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Abstract

Realized volatilities, when observed over time, share the following stylised facts: co-

movements, clustering, long-memory, dynamic volatility, skewness and heavy-tails. We 

propose a dynamic factor model that captures these stylised facts and that can be applied 

to vast panels of volatilities as it does not suffer from the curse of dimensionality. It is an 

enhanced version of Bai and Ng (2004) in the following respects: i) we allow for long-

memory in both the idiosyncratic and the common components, ii) the common shocks are 

conditionally heteroskedastic, and iii) the idiosyncratic and common shocks are skewed and 

heavy-tailed. Estimation of the factors, the idiosyncratic components and the parameters 

is simple: principal components and low dimension maximum likelihood estimations. A 

Monte Carlo study shows the usefulness of the approach and an application to 90 daily 

realized volatilities, pertaining to S&P100, from January 2001 to December 2008, evinces, 

among others, the following fi ndings: i) All the volatilities have long-memory, more than 

half in the nonstationary range, that increases during fi nancial turmoils. ii) Tests and criteria 

point towards one dynamic common factor driving the co-movements. iii) The factor has 

larger long-memory than the assets volatilities, suggesting that long–memory is a market 

characteristic. iv) The volatility of the realized volatility is not constant and common to all. v) 

A forecasting horse race against 8 competing models shows that our model outperforms, 

in particular in periods of stress.

Keywords: Realized volatilities, vast dimensions, factor models, long–memory, forecasting.

JEL classifi cation: C32, C51, G01.



Resumen

Cuando se observan a través del tiempo, las volatilidades realizadas comparten una serie de 

características comunes: comovimiento, comportamiento de racimo (clustering), memoria 

larga, volatilidad de la volatilidad dinámica, asimetría y colas gruesas. En este artículo 

proponemos un modelo dinámico factorial que captura estas características y que puede 

ser aplicado a paneles de volatilidad de grandes dimensiones dado que no sufre la maldición 

de la dimensionalidad. El modelo es una adaptación del de Bai y Ng (2004) en los siguientes 

aspectos: i) permitimos memoria larga en los componentes comunes e idiosincráticos, 

ii) las sacudidas (shocks) comunes son condicionalmente heterocedásticas, y iii) las 

sacudidas comunes e idiosincráticas son asimétricas y con colas gruesas. La estimación 

de los factores, los componentes idiosincráticos y los parámetros es simple: componentes 

principales y estimaciones de máxima verosimilitud de baja dimensión. Un profundo estudio 

de Monte Carlo muestra la utilidad de la estrategia de estimación y una aplicación a un 

panel de 90 volatilidades realizadas correspondiente a compañías pertenecientes al índice 

S&P100, desde enero de 2001 a diciembre de 2008, muestra, entre otros resultados, que 

i) todas las volatilidades tienen memoria larga, más de la mitad en el rango no estacionario, 

que se incrementa durante períodos de estrés; ii) contrastes y criterios indican la presencia 

de un factor común dinámico; iii) el factor tiene memoria más larga que las volatilidades de 

las compañías, lo que sugiere que la memoria larga es una característica del mercado; iv) la 

volatilidad de la volatilidad realizada es dinámica y común para todas las compañías; v) una 

comparación entre 8 modelos en términos de predicción muestra que nuestro modelo es 

superior, sobre todo en períodos de estrés.

Palabras clave: volatilidad realizada, gran dimensión, modelo de factores, memoria larga, 

predicción.

Códigos JEL: C32, C51, G01.
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1 Introduction

In the recent years markets for volatility products have developed rapidly. Volatility arbitrage
is an example under the real world probability measure. To arbitrage, forecasts of the (realized)
volatilities are needed. I.e. the objective is to take advantage of differences between the implied
volatility of an option, and a forecast of future realized volatility of the option’s underlying
asset. As long as the trading is done delta–neutral, buying (selling) an option is a bet that
the underlying’s future realized volatility will be high (low). A trader may trade on several
volatilities at the same time, or even a portfolio of them. To asses the total risk exposure, the
time–varying dependencies across the realized volatilities have to be understood.

Volatility derivatives, i.e. securities whose payoff depends on the realized volatility of an
underlying asset (e.g. volatility swaps) or an index return (e.g. VIX options), have also
developed rapidly. VIX options have been tradable since February 2006, at which date the
average volume was 7,896 contracts. Since then, it has grown steadily to 665,680 contracts at
the end of August 2012. Options are exposed to a number of risks. One of them is gamma risk,
or the risk that the realized volatility of the underlying stock over the option’s lifetime will
be larger or smaller than expected, which produces hedging errors (see Figlewski and Engle
(2012) for more details). Under this risk neutral scenario, forecasts of the implied volatilities
can be useful for pricing and developing hedging strategies.

We develop an econometric factor model for panels of volatilities. It captures the styl-
ized facts and allows for forecasting. Indeed, when observed through time, these panels are
characterized by the following stylized facts: co–movements, clustering, long–memory, dy-
namic volatility of the volatility, skewness and heavy–tails. Over the last ten years several
articles have presented these facts (see, among others, Andersen et al. (2001) for a study of
the stylized facts of realized volatilities for the 30 DJIA firms, and Andersen et al. (2001) for
the analysis of the unconditional distribution of realized volatilities for exchange rates) and
a handful of univariate models have been proposed to capture some of these facts. Ander-
sen et al. (2003) proposes ARFIMA models for capturing long–memory.1 Corsi et al. (2008)
also models realized volatilities with ARFIMA models but specifying a heteroskedastic and
fat–tailed distribution for the innovation term. Corsi (2010) takes a different avenue by con-
sidering the HAR (heterogenous autoregressive) model that captures the long–memory with
sums of volatility components over different horizons.2

Recent literature has also focused on multivariate models. Gourieroux et al. (2009),
Hautsch et al. (2010), Bauer and Vorkink (2010) and Halbleib and Voev (2011) propose models

1To be precise, Andersen et al. (2003) consider three realized volatilities and propose a tri–variate VARFIMA
model. But since this model is a direct extension of the univariate ARFIMA and it is not feasible for vast
dimensions, we classify it within the univariate set of models.

2Fractional integration has been considered in GARCH models since two decades ago. Ding et al. (1993),
Ding and Granger (1996), Kirman and Teyssiere (2002), Bollerslev and Ole (1996) and Poon and Granger
(2003) propose fractional integration models and methodologies for the dynamic variance of returns. On
similar grounds, Granger and Starica (2005) propose a model for absolute value of log returns.
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for realized volatilities and correlations. Alternative models, not proposed yet in this context,
are fractionally cointegrated vector autoregressive models (see Johansen, 2008, Johansen and
Orregaard, 2010, and references therein). However, it is not clear that they can be applied
to vast dimensions and, at the same time, can account for the stylized facts observed in real-
ized measures. Barigozzi et al. (2010) propose a parsimonious seminonparametric model for
panels of realized volatilities that does not suffer from the curse of dimensionality, but the
presence of a nonparametric curve makes forecasting challenging. To date, a model for panels
of volatilities that is feasible for vast dimensions, captures the stylized facts, and is capable of
forecasting reasonably well is missing.

In this article we introduce such a model. It has its roots in the macroeconometrics lit-
erature (Forni et al. (2000), Stock and Watson (2002), Bai (2003)) and it builds upon Bai
and Ng (2004). We propose a dynamic factor model for a panel of N log–realized volatilities
that depend on a small number of factors (r � N) and a vector of idiosyncratic components.
The factors follow a r–dimensional VARFIMA model with conditional heteroskedasticity, and
the idiosyncratics follow N independent ARFIMAs. The distributions of the common and id-
iosyncratic shocks are skewed and heavy–tailed. Estimation is based on principal components
and maximum likelihood (ML). The dimensions of the ML problems are univariate for the
idiosyncratics and r–variate for the factors, where r is typically a very small number (one in
our case). As outlined above, this model has a number of advantages: i) it is able to mimic and
explain the stylized facts of panels of realized volatilities, ii) inference is straightforward, iii)
forecasting is simple and, when compared with the existing models, predictions are accurate,
and iv) it is suitable for vast dimensional panels.

We apply the model to a panel of 90 daily realized kernels (Barndorff-Nielsen et al., 2008)
spanning from Jan. 2001 to Dec. 2008. It consists of the constituents of the S&P100 index
that have continuously been trading during the sample period. This data set has been used
by Barigozzi et al. (2010) and the time span is convenient as it covers periods with different
patterns in volatility: rough (2001-2003), calm (2004-2007), and very rough (2007-2008).

Four are the main estimation findings. First, two heuristic methods, one criteria and a
test unanimously indicate that one factor drives the panel. This is robust with Barigozzi et al.
(2010) and a consequence of the strong co–movements of the realized measures. Second, the
long–memory found in the realized volatilities is a market feature, in the sense that the degree
of fractional integration of the factor is significantly larger than that of the idiosyncratic
components. Third, the volatility of the volatility is time varying (confirming Corsi et al.
(2008)) and has a pattern that resembles that of realized volatilities. That is, peaks and
trough somehow coincide. Fourth, the standardized common shocks present fatter tails than
the idiosyncratic shocks, suggesting the market nature of the heavy–tails.

By combining long–memory with factor models, forecasts should be better than those of
short–memory and/or univariate models. To verify this hypothesis we proceed with a thorough
forecasting horse race. We compare 9 models, for 4 forecasting horizons (1 day, 1 week, 2
weeks and 1 month) and for the 90 firms. The results show that when markets are calm and
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volatilities are low, the factor structure does not play a significant role and the improvements
in forecasting compared with simpler models are marginal. However, as volatilities increase,
the co–movements are reinforced and the factor structure becomes, important in the sense
that forecasting gains –relative to univariate models– are up to 10%.

