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Abstract 

We propose a new synthetic liquidity indicator that summarises the data on a broad set of 

market liquidity measures both for sovereign and corporate fixed income markets in the US. 

Our index is based on 17 variables that cover the main dimensions of market liquidity. The 

methodology used to calculate the index consists of two steps. First, a transformation of the 

individual liquidity measures is made, based on the methodology proposed by Holló et al. 

(2012) for the CISS (Composite Indicator of Systemic Stress). The transformed variables are 

then weighted using a principal component analysis. The indicator shows that liquidity in US 

fixed income markets has been impaired after the global financial crisis, mainly as a result of 

weaker liquidity conditions in US Treasury markets, whereas those in the corporate debt 

market remained stable. 

Keywords: market liquidity, synthetic index, principal component analysis, US fixed income 

markets. 

JEL Classification: G10, G15, C43. 

 

 

  



Resumen 

En este trabajo se propone un nuevo indicador sintético de liquidez de mercado que resume la 

información contenida en un conjunto amplio de medidas individuales para los mercados de 

renta fija de EEUU, tanto soberana como corporativa. En concreto, el indicador propuesto 

sintetiza diecisiete variables que caracterizan las principales dimensiones de la liquidez de 

mercado. La metodología para calcular el índice consta de dos etapas. En primer lugar, se 

transforman los indicadores de liquidez individuales para unificar las unidades de medida. Para 

ello se utiliza la metodología propuesta por Holló et al. (2012) para el índice CISS —Composite 

Indicator of Systemic Stress— de la zona del euro. En segundo lugar, se agregan las variables 

transformadas mediante componentes principales. El indicador muestra una menor liquidez en 

los mercados de renta fija de EEUU tras la crisis financiera global, principalmente por el deterioro 

de la liquidez en los mercados de deuda pública, al tiempo que las condiciones de liquidez en 

los mercados de deuda corporativa permanecieron estables. 

Palabras clave: liquidez de mercado, índice sintético, análisis de componentes principales, 

mercados de renta fija en EEUU. 

Códigos JEL: G10, G15, C43. 
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1 Introduction 

The concept of liquidity is broad and complex. This has been acknowledged by many researchers 

in the field. For example, Shin (2005) states that liquidity defies a simple definition and Tirole 

(2011) explains why liquidity cannot easily be apprehended through a single statistic. Hence, in 

this paper we focus only on a particular type of liquidity – ie market liquidity – and we use a 

composite indicator that captures various dimensions of liquidity. Market liquidity may be defined 

as the easiness with which market participants can buy or sell an asset in a market without 

affecting its price (Elliot, 2015). The definition of market liquidity differs from that of monetary 

liquidity, related to central banks’ monetary aggregates, or from funding liquidity, which is the 

ability to obtain funding for a position in a risky asset (Brunnermeier and Pedersen, 2009).  

In recent years, episodes of financial market strains and heightened volatility have been 

increasingly associated with discussions of the degree of liquidity in specific market segments. 

This was the case with the so-called “taper tantrum” in the second quarter of 2013 and the 

October 2014 “flash crash” in US Treasury markets.1 Overall, market liquidity has been receiving a 

growing attention, given its apparent decline in some markets (IMF, 2015; Fender and Lewrick, 

2015) and the possibility that impaired liquidity may have been one of the main drivers of these 

volatility spikes (Adrian et al., 2015).2 Recently, a report published by the US Office of Financial 

Research (Office of Financial Research, 2015) showed that liquidity has been declining in a 

number of US markets in recent years, including the most liquid ones. The report suggested that 

this decline may amplify shocks in financial markets and impair financial stability. Its assessment 

was rather timely: Actual market developments around the report’s publication in mid-December 

2015 —when turmoil hit US high-yield bond markets and three investment funds suspended 

redemptions— were linked to liquidity strains in certain segments of US corporate bond markets. 

