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Abstract

This paper studies the existence and the scale of education externalities in the un-

employment durations su ered by workers in the UK. First, we develop a theoretical

model. Using a matching framework we show that a rise in the average level of educa-

tion of a labour market will a ect unemployment durations in two di erent ways. It

will increase the firms’ expected profits per vacancy opened, since firms expect to be

matched with a more qualified worker, rising job creation and reducing unemployment

durations. We call this the Composition or External e ect. But, since more qualified

workers are more e cient in the process of job search, it will also rise the competi-

tion amongst workers for opened vacancies, increasing unemployment durations. We

name this the Competition e ect. In the most skilled segments of the labour market

the composition e ect will dominate the competition e ect, while in the least skilled

segments the opposite will be true. Then, we test these theoretical results empiri-

cally using data from the UK Labour Force Survey for the 17 UK regions over the

period 1992Q1-99Q4. We find that a 1% rise in the average level of education reduces

unemployment durations of individuals from skilled occupations by 2.9% on average,

while it rises the unemployment durations of individuals from unskilled occupations by

1.9% on average. This e ect is robust to di erent measures of education, to controlling

for unobserved heterogeneity and to di erent parameterisations of the hazard function.



1 Introduction

Education externalities have been at the heart of the economic and policy debate for the

last two decades. Di erent theoretical explanations have been developed, and these can be

grouped into two main categories: technological externalities (or non-pecuniary) and pe-

cuniary externalities. Both these types of externalities were already mentioned by Alfred

Marshall (Marshall (1920)) as reasons explaining the concentration of economic activity.

However, they were not further developed until more recently.

The first type of externality was re-discovered by the works of Romer (1986) and Lucas

(1988). They showed theoretically that, in an area with a higher average level of education

processes like the exchange of ideas, imitation or learning by doing are more likely to occur,

in turn fostering technological progress. These type of spill-overs have been explored in great

detail by the endogenous growth literature. The second type of externality was re-discovered

by the works of Krugman (1991a) and further developed by the new economic geography

literature. However, these ideas have also been used in other areas of economic research.

Acemoglu (1996) showed that, in a labour market were it is costly for firms and workers to

find each other, if the average level of education of workers is high then firms will invest more

in physical capital. This generates a pecuniary education externality which does not work

through technology, but through improving the search process. A similar type of externality

is developed in this paper. Other authors have used these ideas to stress instead the interac-

tions between education attainment and the location of economic activity. Rotemberg and

Saloner (2000) study an externality coming from the interaction between regional agglomer-

ation of production and the incentive for workers to invest in industry-specific skills. Amiti

and Pissarides (2002) show that the existence of a bigger pool of qualified workers improves

the quality of matches and helps agglomeration of activity.

The existence of education externalities means that economically identical workers will tend

to earn higher wages and enjoy greater employment rates in human capital rich areas than in

human capital poor areas. That is, the social return to education may exceed the private re-

turn and, therefore, individuals will tend invest in education below what is socially optimal.

This has provided one of the main justifications for the public provision of formal education.

Primary and secondary education, as well as an important part of university education, is

almost completely subsidized by the state in most countries around the world. Therefore,

the magnitude of the social return to education is crucial for assessing the e ciency of public

investment in education. In addition, many regional policies of development are justified on
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the existence of agglomeration externalities often related to education externalities.

However, despite the significant policy implications and the theoretical developments, there

had not been any relevant empirical work on this area until fairly recently. Moreover, most

of the existing work has concentrated on the estimation of the e ect of average education in

an area on individual wages, that is, on estimating the social returns to education. Rauch

(1993) was the first attempt to estimate human capital externalities. He used data from the

United States’ 1980 Census to test the e ect of average education in the Standard Metropol-

itan Statistical Areas on individual wages. He found that a one-year increase in average

schooling in an area raises individual wages by between 3-5%. Moretti (1999) re-estimates

this e ect for US cities using instruments for the average level of education to avoid an

omitted variable bias problem. He finds that a 1 percentage point increase in college share

in a city raises average wages by 1.2%-1.4% above the private returns to education. Other

studies have found little evidence of significant external returns. Acemoglu and Angrist

(2000) estimated the e ect of average schooling in US states on individual wages, using the

change in State compulsory attendance laws and child labour laws as instruments. They

found modest and statistically insignificant external returns. Ciccone and Peri (2000) used

a standard neoclassical growth model to identify external e ects and found that these were

negligible and insignificant. Instead, they found substantial scale e ects.

Another line of empirical research has looked at the e ect of education externalities on em-

ployment growth in cities. Simon (1998) found that a rise in the supply of high school and

degree graduates in a US Standard Metropolitan Area in 1940 increases employment growth

in the area and that this e ect is persistent, lasting up to 40 years. Simon and Nardelli

(1996) looking at English cities found that this e ect could last up to a century. Glaeser

et al (1992) studied the e ect of knowledge spill-overs on employment growth in industries

within cities. They found that these e ects are more likely to occur between industries

within a city and when competition between firms in an industry is strong.

In this paper we take a di erent approach - we test the existence of education externalities

in the matching process. Firstly, a model showing the existence of a pecuniary education

externality in the matching process is developed. In this model, human capital externalities

arise when there are matching frictions in the labour market because firms have to decide

whether to create a job or not before knowing who they will finally employ. Thus, a more

educated labour force will increase the expected profits per vacancy opened and increase job

creation in that area, at the same time increasing the worker’s probability of finding a job.
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We call this external e ect. But, a more educated labor force will also be more e cient

searching for jobs. This will increase the competition amongst workers for opened vacancies

and reduce the average probability of finding a job. The net e ect on the probability of find-

ing a job will depend on the relative importance of these two forces. Then, we hypothesize

that for the more skilled segments of the labour market, where the worker’s qualifications

are a fundamental determinant of the firm’s expected profits, the external e ect dominates

the composition e ect. Meanwhile, in the unskilled segments of the labour market, firms

benefit only from workers achieving a certain minimum level of education. Therefore, job

creation reacts less to a more qualified workforce and the competition e ect dominates the

external e ect. This means that if externalities exist in the matching process, one should

find that unemployed individuals belonging to the skilled (unskilled) segments of a labour

market where the labour force is better educated have a higher (lower) probability of mov-

ing from unemployment into employment than otherwise similar unemployed individuals in

labour markets where the labour force is less educated. In addition, for a given average, the

more equal (unequal) the distribution of education the higher the probability of transition.

We test this theory by a maximum-likelihood estimation of a model of the duration of un-

employment which assumes a discrete-time semi-parametric hazard function and allows the

covariates to vary within each unemployment spell. The estimation shows that the average

level of education a ects positively the probability of transition from unemployment to em-

ployment for individuals from skilled occupations, while the variance of education a ects it

negatively. The opposite is found for individuals from unskilled occupations. Both of these

e ects are statistically significant at the 10% level. The magnitude of this e ect is in line

with the findings in the literature. A 1% increase in the average education of the labour

market rises (reduces) on average the probability of employment of individuals from skilled

(unskilled) occupations by 2.9% (-1.9%).

Finally, an important issue in this literature is whether these e ects are due to education

externalities or to complementarities in skills. Moretti (1999) indicated that the fact that

average education a ects wages does not necessarily imply the existence of education ex-

ternalities. This result could be due to complementarities between high and low educated

workers. However, he argued that if di erent skills are perfect substitutes, the e ect of an

increase in the supply of educated workers on their own wage had to be an external e ect.

By doing this he found that a 1 percentage point increase in the labour force share of col-

lege graduates increases wages of college graduates by 1.2%, and therefore concluded that

education externalities are important in US cities. Ciccone and Peri (2000) argued instead
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that if skills are imperfect substitutes, one cannot separately identify the external e ect

from the e ect of the complementarity of skills using a regression of individual wages on

average wages. They used a standard neoclassical growth model to identify external e ects

and found that these were negligible and insignificant. But, their methodology is completely

dependent on the theoretical model used. It is di cult to apply directly their work to the

model of this paper since they implicitly assume a competitive labour market with no un-

employment. However, what their work shows is that there is a significant e ect of an area’s

skill composition on wages paid, but this is not due to an externality that works through

improvements in productivity. Then, using their model they conclude that their result has

to be due to complementarity of skills. Alternatively, one could interpret this result as sug-

gesting that it might be other types of externalities not working through productivity which

are important. One such type could be the one studied in this research, which a ects wages

through improvements in the matching process.

This paper will be organised as follows. In section 2 the theoretical model is developed.

The dataset used as well as some descriptive analysis of the distribution of education and

its relation with labour market performance is described in section 3. The econometric

methodology is explained in section 4. Section 5 outlines the estimation results and some

robustness analysis. In section 6 we try to confirm the relevance of the results by estimating

directly the e ect of education externalities on job creation. Finally, section 7 concludes.

2 Theoretical model

Workers1

In the economy there are L individuals, each one born with a di erent ability (ai). When

young they attend full-time education and then enter the labor market with the human

capital obtained. Individual human capital hi is a f unction of innate ability and assu med to

be given, hi = h(ai). In the labor market individuals and firms engage in a search process,

which produces a number of matches. Individuals search with di erent intensity si depending

on their characteristics, mainly the level of education. This can be expressed as:2

si = s(hi) = hi (1)
1This theoretical model is based on Acemoglu (1996) and Burriel-Llombart (2002).
2The individual’s decisions of education and search e ciency are assumed exogenous to simplify the

model, but can be easily endogenized. See Burriel-Llombart (2002).
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The more intensively an individual searches (the more units of search he supplies), the

higher his probability of finding a job. However, in equilibrium, the individual probability

of employment also depends on how intensively the other individuals in that labour market

search, that is, on the aggregate supply of units of search S.