The structure of the paper is as follows. Section 2 analyzes the panel of realized volatilities
and unveils the six stylized facts. Section 3 shows the dynamic factor model, the assumptions
and estimation. It also presents a Monte Carlo study carried out to asses the finite sample
accuracy of the estimated parameters. Results are shown in Section 4, which are divided
in two parts: estimation results and the forecasting horse race. The article concludes with
Section 5 and an appendix with the assumptions and two lengthy tables. A web appendix,
available in the author’s websites, contains detailed results of the forecasting horse race.

2 The stylized facts of panels of realized volatilities

Our data is a comprehensive panel of log realized volatility measures from January 2, 2001 to
December 31, 2008 as used in Barigozzi et al. (2010). It consists of U.S. equity companies that
are part of the S&P100 index. It contains all the constituents of the index as of December
2008 that have been trading in the full sample period (90 in total). The assets are classified
in the following sectors (with the abbreviation in parenthesis): consumer discretionary (CD),
consumer staples (CS), financial (FIN), health care (HC), industrial (IND), information tech-
nology (IT), materials (MAT), energy (NRG), telecommunications service (TLC), and utilities
(UT). The complete list of tickers, company names and sectors is reported in the Appendix.

Among the available estimators of the daily integrated volatility based on intraday returns,
we adopt the realized kernels (Barndorff-Nielsen et al., 2008) and we follow the guidelines in
Barndorff-Nielsen et al. (2009). Realized kernels are a family of heteroskedastic and autocor-
relation consistent type estimators, robust to various forms of market microstructure noise
present in high frequency data. Alternative estimators are the range (Parkinson, 1980; Al-
izadeh et al., 2002), the vanilla realized volatility (Andersen et al., 2003), and the two-scales
estimator (Aït-Sahalia et al., 2005). Our primary source of data are tick–by–tick intra-daily
quotes from the TAQ database. Since realized kernels are not robust to jumps, data are filtered
using the methods described in Brownlees and Gallo (2006). In particular, we use a trimming
method consisting on removing observations that are 3 sigma larger than the neighboring
realizations (see page 2237 of Brownlees and Gallo (2006) for more details). For clarity in the
exposition, from now on we denote the log of the realized kernel as simply realized volatility.

Figure 1 shows the time series envelop for the 90 realized volatilities.3 Visual inspection
3An envelop plot enfolds, at any t, the realized volatilities with the maximum and minimum.
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Figure 1: Realized Volatilities
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Time series envelop plot of the 90 log realized volatilities of the U.S.
equities that are part of the S&P100 index.

reveals the two first stylized facts: co–movements and clustering. The overall pattern suggests
that they cluster around a common time–varying unobserved level that can be easily attached
to well known economic events or common wide innovations. The downturn in volatility in
2001 corresponds to the aftermath of the burst of the dot com bubble while the rise around
2002 and 2003 corresponds to the US accounting scandals. Volatility then drops from 2004 to
July 2007 when it starts to rise with the beginning of the financial crisis. It then skyrockets
to the highest level of volatility in the last 20 years in the fall of 2008.

Figure 2: Autocorrelograms
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Envelop plot of the autocorrelograms of the 90 realized volatilities of
the U.S. equities that are part of the S&P100 index. Black lines are
the autocorrelograms for 10 representative stocks pertaining to the 10
sectors.

Figure 2 displays the envelop of the autocorrelograms, up to lag 100, for the 90 assets.
It also highlights the autocorrelations for 10 representative stocks pertaining to the above–
mentioned sectors.4 Although the decline of the autocorrelations is heterogeneous across assets

4Bank of America (FIN), Caterpillar (IND), DuPont (MAT), Exelon (UT), Home Depot (CD), Microsoft
(IT), Pfizer (HC), Verizon (TLC), Wall-Mart (CS) and Exxon (NRG).
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and sectors, they all show a decay that is slower than exponential. This is a distinctive feature
of long–memory processes that can be caused by fractional integration. Structural breaks and
jumps may produce long–memory as well (see e.g. Diebold and Inoue 2000, and Granger and
Hyung 2004). However, understanding long–memory as fractional integration is appropriate as
it explicitly models the persistent relation with the past, a convenient feature for forecasting.
Fractional integration is characterized by a parameter, often denoted by d, that measures the
degree of differentiation needed for rendering the realized volatilities short–memory.5 Denote
generically by Xit the realized volatility of the i–th asset at time t. Then Xit is said to be
fractionally integrated of order di if (1 − L)diXit is I(0). The values of di that we consider
range between 0 and 1 and it is divided in two intervals: 0 < di < 0.5 and 0.5 ≤ di < 1.6

The former entails finite variance and mean reversion, while the latter means that Xit is not
variance–stationary but mean reverting.

Estimates for the fractional integration parameters for each realized volatility are shown
in the top panel of Table 1. We use three methods: an ARFIMA(1, d, 0) where d is estimated
following Beran (1995), the exact local Whittle of Shimotsu and Phillips (2005), and the
Geweke & Porter–Hudak estimator of Geweke and Porter-Hudak (1983).7 We display the
minimum, the median and the maximum. Results for Beran (1995) and Shimotsu and Phillips
(2005) are in some sense similar while the estimates using Geweke and Porter-Hudak (1983)
are quite different, in particular its dispersion. It is known that the Geweke & Porter–Hudak
estimators may have a severe bias. For all assets (column All), the distance between the
minimum and maximum estimated d is of merely 0.19 for Beran (1995) and 0.22 for Shimotsu
and Phillips (2005), indicating that the degree of long–memory is similar across assets and that
it can be a market feature. Moreover, for Beran’s estimators more than half of the realized
volatilities have fractional integration beyond the threshold 0.5 (the median being 0.55) while
all the exact local Whittle estimators are above 0.5, which implies lack of variance stationarity.
Across sectors we observe the same degree of homogeneity.

We investigate further the long–memory aspects of volatilities by dividing the sample in
subsamples of 2 years. Figure 3 show boxplots for the the fractional integration parameters
(for the 90 firms) using Beran (1995). The degree of long–memory presents variations. Periods
of turmoil are related not only with increases in the memory but also with an increase in the
homogeneity across assets (i.e. narrower distance between the interquantile ranges). This is

5See Beran (1998), Robinson (2003) and Palma (2007) for survey textbooks on long–memory processes and
time series models with long–memory.

6Values of d below 0 (anti–persistent) and beyond 1 (explosive) are theoretically admissible but not relevant
in the context of realized volatilities.

7Other specifications for the conditional mean were estimated as well: ARFIMA(1, d, 1), ARFIMA(2, d, 0)
and ARFIMA(2, d, 1). The ARFIMA(1, d, 0) turns out to be the most parsimonious and the residuals are white
noises. Detailed results are available under request.
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Table 1: Descriptive statistics

All CD CS NRG FIN HC IND IT MAT TLC UT
ARFIMA(1, d, 0)

d
min. 0.45 0.5 0.45 0.46 0.54 0.45 0.48 0.49 0.52 0.52 0.45
med. 0.55 0.54 0.5 0.53 0.58 0.51 0.56 0.56 0.55 0.55 0.54
max. 0.64 0.57 0.55 0.57 0.62 0.57 0.64 0.62 0.57 0.56 0.56

Exact Local Whittle

d
min. 0.56 0.64 0.56 0.62 0.67 0.63 0.60 0.60 0.61 0.67 0.67
med. 0.69 0.70 0.66 0.70 0.73 0.67 0.66 0.71 0.65 0.70 0.69
max. 0.78 0.75 0.71 0.77 0.76 0.71 0.72 0.78 0.66 0.72 0.70

Geweke & Porter–Hudak

d
min. 0.35 0.62 0.56 0.35 0.57 0.56 0.55 0.51 0.64 0.58 0.58
med. 0.67 0.71 0.69 0.67 0.64 0.64 0.71 0.65 0.67 0.66 0.65
max. 0.85 0.78 0.77 0.75 0.76 0.71 0.85 0.69 0.69 0.77 0.73

Autocorrelation demeaned squares

Lag 1
min. 0.44 0.51 0.44 0.60 0.70 0.45 0.51 0.53 0.59 0.57 0.59
med. 0.65 0.64 0.53 0.71 0.77 0.54 0.65 0.66 0.69 0.64 0.69
max. 0.84 0.70 0.63 0.76 0.84 0.67 0.73 0.72 0.76 0.66 0.70

Lag 20
min. 0.08 0.21 0.08 0.23 0.26 0.17 0.19 0.20 0.18 0.20 0.22
med. 0.28 0.28 0.22 0.37 0.37 0.24 0.29 0.29 0.32 0.32 0.26
max. 0.56 0.42 0.28 0.52 0.56 0.32 0.42 0.36 0.43 0.36 0.33

Autocorrelation demeaned absolute values

Lag 1
min. 0.44 0.54 0.44 0.58 0.68 0.48 0.50 0.54 0.57 0.58 0.60
med. 0.62 0.62 0.54 0.62 0.72 0.55 0.62 0.67 0.62 0.59 0.62
max. 0.78 0.71 0.62 0.74 0.78 0.64 0.71 0.72 0.66 0.66 0.65