Measuring market liquidity is not an easy task, as its definition embodies several 

dimensions. In particular, Sarr and Lybek (2002) summarize the five characteristics that characterize 

market liquidity, namely tightness, immediacy, depth, breadth and resilience. The concept of 

tightness refers to transaction costs, which are supposed to be low in liquid markets, whereas 

immediacy characterizes those markets where trades are executed quickly and in an orderly 

manner. Depth is linked to the number of orders, while breadth allows orders to flow with a minimal 

impact in prices, even if they are large. Finally, in a resilient market, prices are able to move rapidly to 

new equilibrium levels; hence, resilience is closely related to market efficiency (Bernstein, 1987). 

Given the heterogeneity of the characteristics behind the definition of market liquidity, 

there is a large number of indicators that have been proposed to monitor its various aspects. 

Some of them relate to plain transaction costs (“bid-ask” spreads), while others comprise more 

sophisticated measures that consider volume and price sensitivities of financial assets.3 The result 

is a plethora of indicators that usually gives different signals and does not allow for an unequivocal 

assessment of how liquidity conditions are evolving. 

                                                                            

1. Ben Bernanke suggested in mid-2013 that the Federal Reserve might slow down the pace of bond purchases as the 

outlook for the US economy was improving and these comments led to instability in bond markets (“taper tantrum”). The “flash 

crash” event refers to the abnormal behavior of prices and volatility of Treasuries in October 15, 2014 (Bouveret et al., 2015). 

2. Adrian et al. (2015, b) develop a liquidity risk measure. Specifically, they define liquidity risk as the risk that market 

liquidity may get impaired in the future. They show that their liquidity risk measure and a particular volatility indicator go 

hand in hand with US Treasuries and equities. 

3. Gabrielsen et al. (2011) provide a survey of liquidity measures, where the advantages and disadvantages of each 

indicator are detailed. 
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In addition, none of these single indicators can simultaneously capture all dimensions 

of market liquidity (Amihud and Mendelson, 1991). In this paper, we propose a synthetic 

liquidity index to overcome this problem. Although the literature of composite indicators has 

been traditionally devoted to evaluate financial stress—see Kliesen et al. (2012) for a recent 

survey on these indicators—, we use this framework to construct a liquidity index based on 

individual liquidity indicators. Previous literature on this type of liquidity indexes is scarce. As far 

as we know, only Adrian et al. (2015, a) also calculate a liquidity composite indicator for US 

fixed income markets. Our proposed indicator is robust to the different scales of the individual 

indexes and encompasses all liquidity characteristics. Nevertheless, as liquidity is an 

unobservable variable, there is no reliable benchmark to assess liquidity conditions, which 

constitutes one of the main challenges to construct such an index.  

Our index is based on liquidity indicators for two main fixed-income markets. Namely, 

the US Treasury market (ie the segment with maturities close to 10 years) and the US 

corporate bond market for both investment grade and high yield (IG and HY respectively 

onwards). Our choice for these markets is motivated by the fact that they have been at the 

centre of recent discussions in both academia and the financial industry on the significance of 

strains in market liquidity. Moreover, the outstanding amount of these debt securities (USD 

20.8 trillion) represents a substantial share of the whole U.S fixed income markets (52% of total 

in the second quarter of 2015). 4 

The main contribution of this paper to the literature is twofold. First, to the best of our 

knowledge, it is the first empirical application that employs the methodology of particular 

financial stress indices to develop a liquidity index that encompasses both government and 

corporate debt securities. Second, the proposed index combines the main aspects related to 

market liquidity, so that the specific liquidity characteristic that drives liquidity conditions in both 

markets can be identified. 

The remainder of the paper is structured as follows. First, Section 2 describes the 

selection of liquidity indicators which we use to construct the synthetic indicator and reports 

some initial findings. Section 3 covers the methodology underlying the composite liquidity 

index. Section 4 discloses the evolution of the proposed index during the last 10 years. Finally, 

Section 5 concludes. 

                                                                            

4. We obtain the data of the outstanding amount of fixed income markets from the US Securities Industry and Financial 

Markets Association (SIFMA). 
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2 Market liquidity indicators 

2.1 Selection of market liquidity indicators 

Among the variety of liquidity metrics that are available, we have chosen seven to construct a 

synthetic index. We use these indicators for the three markets that we cover, namely the US 

Treasury market and the US corporate IG and HY markets. All in all, we compute seventeen 

liquidity indicators in total for these markets, as some indicators are not available.5 Our 

selection allows capturing the five main characteristics of market liquidity, that is, tightness, 

immediacy, depth, breadth and resilience. Table 1 provides further details on the individual 

indicators and their respective data sources. We calculate the seventeen measures on a 

weekly basis. The sample period runs from July 20, 2005 to October 21, 2015, so that the 

sample size is T=537. 