S = sif(i)di = hif(i)di = LE(hi ) (2)

Those individuals who find a job, produce and earn a wage, while the rest remain unem-

ployed and earn a subsidy.

Notice that we can define h(i) f(i)di

L
as E[h ], which from now on will be called "average"

education. However, this term depends on the whole distribution.

Firms

The number of firms active in the economy is variable. When a firm decides to enter the labor

market opens a vacancy and starts looking for a worker. The cost of opening the vacancy

is sunk, so the firm will only open one when expected profits are non-negative. Once a firm

and a worker meet, the firm buys the appropriate technology for the worker’s human capital

level and the worker brings one unit of labor and his human capital. The result of the match

is the production of yi units of product using the following technology:

yi =
Ahi if hi < h

Ah otherwise
(3)

where A > 0 is a constant representing the technological level and 1 > > > 03.4 Accord-

ing to this technology the worker’s human capital contributes to production up to a certain

level, h. Any human capital above this level does not improve the worker’s productivity and

therefore does not benefit the firm. This upper-bound will be higher the more skilled the

occupation or segment of the labour market in which the firm operates. This assumption

precludes the counterfactual result that a more qualified worker will always be more pro-

ductive independently of the type of job for which he is employed. That is, for example the

productivity of an operator will improve significantly after obtaining the compulsory level

of education or a vocational qualification but it will not increase any further after obtaining
3This is found to be always true when the individual decisions are endogeneized. It only requires the cost

of search to be concave.
4Physical capital is not introduced in this version of the model to simplify and emphasize the main

mechanism studied.
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a degree.

When a match is realized, the occupied job will yield a return that is at least as high as

the sum of the expected returns of a searching firm and a searching worker. Wages are set

to share this economic rent according to the Nash Solution to a bargaining problem, as in

Pissarides (2000). This means that the worker receives a share of output, while the firm

receives the rest of the output.5

wi = yi

i = (1 )yi (4)

Labor Market Equilibrium

The labor market is composed of L workers supplying S units of search and V vacancies who

engage in a search process by which N matches are created. Since each worker searches for a

job with di erent search intensity, si, - i.e. each worker supplies a di erent number of units

of search - the number of matches depends on the aggregate supply of search, S, instead of

the number of people searching L, and on the number of vacancies:

N = m(V, S)

where m(., .) represents a matching function with standard properties.6 The level of em-

ployment (N) should also be equal to the number of units of search supplied by individuals

looking for work times the probability that a worker meets a firm (q), N = qS. This implies

that on average,

q =
N

S
= m(

V

S
, 1) = m( , 1). (5)

where = V
S
is the labour market tightness. It is assumed that q is also the average

transition probability. Since in this model each worker searches with di erent intensity

for jobs, each worker will face a di erent probability of employment. In particular, the

individual probability of employment will be equal to the number of search units supplied

by that individual times the average probability of employment.

qi = siq (6)

The average probability of filling a vacancy (p) has to be equal to the level of employment,
5The parameter might be interpreted as the worker’s relative bargaining power.
6Increasing in both arguments, concave and homogeneous of degree one.

12



N , over the number of vacancies opened, V .

p =
N

V
= m(1,

1
) =

q
(7)

The expected profit of a firm from a vacancy (E( )) will be equal to the probability of

filling a vacancy (p) with a worker, times the profit obtained from employing that worker.

Since the firm does not know which worker will arrive we have to integrate over all possible

individuals.

E( ) = p
[y(i) w(i)] f(i)di

S

There is a fixed cost of opening a job equal to k, which is independent of the type of worker

recruited. In equilibrium no firm can open a job and make a positive profit since there are

no barriers to entry, therefore E( ) = k. Substituting the equations determining p, yi, wi
and S ((equations (7), (4) and (2)) into this equation, and solving for we obtain the labor

market tightness as a function of the employment rate and the distribution of education:

= q
(1 )A

k

i

0
h(i) f(i)di+ h

i
f(i)di

h(i) f(i)di
(9)

where i represents the marginal individual with education equal to h. According to this

expression market tightness depends positively on the employment rate, as well as on the

worker’s average product per unit of search. This is in turn a function of the distribution of

education in that labour market segment. Thus, a rise in the average product per unit of

search increases vacancy creation and labour market tightness.

For simplicity, we define L =
i

0
f(i)di the labour force with education below h, L =

i
f(i)di the labour force with education above h and E(h ) = i

0h f(i)di is the ”av-

erage” level of education for the labour force with education below h. Then, we can re-write

the worker’s average product per unit of search as follows:

i

0
h(i) f(i)di+ h

i
f(i)di

h(i) f(i)di
=
L E(h ) + L h

LE(hi )
(10)

Finally, assuming the matching function in the equation determining the average probability

of employment (equation (5)) takes a Cobb-Douglas form, m (V, S) = (bV ) (S)1 , and

substituting theta into this equation using equation (9) we obtain the average probability

of employment that equilibrates the labour market. This equilibrium is also shown in figure

1a), where market tightness (equation (9)) is represented by the straight line named q/ and
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Figure 1: a) Labour market equilibrium. b) Rise in E[h ].
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the average probability of employment (equation (5)) is represented by the curve named q:7

q =
b(1 )A

k

1 L E(h ) + L h

LE(hi )

1

Then, substituting this expression into equation (6) we obtain the individual probability of

employment in equilibrium:

qi = hi
b(1 )A

k

1 L E(h ) + L h

LE(hi )

1

(11)

This expression is the basis for the empirical estimation of the model developed. It shows

that, as one would expect, the individual probability of finding a job depends positively on

his level of education, the average product per unit of search, the firm’s share of output, the

technology and the e ciency of search, while it depends negatively on the cost of opening

vacancies. However, a rise in the average level of education has an ambiguous e ect on this

probability, since it a ects both the denominator and numerator of this expression. We will
7An alternative equilibrium with full employment (and high market tightness) may prevail when the

”average” level of human capital is very high, or the cost of opening a vacancy is very low. This equilibrium
will exist when the two equations in figure 1a) cross above the upper bound of full employment. The reason
is that, when the ”average” human capital in the economy is very large, the firms’ expected profits are so
big that they will keep on creating new jobs beyond the point in which market tightness is large enough to
achieve full employment. This will happen until expected profits disappear and labour market equilibrium
is achieved. We will not discuss this alternative equilibrium since the focus of the paper is on the e ects of
education externalities on the employment rate.
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study this issue in the next section.

2.1 Education Externalities: Composition vs. Competition ef-

fects:

A rise in the average level of education generates two o setting e ects on the average product

per unit of search and thus in the equilibrium values of the average probability of employ-

ment and market tightness (see equations (11) and (9)):

Composition e ect: A rise in the average level of education rises the expected produc-
tivity of workers, L E(h ) + L h , increasing the profit per vacancy opened and therefore

rising vacancy creation and the probability of employment. This is what we mean in this

paper by the external e ect of education.

Competition e ect: But a rise in the average level of education also rises the aggre-
gate supply of search units (E[h ]), increasing the competition amongst workers for existing

vacancies (the market is more crowded for workers), reducing market tightness and the av-

erage probability of employment per unit of search. This is the congestion e ect typical of

all matching models.

Depending on which of these two e ects dominates we may find three di erent scenarios:

a) Positive external e ect: When all workers have a level of education below h, the

composition e ect dominates the competition e ect. The external e ect becomes E(hi )
E(hi )

and,

since > , a rise in the average level of education always has a positive e ect on the

equilibrium employment rate. This is represented in figure 1b).

b) Negative external e ect: When all workers have a level of education above h, the
composition e ect disappears and the competition e ect is the only one present. Then, a

rise in the average level of education will only increase competition amongst workers for the

existing vacancies and reduce the average employment rate and market tightness. This is

represented by a external e ect equal to h
E(hi )

c) Indeterminate sign of external e ect: Finally, when some workers have education
above h and some below, it is unclear which e ect dominates and what will be the sign of

the external e ect. In this case the external e ect takes the form represented in equation (10).

Which of these scenarios prevails will depend on the labour market segment of analysis. The
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more skilled the labour market segment, the higher is the upper bound on productivity (h)

and therefore the more likely is a positive external e ect. Therefore, one would expect to

find a positive external e ect for skilled occupations a negative external e ect for unskilled

occupations and an indeterminate e ect for the semiskilled ones.

Human capital externalities arise in this model because firms have to decide whether to

create a job or not before knowing who they will finally employ and workers have to decided

how many units of search to supply before knowing who they will work for. A more edu-

cated labour force will increase the expected profits per vacancy opened and increase job

creation. But it will also rise the competition amongst workers for the opened vacancies,

which might partially or totally o set the first e ect. However, if the labour market was

perfectly competitive and there were no matching frictions, firms would be matched with

workers until the worker’s human capital made the firm’s profits equal to zero. In this case,

every firm and worker knows who it will be matched with and therefore the job creation

decision depends only on the individual’s human capital. That is, in the competitive case

aggregate employment is determined by the position of the marginal worker in the education

distribution. With matching frictions it is determined by the whole distribution of educa-

tion. This external e ect has been named a pecuniary externality since it is generated in the

matching process and is independent of the existence of increasing returns in the production

function.