Lag 20
min. 0.14 0.23 0.14 0.27 0.31 0.21 0.22 0.24 0.20 0.22 0.27
med. 0.30 0.30 0.24 0.33 0.38 0.27 0.28 0.34 0.30 0.29 0.29
max. 0.53 0.44 0.32 0.51 0.53 0.32 0.43 0.41 0.33 0.37 0.30

Skewness
min. -0.15 0.04 -0.11 -0.07 -0.04 0.02 -0.15 -0.06 -0.14 -0.01 0.00
med. 0.07 0.07 0.01 0.12 0.10 0.11 0.05 0.05 0.06 0.16 0.03
max. 0.3 0.30 0.21 0.23 0.28 0.19 0.19 0.27 0.17 0.17 0.14

Kurtosis
min. 3.27 3.42 3.68 3.41 3.45 3.7 3.27 3.59 3.37 3.54 3.61
med. 4.03 4.12 4.49 4.45 4.00 4.22 3.9 3.97 3.75 3.84 3.92
max. 5.91 4.83 5.91 4.70 4.91 5.12 4.92 4.89 4.02 4.16 4.55

Summary of descriptive statistics for the 90 realized volatilities for all the firms (All) and grouped in sectors:
consumer discretionary (CD), consumer stable (CS), financial (FIN), health care (HC), industrial (IND), materials
(MAT), energy (NRG), technology (TEC), and utilities (UT). For all panels the Table shows the minimum (min.),
the median (med.) and the maximum (max.). Top panel shows the estimated fractional integration parameters using
an ARFIMA(1, d, 0) where d is estimated following Beran (1995), the exact local Whittle of Shimotsu and Phillips
(2005), and the Geweke & Porter–Hudak estimator of Geweke and Porter-Hudak (1983). Second and third panels
show the autocorrelation of lags 1 and 20 for the squares and absolute values of the demeaned realized volatilities.
The last two panels show the skewness and kurtosis.

clear in the period 2001–2002 and, particularly, in the last financial crisis. Previous literature,
see for instance Andersen et al. (2001), Andersen et al. (2001), Andersen et al. (2003), Granger
et al. (2000) and Lieberman and Phillips (2008), has found the realized volatilities typically
display an estimated d around 0.4. The sub–sample analysis confirms this value in calm
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periods but it goes beyond it in periods of turmoil. In all, the bottom line of this analysis
is the third stylized fact of realized volatilities: there have long–memory and they are not
necessarily variance–stationary but mean reverting.

Figure 3: d across 2–years subsamples
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Boxplots of the estimates of the 90 fractional integration parameters (using
Beran (1995)) for the sample divided in 2–years subsamples.

Second and third panels of Table 1 show the autocorrelations of order 1 and 20 (which
correspond to one day and one month) for two measures of the volatility of realized volatility:
the squares and absolute values of the demeaned realized volatilities. The dependence is
remarkable and results for both measures are similar. The median of the autocorrelations of
order 1 are 0.65 and 0.62 for the squares and absolute values respectively. After one month
the dependence is still high: the medians are 0.28 and 0.30 for the squares and absolute values
respectively. This is a clear indication of conditional dynamics in the realized volatilities.
Moreover, the range of values across assets is tight suggesting that, as it happened with
long–memory, the dynamic volatility is a market feature. Interestingly enough, there are not
significant differences across sectors, which is seen as another corroboration of the market
nature of the volatility of the volatility. This analysis allows us to conclude with the fourth
stylized fact: realized volatilities have dynamic volatility and it is a market feature.

The last two panels of Table 1 display the skewness and the standardized kurtosis in a
similar fashion to the previous descriptive statistics. Skewness is present in realized volatilities,
in the sense that it is not concentrated around zero since it ranges from -0.15 to 0.30, and that
there are substantial variations across sectors (and assets). On the other hand, the median
of standardized kurtosis is 4.03 while the minimum and maximum are 3.27 and 5.91. Similar
numbers are found for the different sectors. We conclude that the fifth and sixth stylized facts
are that realized volatilities are skewed with an asymmetric pattern that is heterogeneous
across firms, and that all the realized volatilities of all the assets show heavy–tails.

In sum, realized volatilities show co–movements, clustering, long–memory, conditional het-
eroskedasticity, skewness and heavy–tails. In the next section we propose a model that ac-
counts for these facts. What if we ignore them? Ignoring co–movements (and therefore its
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factor structure) implies the use of traditional models (e.g. VARFIMA type) that may become
hard to handle in large dimensions due to the curse of dimensionality. Not paying attention
to clustering means that dynamics are not adequately captured and all subsequent analysis
is doubtful. Neglecting long–memory entails a deterioration in the forecasts after few steps
ahead, specially in periods of turmoil. Last, ignoring conditional heteroskedasticity, skewness
and heavy tails, may lead to incorrect risk management and mispricing of volatility products.

3 A model for large panels of volatilities

3.1 The model

Factor models are based on the idea that each asset’s volatility Xit can be decomposed into
the sum of two mutually orthogonal components: the common component capturing the co–
movement among volatilities, and a vector of idiosyncratic components ξt = (ξ1t, . . . , ξNt)

capturing the asset’s specific dynamics. Co–movements are summarized by r � N common
factors Ft that are loaded differently to each volatility through the matrix Λ. Formally, let
Xt t = 1, . . . , T be a N × 1 vector of realized volatilities, the Dynamic Factor Model (DFM)
is defined as:

Xt =ΛFt + ξt (1)

D(L)Ft =C(L)H
1/2
t ut ut ∼ D(0,1, γu, νu) (2)

(1− L)δi ξit =Gi(L)εit εit ∼ D(0, σεi , γεi , νεi). (3)

The common factors evolve over time according to the VARFIMA model (2) with con-
ditional heteroskedasticicty. The matrix D(L) = diag((1 − L)d1 , . . . , (1 − L)dr) contains the
polynomials of fractional integration, C(L) =

∑∞
j=0CjL

j is the pure MA representation of the

VARMA model for the fractionally integrated factors D(L)Ft, H
1/2
t captures the conditional

variance–covariance of the realized volatilities, and ut are the orthogonal common shocks that
follow a standardized skewed and heavy–tailed distribution, characterized by γu, a parameter
that controls the asymmetry, and a tail index νu that generates the fatness of the tails.

The idiosyncratic components are modeled as N independent ARFIMA processes, as in
(3). For the i–th volatility, δi is the degree of fractional integration of the idiosyncratic
component, Gi(L) =

∑∞
j=0GijL

j is an infinite MA polynomial, and εit is the i–th idiosyncratic
shock distributed according to a zero–location distribution with dispersion, skewness and tail
parameters σεi , γεi and νεi respectively. The common shocks and the idiosyncratic shocks are
assumed to be uncorrelated at all leads and lags, while the idiosyncratic shocks are allowed to
be both serially and cross-sectionally correlated albeit by a limited amount (precisely defined
in assumption IC –see Appendix).
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Model (1)–(3) is a generalization to fractional integration, conditional heteroskedasticity
and heavy tails of Bai and Ng (2004) (in which Xit are Gaussian, homocedastic, and either
stationary or have a unit root).8 As the model of Bai and Ng (2004) relates to cointegration,
our model is related to fractional cointegration. In Bai and Ng (2004) the r factors and the
idiosyncratic components can be stationary or have stochastic trends. If the idiosyncratic
components are all stationary, then the observations and the factors are cointegrated. In our
model, the intuition is similar: if the volatilities and the factors are fractionally cointegrated,
the idiosyncratic components have a lower degree of integration. Due to the empirical nature
of this article, the theoretical underpinnings on fractional cointegration related with (1)–(3)
constitute a future area of research.

3.2 Estimation

Estimation is divided in two steps. The first consists in estimating the factors, along with
the loadings and the idiosyncratic components, while the second in estimating the dynamic
models and the distributions in (2) and (3).

The factor, its loadings and the idiosyncratic components Suppose r, the number
of factors, is known. Let xt = ΔXt, ft = ΔFt, and zt = Δξt. Taking first difference of
(1), the differenced realized volatilities follow the model xt = Λft + zt. Bai and Ng (2002)
prove that the space spanned by the differenced factor ft can be consistently estimated by
principal components, and Bai (2003) shows that the maximum distance between the estimated
differenced factor and loadings from the true ones is bounded, up to a scale.9 Let f̂t, Λ̂ and
ẑt be the estimates obtained by principal components. Based on the set of assumptions listed
on the Appendix, consistent estimators of Ft and ξt can be obtained (up to a rotation and
an initial condition F0) by undoing the differentiation, i.e. cumulating: F̂t =

∑T
t=1 f̂t, and

ξ̂t =
∑T

t=1 ẑt. A proof is not needed since none of the assumptions in the Appendix violate
those in Bai and Ng (2004).

In practice, however, the number of factors is not known and it needs to be estimated.
The literature has suggested different heuristic methods, criteria and tests to determine the
number of common factors. We adopt four. The first is the percentage of variance explained
by the i–th eigenvalue (in decreasing order) of the spectral density matrix of xt. We denote
this method by μ1

i . The second is the percentage of variance explained by the i–th eigenvalue
(in decreasing order) of the variance–covariance matrix of xt. We denote this method by μ2

i .
The third is Bai and Ng (2002) information criteria, which we denote by IC. The last is

8Model (1)–(3) when dj = 1, j = 1 . . . , r, δi = 1, i = 1 . . . , N , and both the common and idiosyncratic
shocks are normally distributed is studied in Alessi et al. (2009).