First, we use bid-ask spreads to capture tightness.6 The bid-ask spread is the 

difference between offer and bid prices of a security and is interpreted as a proxy of the explicit 

cost of executing a trade in the market. The lower the spread, the easier to trade a security 

(buy at a low ask and sell at a high bid price), and the better the liquidity conditions. In this 

paper, we estimate bid-ask spreads by means of the methodology proposed by Corwin and 

Schultz (2012).7 We use this estimator, as it is easy to compute and because we lack reliable 

data on intraday spreads.  

Second, we use the daily range to measure immediacy. The daily range is the 

difference between the higher and lower price of a security during a trading day. When 

immediacy is poor, trades become harder to implement or may lead to huge price movements 

once executed. Therefore, large swings of the daily range suggest a weak immediacy. We 

transform the daily range to a weekly frequency using end of period data. 

Then, we employ two volume-based measures to analyze depth in fixed income 

markets. First, we use the trading volume, which is the amount of traded securities. In our 

dataset, volumes are denominated in dollars. Second, depth is also measured by the turnover 

rate, defined as the trading volume over the size of the market (measured by debt outstanding). 

The turnover rate indicates the number of times that an asset changes hands during a period. 

Thus, a low turnover means that only a small portion of this market is traded every time, which 

would indicate a low level of market liquidity. 

Regarding breadth, we compute two price impact ratios to analyze if trading activity 

has a minimal effect on prices. First, we calculate the indicator proposed by Amihud (2002), 

which is the absolute return over volume. Second, we compute the Hui and Heubel (1984) 

liquidity index. This last index measures the variation between the highest and lowest daily price 

during a certain period of time against the turnover. In both cases, an increase of the indicator 

would suggest that liquidity is becoming more strained, and vice versa. 

                                                                            

5. Specifically, we compute seven individual indicators for Treasury debt and five measures for each segment of the 

corporate bond market (IG and HY). The lack of market information prevent us calculating the bid-ask spreads and the 

daily range for corporate debt. 

6. It is generally acknowledged that the bid-ask spread is a direct and potentially important indicator of liquidity, but that at 

the same time it does not fully capture other important aspects of liquidity such as market depth and resilience. See Bao 

et al. (2011) for a discussion. We overcome this shortcoming by adding specific indicators for depth and resilience. 

7. In Corwin and Schultz (2012), the key assumption is that high prices are often buyer-initiated trades while low prices are 

more seller-initiated-trades. So the ratio between daily high and low prices reflects both the intrinsic price variation as well 

as the difference between bid and ask orders (the bid-ask spread ). 
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Finally, resilience is approximated through the Market Efficiency Coefficient (MEC) 

proposed by Hasbrouck and Schwartz (Sarr and Lybek, 2002). This indicator is a ratio between 

the variance of a long-period return and a short-period return. The intuition behind this indicator 

is that in resilient markets, short- and long-term volatilities are supposed to be similar as a 

result of prices moving faster to new equilibrium levels. Thus, the MEC ratio should be close to 

one in resilient markets and deviate from unity in markets characterized by poor resilience. 

As a final point, apart from the bid-ask spread and the daily range, which are available 

only for government debt, our individual liquidity measures have been computed using Bank of 

America Merrill Lynch indices that represent baskets of bonds. Nevertheless, while the basket for 

Treasury debt consists of securities with a high homogeneity (ie. similar credit risk and maturities 

from seven to 11 years), for IG and HY debt the sets of bonds consist of thousands of individual 

issues each. Therefore, the results for corporate bond markets need to be interpreted carefully, as 

segments within IG and HY debt—as defined by terms, credit quality or issuer characteristics, 

among others— and their associated market liquidity might be quite heterogeneous. 