Technological Education Externalities:

As was mentioned in the introduction, education externalities may also arise through the

exchange of ideas, imitation or learning by doing (Romer (1986) and Lucas (1988)). These

external e ects have been called technological or non-pecuniary externalities because they

are generated in the process of production. They can be captured in this model by allowing

the aggregate productivity term A to depend on aggregate human capital in the following

way: A = E[hi ]. If we substitute this into equation (11) we have:

qi = hi
b(1 )

k

1

E[hi ] 1
L E(h ) + L h

LE(hi )

1

(12)

In general, this type of external e ect will have a positive (or zero) e ect on the employ-

ment rate, because it increases the productivity of all workers. That is, 0. However, in a

model with skill-biased technological externalities, like Acemoglu (1998) a rise in the number

of skilled people incentivates the development of new technologies that increase the produc-
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tivity of skilled workers and reduce the productivity of unskilled workers. In this case, the

external e ect will be positive for skilled workers ( > 0) and negative for unskilled workers

( < 0), like in the model developed here. Therefore, as equation (12) shows, pecuniary and

non-pecuniary externalities skill-biased externalities cannot be separately identified empiri-

cally using this model. Instead, in the empirical estimation we will control for the the level

of technology in the segment of the labour market by including the industrial structure of

employment by occupation and region (using a 4-industry classification and 4 occupations).

Finally, we will use the specification of equation 12 to test whether the probability of finding

a job given that you are unemployed for t periods (or unemployment duration) is posi-

tively related with the average level of education in the labour market after controlling for

individual education and other individual and local characteristics.

3 The data

The data used in this paper comes from the longitudinal Labour Force Survey (LFS). The

LFS is designed to be representative of the total population in GB8, containing very detailed

information on the labour force status of individuals as well as on family and individual

characteristics. In addition, we use the non-longitudinal LFS to obtain aggregate variables

reflecting the evolution of the British regional labour market over time.

The longitudinal LFS is conducted every quarter on all members of around 60.000 house-

holds. One fifth of the sample is renewed quarterly and hence we can observe any individual

for a maximum of five quarters. It started in the first quarter of 1992 (march-may) and we

use all waves up to the fourth quarter of 1999 (November-January)9. This period of nine

years covers more than a whole cycle of the British Economy. The sample is constructed

using only the unemployment spells taking place during the five quarters each individual

is in the sample, to avoid a stock sampling bias problem. That is, spells which start not

earlier than the quarter of the first interview. This means that the longest spell will be

14 months. Spells will be measured in months. The resulting sample consists of 15,974

unemployment spells with an average duration of 3.4 months. Out of these durations 40.8%

finished with a transition into employment, 15.7% finished with a transition into inactivity
8Northern Ireland is excluded from the study since the quarterly LFS was not introduced in this area

until the winter of 1994-95.
9After 1999 regions are only reported using the new classification of regions (GOR). In addition, the

county indicator is also dropped from the LFS at this moment which makes it impossible to construct
comparable regions.
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and the remaining 43.5% did not conclude before the individual left the sample (see table 12).

Since the aim of this study is the estimation of the e ect of education matching externalities

on the transitions from unemployment to employment, the most important variables are the

ones measuring the distribution of education in the local labour market. We assume that

the distribution of education is perfectly described by its mean and variance. The theo-

retical model predicts that what is important is the specific segment of the labour market

the individual is participating in. The problem is how to define the relevant segment of the

labour market in the data. In this paper we use occupation groups in each region. Using this

definition, we calculate the average level of education as the mean education across all the

individuals belonging to the same occupation group in a region at a moment in time. Every

individual is attributed the average level of education of his own labour market segment -

e.g. a manager is attributed the average level of education of the managers in his area in that

quarter. We are only looking at direct spill-over e ects, that is, within occupation spill-over.

We do similarly for the variance of education.

The education and occupation variables used are explained in table 1.10 The individual

education variable has 9 levels going from low to high education. This classification distin-

guishes between academic and vocational qualifications. In addition, we have aggregated

this variable into 4 education groups, where academic and equivalent vocational qualifica-

tions belong to the same category. The Occupation variable follows the 9 Major Occupation

Groups defined by the new Standard Occupational Classification (SOC) introduced in 1991.

This classification was designed so that the occupational groupings brought together jobs

with similar requirements in terms of qualifications, training and experience. The ranking

of these nine major categories from 1-9 was meant to reflect the progression of the occupa-

tions from those requiring a higher level of qualifications, training and/or experience down

to those requiring a lower level of skill or experience. This is particularly relevant for this

study since we are using occupation groups to identify segments of the labour market which

are fairly homogeneous in terms of the education level (ability) of its workers. We have

also constructed two more aggregated occupation variables with 2 and 4 groups, keeping the

hierarchical structure of the SOC. The regions considered are based on the Standard Sta-

tistical Regions classification, split into metropolitan and non-metropolitan areas whenever

possible. This divides GB into 19 regions.11

10A more detailed definition of the education variable can be found in appendix A, table 10
11A detailed list of the regions and the counties included in each region can be found in Appendix B, table

11.
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Table 1: Categories of Education and Occupation variables
Education Occupation

9 groups 4 groups 9 groups 4 groups 2 groups

9 Degree Degree or equiv. Managers High Skilled
8 High Voc. (8 9) Professionals (8 9) Skilled
7 A Level A Level or equiv. Technicians High Semi-skilled (6 9)
6 Mid. Voc. (6 7) Craft (6 7)
5 O Level O Level or equiv. Clerical Low Semi-skilled
4 Low Voc. (4 5) Personnel (4 5)
3 Other Acad. Other Sales Low Skilled Unskilled
2 Other Voc. & no qual Operators (1 3) (1 5)
1 No qual (1 3) Others

The other explanatory variables used in this study can be divided into three groups: per-

sonal, household and regional characteristics. The personal characteristics include: age, sex,

education, last job’s occupational group, being white, being married, having migrated in the

last year, and whether receiving unemployment benefit or financial help from relatives. The

household variables are: region of residence, whether receiving housing benefit, number of

dependent children under 6 and between 6 and 16, number of people working in the house-

hold and whether it is a one-person-household or a two-person-household. The variables

reflecting regional characteristics are obtained from the non-longitudinal LFS and include:

average level and variance of education within each occupation group in the region, unem-

ployment rate by region, inactivity rate by region, vacancy rate by occupation and region,

ratio of the flow of immigrants to the flow of emigrants and industry’s share of employment

in the region (10 industries). The migration data is derived from the National Health Service

Central Register, provided by NOMIS. Finally, we also include time and region dummies.

All the regional variables are included in the estimation in logarithms. The household and

regional variables are allowed to vary within each unemployment spell, except for the region

of residence12, while the personal characteristics remain unchanged13.

12The LFS is a survey of non-movers.
13Changes in some of the personal characteristics, like age (in years) or education, may occur during an

unemployment spell. However, since the maximum spell is 14 months, the e ects of these changes are likely
to be small.
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Figure 2: Survival by 4 o ccupations
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3.1 Descriptive Statistics: Education, Survival rates and Vacan-

cies.

The theoretical model predicts that regions with a relatively higher level of education will

have higher job creation and lower unemployment durations. We can use the Kaplan-Meier

empirical survival in unemployment to have an initial idea about the di erences in unem-

ployment durations across the UK local labour markets during the 1990s. The empirical

survival is the fraction of unemployment spells ongoing at the start of a month which do not

end during that month14. It represents the probability of remaining unemployed given that

you have been unemployed for x months.

In general, the most qualified occupations have the lowest probability of remaining in un-

employment for all durations (figure 2). An exception are the Service occupations which

have the lowest survival for durations longer than two months. If we now look across re-

gions, we observe that the empirical survival in unemployment is lower in the region with

the highest education level (Scotland) than in the one with the lowest level (Metropolitan

West Midlands) (figure 3).15 We can also look at di erent regions by occupation. In figure

4 we compare the empirical survival in unemployment state of the top and bottom regions

in terms of qualifications by four occupation groups. It shows that regions with a more
14The empirical survivor for month t is equal to the number of spells which do not end during month t,

divided by the size of the risk set at the beginning of month t. The size of the risk set at the beginning of
month t is the number of people whose spells have not ended or been censored at the beginning of month t.
15This is not true for all regions. For example, Greater London has one of the highest survival rates for

all durations of unemployment although it has one of the most qualified workforce, while Rest of Northern
region has a medium survival rate but one of the lowest levels of qualifications.
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Fi gu re 3 : Survi va l o f t o p & b ot t o m r eg i o ns
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Figure 4: Su rvival i n state of unempl oyment by o ccup ation f or top & b ottom regions
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Figure 5: Market tightness by occupation

m
ar

ke
t t

ig
ht

ne
ss

 (
%

)

 manual  services
 technical  

92 93 94 95 96 97 98 99

0

10

20

30

40

Figure 6: Average education vs labour market tightness by occupation (line with crosses
excludes 3 top & bottom regions)
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qualified workforce enjoy lower probabilities of remaining unemployed.16

Another important variable determining the performance of a labour market is labour market

tightness, measured as the ratio of opened vacancies to the number of unemployed. Contrary

to what was expected, figure 5 suggests that the most skilled occupations have the lowest

market tightness. However, this is not longer true when we look at the relation between

education and labour market tightness by occupational group and region. In figure 6, we see

that there is a positive correlation between these variables for the more skilled occupations,

but a negative one for the least skilled ones. This result is strongest when we drop the top

and bottom regions in terms of education 17.