9Differentiating fractionally integrated random variables is a conservative approach, in the sense that xt is
over–differentiated. This is carried over in the idiosyncratic components zt. However, since they are stationary
and weakly correlated, principal components can be used.
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Onatski (2009) test, denoted by Onat, where the null hypothesis of r − 1 common factors
is tested against the alternative of r common factors. Though this test is developed for a
more general model compared to (1)–(3), it is useful to consider it as a robustness check.10

As shown in the empirical application bellow, the four methods unanimously indicate that
there is one common factor: r = 1. Having one factor has a number of useful consequences.
In general, for r > 1 factors, the common and idiosyncratic components are identified, but
the factors and the loadings are not.11 Hence we can only estimate consistently the space
spanned by the factors, but not the factors themselves. By contrast, when r = 1 the lack of
identification is alleviated since R becomes a scalar, denoted by R, and therefore factors are
identified up to the sign. For the ease of exposition, from now on we consider r = 1.

The models The last step is the estimation of models (2) and (3) that were written in terms
of the MA representation but in practice are ARFIMA–GARCH and ARFIMA for Ft and ξit

respectively. Model (2) can be re–written as

φ(L)(1− L)dFt = θ(L)ũt

ũt = h
1/2
t ut

ht = ω + αũ2t−1 + βht−1

where ũt is the common residual, and ut is the common shock that follows the standardized
skewed–t distribution of Hansen (1994).12 Since the dimensions of the ML problems are uni-
variate, this methodology does not suffer from the curse of dimensionality. However, estimation
of the parameters –in particular the fractional integration parameters– turns out to be compu-
tationally cumbersome. We adopt a pragmatic and parsimonious approach by proceeding in
two steps. Denote by ρ1 the set of parameters in φ(L) and θ(L), and ρ2 = (ω, α, β, γu, νu). In
the first step, and under quasi ML (QML) arguments, we maximize a Gaussian log–likelihood
with respect to ρ1 and d. To estimate the parameter of fractional integration we rely on
Beran (1995): estimation of d is based on a grid search algorithm while ρ1 are estimated by
maximizing the (profiled) Gaussian log–likelihood. Second, the skewed–t log–likelihood of the
residuals is maximized with respect to ρ2. The same procedure is followed for the estimation
of model (3) but with ρ1i the set of parameters in φi(L), θi(L) and δi, and ρ2i = (σεi , γεi , νεi).

The asymptotic theory of ARFIMA-GARCH models has been developed for Gaussian
innovations by Ling and Li (1997). The extension to QML for non–Gaussian processes can,

10Other methods for determining the number of common factors are Bai and Ng (2007), Hallin and Liska
(2007), Amengual and Watson (2007), Alessi et al. (2010), Kapetanios (2010), and Onatski (2010).

11This can be very easily seen by considering an orthonormal matrix R that rotates Ft and prevents its
identification.

12There are alternative skewed and heavy–tailed laws. The tempered α–stable is appealing due to its
theoretical properties. The normal mean–variance mixture class of distributions is also suitable for skewed and
heavy–tailed random variables. Fernandez and Steel (1998) propose a general skewing mechanism that can be
used for any unimodal symmetric distribution.
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in principle, be generalized since the assumptions in Ling and Li (1997) also hold in our case.
This is beyond the scope of this article and is left for future research. However the simulation
results, shown below, confirm the good finite sample properties of the estimators. Moreover,
regressors and regressands in (2) and (3) are estimates rather than the true values. This entails
an estimation error that is carried over in the estimation of the parameters. Though Bai and
Ng (2004) show that the estimation error vanishes as N,T → ∞, and hence factors can be
treated as if they are directly observed, a natural question is whether this error is meaningful
in finite samples and if it affects significantly the accuracy of the estimated parameters. We
address this problem in the following Monte Carlo study.

3.3 The finite sample performance of the estimated parameters

We proceed with a comprehensive Monte Carlo study with 36 different Data Generating
Processes (DGP). For each DGP N equals 100 (roughly the same sample size as the panel of
volatilities) and we simulate 1000 draws of sample sizes 500, 1000, and 5000. The model we
simulate is a one factor model with the factor following an ARFIMA(1, d, 0)–GARCH(1, 1),
and the idiosyncratic components an ARFIMA (1, d, 0):

Xt = ΛFt + ξt

(1− φ)(1− L)dFt = h
1/2
t ut

(1− ρi)(1− L)δiξit = εit

The 100 factor loadings are independent copies of a N (1, 1). The common shocks ut are
independent copies of a standardized skewed–t distribution with asymmetry parameter 0.1 and
tail index 8. The law is denoted by SkSt(0, 1, 0.1, 8). The GARCH parameters are fixed to
ω = 0.002, α = 0.05 and β = 0.92. The autoregressive and fractional integration parameters of
the factor are set to [0, 0.5, 0.9] and [0.2, 0.4, 0.6] respectively. These values produce processes
ranging from almost no persistence (φ = 0 and d = 0.2) to a great deal of persistence (φ = 0.9

and d = 0.6).
The i–th idiosyncratic shock follows the distribution SkSt(0, 1, γεi , νεi) where γεi and νεi

are drawn from the uniform distributions U(−0.15, 0.15) and U(8, 50) respectively. We there-
fore allow for idiosyncratic shocks to be left or right skewed, and the tail indexes range from
8 to 50, producing an ample array of shocks, from heavy–tailed to Gaussian. The 100 au-
toregressive parameters are either set to zero or also drawn from the uniform distribution
U(0.5, 0.9). The parameters of fractional integration are set to two values corresponding to
low (δ ∼ U(0, 0.4)) and high persistence (δ ∼ U(0.4, 0.8)). Table 2 gives an overview of the
DGPs and left panel of Table 10 in the Appendix indexes them. It is noteworthy that the
factor and the idiosyncratic components are generated so that the percentage of variance of
each variable explained by the common component is between 25% and 95%.
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Table 2: Monte Carlo design

Draws 1000
N 100
T 500, 1000, 5000
Λ ∼ N (1, 1)
ut ∼ SkSt(0, 1, 0.1, 8)
φ 0, 0.5, 0.9
d 0.2, 0.4, 0.6
ω 0.002
α 0.05
β 0.92
εit ∼ SkSt(0, 1, γεi , νεi)
γεi ∼ U(−0.15, 0.15)
νεi ∼ U(8, 50)
ρi 0,∼ U(0.5, 0.9)
δi ∼ U(0, 0.4),∼ U(0.4, 0.8)

Specification of the Monte Carlo design. The
top panel are the specifications for the number
of draws, observations, dimension of the panel,
and the factor loadings. Middle panel spec-
ify the distribution of the common shock and
the parameters of the factor model. Bottom
panel specify the distribution of the idiosyn-
cratic shocks and the parameters of the model
for the idiosyncratic component.

To estimate from the simulated data we differentiate the model, extract one factor and
the idiosyncratic components with principal components, and estimate the parameters. We
repeat this procedure 1000 times for each parameter configuration. To study the precision
of the estimated factor we use the R2 from the regression F̂t = a + bFt + εt, while for the
precision of the estimated parameters we compute the bias and the mean square error (MSE).

Figure 4 shows, for T = 5000, in the y–axis the median (thick line), the 25th and 75th
quantiles (thin lines) over the 1000 draws of the R2 from regressing the estimated factor on
the true one. The x–axis shows the 36 DGP’s. The estimation of the factor is very precise
all the DGP’s. Results for T = 1000 and T = 500 (available on request) are similar since for
principal components the cross–sectional dimension is more important than the sample size.
We therefore conclude that the estimation procedure of Bai and Ng (2004) is applicable when
the variables are fractionally integrated.

Figure 5 shows the median bias and mean squared error (MSE) for the estimated param-
eters of the ARFIMA-GARCH model of the factor. In all graphs the solid line is the median
bias or MSE over the 1000 replications for each DGP and for T = 5000. The dashed and
dotted line is for T = 1000, while the dotted line is for T = 500. Overall the bias is small and
it decreases as the number of observations increases. Detailed results on the median biases
can be found in the right panel of Table 10 in the Appendix. Last, we verify the finite sam-
ple densities of the estimators. Figure 6 displays the kernel densities of the 1000 estimated
parameters for the DGP 25 (see table 10 in the Appendix) which is a typical case found in
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Figure 4: Accuracy of the estimated factor
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In the x–axis the 36 DGPs, indexed in the left panel of Table 10 in the
Appendix. On the y–axis the median (thick line), the 25th and 75th
quantiles (thin lines) over the 1000 draws of the R2 from regressing the
estimated factor on the true one.

the empirical application, and for the three sample sizes. The densities approach symmetric
bell shapes with smaller variance as the sample size increases. For T = 500 and T = 1000

the densities of ω̂ and β̂ are highly skewed due to the presence of a few pathological estimates
that disappear for T = 5000.

4 An application to S&P100 constituents

4.1 Estimation results

We apply the model to the panel of daily realized volatilities of the 90 S&P100 constituents.
The precise characteristics of this database have been explained in Section 2. The presentation
of the results proceed as follows: i) determining the number of factors, ii) estimating the
factors, loadings and idiosyncratic components, and iii) estimating the dynamic models (2)
and (3).13

Table 3 shows the results of the two heuristic methods, the test and the criteria for deter-
mining the number of factors. The first column contains the number of factors. The second
and third columns show the percentage of variance explained by the i–th eigenvalue (in de-
creasing order) of the spectral density and variance–covariance matrices of xt respectively.
The fourth column shows the p–values of the Onatski (2009) statistic for the null of r − 1

common factors against the alternative of r common factors. The last column displays the
Bai and Ng (2002) criteria. The evidence for one factor is strong: the percentage of variance
explained by the first eigenvalue of the spectral density and the variance–covariance matrices
overwhelming dominates, and the p–values of the test and the criteria clearly indicate towards
one factor.