2.2 Individual market liquidity indicators for US fixed income markets 

Figure 1 reports the seventeen individual indicators, which depict a general worsening of 

liquidity conditions in US Treasury markets. The bid-ask spreads for US 10-y Treasury bond 

are wider than before the global financial crisis and spreads exhibit a more volatile pattern than 

in the past. This outcome is also evident in other metrics based on prices, such as the daily 

range. During 2015, trading volumes of long term government debt stood below USD 100 

billion on a daily basis, below the figures recorded before the 2008 financial crisis of around 

USD 120. Moreover, the market size of long-term debt (7-11 years) has almost doubled since 

the onset of the crisis. Therefore, lower volumes have been accompanied by a sharp decline of 

the turnover rate, which in 2015 remained below 10%, significantly lower than the ratios of 

above 30% until 2007. The price impact indicators proposed by Amihud (2002) and by Hui and 

Heubel (1984) point to a reduced capacity of markets to minimize price movements under a 

certain flow of orders, as suggested by their upward trajectory since 2013. Finally, the MEC 

ratio suggests that resilience deteriorated during the 2008 crisis, but has recovered since then. 

As shown in Figure 1, in contrast to US government debt markets, the liquidity 

landscape for US corporate fixed income markets has been more benign8. Due to data 

restrictions, for these markets we only compute five indicators, namely our volume-based 

measures and the MEC ratio. Trading volumes for both IG and HY markets have been raising 

steadily since 2009. Regarding HY debt, this increase has been smoother than that for debt 

outstanding, while for IG debt both measures have increased at a similar pace. Therefore, the 

turnover rate of HY debt has declined, whereas for IG markets it has maintained at pre-crisis 

levels (although in both cases the turnover ratios dropped below 1% in 2015). In contrast, the two 

price impact ratios for IG and HY markets have maintained levels rather similar to those prevailing 

before the crisis, although they exhibit some volatility spikes in the last half of the sample. Finally, 

the MEC ratio for HY debt basically has returned to pre-crisis levels after experiencing a sharp 

deterioration during the global financial crisis. Contrary to government debt, the MEC coefficient 

for HY debt is higher than one, which suggests lower market efficiency in this market.9 

                                                                            

8. Despite we conclude certain worsening of market liquidity conditions for Treasury securities, the Treasury market 

remains the most liquid market among US fixed income. 

9. The MEC ratio for HY is persistently higher than 1, which indicates that the variance of returns over long periods is larger 

than that calculated over short periods. One possible interpretation of this outcome is that the ratio is based on indices 

with pockets of bonds that do not trade each day and the use of appraisal techniques that may under-represent short 

term variances. 
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3 Methodology 

3.1 Transformation of raw indicators 

We want to represent overall liquidity conditions in US fixed income markets by means of an 

unique index. To this purpose, we construct an indicator so that an increase of its value reflects 

a worsening of market liquidity, whereas a decline of its value would suggest improving liquidity 

conditions. Therefore, all individual indicators should be transformed in order to reflect similar 

relations between their value and subsequent interpretation (ie. higher value equals worsening 

conditions and vice versa). Out of the seventeen individual indexes, only for trading volumes 

and turnovers we need to use their inverse values instead in order to construct the index. 

Besides, in the case of the MEC ratios we use their absolute deviations from one, so that 

market resilience would increase under low values of this metric, and vice versa.  

As our seventeen individual indicators are not homogeneous, we need to transform 

them to ensure methodological harmonization. One method that has been used traditionally in 

the literature of financial stress indicators is to normalize each variable using the mean and 

standard deviation. This approach has at least two caveats. First, it ignores the fact that each 

index has its own data scale, so standardized variables would not be comparable. Second, this 

standardization assumes that variables are normally distributed, which is usually not the case 

for financial variables (Holló et al., 2012). As a result, transformed variables are extremely 

sensitive to outliers, which may limit their informative value over time. 