In conclusion, all the descriptive evidence points towards a positive relationship between

regional education by occupation and labour market performance, confirming the conclusions

of the theoretical model. Of course, it could be possible that the regions with the most

qualified workforce have labour markets performing better simply because more qualified

people face lower unemployment rates and shorter unemployment durations and not because

of an external e ect. That is why we now move to test this hypothesis using econometric

techniques which allow us to control for the individual and regional characteristics which

could be driving this result.

4 Econometric specification.

In order to study the determinants of the transitions from unemployment, we apply econo-

metric duration models to the duration of unemployment spells. The time to exit of unem-

ployment can be thought of as a random variable, T . This variable represents the duration

of stay in the state of unemployment. The probability distribution of the duration of un-

employment - the probability that the random variable T is less than some value t - can

be specified by the distribution function F (t) = Pr(T < t). Two other functions which are

particularly relevant in studying duration data are the Hazard and the Survivor functions.

The survivor function, S(t), represents the probability of remaining in a specific state, i.e.,

the probability that the random variable T will equal or exceed the value t. It can be defined

as S(t) = 1 F (t) = Pr(T t). The hazard function, (t), is the rate at which unem-

ployment spells will be completed at duration t, given that they last until t. It is defined as
16A similar picture is obtained by looking at unemployment durations. The most skilled occupations have

the lowest durations, while regional education by occupation is negatively correlated with unemployment
duration.
17Scotland, South East, metropolitan West Midlands and rest of the Northern region
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(t) = f(t)/S(t). Both of these functions depend on a vector of explanatory variables x(t)

and some unknown coe cients and 0.

We consider a proportional hazard model (Cox (1972)). This model separates the hazard

function, into two parts. The first part, 0(t), is called the ”baseline” hazard and repre-

sents a functional form for the dependence of the hazard on duration t. The second part,

[.], describes the way in which the hazard shifts between individuals endowed with dif-

ferent x(t) at a given duration t. The e ect of explanatory variables is to multiply the

hazard 0 by a factor which does not depend on duration t. A convenient specification

is [x(t), ] = exp[x(t) ] since it ensures the non-negativity of [.] without constraining

the parameter space for . In addition, with this specification we can interpret the coef-

ficient as the proportional e ect of x(t) on the conditional probability of completing a spell.

In our dataset we only observe the transitions out of unemployment on a monthly basis, so

we have to use a discrete-time hazard function, hi(t). This function denotes the conditional

probability that an unemployment spell lasts until time t+1, given that it has lasted until t.

We will use a complementary log-log specification, which has been shown to be the discrete-

time counterpart of an underlying continuous-time proportional hazard model (Prentice and

Gloeckler (1978)).

hi(t) = Pr[Ti = t+ 1 | Ti t, xi(t)] (13)

= 1 exp
t+1

t
i(s)ds

= 1 exp exp[xi(t) ] ·
t+1

t
0(s)ds

given that xi(t) is constant between t and t+ 1. Equation (13) can be rewritten as

hi(t) = 1 exp { exp[xi(t) + (t)]} (14)

where

(t) =
t+1

t
0(s)ds

is called the integrated ”baseline” hazard.

Initially, we will not assume a specific functional form for (t) and estimate the model

semiparametrically. Then, we check the robustness of our results, by estimating the model

parametrically assuming (t) takes a Weibull form (see Kiefer (1988)) like (t) = 0t 1 .
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The contribution to the log-likelihood of the ith individual with a spell of length ti is given

by

lnLi = ci ln f(ti) + (1 ci) lnS(ti)

where right-censored observations, ci = 0, contribute to the likelihood only with the survivor

function since in that case all we know is that the spell of unemployment has lasted until

moment ti. Substituting the definition of the discrete-time hazard function (equation 14)

and the survivor function, we get the likelihood function that will be estimated

lnLi = ci {ln [1 exp { exp[xi(ti) + (ti)]}] exp[xi(ti) + (ti)]}
ti

t=1

exp[xi(t) + (t)] (15)

So far, we have wrongly considered that there is only one possible transition out of unem-

ployment. An unemployment spell can terminate when the individual finds a job, but also

when he gives up searching and becomes inactive. Given that we are interested in the first

type of transition, we need to estimate a competing risk model of duration that distinguishes

exit into employment from exit into inactivity. Narendranathan and Stewart (1993) show

that the parameters of the hazard into employment can be estimated by treating durations

finishing for other reasons as censored at the time of exit. Having done this, the proportional

hazard specification used for the single-risk model can be applied to the job-finding hazard.

Using this methodology one can also control for unobserved heterogeneity by conditioning

the hazard rate on an individual’s unobserved characteristics, summarized in the variable

v (Lancaster (1990), chapter 4). This is a random variable taking on positive values, with

the mean normalized to one (for identification reasons) and finite variance 2. Then, the

conditional hazard function (in continuous time) can be re-written as:

[t, x(t), , 0] = 0(t) exp[x(t) + vi]

with vi independent of xi and t. Since each individual vi is unobserved, we have to specify a

distribution for v, so that we can write the unconditional hazard and the survivor function

in terms of parameters that can be estimated and of the observable regressors included.

This is known as "integrating out" the unobserved e ect. In the case of the discrete time

proportional hazard model, the Gamma distribution has been the most popular choice in

the empirical literature. This takes the form f(v) v
2 1 exp( 2v). The resulting pro-
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portional hazard specification identifies three sources of variation among individual hazard

rates: the duration of unemployment (t), the observable di erences among individuals (x(t))

and the unobservable ones (v). In a competing risk framework like this one, we also have

to impose the independence of these disturbance terms across the cause specific hazards.

Under these assumptions, the log likelihood described in equation 15 becomes the following:

lnLi = ln[(1 + 2

ti 1

t=1

exp {xi + (t)}) 1/ 2

ci(1 +
2

ti

t=1

exp {xi + (t)}) 1/ 2

] (16)

Finally, since the variable of interest, the mean and variance of education, varies only across

time, regions and occupation groups, when calculating the standard errors we have to allow

for correlation of the errors between individuals belonging to the same cluster (see Moulton

(1986) for a detailed analysis of this problem for the OLS case).

5 Results

We are now in a position to study the e ect of education externalities in the matching

process on the conditional probability of leaving unemployment. The theoretical model pre-

dicts that education matching externalities will a ect positively the hazard of employment

of individuals belonging to skilled occupations and negatively the one of individuals from

unskilled occupations. The e ect on individuals belonging to intermediate occupations will

have an indeterminate sign. The results of the estimation are reported in table 2. Each of

the specifications is estimated first including all individuals in the sample and then splitting

the sample into skilled and unskilled occupations. Finally, in table 3 the sample is divided

into 4 groups: high skilled, high semi-skilled, low semi-skilled and low skilled occupations.

The estimated coe cients of the average education and the variance of education have the

signs predicted by the theoretical model, confirming the existence of a positive and significant

e ect of education externalities in the matching process of the skilled segments of the UK

local labour markets and a negative and significant e ect in the one of the unskilled segments

(table 2).
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Table 2: Semiparametric estimates by 2 o ccupations

no unobserved heterogeneity unobserved heterogeneity

Variables all skilled unskilled all skilled unskilled

Baseline estimation (using levels of education)

Average education 0.705 3.375 3.342 0.682 2.890 3.386

var. of education 0.409 1.306 1.044 0.297 1.024 1.456

Using Years of education

Ave. years of edu. 0.420 2.514 1.467 0.314 2.168 1.199

var. years of edu. 0.437 2.184 0.914 0.279 1.948 0.812

Using Shares of Education (4 levels)

Share degree 0.004 0.483 0.060 0.026 0.280 0.057

Share A Level 0.096 0.132 0.197 0.076 0.099 0.193

Share O Level 0.399 0.414 1.193 0.372 0.529 1.189

NOTES: a) *** denotes significance at the 1% level, ** at the 5% level and * at the 10% level.

b) The robust standard errors are clustered by region, occupation and time period.

Tabl e 3 : S emip ar amet ri c e s timat es by 4 o c cup at ion s

no unobserved heterogeneity unobserved heterogeneity

Variables High H-Semi L-Semi Low High H-Semi L-Semi Low

Baseline estimation (using levels of education)

Ave edu 5.321 2.560 2.449 3.377 5.142 2.544 1.746 3.658

Var edu 1.385 0.478 1.473 1.062 0.438 0.366 1.314 1.183

Using number of years of education

Ave edu 2.663 2.116 1.713 0.968 2.582 2.048 1.398 0.864

Var edu 3.135 1.695 1.605 0.651 1.347 1.538 1.343 0.604

Using shares of education (4 levels)

Degree 3.003 0.255 0.238 0.003 2.265 0.095 0.197 0.009

A Level 0.569 0.209 0.580 0.091 0.136 0.304 0.480 0.123

O Level 0.349 0.388 0.915 1.061 0.306 0.275 0.841 1.238

NOTES: a) *** denotes significance at the 1% level, ** at the 5% level and * at the 10% level.

b) The robust standard errors are clustered by region, occupation and time period.
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We estimate first the model using the education variables measured in levels (first row of

table 2). When we estimate the model for all the occupations together (column 1) we obtain

a positive coe cient for the average education and a negative coe cient for the variance of

education, but both of them are not significant at the 10% significance level. However, when

we estimate instead the model separately for skilled (column 2) and unskilled occupations

(column 3)18 we realize that this aggregate result is the consequence of two e ects of opposed

sign, as predicted by the theoretical model. The estimated coe cient for the average edu-

cation is positive and significant at the 1% level of significance for the skilled occupations,

while it is negative and significant at the 5% level for the unskilled occupations. We find

a similar picture but with opposite signs for the variance of education. These results are

confirmed when we disaggregate further the occupations and estimate the model separately

by four occupational groups. The average level of education has the largest positive e ect

on the hazard rate of the most skilled occupations (managerial & professional occupations),

with a level of significance of 10%. This e ect is still positive but of smaller size and not

significant at the 10% level for the ”high semi-skilled” occupations. While it becomes nega-

tive and significant, for the ”low semi-skilled occupations”. Finally, it is more negative and

significant at the 5% level for the ”unskilled” occupations.