13Matlab codes are available on the website www.ecares.org/veredas.html.
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Figure 5: Median bias and MSE
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(b) GARCH parameters
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y–axis of the top panel shows the bias (left column) and MSE (right column) for
the fractional integration (d) and autoregressive (φ) estimated parameters of the
factor equation for the 36 DGPs (in x–axis). Bottom panel has the same structure
and show the results for the GARCH estimated parameters. Dotted lines are for
T = 500, dashed and dotted for T = 1000, and solid for T = 5000.
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Figure 6: Finite sample densities
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(b) T = 1000
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(c) T = 5000
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Kernel densities of the 1000 estimated ARFIMA-GARCH pa-
rameters of the factor equation, for the DGP 25 (see table 10
in the Appendix), and for the three sample sizes.
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Table 3: Number of Factors

r μ1
i μ2

i Onat. IC
1 0.254 0.246 0.000 -0.232
2 0.040 0.023 0.664 -0.210
3 0.036 0.019 0.331 -0.184
4 0.033 0.017 0.119 -0.157
5 0.030 0.015 0.693 -0.127
6 0.028 0.015 0.767 -0.097
7 0.027 0.014 0.555 -0.067
8 0.025 0.013 0.465 -0.036
First column are the number of factors. μ1

i
is the percentage of variance explained by
i–th eigenvalue (in decreasing order) of the
spectral density matrix of xt. μ2

i is the
percentage of variance explained by i–th
eigenvalue (in decreasing order) of the vari-
ance covariance matrix of xt. Onat. is the
p–value of the Onatski (2009) statistic for
the null of r − 1 common factors against
the alternative of r common factors.IC is
the criteria of Bai and Ng (2002).

Figure 7 shows the estimated factor and the idiosyncratic components. The top plot shows
the factor along with the envelope of the realized volatilities. The factor tracks with a great
deal of precision the co–movements of the volatilities. The middle plot shows the envelop of the
idiosyncratic components, which seems to be rather stable in the sense that it does not track
the trend in the realized volatilities. This does not mean that the idiosyncratic components
are short–memory (as shown by the solid and dotted lines, representing two randomly chosen
idiosyncratic components) but it is an indication that most of the long–memory is captured by
the factor, as was already suggested in Section 2 and is further corroborated below. Indeed,
the bottom plot shows the autocorrelogram (black bars) and the partial autocorrelogram (grey
bars) of the factor. The autocorrelations decrease very slowly, possibly at hyperbolic rate, a
typical pattern of long–memory processes.

Next we analyze the factor loadings, shown in Table 4. The top panel displays information
for the factor loadings for the full sample (column All) and for two–years subsamples. In all
cases the loadings are approximately equally distributed around one. More interestingly, the
loadings do not seem to vary significantly across subsamples, which has the interpretation that
the relation of the firm’s volatility with the commonness is roughly the same regardless the
state of the market. In order to further check this assessment, we test the equality of distribu-
tions across subsamples. We first test if they are cross–sectionally Gaussian. Jarque–Bera and
empirical distributions tests (Kolmogorov, Cramer–von–Mises and Anderson–Darling) confirm
the null hypothesis of Gaussianity, which implies that they are equally distributed across sub-
samples if they have equal variances. Levene and Brown–Forsythe tests have p–values closed
to 0.10, which confirm that the exposures of the realized volatilities to the commonness are
not affected by the market conditions. The bottom panel shows the information about the
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Figure 7: Factor and idiosyncratic components
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Top plot shows the estimated factor and the envelop of the realized volatil-
ities. Middle plot displays the envelop of the estimated idiosyncratic com-
ponents along with two of them. Bottom plot shows the autocorrelogram
(in black) and the partial autocorrelogram (in grey) of the estimated fac-
tor.
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factor loadings across sectors (using all the sample). Two sectors behave somehow differently:
Financials and Information technology. The median and maximum loadings for these sectors
are among the largest, meaning that for some of the firms belonging to these sectors, the sen-
sitivity of the realized volatilities to the common volatility are among the largest of S&P100.
Moreover, the dispersion in the loadings for Financials and Information Technology are among
the smallest and largest respectively. This is an indication that the volatility of financial firms
is significantly concentrated while for IT is very heterogeneous (the same happens for energy).
Last, some sectors are more stable than the common volatility, like Utilities and Health Care.

Table 4: Factor loadings

All 01–02 03–04 05–06 07–08
min. 0.54 0.51 0.39 0.36 0.54
med. 0.96 0.97 0.98 1.00 0.96
max. 1.38 1.46 1.49 1.45 1.42

CD CS NRG FIN HC IND IT MAT TLC UT
min. 0.81 0.67 0.62 0.94 0.62 0.62 0.66 0.9 0.82 0.54
med. 0.99 0.91 0.88 1.13 0.88 0.92 1.2 0.96 0.92 0.84
max. 1.15 1.20 1.28 1.32 1.08 1.34 1.38 1.16 0.98 0.92
Minimum (min.), median (med.) and maximum (max.) of the 90 factor loadings. Top panel for
all the assets and the full sample size (column All) as well as the 2–years subsamples. Bottom
panel for the full sample but across sectors.

The model for (2) is an ARFIMA(1, d, 0)–GARCH(1,1).14 The estimated autoregressive
parameter φ̂ is −0.10, while the estimated fractional integration d̂ equals 0.69, higher than
any value in Table 1. As it is shown below, when comparing it with idiosyncratic fractional
integrations, this high value reflects the fact that the factor is more persistent than individual
assets. As a check, we estimated the ARFIMA model on the VIX and the realized volatilities
of the S&P500 index. The fractional integration parameters are 0.62 and 0.94 respectively.
The question however remains on why volatilities of aggregates have a higher long–memory
than the assets’. Our factor, the S&P500 volatility, and VIX are in fact linear combinations
that smooth out temporary firm–specific volatility shocks. This smoothness effect creates
aggregates that move more slowly that the constituents, and hence longer memory.

Figure 8 shows the estimated GARCH volatility of the factor. This is the dynamic com-
ponent in the calculation of the conditional volatilities and covariances (V ar(Xit|It−1) =

Λ2
iht+σ2

εi and Cov(Xit, Xjt|It−1) = ΛiΛjht+σεiσεj ) needed for pricing volatility options and
risk management of swap volatilities. The similarity with the realized volatilities is striking
as it increases and decreases with the events mentioned in Section 2. Moreover, the estimates
of the GARCH parameters are of the same order of those estimated for returns: ω̂ = 0.01,
α̂ = 0.06 and β̂ = 0.90. The volatility of the volatility is related to tail measurement of returns
and Figure 8 clearly shows that it is time–varying.15 The sharp increase during the 2008 crisis

14As in Section 2, other ARFIMA were estimated as well. The ARFIMA(1, d, 0) is the most parsimonious
and the residuals are white noises. Detailed results are available under request.

15The way in which the tails of the returns are related with the volatility of the realized volatility is an area
that deserves further research and beyond the scope of this article.
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is evident but a close inspection reveals that the risk of volatilities started to increase in mid
2007 (around June–July, or when Bear Stearns announced major losses). Prior to this date
there were also episodes of sudden increases in risk.

Figure 8: Volatility of the common realized volatility
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Estimated GARCH volatility of the common factor.

Figure 9 displays four plots with the estimated common shocks ût and the estimated com-
mon residuals v̂t = ĥ

1/2
t ût, along with the autocorrelations (black bars) and partial autocorre-

lations (grey bars) of the squares. The common residuals show conditional heteroskedasticity
that is captured by the GARCH model since the squares of the common shocks are uncorre-
lated. The plot of ût also reveals events that are on the tails of the distribution. The estimated
tail index is ν̂u = 5.72, which confirms that tail thickness of the realized volatilities is a market
feature. Note that the tail thickness of the factor (and of the common residual) is larger than
5.72 due to the presence of the GARCH effects, as it is well known that the unconditional
fourth moment of v̂t is larger than the fourth moment of ût. Likewise, the unconditional fourth
moment of F̂t is larger than the equivalent of v̂t. Last, the estimated asymmetry parameter γ̂u
equals 0.14 reflecting the fact that skewness across asset’s volatilities, though heterogeneous,
is more right–sided than left–sided.

The models for the idiosyncratic components are also ARFIMA(1, d, 0). Figure 10 shows
the estimates of fractional integration. The thick and grey straight line is the estimated d̂

of the factor equation, and the thin line represents the estimates of fractional integration
δ̂i for the idiosyncratic components. For comparison we include two more lines: the thick
black line are the estimates shown in the top panel of Table 1, and the dotted line is 0.5.
On the x–axis are the 90 firms grouped in sectors, with the vertical lines acting as dividers.
In Section 2 we concluded that realized volatilities are not necessarily stationary but mean
reverting. Figure 10 reveals that the source of non–stationarity is common to all. Indeed, not
only all the idiosyncratic estimates of fractional integration are in the stationary range, but
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Figure 9: Common shock and common residual
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also they are stable across assets with a maximum range of approximately 0.20. Last, across
sectors, the largest idiosyncratic long–memory belongs to Financials, Information Technology
and Industrials, while the two Consumer and Health Care have relatively low long–memory.