An alternative to normalization that overcomes these drawbacks is to transform each 

index alongside a common sample of the seventeen indicators by means of their empirical 

cumulative distribution function (CDF). This method has also been used, for instance, by the 

Federal Reserve Bank of Cleveland (Oet et al., 2011) to build its Financial Stress Index (FSI) or by 

Holló et al. (2012) to construct their Composite Indicator of Systemic Stress (CISS). The 

procedure is relatively straightforward. First, we order the values of our N=17 indicators xn, so that 

each indicator x=(x1, x2,…, xT) with sample size T=537 is transformed into its ordered sample (x[1], 

x[2],…, x[T]). Hence, the lowest value of the indicator corresponds to x[1] and the highest to x[T]. If we 

denote r as the ranking number assigned to each value of xt, the transformed liquidity indicators zt 

computed from the empirical CDF would follow this expression, 

 Trxxxfor
T

r
z rtrt ,...,2,1,]1[][    (1) 

The CDF ensures that all indicators are bounded between 1/T and 1 for the whole sample 

period. Regarding repeated values, the function allocates to all of them their mean. By 

construction, once the CDF transformation is applied, the distance between two consecutive 

points is constrained to be 1/T. This implies a significant loss of information when analyzing the 

tails of the distributions, where the distance between two successive figures is wider. 

Nevertheless, this transformation reduces the sensitiveness of indicators to outliers and also 

increases the information content of points located around the mean of the distribution, which 

allows for the observation of early signals of tightening or loosening in the variables under 

study. The latter advantage is particularly relevant for timely policy assessments of changes in 

liquidity conditions. Figure 2 illustrates these features of the transformation based on the CDF 

for the bid-ask spread of US Treasury bonds. 
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3.2  Aggregation 

We aggregate the transformed liquidity variables into a single indicator by means of a principal 

component (PC) analysis. This approach converts the original variables (in our case the 

transformed liquidity measures) into uncorrelated PCs by a linear combination. The cumulative 

variance of the PCs equals the variance of the original variables; the first PC is the linear 

combination that represents the maximum variance of the original series.  

The PC approach is a pure statistical procedure, with the limitation that our weights 

have no economic interpretation and do not take into account the theoretical importance of the 

original variables (OECD, 2008). Besides, the weights are constant over the whole sample so 

that interdependences among variables remain stable while in fact they may be changing (Oet 

et al., 2011). Finally, contrary to Holló et al. (2012), this procedure does not take into account 

the changing correlation between indicators throughout the sample, so that our synthetic 

indicator could overestimate liquidity tensions during normal times. 

To overcome these problems, there are alternative methods to the PC analysis for the 

necessary aggregation of the values of the underlying indicators. These include the use of VAR 

models to account for the impact on a particular economic variable of interest of a set of 

financial indicators (Swiston, 2008) or the use of more sophisticated weighting schemes such 

as that in Holló et al. (2012) that takes into account the correlation structure of the original 

variables. In any case, we prefer the PC method as it is a well-known procedure that allows 

avoiding overlapping information between correlated indicators. 

In our empirical exercise, we obtain N=17 PCs that are linear combinations of the 

seventeen liquidity indicators.10 

 

),(

),(

),(

],[

1

]2,[

1

2

]1,[

1

1

iNi

N

i

N

ii

N

i

ii

N

i

zaPC

zaPC

zaPC





















 (2) 

where a denotes the weights (also called components or factor loadings) assigned to 

the transformed indicators z in each PC. 

As there is some degree of correlation between the original variables, there is a limited 

number of PCs that capture a major proportion of the total variance of the original series. In 

particular, as shown in Table 2, our first four PCs are able to explain over 60% of the original 

series’ variances. As we consider this figure a reasonable amount of information embedded in 

the original data, we choose these PCs and we extract their weights. 

                                                                            

10. Before calculating the PCs, the original variables should be transformed into new ones with the same unit of 

measurement and equal means and variances. This transformation has already been performed through the CDFs. As the 

distance between two adjacent values is constrained to be 1/T, statistics such as the mean or the variance are also forced 

to be indistinct among indicators. 
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We follow the methodology of OECD (2008) to capture the information content of the 

four PCs in a unique vector of loadings. Following this approach, once we obtain the original 

factor loadings for the four PCs, we compute their squared values so that their sum is equal to 

one. Next, we construct an intermediate composite index in two steps. First, we select the 

highest factor loading for each of the seventeen indicators, and second, we compute the share 

of each one over the sum of the chosen factor loadings for each PC, so that the sum of these 

transformed weights is four, as the number of chosen PCs. Finally, we multiply these loadings 

by the proportion of the variance that each of the four PC explains, so that the new loadings 

add up to one. Table 3 reports the process followed to obtain the final weights. 
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4 Results 