Re-estimating the model controlling for unobserved heterogeneity shows that although het-

erogeneity is important, the results are qualitatively unchanged (see right hand side panel of

table 2). The likelihood ratio test indicates that we cannot reject the model with unobserved

heterogeneity and the estimated gamma variance is significantly di erent from zero (see last

part of table 14 in appendix D). The average level of education and the variance of education

still have a significant e ect when we run the estimations separately for high skilled and low

skilled occupations, although of smaller magnitude - a coe cient of 2.9 and -3.4 instead of

3.4 and -3.3 for high and low skilled occupations, respectively. The same is true for the more

dissaggregated estimations (see RHS of table 3). This indicates that part of the e ect orig-

inally attributed to the education externality is actually due to unobserved characteristics.

However, the fact that the e ect is still statistically significant confirms the predictions of

the theoretical model and the existence of education externalities in the matching process

taking place in the UK local labour markets.

These results are robust to di erent to di erent measures of the distribution of education

and to di erent parameterizations of the hazard function. Firstly, we re-estimate the model
18Skilled occupations correspond to occupations 5-9 of the SOC classification, while unskilled occupations

correspond to occupations 1-4.
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using two alternative measures of the distribution of education: the average and the variance

of the number of years in post-compulsory education19 and the share of the labour force by

four education levels. Table 2 (row 2) shows that using the number of years of education

provides qualitatively similar results to using an ordinal classification of education. The

main di erence being that the negative e ect on less skilled occupations is less significant.

And in particular is insignificant for the least skilled group of the four occupations used.

This is due to the fact that this education variable gives a lower weight to the lower edu-

cation categories which are the predominant ones in the less skilled occupations. The third

row of table 2 shows that using the labour force shares by education level we also find a

qualitatively similar picture, specially when looking at the four occupations separately (ta-

ble 3). A larger proportion of people with degree increases the transitions into employment

of the most skilled occupations, while a larger share with A Level reduces the transitions

into employment of the semi-skilled occupations and a larger share with O Level reduces the

transitions of unskilled occupations. Secondly, re-estimating the model using a fully para-

metric approach assuming a Weibull hazard function (table 13) results in coe cients for the

average education and the variance of education of similar sign and statistical significance,

but of marginally larger magnitude (in absolute terms). These results are also robust to

controlling for unobserved heterogeneity (RHS of table 13).

Considering all these results together we can conclude that the e ect of the distribution of

education on the transitions into employment takes a u-shaped form across occupations. The

re-employment probability is higher (lower) for individuals belonging to a skilled (unskilled)

segment of the local labour market where the average level of education is higher and where

the variance is lower. The reason for this di erential e ect, as explained in the theoretical

section, is that an increase in the average education level of a labour market generates two

opposing forces a ecting the matching process: a external or composition e ect and a com-

petition e ect. The composition e ect appears because a more qualified workforce increases

expected profits by firms raising job creation and reducing unemployment duration. How-

ever, when average education is higher, the competition between unemployed individuals

for the available vacancies becomes more intense, increasing unemployment duration. In

the case of skilled jobs, where the worker’s qualifications are very important for firms, the

external e ect dominates the competition e ect. In the case of unskilled jobs, firms consider

education as a minimum requirement but not as a fundamental determinant of the expected

profits from the job. This means that job creation reacts less to a more qualified workforce
19Instead of using an ordinal classification of education like in the rest of the paper, we attribute the

number of years of post-compulsory education required to acquire that qualification - 0 years for other, 1
year for O Level, 3 years for A Level and 5 years for degree.
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Fi g ure 7: Ba sel i ne ha za rd a l l i ndi v i dua l s
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Figure 8: Base line hazard by o c cupation group
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and the competition e ect dominates the external e ect.

Figure 7 shows the estimated baseline hazard of the representative individual20 for the es-

timation including all individuals from all occupations. The hazard of re-employment is

increasing for durations up to 4-5 months and then decreasing, with some small peaks,

which is consistent with the literature on unemployment duration (see Narendranathan and

Stewart (1993) and Boheim and Taylor (2000)). The estimated baseline hazard for skilled

and unskilled occupations shows a very similar picture (figure 8). The skilled occupations

have a higher hazard than the unskilled ones for all durations. That is, individuals from the
20The representative individual has the following characteristics: male, 25-49 years of age, white, married,

non-migrant, head of household, education of O Level or equivalent, personal or clerical occupation and
living in the region with the median national average level of education (non-metropolitan areas of the West
midlands region). We use the average value for all the other variables.
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skilled occupations have a higher probability of leaving unemployment independently of how

long they have been unemployed for.

In order to have an idea of the magnitude of this e ect on the probability of re-employment

we look at the shift in the estimated baseline hazard of a representative person after a change

in the average level of education. A 1% rise in average education shifts the hazard upwards of

the representative skilled individual by 2.9% on average, while a 1% decrease in the variance

of education shifts the hazard upwards by 0.2% on average (table 4). The opposite pattern

is obtained for the representative unskilled individual, - 1.9% and -0.2% for a 1% change

in the variables. These numbers are comparable to those obtained by other studies in the

literature. Moretti (1999) finds that a 1% rise in the share of college graduates increases

wages of graduates by 1.2%, while Rauch (1993) finds that a one-year increase in average

schooling raises individual wages between 3 and 5%.

Table 4: Average % change in baseline hazard

Skilled Unskilled

All Occup. Occup.

1% average education 0.40 2.88 -1.92

1% variance of education 0.03 0.24 -0.19

average region to Scotland 2.59 12.02 -5.27

average region to West Mid (met) -3.40 -34.84 31.84

One can also use this method to have an idea of the magnitude of the e ect of regional di er-

ences in the distribution of education. A representative individual of the skilled occupations

would experience an increase in the probability of finding a job of 12% if the regional level of

education increased from the national mean to the level of the top region (Scotland). That

same individual would experience a reduction in his probability of leaving unemployment of

35% if the level of education decreased from the mean to the level of the worst region (West

Midlands Met.). That is, regional di erences in education could imply a di erence in the

probability of leaving unemployment of up to 47%. This number goes down to 37% when

we consider the unskilled occupations.

The model has also been estimated separately by sex and occupational group and by age

group and occupational group (table 5).21

21The age groups are defined as follows: young = 16-34 & old = 35-59 if female and 35-64 if male. We run
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Tab le 5 : M aximu m l ike lih o o d est imate s o f r e- employme nt
pr ob ab ili tie s by ge nd er an d ag e g ro up

Semiparametric Semiparametric

no unobserved heterogeneity unobserved heterogeneity

Variables all skilled unskilled all skilled unskilled

Male

Average education 0.787 3.289 5.626 1.097 1.938 5.167

var. of education 0.251 1.783 2.050 0.181 1.653 2.123

Female

Average education 0.698 3.542 0.794 0.352 1.388 0.277

var. of education 0.486 1.141 0.257 0.321 0.443 0.325

Young (16 34)

Average education 0.623 6.079 5.105 0.410 1.982 2.184

var. of education 0.211 2.114 1.721 0.165 1.139 1.826

Old (35 59/65)

Average education 1.025 0.928 0.613 0.560 0.736 0.048

var. of education 0.755 0.653 0.332 0.509 0.193 0.266

NOTES: a) *** denotes significance at the 1% level, ** at the 5% level and * at the 10% level.

b) The robust standard errors are clustered by region, occupation and time period.

The e ect of the education externality in the matching process shows a similar pattern to

the estimation for all the individuals, with a stronger positive e ect for the most skilled

occupations and a stronger negative e ect for the least skilled occupations. However, the

magnitude of the e ect and the levels of significance are di erent across gender and age

group. By age group, the e ect is larger in magnitude and statistically more significant

for younger workers independently of the level of aggregation of the occupations, while it

is always insignificant for older workers. By gender, the average level of education has a

stronger and more significant negative e ect on the transitions into employment of male

workers from unskilled occupations, while it has a stronger and more significant positive

e ect on the transitions into employment of female workers from skilled occupations.

Finally, we need to evaluate the relative importance of matching education externalities with

these estimations separately, not because we believe the externality should a ect these groups di erently,
but because for other reasons, like female participation or youngsters’ lack of job experience, these might be
completely di erent labour markets.
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respect to skill-biased technological externalities. As mentioned earlier, the theoretical model

does not provide a way of distinguishing between these two types of externalities. In this

study we have tried to do this by including variables in the estimation which act as a proxy

for the technological level of the occupation. These variables are the share of employment

of each industry in each occupation and region over time.22. In the first row of table 7 we

have the results of estimating the standard econometric model excluding the variables mea-

suring the technology in the occupation23. These estimation results are very similar to those

of the standard estimation (including the regional technological level) although moderately

lower. This suggests that technological externalities do not reduce the probability of leaving

unemployment. Therefore, if one accepts this way of controlling for technology as correct,

one should conclude that the most relevant type of externality in the matching process are

the pecuniary externalities.