Figure 10: Fractional integration
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x–axis are the 90 firms grouped in sectors, with the vertical lines acting are
dividers. The solid thick straight line is the estimator d̂ of the factor equation, and
the solid thin line are the estimates of fractional integration δ̂i for the idiosyncratic
components. The solid line with dots are the estimates shown in the top panel of
Table 1, and the dotted straight line is 0.5.



BANCO DE ESPAÑA 27 DOCUMENTO DE TRABAJO N.º 1230

with what we have found in Section 2. During periods of turmoil, the volatilities of all the
firms become more dependent of the past as the degree of long–memory increases. From 2005-
2006 to 2007-2008 the parameter of fractional integration of the factor increased sharply. The
idiosyncratic long–memories also increased but the movement is less pronounced, though for
some assets they crossed the non–stationary range. This is particularly clear for Financials,
for which more than half of the firms had idiosyncratic long–memory beyond 0.5. By contrast
the idiosyncratic long–memory of some sectors, like Health Care and Consumer Discretionary,
were barely affected by the crisis. Another feature of the transition from 2005-2006 to 2007-
2008 is that the dispersion of the idiosyncratic long–memory increased. This is in contrast with
the finding in Section 2 that in periods of turmoil the degree of long–memory concentrates.
A possible explanation is that during the crisis the common long–memory dominates in the
sense that the factor explains a higher percentage of the volatility movements.

Figure 11: Fractional integration. Two–years subsamples
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x–axis are the 90 firms grouped in sectors, with the vertical lines acting are dividers. The
solid thick straight line is the estimator d̂ of the factor equation, and the solid thin line are
the estimates of fractional integration δ̂i for the idiosyncratic components. The solid line
with dots are the estimates shown in the top panel of Table 1, and the dotted straight line
is 0.5.

Finally, Table 5 shows a summary of the estimates of the parameters of the skewed–t
distributions of the idiosyncratic shocks. The range of values for the dispersion parameter
is very narrow, meaning that the volatilities of the idiosyncratic realized volatilities are very

Figure 11 shows the same analysis but with the 2 years subsamples. Results are in line
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similar. This is related with the stylized fact that realized volatilities co–move. There are
more differences however in the asymmetry parameter, mirroring the finding in Section 2.
And as for the tail indexes, there is also a great deal of heterogeneity, ranging from very heavy
(4.45) to nearly Gaussian tails (18.27). Across sectors, there are no apparent differences for the
dispersion and the asymmetry. For the tail thickness we find the usual suspects: Financials,
Energy and Information Technology have thicker idiosyncratic tails than the other sectors. It
is somehow surprising that Industrials and Telecommunication Services firms are among the
less idiosyncratically heavy–tailed.

Table 5: Estimated parameters idiosyncratic models

All CD CS NRG FIN HC IND IT MAT TLC UT

σεi

min. 0.38 0.45 0.42 0.39 0.39 0.5 0.38 0.38 0.42 0.49 0.51
med. 0.5 0.51 0.49 0.53 0.45 0.52 0.5 0.47 0.49 0.54 0.55
max. 0.61 0.56 0.61 0.6 0.54 0.6 0.61 0.54 0.53 0.55 0.61

γεi

min. -0.08 0.01 0 -0.08 -0.05 0.03 -0.02 0.01 0 0.06 -0.07
med. 0.07 0.06 0.08 0.01 0.04 0.09 0.07 0.07 0.04 0.06 0.01
max. 0.15 0.11 0.15 0.11 0.08 0.13 0.15 0.15 0.07 0.06 0.07

νεi

min. 4.45 4.48 4.45 5.17 5.49 4.63 4.66 6.23 5.52 7.32 5.44
med. 6.96 7.18 5.57 6.95 7.73 6.47 6.94 7.65 6.98 7.58 6.58
max. 18.27 7.89 10.46 14.74 18.27 9.29 9.6 11.87 9.77 7.7 8.45

Minimum (min.), median (med.) and maximum (max.) of the estimates of the parameters of the idiosyncratic
skewed–t distributions. Column All are for the 90 firm and the remaining columns for the sectors.

4.2 Forecasting: a horse race

One of the main advantages of long–memory models is forecasting, as the model remembers the
recent and distant past more than short–memory models. On the other hand, factor models
are a parsimonious way for capturing contemporaneous and spillover effects across large panels
of volatilities. These two aspects, when combined in a single model, should provide better
forecasts than short–memory and/or univariate models. In what follows we proceed with a
thorough forecasting horse race, comparing 9 models, for 4 forecasting horizons, 1 loss function,
and for the 90 firms.

The models are divided in three classes: univariate, short–memory dynamic factor models
(denoted by SDFM) and long–memory dynamic factor models (denoted by LDFM). Five
are the univariate models: a short–memory ARMA(1,1), an ARFIMA(0,d,0) that has long–
memory but no dynamics, an ARFIMA(1,d,0), an ARFIMA(1,d,1), and the HAR model of
Corsi (2010). Two are the SDFM, which are similar to (1)–(3) except that the ARFIMA
models in (2) and (3) are replaced by short–memory models. The first one, SDFM1, forecasts
both the factor and the idiosyncratic components with an ARMA(1,1). The second, SDFM2,
forecasts both the factor and the idiosyncratic components with an AR(1). The two long–
memory dynamic factor models follow the same lines. The first, LDFM1, forecasts the factor
and the idiosyncratic components with an ARFIMA(1,d,0) while the second, LDFM2, uses a
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HAR model. Table 6 summarizes the 9 models.

Table 6: Horse race

Acronym Model
1,1 ARMA(1,1)
0,d,0 ARFIMA(0,d,0)
1,d,0 ARFIMA(1,d,0)
1,d,1 ARFIMA(1,d,1)
HAR HAR
SDFM1 Ft and ξit with ARMA(1,1)
SDFM2 Ft and ξit with AR(1)
LDFM1 Ft and ξit with ARFIMA(1,d,0)
LDFM2 Ft and ξit with HAR
Summary of the 9 models used in the horse race.
The left column shows the acronym used in the next
tables.

The design of the forecasting exercise is the following. Starting with the first 500 ob-
servations, we estimate the models and forecast 1 day, 1 week (5 days), 2 weeks (10 days)
and 1 month (20 days) ahead. Every day the model and the predictions are updated on the
basis of a recursive scheme, i.e. we always use all the past information to estimate the model
and update the predictions. The loss function is the Root Mean Square Error (RMSE) and
this choice deserves some explanations. Since realized volatilities are proxies of the latent
volatility, forecasting evaluation becomes complicated. The main tool for these evaluations
are expected losses (or risk functions). Hansen and Lunde (2006) introduce the notion of
robustness of loss functions: a loss function is robust if the ranking (using expected losses) of
any two volatility forecasts is the same whether it is done using the true volatility or some
estimator. Patton (2011) proposes a family of robust loss functions for forecasting volatility.
Let Yt+k be a generic realized volatility (not in logs) observed at time t + k and Ŷt+k its
forecast. Let L(Ŷt+k, Yt+k, b) denote the loss function with b+ 2 degree of homogeneity. The
family of robust loss functions is given by

L(Ŷt+k, Yt+k, b) =
Ŷ 2b+4
t+k − Y b+2

t+k

(b+ 1)(b+ 2)
− Y b+1

t+k (Ŷ
2
t+k − Yt+k)

b+ 1

for b /∈ {−1,−2}. The RMSE is a particular case for b = 0, while the Mean Absolute Error does
not belong to this family. A priori this result does not hold for the log of realized volatilities.
Standard theory shows that exp(X̂t+k) is a biased forecast of Yt+k, with bias depending on
the accuracy of the forecast X̂t+k. However, this holds only if Yt+k are log–normal and if
the parameters are known (i.e. there is no estimation error). Realized volatilities are not
log–normal since their logs are not Gaussian, as it was shown in Section 2. And Bardsen
and Lutkepohl (2009) show that, in a VAR context, the optimal forecast (i.e. Ŷt+k) can be
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conclude that, in practice, using exp(X̂t+k) may be preferable to using the optimal forecast.
Based on this reasoning we perform the forecasting exercise for both X̂t+k and exp(X̂t+k).

Figure 12: Relative RMSE
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Relative RMSE (relative to the ARFIMA(1,d,1), the univariate model that is
expected to perform the best) of the two long–memory dynamic factor models.
Each number is computed as the rolling mean of 250 root square errors of the
ARIFMA divided by the corresponding long–memory dynamic factor model.

In the sequel we show aggregate results for one–step ahead forecasts and for the log of
the volatility. Detailed results at asset and sectoral level, for other steps ahead, and for the
volatilities are in an appendix available in the authors websites.

Figure 13: Percentage of smallest RMSE of dynamic factor models
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inferior to exp(X̂t+k) if specification and estimation uncertainty are taken into account. They
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Figure 12 shows relative RMSE (relative to the ARFIMA(1,d,1), the univariate model
that is expected to perform the best) of the two long–memory dynamic factor models. Each
number is computed as the rolling mean of 250 root square errors of the ARIFMA divided by
the corresponding long–memory dynamic factor model. During the period when volatilities
were low and markets were calm, all models do similarly, with the relative RMSE ranging from
1.02 to 0.98. At the spring of the crisis, the volatilities started to exhibit a greater deal of
co–movements, and improving the relative performances of LDFM1 and LDFM2, with gains
up to 10%. The date at which the gains started is clearly identified with a jump around
end February and early March 2007, a period of time identified by some researchers as the
beginning of the crisis. For instance, Acharya and Richardson (2009) identify March 5 as
the first date in the time line of the crisis. That day HSBC announced that one portfolio of
subprime mortgages showed much higher delinquency that had been built into the pricing.