Figure 3 displays the evolution of our synthetic market liquidity indicator. For the sake of 

comparability, the figure also shows the MOVE index, which is a widely used indicator that 

proxies tensions in fixed income markets.11 As liquidity is an unobservable variable, we lack a 

proper benchmark to carry out a goodness-of-fit analysis. This problem is common to all 

synthetic liquidity indicators, but we mitigate this drawback by the comparison of our liquidity 

indicator with the MOVE index. In this, we make the implicit assumption that the MOVE is to some 

extent a suitable benchmark for liquidity conditions, ie. movements in implicit volatilities in US 

Treasury bond markets reflect to a certain extent changing liquidity conditions in these markets.12 

Market liquidity reached its low —that is, a maximum value of the indicator— during 

the global financial crisis at the end of 2008, amid a generalized volatility increase in 

international financial markets (see Figure 3). After the crisis, the index exhibits two 

differentiated phases. First, until early 2013, liquidity gradually recovered, although it was still far 

from pre-crisis levels. The second period starts in mid-2013, during the so-called taper tantrum 

episode, when the index showed a spike. Once this turbulence episode was overcome, the 

indicator exhibited a continued deterioration of liquidity conditions. In both periods, bouts of 

increases in the liquidity indicator were accompanied by spikes in the MOVE index. At the 

same time, the former increases tended to reverse when volatility also faded. The strong 

correlation between both indicators suggests that our synthetic liquidity indicator at a minimum 

captures tensions in US fixed income markets as well. 

The index can be decomposed into two main categories, namely by asset type and by 

the liquidity characteristic covered by the individual indicators (Figure 4). By asset type, 

developments in US Treasury bond markets have been mainly responsible for the deterioration 

in market liquidity that our index identifies after the taper tantrum episode. In contrast, liquidity 

in US corporate bond markets, which in principle are less liquid than US Treasury markets, has 

remained rather similar to that prevailing before the global financial crisis. We find similar results 

for both markets in the seventeen individual underlying liquidity metrics, but the reduction of the 

number of indicators in our synthetic index provides a simplified view that enhances data 

interpretation. Nevertheless, as mentioned before, the results for US corporate markets need to 

be carefully interpreted, as they are based on indexes obtained from a basket of thousands of 

bonds that might be quite heterogeneous in nature. 

With regard to liquidity characteristics, indicators that represent depth and breadth are 

responsible for most of the deterioration in liquidity. That is, the indicators measuring the 

number of transactions (volume based measures) and the price sensitivity of bonds to the 

traded volume (price impact ratios), respectively, capture most of the dynamics of the synthetic 

index. The resilience of fixed income markets, that is, the ease with which prices move towards 

their theoretical values of equilibrium, has also been eroded since mid-2013. Finally, the 

contribution of transaction costs to the index remains stable across the sample, which 

supports the hypothesis that indicators such as the bid-ask spread are a poor proxy of overall 

market liquidity conditions (Bao et al., 2011; IMF, 2015). 

                                                                            

11. MOVE index (Merril Lynch Option Volatility Estimate) is an index that tracks implicit volatility in US Treasury debt by 

means of options on interest rates futures. The data source of the MOVE index is Datastream. 

12. Financial market practicioners generally equate increasing volatility to worsening liquidity conditions. Also in the academic 

finance literature many studies follow this practice. A further investigation of this relationship is beyond the scope of this article. 
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5 Conclusions 

In this paper, we study liquidity conditions in US fixed income markets through a new synthetic 

index based on seventeen individual indicators for both government and corporate debt. The 

approach that we follow to construct the index consist of two steps. First, we transform the 

original variables using the cumulative distribution function, so that they are rescaled 

homogeneously, while reducing their sensitiveness to outliers. Second, we aggregate the 

transformed variables following a PC-based procedure that prevents information provided by 

the original indicators to overlap with each other. The synthetic index reflects deteriorating 

liquidity conditions when compared with those prevailing before the global financial crisis as 

well as increasing tensions in market liquidity from mid-2013 to late 2015. By asset class, 

liquidity in US Treasury bond markets has deteriorated, whereas that in US corporate bond 

markets has been more stable. By individual liquidity indicator, price impact ratios have been 

the most severely affected after the crisis and hence have been the main driver of the increase 

in our synthetic index.  