5.1 Regional labour market variables and individual controls

The e ect of regional labour market variables on unemployment duration in the standard

model estimated are shown in table 6. Firstly, the estimated coe cient of the regional un-

employment rate has a negative sign and is significant for all the specifications, while the

one for the inactivity rate has a positive sign and is significant for the skilled occupations

(and for all the occupations together). The reason for this is that the bigger the number

of people unemployed and/or active the greater the number of people looking for work and

therefore the lower the market tightness, which reduces the probability of finding a job. This

is an standard theoretical result of matching models (see Pissarides (2000) and Petrongolo

and Pissarides (2001) for a survey of the literature) and is in accordance with the model

developed in this paper. However, it is more di cult to explain why does a higher inactiv-

ity rate benefit only the skilled individuals. Anyway, this e ect becomes insignificant when

controlling for unobserved heterogeneity.

Secondly, The vacancy rate has a positive sign, as expected from the theoretical model (see

also Petrongolo and Pissarides (2001)). The larger the number of vacancies opened, the

easier it is for unemployed individuals to find a job and therefore the shorter the average

unemployment spell. However, it is not significant at the 10% level. This is most probably
22They are calculated using 4 industries, 4 occupations and 19 regions.
23We have included instead variables measuring the regional technological level, i.e., the employment

share of each industry in each region. The idea being that we still want to avoid the bias coming from
technological externalities which are neutral across skills. But excluding these aswell does not change the
results qualitatively
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due to the fact that vacancies registered at job centers are known to under-represent the

total number of vacancies.24

Table 6: Regional variables in standard estimati on using all
in divi dua ls i n t he s ampl e ( Tab le 2)

Semiparametric Semiparametric

no unobserved heterogeneity unobserved heterogeneity

Variables all skilled unskilled all skilled unskilled

Regional labour market variables

Unemp rate 0.630 0.687 0.841 0.646 0.880 1.033

Vacancy rate 0.038 0.040 0.046 0.054 0.096 0.057

Inactivity rate 0.561 1.283 0.205 0.188 1.088 0.375

Regional migration

Migration ratio 0.080 0.087 0.080 0.035 0.111 0.075

Finally, the estimated coe cients of the individual and household variables have in general

the expected signs, which are consistent with the existing literature. For the baseline model

these are shown in table 14 in appendix D.

5.2 Robustness of Results

In this section we have tried to take into account some of the standard econometric prob-

lems one may encounter when estimating external e ects. In particular, we have worried

about the endogeneity of independent variables and an omitted variable bias (see Brock and

Durlauf (2000) and Dietz (2001) for two excellent surveys on this issue).25

24Alternatively, if the education externality works through vacancy creation, the vacancy rate might not
have a significant e ect because it is already proxied by the average level of education. However, this seems
unlikely, since dropping the regional average and variance of education from the estimation increases the
significance of this variable only marginally.
25Another related problem when estimating external e ects is that of identification or reflection problem

(Manski (1993)). This problem arises when a researcher observing the distribution of behaviour in a popu-
lation tries to infer whether the average behaviour in some group influences the behaviour of the individuals
that comprise the group. However, Manski (1993) and Brock and Durlauf (2000) proved that identification is
eased in non-linear models and in particular in duration models. In addition, they showed that this problem
is further eased if there is within-group heterogeneity. Since our study fulfills both of these properties we
understand that identification of the external e ects should not be a problem here.
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Table 7: Robustness of results by two o cc upati on groups us-
in g a ll ind ivid ua ls in th e sa mple

Semiparametric Semiparametric

no unobserved heterogeneity unobserved heterogeneity

Variables all skilled unskilled all skilled unskilled

Dropping industrial share

Average education 0.951 2.616 3.139 0.804 2.193 3.324

var. of education 0.489 1.577 0.910 0.466 1.255 1.270

Dropping top (Scot, SE) & bottom (WMid (met), RestN) regions in education

Average education 2.468 5.058 1.527 2.083 4.272 1.203

var. of education 0.747 1.303 0.628 0.614 1.062 0.590

NOTES: a) *** denotes significance at the 1% level, ** at the 5% level and * at the 10% level.

b) The robust standard errors are clustered by region, occupation and time period.

The endogeneity of independent variables is a common problem to all studies of external and

neighbourhood e ects. If location and occupational group were predetermined and fixed for

all individuals there would not be a problem. However, we know that individuals are able

to choose to a certain extent the area and group they belong to. In addition, we know that

firms are also able to choose the area where they search for workers and the definition of

occupational groups. This could generate a sorting process by which individuals with similar

characteristics live together and belong to similar occupational groups. This would then be

problematic for the estimation of the external e ects because the characteristics determining

the group of interest are the same as those determining the problem we are studying, there-

fore generating biased and inconsistent estimators (Greene (1993)).The question is whether

the group characteristics used to measure these e ects are exogenous variables or not with

respect to the formation of the group. Therefore, the empirical definition of the market seg-

ment is very important. As explained in section 3, we have assumed the market segment is

the occupation (using 4 occupational groups) within each region. One can think of two main

problems with this definition. The first problem is that given the focus of this work is on

education externalities, one would want to have segments whose boundaries do not change

with the rise in education. But we know that in reality in parallel to the rise in education

attainment there has been an increase in the education requirements of vacant jobs and

therefore the boundaries of the occupational groups have moved upwards in the education

scale. As a consequence, even if the working population had not increased their education
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level, we would observe a rise in the average education level of all the occupations.26 This

phenomenon has been named the problem of overeducation or degree’s inflation, implying

that education attainment is used as a signaling device. However, this issue will not bias the

empirical results of this paper. To do so, it would require that the change in the boundaries

of the occupational groups generates both, a rise in the average education of the segment

and in the transition rates into employment of its members, for a given number of vacancies

(otherwise it would be due to education externalities). While the former is always true, the

latter is not. By definition, if the rise in the average education of each occupational group is

only due to signalling reasons, it will not increase workers’ productivity and, therefore, it will

not increase the transition rates into employment. The second problem with the definition

of labour market segment used is how to classify workers who do not report an occupation,

either because they have never worked before or because they have been unemployed or

inactive for a long period of time. In this work we have chosen to include these workers in

the least skilled occupation. This is not very problematic for the case of previously inactive

or long-term unemployed workers, since it is consistent with assuming that skills depreciate

very quickly when out of work, a common assumption in the literature. However, it might

be more problematic for the case of new market entrants. In this case, the estimated e ect

of education externalities could be biased downwards, since one would expect these workers

to be very qualified and therefore improve the average level of education of the least skilled

occupation, instead of the one of the occupation to which they should have been allocated.

The omitted variable bias is another potential problem. If there are omitted variables cor-

related with both the dependent variable and the regressors measuring the distribution of

education, the estimated coe cients could be biased and wrongly significant.

Most studies in this literature solve both of these problems by instrumenting for the variables

measuring the distribution of education. The problem is that instrumental variables is not

a technique that can be used with duration models.27 Therefore, the relevant question that

needs to be answered here is how important is the endogeneity due to the sorting process

and omitted variables bias in this particular study.
26This would be true even for the least skilled occupational group since its upper boundary would have

risen aswell and it would englobe now some workers with higher education than before.
27But even if we could, we would require a variable that is correlated with the distribution of education

but is not correlated with the sorting process or any omitted variable and varies both across occupation
groups within regions and over time and such instrument is not available. Previous studies in this literature
which used instruments where cross-sectional and focused on education externalities by geographical area,
not by occupational group. This allowed them to use instruments which vary across areas but not across
time, like the demographic structure a decade before (Moretti (1999) & Ciccone and Peri (2000))
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Ta ble 8 : Per ce ntag e of the Var i a tio n of t he e du cat ion va ri ab l e
explained by region, o ccupation and time

First of all, one would like to know what are the sources of exogenous variation in average

education between segments, and of individual education within segments. Both types of ex-

ogenous variation are needed to be able to distinguish e ects due to di erences in aggregates

from e ects due to di erences in individual endowments. As table 8 shows there is exoge-

nous variation in average education between segments, the largest source of this variation

coming from di erences across occupational groups (82% for skilled and 66% for unskilled

occupations), although di erences over time and across regions are also important (16% for

skilled and 31% for unskilled occupations). When looking at each occupation separately, it

is regional di erences that account for most of the variation in the education of the segment

- between 44% and 75%. The existence of exogenous variation of individual education within

segments is clear from the significance of the individual education dummies in table 14 in

the appendix.

