt and z_t
are independent at all leads and lags, that distribution is a "mixture
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of normals" and, hence, the distribution of the t-statistic on @ is
asymptotically normal. Phillips and Hansen (1988) have developed an
estimation procedure, equivalent to FIML, which corrects for the bias
and yields asymptotic normality in the case where such correlation
exists. The procedure, denoted as a "fullyumodified estimator'" (FME),
is based upon a "non-parametric" correction by which the error term
zt is conditioned on the process followed by A Xy and, hence,

orthogonality between regressors and disturbance 1is achieved by

construction. The FME estimators of a and B in (4) are given by

~ A T T
(a, B) =( I )<t XL) [ LoX (yt—o A X ) -e 1(0
=l t=1

)
217% 9px) ]

here X, = (1 , e, = (0,1)
where ¢ (1,xt) 92 ( )

- _ 7 -
A =T ¥ A x z

21 k=0 tz=k-1 bkt
"2 ~ ~2

% = %y, 2 %nx

. . . o ~
the long-run variances obtained from the first—-stage residuals z

’

as in  Engle and Granger  (1987). Notice that when UJ~A2] =0

the FME estimators coincide with OLS for the static regression (4).

It is interesting to notice that the FME procedure
coincides with the Hendry-—Sargan approach, as summarised in (3),
through the ECM representation of dynamic single equation models,
except when z, or A xt contain a moving-average disturbance in
.their respective representations. Even in that case it is possible to
modify slightly equations like (3) by including 1. s of Q4 xt in

the regression model (see Saikkonen, 1989).



7. BRIEF CONCLUSION

The considerable gap between the economic theorist, who has
much to say about equilibrium but relatively little to say about
dynamics, and the econometrician, whose moéels concentrate on dynamic
adjustment processes, has, to some extent, been bridged by the concept
of cointegration. In addition to allowing the data to determine the
dynamics of the model, cointegration suggests that models can be
significantly improved by introducing, and allowing the data to
parameterise, equilibrium conditions suggested by economic theory.
Furthermore, the generic existence of such long-run relationship can,
and should, be tested, using the battery of tests for unit roots

discussed in this paper.
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NOTES

There is an early survey by two of us (see Dolado and Jenkinson,
1987) and & more recent one by one of us (see Sosvilla-Rivero,
1989), and some excellent overviews by Granger (1986), Hendry
(1986), Gilbert (1986), Stock and Watson (1987), Diebold and
Nerlove (1988), Pagan and Wickens (1989) and Haldrup and Hylleberg
(1989) .

Even though cointegration implies at least one causal direction,
it does not imply any explicit causal relationship. Here we have
assumed that the causal relation suggested by the theory (i.e.
xt causes yt) is the correct one. See Granger (1988) for a

study of cointegration and causality.

Nickell (1985) shows that the ECM 1is also consistent with

optimising behaviour on the part of economic agents.

Alternatively we would say that a "super'"consistent" estimator is

A -1
such that B-B8 has probabilistic order of magnitude O(T 7).

The explosivity of the variance characterises the "integration in
variance". Integration can also be applied to other higher moments

(see Escribarno (1987) and Hansen (1988)).
See the Appendix for a description for k(k32) unit roots.

This result has been noticed by West (1988) and it is applicable
also to regression models like (2) where xt has a unit root with
drift. However, Hylleberg and Mizon (1989) have noted in
simulation studies that the drift has to be quite large for the
deterministic trend to dominate the integrated component. If there
are two I(1) regressors with drift in the model, a trend should

also be included to avoid asymptotic perfect collinearity.
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Ouliaris et al. (1988) compute critical values when in the
mantained hypothesis there is up to a quintic trend. Similarly,
Perron (1987) computes critical values when there is a piecewise

linear trend under the mantained hypothesis.

Sims et al. (1986) and Banerjee and Dolado (1988), have show that
the estimates of coefficients on I(0) variables in regression
models with I(1) variables are O(Tl/z) and asymptotically

normally distributed.

In the frequency domain notation, the long-run variance is equal
to 2w fe(O), where fe(O) in  the spectrum of €y evalutated at

frequency zero.

The size of C(1) in a univariate context, has been called the
"size the unit root", giving rise to a literature (see Cochrane
(1988) and references therein) which deals with the relative
importance of the trend and cyclical componentes in  the

decomposition of a time-series.
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APPENDIX: TESTING FOR K UNIT ROOTS

Dickey and Pantula (1987) suggest a sequence of tests for
unit roots, starting with the largest number of roots under
consideration (k) and decreasing by one each time the null hypothesis
is rejected, stopping the procedure when the null hypothesis is

accepted.

They illustrate their sequential procedure for the case

k=3, Tt is as follows:
1. Run the regression

2
Dy =8+ By Dy + ey
3 . .
(where N dernotes third difference), and compute the ‘“pseudo
t-statistic" L*3 n (3) (i.e. the t-statistic on 8}). Reject the

hypothesis H3 of three unit roots and go to step 2 if ﬁ*g (3) ¢ T,
N m
where TH is given by Fuller ((1976), p. 373).

2. Run the regression

and compute t*3 n (3) and t’(2 " (3). Reject the hypothesis H2 of
exactly two unit roots and go to step 3 if in addition to

¥ 3 it is al hat ¥
3n (3) ¢ Tu it is also found that t 2.n (3) ¢ Tu

3. Run the regression

3 2
= ¥ . EX * . 3 -
Dy =8+ B Doy (+ B Dy EX oy e

and compute t*3 n(3)' t*2 n(3) and t*1 n(3). Reject the
hypothesis H1 of exactly one unit root in favour of the hypothesis

i *, i=1,2,3).
H0 if t in (3) ¢ Tu (i=1 )
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