Figure 14: Models and assets
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The panel shows, for each of the 9 models, the number of assets for which the
models have smaller RMSE

Figure 13 complements the previous. It shows the percentage of times that, for all assets,
the dynamic factor models have the smallest RMSE. All over the sample they outperform
more than 50% of the times, except for one day, and the increase is steady since the beginning
of the crisis, reaching 100% at the end of 2008. There are some jumps that can be identified
with events. At the end of July and beginning of August 2007, Bear Stearns did not support
one of its funds, carry trade experienced a six standard deviation move, several quant hedge
funds collapse, and the European Central Bank and other Central Banks took non–standard
monetary policy measures like injecting large amounts of liquidity in the overnight. Another
increase happens in early 2008 when Citi and Merrill Lynch announced pronounced losses, AIG
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Table 7: Sectors During Financial Crisis I

CD CS NRG FIN HC IND IT MAT TLC UT
1,1 1,008 1,009 1,006 1,007 1,013 1,016 1,012 1,007 1,014 1,001

- - - - - - - - - -
0,d,0 0,987 0,990 0,988 0,989 0,992 0,988 0,991 0,983 0,984 0,983

1 - - - - - 3 - - -
1,d,0 0,992 0,994 0,994 0,996 0,994 0,998 0,994 0,993 0,991 0,992

- - - - - - - - - -
1,d,1 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000

- - - - - - - - - -
HAR 1,011 1,012 1,008 1,009 1,008 1,010 1,010 1,014 1,007 1,016

- - - - - - - - - -
SDFM1 0,981 0,979 0,975 0,983 0,974 0,987 1,005 0,977 0,993 0,975

- - 1 - 1 - - - - 1
SDFM2 1,062 1,062 1,041 1,088 1,073 1,059 1,122 1,075 1,105 1,072

- - - - - - - - - -
LDFM1 0,973 0,973 0,969 0,962 0,976 0,975 0,986 0,961 0,965 0,964

4 3 2 9 1 5 5 3 3 2
LDFM2 0,970 0,965 0,967 0,969 0,965 0,970 0,992 0,969 0,978 0,974

5 10 5 3 9 8 4 1 0 1

For each model, the first row is the Relative Root Mean Squared Errors, while the second line is the
number of wins (i.e. the number of assets for which model m produces the smallest RMSE).

announces troubles in the valuation of CDS, and the UK Government nationalizes Northern
Rock. The last jump is around September 15 2008, when Lehman Brothers files for bankruptcy.
See Acharya and Richardson (2009), pp. 51-56, for more details.

A more detailed analysis is Figure 14. It shows, for each of the 9 models, the number of
assets for which the models have smaller RMSE. The ARMA(1,1) model and SDFM2 perform
very poorly while SDFM1 does reasonably well in calm periods, though LDFM2 does better.
However, when the crisis starts the forecasting accuracy of LDFM1 increases and, by the end
of the sample, is the clear winner of the horse race. A closer look to the figure reveals that a
sharp difference between LDFM1 and LDFM2 during the middle of the crisis. Tables 7 and
8 show the performance of all the models during the crisis prior and posterior to February
17 2008, the day the UK Government nationalized Northern Rock, and in order to better
understand the behavior, we do the analysis by sectors. For each model, the first row is the
Relative RMSE for every sector, while the second line is the number of assets for which the
model performs best. During the first part, long–memory dynamic factor models were the
better forecasters for 83 out of 90 assets. For the second part, the number reduces to the still
high: 66 out of 90. Moreover, during the first part of the sample LDFM2 seems to do best
relative to LDFM1 (46 against 37) but during the second part the performance swaps and
the long–memory dynamic factor model with ARFIMAs do significantly better than with the
HAR model (51 against 15).

To sum up, when markets are calm and volatilities are low, the factor structure does not
play a significant role and the improvements in forecasting compared with simpler models
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Table 8: Sectors During Financial Crisis II

CD CS NRG FIN HC IND IT MAT TLC UT
1.1 0.996 0.993 1.000 1.001 0.997 0.992 0.994 0.996 0.990 0.984

- - - - - - 1 - - -
0,d,0 1.003 1.004 1.019 1.009 1.004 1.007 0.998 1.013 1.009 1.011

- - - - - - - - - -
1,d,0 0.999 0.998 1.010 1.001 1.000 1.000 0.997 1.003 0.999 1.002

- - - - - - - - - -
1,d,1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

- - - - - - - - - -
HAR 1.004 1.002 0.998 1.012 1.003 1.003 1.003 1.004 1.006 1.003

- - - - - - - - - -
SDFM1 0.969 0.947 0.960 0.989 0.954 0.957 0.997 0.971 0.982 0.941

2 6 1 - 6 3 - 1 1 3
SDFM2 1.069 1.051 1.041 1.080 1.075 1.050 1.112 1.111 1.200 1.050

- - - - - - - - - -
LDFM1 0.954 0.951 0.952 0.961 0.960 0.951 0.976 0.957 0.961 0.948

7 3 4 12 2 8 9 3 2 1
LDFM2 0.961 0.945 0.951 0.994 0.955 0.957 0.989 0.964 0.986 0.948

1 4 3 - 3 2 2 - - -

For each model, the first row is the Relative Root Mean Squared Errors, while the second line is the
number of wins (i.e. the number of assets for which model m produces the smallest RMSE).

are marginal. However, as volatilities increase, the co–movements are reinforced and the
factor structure becomes, important in the sense that forecasting gains –relative to univariate
models– are up to 10%.

5 Conclusions

We propose a dynamic factor model for volatilities that is implementable for large dimensions
and captures the stylized facts of the realized measures. This methodology has several ad-
vantages: i) it disentangles between commonness (or factors) and idiosyncrasies, ii) tests for
the number of factors, iii) allows for long–memory, non stationarity and mean reversion, and
iv) provides short–, medium– and long–run forecasts. We estimate the model on the panel
of 90 daily realized volatilities, pertaining to S&P100, from January 2001 to December 2008,
and we evince, among others, the following findings: i) All the volatilities have long–memory,
more than half in the nonstationary range, that increases during financial turmoil. ii) Tests
and criteria point towards one dynamic common factor driving the co–movements. iii) The
factor has larger long–memory that the assets volatilities, suggesting that long–memory is a
market characteristic. iv) The volatility of the realized volatility is not constant and com-
mon to all. v) A forecasting horse race against univariate short– and long–memory models
and short–memory dynamic factor models shows that our model outperforms predictions, in
particular in periods of stress.
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Appendix: Assumptions

These are the assumptions needed for the estimation procedure suggested by Bai and Ng (2004) to be
used for model (1)–(3). The list of assumptions is followed by explanations. A word on notation: the
sub–index i refers to the i–th firm, ‖A‖ = trace(A′A)1/2, and M < ∞ is a generic positive.

FL) (i) ||Λi|| ≤ M for i = 1, . . . , r, (ii) ||Λ′Λ/N − ΓΛ|| → 0 as N → ∞ and (iii) ΓΛ is positive
definite.

H) Let (ρ1t, . . . , ρrt) be the eigenvalues of H1/2
t , then (i) ρjt > 0 j = 1, . . . , r, and (ii) supt maxr(ρ1t, . . . , ρrt) ≤

M .

CS) (i) E||ut||4 ≤ M , (ii)
∑∞

j=1 j||Cj || ≤ M , (iii) let Γu = var(H
1/2
t ut), then var(D(L)Ft) =

∑∞
j=1 CjΓ

uC′j ≤ M is positive definite with rank r, and (v) C(1) =
∑∞

j=1 Cj has rank r.

IS) For each i, (i) E||εit||4 ≤ M , (ii)
∑∞

j=0 j||Gij || ≤ M , and (iii) ω2
εi = Gi(1)

2σ2
εi > 0.

IC) (i) E(εitεjt) = τij ,
∑∞

i=1 |τij | ≤ M ∀j and (ii) E
∣
∣
∣N− 1

2

∑N
i=1 [εisεjt − E (εisεjt)]

∣
∣
∣
4

≤ M , for
every (t, s).

OR) {ut}+∞t=−∞ and {εt}+∞t=−∞ are mutually independent process, where εt = (εit, . . . , εNt).

C0) E||F0|| < ∞ and E||ξi0|| < ∞, ∀i.

Assumptions FL (Factor Loadings) guarantee that the factors are pervasive, i.e. they influence all
variables. This is crucial for identification and is what distinguishes common from idiosyncratic shocks:
the former affect all variables, the latter affect individual variables.16 Assumptions H (Heroskedas-
ticity) are needed for ensuring that the matrix Ht is positive definite and bounded above. These
are high–order conditions and, for instance, the stationary multivariate GARCH models fulfill them.
Assumptions CS (Common Shocks) ensures the existence of moments up to order four for the common
shocks, positive definiteness of the the short–run variance of D(L)Ft, and that the long–run variance
is full rank (i.e. the factors are not co–fractionally–integrated). Assumptions IS (Idiosyncratic Shocks)
are similar to CS. Assumptions IC (Idiosyncratic Correlations) describe an approximate factor struc-
ture, meaning that the idiosyncratic components are allowed to be mildly cross-sectionally correlated
(in the sense that the largest eigenvalue of the covariance matrix of the idiosyncratic components is
bounded). Assumption OR (orthogonality) ensure that the common and the idiosyncratic shocks are
independent sources of fluctuation for realized volatilities. Finally Assumptions C0 are standard initial
conditions necessary when some variables in Xt are non–stationary.