There are some reasons why the sorting process might not have an important e ect on the

estimation of external e ects in this study. First of all, the areas used in this study - 4

occupations group within each of 19 regions - are very large and heterogeneous. Although

migration of skilled workers will generate a higher concentration of qualified individuals in

the most skilled occupations of the best regions, there will still be a large number of workers

from all types in each region (eg. because of house ownership or housing benefit) and a per-

fect sorting process would be impossible. Secondly, even if the sorting process is important,

there is no reason to believe that it has has been increasing during the sample period. Thus,

it would mainly be a level e ect which should be captured by the region, occupation and

time dummies.
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2 occupational groups 4 occupational groups

Skilled Unskilled High Semi-high Semi-low low

time 6.9 12.4 37.6 18.9 30.7 30.6

region 9.5 18.1 44.4 74.9 57.1 58.9

occupation 81.6 65.5

region*time 0.1 0.6 18.0 6.2 12.2 10.5

region*occupation 2.0 1.5

occupation*time 0.0 0.0

region*occupation*time 0.1 1.9



Nevertheless, we have undertaken some simple tests to check the potential importance of en-

dogeneity. One would expect the e ects of the sorting process to be stronger in the areas at

the extremes of the distribution. However, when we run the regression excluding the regions

that consistently have had the highest or lowest education level for the whole sample 28 we

find that the e ect of the externality remains very significant and, if anything, is stronger (see

second row of table 7), but insignificant for unskilled occupations. Alternatively, one could

try to understand the mechanism behind the sorting process. Regional migration would be

one of the most important sorting mechanisms. If a large proportion of skilled workers move

to the areas with highest wages and lowest unemployment rates, the average education of

the workforce there will improve. At the same time, a high immigration rate will increase

the demand for housing and raise the costs of living of the recipient area. This might push

the least skilled individuals out of these areas, since they cannot a ord to live there. Both

of these forces increase the average education in the area. In order to take into account

this particular sorting mechanism we have controlled in the estimation for people who have

migrated into the region during the previous year but also for the aggregate migration flows

in the region (number of immigrants over number of emigrants)29. Being a migrant has a

positive but insignificant e ect on the hazard of employment. This is due to the fact that

the LFS underestimates the number of migrants because is a survey of non-movers. In terms

of the migration flows into the region, the estimated coe cient is positive and significant,

but it becomes insignificant when we control for unobserved heterogeneity. Overall, we be-

lieve these results indicate that, although there might be some endogeneity in the dependent

variable, it is not having an important e ect on the estimated coe cients.

It is not so easy to find simple tests to check the importance of a possible omitted vari-

able bias. However, the fact that we include many individual, family and area variables

in the estimation should reduce the importance of this e ect. Moreover, in order to bias

the coe cient measuring the external e ect, the omitted variables have to vary both across

groups and over time since the region, occupation and time dummies included in the esti-

mation are already capturing any possible e ect constant across groups or over time. One

way of controlling for omitted variables in the estimation of a duration model is controlling

for unobserved heterogeneity. However, this technique only controls for omitted variables

which are uncorrelated with both the covariates and time. Nevertheless, one could use it
28Scotland, the South East, Metropolitan West Midlands and the Rest of the Northern region
29It would be preferable to have the migration ratio by occupational group in each region, but this data

is only available from the Labour Force Survey and the sample size is too small to draw any significant
conclusions.
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as an indicator of the importance of this problem. As was mentioned above, controlling

for unobserved heterogeneity (RHS of table 2) does not make the external e ect disappear,

although it reduces its magnitude. Therefore, even though it seems that this problem is not

very important in this study, one should be aware that it could be biasing slightly the results.

6 Vacancy Creation and Education Externalities.

The theoretical model developed in this paper showed that a higher level of education im-

proves the expected profits per vacancy opened, which in turn increases job creation and

market tightness (see equation (9)), improving the probability of employment for a given

aggregate supply of search units. That is, the positive external e ect of education (or com-

position e ect) in the matching process is generated through higher vacancy creation. So far,

we have shown that education externalities raise the probability of finding a job for skilled

occupations and lower it for unskilled occupations, but we have not analyzed the mechanism

through which this e ect is working. In this section we will try to do so, by using a quarterly

panel on vacancies notified to UK job centers by occupational group (using the SOC 91

classification) and 19 regions for the period 1992-99. This data is obtained from job centers

and is provided by NOMIS. We are conscious that the number of vacancies posted at job

centers could be significantly lower than the real number of vacancies, especially for the most

skilled occupations. This means that any result from this analysis should be considered as

a lower bound of the total real e ect of education externalities on vacancy creation. The

covariates are obtained from the spring quarter of the non-longitudinal LFS.

We estimate a fixed e ects panel using the log of market tightness in the local labour market

as the dependent variable. This is defined as the number of vacancies notified divided by the

number of unemployed by quarter, 9 occupational groups and 19 regions. The covariates are

the average education and variance of education of the occupation group within each region

and quarter, the unemployment, inactivity rates and the annual immigration and emigration

rates by region. The fixed e ects used in the estimation are occupation, region and quarter.

The estimation results confirm that in the UK local labour markets during the 1990s (table

9) the e ect of education externalities on the matching process is working through higher

job creation as indicated by the theoretical model. The e ect has a similar pattern to the

one on the duration of unemployment. An increase in the average education of the local

labour market raises market tightness, while an increase in the variance reduces it. This
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e ect is strongest for the skilled occupations. However, in this model the average education

also has a positive e ect on the market tightness of the unskilled occupations but of smaller

magnitude and less significant, while the variance has a negative e ect. The results still hold

when we instrument using four lags of the education variables.

Ta bl e 9 : F ixed E ec ts panel estimation o f the Va cancy rate

Variables Fixed E ects I.V. Fixed E ects

all skilled unskilled all skilled unskilled

Regional Education Externalities

Av. education 0.895 1.374 0.682 1.903 2.831 1.596

s.d. education 0.313 0.190 0.180 0.483 0.318 0.286

Regional Labour Markets

Unemp rt 1.004 1.144 0.818 0.963 1.100 0.755

Inactivity rt 1.880 2.060 1.683 1.856 2.078 1.527

Regional Migration by occupation

Immigration rt 0.041 0.045 0.031 0.042 0.042 0.035

Emigration rt 0.027 0.033 0.016 0.018 0.023 0.005

NOTES: a) *** denotes significance at the 1% level, ** at the 5% level and * at the 10% level.

b) The robust standard errors are clustered by region, occupation and time period.

7 Conclusions

This study examines the e ect of education externalities on the matching process taking

place in UK local labour markets. First of all, we have shown theoretically that a higher

level of education of the workers participating in the labour market raises the expected profits

of opened vacancies, since firms expect to be matched with a more qualified worker. This in-

creases job creation and reduces the unemployment rate. This is the external or composition

e ect. At the same time, a more educated labor force is also be more e cient searching for

jobs. This will increase the competition amongst workers for opened vacancies and increase

the unemployment rate. The net e ect on unemployment depends on the relative importance

of these two e ects. We hypothesize that for the case of individuals from skilled segments

of the labour market the external e ect would dominate the competition e ect. The reason

being that is precisely in these markets where the worker’s qualifications are a fundamental

determinant of the firm’s profits, while in the least skilled segments of the labour market are

considered less important. Then, we tested this result empirically by estimating the e ect

of the education distribution in a labour market (measured by the average and variance of
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education) on the probability of transition from unemployment to employment.

We find that, for individuals belonging to skilled occupational groups (managers/professionals

and technical occupations), a higher average level of education increases the probability of

transition from unemployment to employment, while a higher variance, or a more unequal

distribution, reduces it. However, the opposite is true for individuals belonging to less skilled

occupational groups (clerical, service and manual). The reason behind this is that in the

latter case the increase in the competition for vacancies among unemployed workers due to

the higher level of education more than o sets the e ect of the education externality.

The e ect of the education externality on the hazard into employment is not only statistically

significant but also relevant in magnitude. A rise of 1% in the average level of education

shifts up the baseline hazard of the representative individual by 2.9% on average for the

more skilled occupations, while it shifts it downwards by -1.9% for the less skilled occupa-

tional groups. Regional di erences in the distribution of education also have a very large

e ect shifting the baseline hazard by around 47% for skilled occupations and by 37% for the

nskilled occupations.

The estimated baseline hazard of the representative individual is increasing for durations up

to 5 months and then decreasing, with some small peaks. This is true for all individuals and

by occupational group. However, skilled occupational groups have a higher baseline hazard

for all durations, indicating that they have a higher probability of leaving unemployment

independently of how long they have been unemployed for.

Then, we confirme that the positive external e ect of education (or composition e ect) in

the matching process is generated through higher vacancy creation by estimating the e ect

of the distribution of education on a fixed e ects panel of the vacancy rate. We find that the

average level of education increases the vacancy creation of skilled occupations, while the

variance of education reduces it. However, we do not find the opposite e ect for unskilled

occupations.

Finally, the estimated results are very robust. They are qualitatively unchanged when we

estimate the model controlling for unobserved heterogeneity, using di erent measures of

education and using di erent parameterizations of the hazard function. In addition, the

results are also robust to the standard econometric problems considered in the literature.
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A Appendix: Definition of Education Variable.

Table 10: Education Variabl e

Education level Composition

Degree or more Higher degree, First degree or other degree, teaching (all levels)

High Vocational Nursing, NVQ levels 3-5, HNC, HND, BTEC higher, RSA

higher diploma, other higher education qualifications below de-

gree

A Level or equivalent A Level, Scottish 6th year Certificate, AS Level, SCE higher

Middle Vocational NVQ level 3, GNVQ advanced, RSA advanced diploma, ONC,

OND, BTEC and SCOTVEC national.

O Level or equivalent O Level, GCSE grade A-C

Low Vocational NVQ level 2, GNVQ intermediate, RSA diploma, City & Guilds

advanced & craft, BTEC/SCOTVEC general diploma and

completed apprenticeship

Other academic CSE below grade 1, GCSE below grade C

Other vocational NVQ level 1, GNVQ/GSVQ foundation level,

BTEC/SCOTVEC general certificate, SCOTVEC mod-

ules, RSA other, City & Guild other, YT/YTP certificate,

other vocational/professional qualifications

No qualifications

B Appendix: Classification of regions.