Finally, there are several issues that have not been addressed in this paper, which 

could serve as lines for future research. First, the procedure to obtain the index could be 

implemented in a recursive way, as in Holló et al. (2012). Second, we could enhance the 

aggregation method by considering the correlations among the individual indices. Third, we 

have not investigated in detail the relationship between market liquidity and market volatility. 

Given the lack of a proper liquidity benchmark, further analysis on the link between both 

variables would deserve further research. 
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Figure 1. Individual market liquidity indicators  

for US fixed income markets 

Note: Six-month averages except for the bid-ask spread and the daily range. 

0

10

20

30

40

50

60

Jul-05 Jul-07 Jul-09 Jul-11 Jul-13 Jul-15

Bid-ask spread and daily range for 
Treasury debt

Bid-ask spread Daily range

bp

0

5

10

15

20

40

60

80

100

120

140

160

180

Jul-05 Jul-07 Jul-09 Jul-11 Jul-13 Jul-15

Trading volume 

Treasury debt
Investment grade (RHS)
High yield (RHS)

USD bn USD bn

0.0

0.5

1.0

1.5

2.0

0

5

10

15

20

25

30

35

40

Jul-05 Jul-07 Jul-09 Jul-11 Jul-13 Jul-15

Turnover ratios 

Treasury debt
Investment grade (RHS)
High yield (RHS)

% %

0

50

100

150

200

250

0

1

2

3

4

5

6

7

8

9

10

Jul-05 Jul-07 Jul-09 Jul-11 Jul-13 Jul-15

Amihud ratios 

Treasury debt
Investment grade (RHS)
High yield (RHS)

0

200

400

600

800

1,000

1,200

0

2

4

6

8

10

12

14

Jul-05 Jul-07 Jul-09 Jul-11 Jul-13 Jul-15

Hui-Heubel ratios 

Treasury debt
Investment grade (RHS)
High yield (RHS)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Jul-05 Jul-07 Jul-09 Jul-11 Jul-13 Jul-15

MEC ratios

Treasury debt
Invesment grade
High yield



BANCO DE ESPAÑA 18 DOCUMENTO DE TRABAJO N.º 1608 

Figure 2. Bid-ask spread for US Treasury debt  

and associated transformation based on the CDF. 
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Figure 3. Market liquidity synthetic indicator  

(three-month averages) and MOVE index 

 

Figure 4 Market liquidity synthetic indicator  

by asset and by characteristic of the individual indicators 
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Market liquidity 

measures
Definition

Aspect of 

liquidity
How to read the measure Sources

Corwin and Schulz´s 

(2012) bid-ask spread

A bid-ask spread based on the 

ratio between high and low 

prices in a day

Tightness

Pure transaction costs. The lower, the 

better liquidity conditions. Nor implicit 

costs are included

Bloomberg

Daily range
Absolute difference between high 

and low prices each day
Inmediacy

Spikes reflect that the market is less able 

to absorb new orders (less liquidity)
Bloomberg

Volume Daily transactions, in USD Depth
Lower volume reflects poor liquidity 

conditions

Bloomberg (FINRA databases) and Federal Reserve 

Bank of New York

Turnover ratio
Daily transactions to outstanding 

debt
Depth

Proportion of the market that is traded 

during a period of time

Bloomberg (FINRA databases), Bank of America 

Merril Lynch and Federal Reserve Bank of New York

Amihud (2002) Absolute daily return to volume Breadth
Price concession needed to execute 

trades

Bloomberg (FINRA databases), Bank of America 

Merril Lynch and Federal Reserve Bank of New York

Hui-Heubel (1984)

Range of maximum and minimum 

prices over a five-day period to 

turnover

Breadth Similar to Amihud (2002)
Bloomberg (FINRA databases), Bank of America 

Merril Lynch and Federal Reserve Bank of New York

Market efficiency 

coefficient (MEC)

Variance of weekly returns to 

variance of daily returns. 