16Bai and Ng (2004) is an extension to a non–stationary setting of Stock and Watson (2002), Bai and Ng
(2002), Bai (2003), and Forni et al. (2005), which in turn are a restricted version of the generalized dynamic
factor model of Forni et al. (2000) and Forni and Lippi (2001). In some of these papers assumption FL is
stated in terms of the variance covariance matrix of Xt (denoted by Σx). If the first r eigenvalues of Σx

diverge as N → ∞, the number of common factors is uniquely identified meaning that a common component
with a different number of factors is not possible (see Chamberlain and Rothschild 1983, and Forni and Lippi
2001 for the general model). This result implies that if the variance covariance matrix of Xt has r diverging
eigenvalues, a factor structure is admitted by our panel and hence we no longer assume FL, but it is satisfied.
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Appendix: Tables

Table 9: S&P100 constituents

Ticker Name Sector
AA Alcoa Inc Materials
AAPL Apple Inc. Information Technology
ABT Abbott Labs Health Care
AEP American Electric Power Utilities
ALL Allstate Corp. Financials
AMGN Amgen Health Care
AMZN Amazon Corp. Consumer Discretionary
AVP Avon Products Consumer Staples
AXP American Express Financials
BA Boeing Company Industrials
BAC Bank of America Corp. Financials
BAX Baxter International Inc. Health Care
BHI Baker Hughes Energy
BK Bank of New York Mellon Corp. Financials
BMY Bristol-Myers Squibb Health Care
BNI Burlington Northern Santa Fe C Industrials
CAT Caterpillar Inc. Industrials
C Citigroup Inc. Financials
CL Colgate-Palmolive Consumer Staples
CMCSA Comcast Corp. Consumer Discretionary
COF Capital One Financial Financials
COST Costco Co. Consumer Staples
CPB Campbell Soup Consumer Staples
CSCO Cisco Systems Information Technology
CVS CVS Caremark Corp. Consumer Staples
CVX Chevron Corp. Energy
DD Du Pont (E.I.) Materials
DELL Dell Inc. Information Technology
DIS Walt Disney Co. Consumer Discretionary
DOW Dow Chemical Materials
DVN Devon Energy Corp. Energy
EMC EMC Corp. Information Technology
ETR Entergy Corp. Utilities
EXC Exelon Corp. Utilities
FDX FedEx Corporation Industrials
F Ford Motor Consumer Discretionary
GD General Dynamics Industrials
GE General Electric Industrials
GILD Gilead Sciences Health Care
GS Goldman Sachs Group Financials
HAL Halliburton Co. Energy
HD Home Depot Consumer Discretionary
HNZ Heinz (H.J.) Consumer Staples
HON Honeywell Int’l Inc. Industrials
HPQ Hewlett-Packard Information Technology
(cont.)
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(cont.)
IBM International Bus. Machines Information Technology
INTC Intel Corp. Information Technology
JNJ Johnson & Johnson Health Care
JPM JPMorgan Chase & Co. Financials
KO Coca Cola Co. Consumer Staples
LMT Lockheed Martin Corp. Industrials
LOW Lowe’s Cos. Consumer Discretionary
MCD McDonald’s Corp. Consumer Discretionary
MDT Medtronic Inc. Health Care
MMM 3M Company Industrials
MO Altria Group, Inc. Consumer Staples
MRK Merck & Co. Health Care
MSFT Microsoft Corp. Information Technology
MS Morgan Stanley Financials
NKE NIKE Inc. Consumer Discretionary
NSC Norfolk Southern Corp. Industrials
ORCL Oracle Corp. Information Technology
OXY Occidental Petroleum Energy
PEP PepsiCo Inc. Consumer Staples
PFE Pfizer, Inc. Health Care
PG Procter & Gamble Consumer Staples
QCOM QUALCOMM Inc. Information Technology
RF Regions Financial Corp. Financials
SGP Schering-Plough Health Care
SLB Schlumberger Ltd. Energy
SLE Sara Lee Corp. Consumer Staples
SO Southern Co. Utilities
S Sprint Nextel Corp. Telecommunications Services
T AT&T Inc. Telecommunications Services
TGT Target Corp. Consumer Discretionary
TWX Time Warner Inc. Consumer Discretionary
TXN Texas Instruments Information Technology
TYC Tyco International Industrials
UNH UnitedHealth Group Inc. Health Care
UPS United Parcel Service Industrials
USB U.S. Bancorp Financials
UTX United Technologies Industrials
VZ Verizon Communications Telecommunications Services
WAG Walgreen Co. Consumer Staples
WFC Wells Fargo Financials
WMB Williams Cos. Energy
WMT Wal-Mart Stores Consumer Staples
WY Weyerhaeuser Corp. Materials
XOM Exxon Mobil Corp. Energy
XRX Xerox Corp. Information Technology
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Table 10: The 36 Monte Carlo simulation designs

d φ δi ρi d̂ φ̂ ω̂ α̂ β̂ ν̂ γ̂

1 0.2 0 0 0 0.05 -0.04 0.01 0.00 0.00 0.86 -0.17
2 0.2 0 0 1 0.06 -0.04 0.02 0.00 -0.01 0.67 -0.17
3 0.2 0.5 0 0 0.06 -0.07 0.00 0.00 0.00 1.03 -0.17
4 0.2 0.5 0 1 0.06 -0.06 0.02 0.00 0.00 0.46 -0.17
5 0.2 0.9 0 0 0.00 -0.04 0.00 -0.01 0.00 2.29 -0.16
6 0.2 0.9 0 1 0.02 -0.02 0.01 0.00 0.00 0.83 -0.17
7 0.2 0 1 0 0.06 -0.04 0.01 0.00 -0.01 0.76 -0.17
8 0.2 0 1 1 0.06 -0.05 0.02 0.00 -0.01 0.77 -0.17
9 0.2 0.5 1 0 0.05 -0.05 0.01 0.00 0.00 0.69 -0.16
10 0.2 0.5 1 1 0.06 -0.06 0.03 0.00 0.00 0.63 -0.17
11 0.2 0.9 1 0 0.01 -0.03 0.00 0.00 0.00 1.59 -0.16
12 0.2 0.9 1 1 0.02 -0.01 0.02 0.00 0.00 0.59 -0.17
13 0.4 0 0 0 0.01 -0.01 0.01 0.00 0.00 0.86 -0.16
14 0.4 0 0 1 0.01 -0.01 0.02 0.00 0.00 0.53 -0.17
15 0.4 0.5 0 0 0.01 -0.04 0.00 0.00 0.00 1.40 -0.16
16 0.4 0.5 0 1 0.01 -0.01 0.02 0.00 0.00 0.46 -0.17
17 0.4 0.9 0 0 -0.02 0.00 0.00 0.00 0.00 1.16 -0.17
18 0.4 0.9 0 1 -0.01 0.00 0.00 0.00 0.00 1.13 -0.17
19 0.4 0 1 0 0.01 -0.01 0.01 0.00 0.00 0.63 -0.17
20 0.4 0 1 1 0.01 -0.01 0.02 0.00 0.00 0.53 -0.17
21 0.4 0.5 1 0 0.01 -0.01 0.01 0.00 0.00 0.95 -0.16
22 0.4 0.5 1 1 0.00 -0.01 0.03 0.00 0.00 0.64 -0.16
23 0.4 0.9 1 0 -0.02 0.00 0.00 -0.01 0.00 1.51 -0.16
24 0.4 0.9 1 1 0.01 -0.01 0.01 0.00 -0.01 0.76 -0.16
25 0.6 0 0 0 -0.01 0.00 0.00 0.00 0.00 1.30 -0.16
26 0.6 0 0 1 0.00 0.01 0.01 0.00 0.00 0.65 -0.17
27 0.6 0.5 0 0 0.00 -0.05 0.00 -0.01 0.00 2.22 -0.16
28 0.6 0.5 0 1 -0.01 0.01 0.01 0.00 -0.01 0.75 -0.17
29 0.6 0.9 0 0 0.00 0.00 0.01 0.00 -0.01 0.50 -0.17
30 0.6 0.9 0 1 -0.01 0.00 0.00 0.00 0.00 0.86 -0.16
31 0.6 0 1 0 0.00 0.01 0.01 0.00 0.00 0.98 -0.16
32 0.6 0 1 1 0.00 0.00 0.02 0.00 -0.01 0.45 -0.16
33 0.6 0.5 1 0 -0.02 0.00 0.00 -0.01 0.00 1.47 -0.17
34 0.6 0.5 1 1 -0.01 0.01 0.02 0.00 -0.01 0.52 -0.17
35 0.6 0.9 1 0 0.00 -0.01 0.01 0.00 0.00 0.56 -0.17
36 0.6 0.9 1 1 0.00 0.00 0.00 0.00 0.00 0.98 -0.17

Middle panel shows the specifications of the 36 Monte Carlo designs. Right panel
displays the median biases for the estimates of the factor model. ρi = 0 means
no autocorrelation in the idiosyncratic errors, while ρi = 1 means autocorrelated
errors, ρi ∼ U(0.5, 0.9). δi = 0 means low long memory in the idiosyncratic errors,
δi ∼ U(0, 0.4), while δi = 1 means high long memory δi ∼ U(0.4, 0.8).
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