Ta bl e 1 1: Cl as s i ficat i on o f re gio ns

Region Counties

Rest of Northern Region Cleveland, Cumbria, Durham, Northumberland

South Yorkshire South Yorkshire

West Yorkshire West Yorkshire

Rest of Yorkshire & Humberside Humberside, North Yorkshire

East Midlands Derbyshire, Leicestershire, Lincolnshire, Northamp-

tonshire, Nottinghamshire

East Anglia Cambridgeshire, Norfolk, Su olk

Inner London Inner London

continued on next page
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Tab l e 11: continued

Outer London Outer London

Rest of South East Bedfordshire, Berkshire, Buckinghamshire, East sus-

sex, Essex, Hampshire, Hertfordshire, Isle of wight,

Kent, Oxfordshire, Surrey, West sussex

South West Avon, Cornwall, Devon, Dorset, Gloucestershire, Som-

erset, Wiltshire

West Midlands Metropolitan West midlands Metropolitan

Rest of West Midlands Hereford & Worcester, Shropshire, Sta ordshire, war-

wickshire

Greater Manchester Greater Manchester

Merseyside Merseyside

Rest of North West Cheshire, Lancashire

Wales Clwyd, Dyfed, Gwent, Gwynedd, Mid Glamorgan,

Powys, South Glamorgan, West Glamorgan

Strathclyde Strathclyde

Rest of Scotland Borders, Central, Dumfries & galloway, Fife,

Grampian, Highland, Lothian, Northern & western

isles, Tayside

C Appendix: Definition of the variables used in the

estimation.

REGIONAL VARIABLES:

Average education: Average value of education variable (defined above) across all individuals

of working age by occupational group (4, as defined in table 1), region and quarter.

variance of education: Variance of education variable (defined above) across all individuals

of working age by occupational group (4), region and quarter.

Unemp rate: Unemployment rate across all active individuals by region and quarter.

Vacancy rate: Vacancy rate (number of vacancies notified to job centers / number of unem-

ployed) by occupational group (4, as defined in table 1), region and quarter.

Inactivity rate: Inactivity rate across all individuals of working age by region and quarter.

Migration ratio: Migration ratio (number of immigrants / number of emigrants) by region

and year.
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INDIVIDUAL CHARACTERISTICS:

Sex : 1 male, 0 female.

Age: 16-24, 25-34, 35-49 years of age: 1 age group, 0 otherwise. (50-64 (59 female) reference

category.)

Ethnic origin: 1 white, 0 otherwise.

Married : 1 married, 0 otherwise.

Migrant : 1 if migrated from another region since last year, 0 otherwise.

Head of Household : 1 head of household, 0 otherwise.

Individual’s Education: Other Voc - Degree: 1 level of highest educational attainment, 0

otherwise.

Last Job’s Occupational Group: Operator - Manager: 1 occupational group in last job, 0

otherwise.

no dep child< 6: number of dependent children under the age of six living in the household.

no dep child< 16: number of dependent children under the age of sixteen living in the

household.

no working: number of members of the household working at the time of the interview.

one-person house: household made of one person only.

two-person house: household made of a couple.

Housing bene�t : receiving housing benefit during unemployment.

Unemp bene�t : receiving unemployment benefit during unemployment.

Family bene�t: receiving financial help from relatives during unemployment.

Tab l e 12 : S amp le me an s of i nd ivid ual cha ra ct er istic s by o c -
cupation group

Variables all occup skilled occup unskilled occup

Duration Characteristics

% exit into employment 40.8 45.0 37.1

% exit into inactivity 15.7 12.5 18.6

% stay unemployed 43.5 42.5 44.3

average duration 3.36 3.31 3.41

Individual Characteristics (%)

Male 56.1 62.7 50.4

16-24 years of age 35.0 26.2 42.6

25-34 years of age 24.5 25.6 23.5

35-49 years of age 27.7 31.9 24.0

continued on next page
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Tab l e 12: continued

50-59/64 years of age 12.8 16.3 9.9

Non-white 7.4 6.4 8.3

Married 45.0 51.7 39.0

Migrant 2.2 2.3 2.2

Head of Household 39.3 46.0 33.4

Individual’s Education (%)

Other Voc 9.1 8.0 10.1

Other Acad 7.8 5.8 9.6

Low Voc 16.9 22.1 12.4

O Level 18.9 17.1 20.4

Mid Voc 2.9 3.8 2.0

A Level 6.3 7.2 5.5

High Voc 4.1 6.2 2.3

Degree 6.7 11.9 2.2

Last Job’s Occupational Group (%)

Operator 14.2 0.0 26.6

Sales 11.5 0.0 21.6

Personal 11.4 0.0 21.5

Clerical 15.7 0.0 0.0

Craft 14.6 31.3 0.0

Technical 5.4 11.7 0.0

Professional 3.8 8.2 0.0

Manager 7.1 15.3 0.0

Household Structure

no dep child < 6 0.29 0.27 0.31

no dep child < 16 0.81 0.70 0.91

no working 1.2 1.2 1.2

% one person house 12.9 15.2 10.9

% two person house 23.7 26.0 21.6

Benefits (quarter before exit (%))

Housing benefit 7.3 5.7 8.7

Unemp benefit 52.8 59.9 46.6

Family credit 1.3 0.9 1.7

No of cases 15, 974 7, 459 8, 515

NOTES: "high occup" denotes occupations 5-9 of the SOC classification,

while "low occup" denotes occupations 1-4 (see table 1.
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Figure 9: Base line hazard by se x

ba
se

lin
e 

ha
za

rd

 male  female

1 2 3 4 5 6 7 8 9 10 11 12 13 14

.03

.04

.05

.06

.07

.08

.09

.1

.11

.12

.13

Figure 10: Baseline hazard by age group
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D Appendix: Additional tables & figures

Tabl e 13: Estimates by 2 o ccupation groups

Weibull Weibull

no unobserved heterogeneity unobserved heterogeneity

Variables all skilled unskilled all skilled unskilled

Baseline estimation (using levels of education)

Average education 0.816 3.660 3.513 0.724 2.871 3.608

var. of education 0.398 1.214 1.247 0.304 1.043 1.613

Using Years of education
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Ave. years of edu. 0.464 2.650 1.557 0.459 2.175 1.507

var. years of edu. 0.438 2.151 1.062 0.383 1.991 1.124

Using Shares of Education (4 levels)

Share degree 0.038 0.584 0.011 0.064 0.257 0.031

Share A Level 0.118 0.105 0.207 0.080 0.055 0.039

Share O Level 0.468 0.478 1.301 0.432 0.584 1.540

NOTES: a) *** denotes significance at the 1% level, ** at the 5% level and * at the 10% level.

b) The robust standard errors are clustered by region, occupation and time period.

Tab l e 1 4: In divid ua l Co ntr ols s ta nda r d estima tio n usin g al l
in divi dua ls in th e s a mp l e by two o c cu pa tio n gr oup s ( tab le 2)

Semiparametric Semiparametric

no unobserved heterogeneity unobserved heterogeneity

Variables all skilled unskilled all skilled unskilled

Individual Characteristics

Sex 0.034 0.067 0.027 0.032 0.136 0.002

16-24 years of age 0.116 0.170 0.081 0.464 0.314 0.084

25-34 years of age 0.465 0.454 0.486 0.380 0.652 0.516

35-49 years of age 0.346 0.393 0.279 0.340 0.581 0.374

White 0.235 0.322 0.130 0.268 0.176 0.158

Married 0.168 0.124 0.242 0.183 0.180 0.198

Migrant 0.057 0.029 0.088 0.022 0.119 0.058

Head of Household 0.147 0.191 0.097 0.070 0.362 0.146

Individual’s Education

Other Voc 0.145 0.176 0.129 0.101 0.156 0.116

Other Acad 0.019 0.067 0.050 0.036 0.101 0.016

Low Voc 0.139 0.160 0.141 0.196 0.216 0.154

O Level 0.039 0.101 0.017 0.123 0.035 0.061

Mid Voc 0.061 0.332 0.253 0.308 0.346 0.095

A Level 0.017 0.089 0.035 0.137 0.218 0.061

High Voc 0.289 0.413 0.105 0.351 0.388 0.186

Degree 0.176 0.248 0.103 0.248 0.195 0.181

Last Job’s Occupational Group

Operator 0.893 1.292 1.237 1.149

Sales 0.889 1.313 1.284 1.158

Personal 0.919 1.353 1.424 1.588

continued on next page
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Tab l e 14: continued

Clerical 0.776 1.185 1.519

Craft 0.884 0.350 1.450

Technical 0.804 0.071 1.190 0.121

Professional 0.714 0.567 1.418 0.868

Manager 0.483 0.749 1.149 1.013

Household Structure

no dep child < 6 0.078 0.337 0.087 0.173 0.447 0.057

no dep child < 16 0.312 0.048 0.294 0.027 0.053 0.363

no working 1.070 1.072 1.088 1.105 1.256 1.353

one person house 1.765 1.772 1.748 0.204 1.611 2.080

two person house 1.089 1.055 1.136 0.086 0.749 1.313

Benefits

Housing benefit 0.305 0.325 0.265 0.614 0.270 0.325

Unemp benefit 0.129 0.149 0.084 0.190 0.123 0.147

Family credit 0.313 0.119 0.389 0.217 0.210 0.462

Log Likelihood 16079 8139 7868 18571 8264 8032

Gamma Variance 0.439 0.532 0.450

Likelihood ratio st. 224.9 63.4 109.0

No cases 15974 7459 8515 15974 7459 8515

NOTES: a) *** denotes significance at the 1% level, ** at the 5% level and * at the 10% level.

b) The robust standard errors are clustered by region, occupation and time period.
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