Variances are computed over 

sample periods of three months

Resilience

Proxy of market efficiency. If close to 1, 

then prices of a security or asset are able 

to move fast to their new equilibrium

Bank of America Merril Lynch

Table 1. Market liquidity measures used in the construction of the synthetic liquidity index 
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Table 2. Eigenvalues extracted from the PCA procedure 

 

  

Principal 

component
Eigenvalues

% of total 

variance

Cumulative 

variance

1 0.367 25.9% 25.9%

2 0.265 18.7% 44.5%

3 0.139 9.8% 54.3%

4 0.123 8.7% 63.0%

5 0.097 6.8% 69.8%

6 0.092 6.5% 76.2%

7 0.071 5.0% 81.2%

8 0.048 3.4% 84.6%

9 0.045 3.2% 87.7%

10 0.037 2.6% 90.4%

11 0.033 2.4% 92.7%

12 0.027 1.9% 94.6%

13 0.024 1.7% 96.3%

14 0.019 1.3% 97.6%

15 0.015 1.0% 98.6%

16 0.013 0.9% 99.5%

17 0.007 0.5% 100.0%
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Partial weights** Final weights***

Liquidity indicator* / 

PCs
PC 1 PC 2 PC 3 PC 4 PC 1 PC 2 PC 3 PC 4

bidask 0.253 -0.129 0.230 0.398 0.064 0.017 0.053 0.159 0.194 0.027

range 0.306 0.145 0.287 0.242 0.093 0.021 0.082 0.059 0.124 0.051

invvolume 0.096 -0.287 -0.066 -0.378 0.009 0.082 0.004 0.143 0.174 0.024

iginvvolume 0.031 0.419 -0.315 -0.118 0.001 0.176 0.099 0.014 0.302 0.090

hyinvvolume 0.182 0.407 -0.176 -0.018 0.033 0.165 0.031 0.000 0.285 0.084

invturnover 0.127 -0.490 -0.147 -0.101 0.016 0.240 0.022 0.010 0.413 0.123

iginvturnover  0.269 0.105 -0.451 -0.148 0.072 0.011 0.203 0.022 0.483 0.075

hyinvturnover 0.165 -0.229 -0.466 -0.102 0.027 0.052 0.217 0.010 0.517 0.080

amihud 0.372 -0.100 0.176 -0.130 0.138 0.010 0.031 0.017 0.184 0.076

igamihud  0.254 0.195 0.041 0.061 0.064 0.038 0.002 0.004 0.086 0.035

hyamihud 0.235 0.175 0.039 0.163 0.055 0.031 0.002 0.027 0.073 0.030

hhl 0.333 -0.327 0.100 0.014 0.111 0.107 0.010 0.000 0.148 0.061

ighhl 0.398 0.098 -0.075 0.005 0.159 0.010 0.006 0.000 0.211 0.087

hyhhl 0.324 -0.016 -0.086 0.054 0.105 0.000 0.007 0.003 0.140 0.057

mec 0.065 0.089 0.403 -0.482 0.004 0.008 0.163 0.232 0.283 0.039

igmec 0.149 0.171 0.259 -0.535 0.022 0.029 0.067 0.286 0.349 0.048

hymec 0.158 -0.056 -0.039 0.123 0.025 0.003 0.002 0.015 0.033 0.014

Total variance in first four 

PCs explained by each PC
0.411 0.297 0.155 0.138

     mec = MEC ratio;  "ig" and "hy" prefixes refer to investement grade and high yield indicators; PCs are the principal components

**  Highest factor loadings in each indicator to the sum of factor loadings in bold in each PC

*** Partial weights times percentage of variance in first four PCs explained by the correspondent PC

Factor loadings Squared factor loadings

*   bidask = bid-ask spread; range = daily range; invvolume = 1 / trading volume; invturnover = 1 / turnover; amihud = Amihud ratio; hhl = Hui and Heubel ratio; 

Table 3. Procedure to assign weights to individual indicators 
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