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Abstract

We study how unemployment benefi t eligibility affects the layoff exit rate by exploiting quasi-

experimental variation in eligibility rules in Italy. By using a difference-indifferences estimator, 

we fi nd an instantaneous increase of about 12% in the layoff probability when unemployment 

benefi t eligibility is attained, which persists for about 16 weeks. These fi ndings are robust to 

different identifying assumptions and are mostly driven by jobs started after the onset of 

the Great Recession, in the South and for small fi rms. We argue that the moral hazard from the 

employer’s side is the main force driving these layoffs.

Keywords: unemployment insurance, layoffs, employer–employee moral hazard, difference-

in-differences, heterogeneous effects.

JEL classifi cation: C31, C41, J21, J63, J65.



Resumen

Este trabajo estudia el papel que desempeñan las condiciones de acceso a la prestación por 

desempleo sobre la tasa de despidos. Para ello, se explota la variación cuasi experimental 

en los criterios de elegibilidad para el subsidio de desempleo en Italia, a través de una 

estimación de diferencias en diferencias. Los resultados destacan que la probabilidad de despido 

aumenta alrededor del 12 % en el momento en que los trabajadores alcanzan la elegibilidad 

para el subsidio de desempleo, y ese efecto persiste durante 16 semanas. Estos resultados 

se mantienen utilizando diferentes estrategias de estimación, y se explican, en gran parte, por 

las relaciones laborales que empezaron después de la Gran Recesión, en el sur de Italia y en 

empresas pequeñas. Razonamos que la principal fuerza impulsora de este efecto es el riesgo 

moral por parte de las empresas.

Palabras clave: subsidio de desempleo, despidos, riesgo moral empresario-trabajador, 

diferencias en diferencias, efectos heterogéneos.

Códigos JEL: C31, C41, J21, J63, J65.
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1 Introduction

The main purpose of unemployment insurance (UI) is to provide income support during unem-

ployment in case of job loss. The design of UI, however, entails a trade-off between insurance

and incentives. This may lead to a moral hazard problem, which induces the insured unem-

ployed to search less intensively. The empirical literature has extensively analysed the effect

of unemployment benefits (UBs) on unemployment spell duration (Card and Levine, 2000;

Lalive et al., 2006; van Ours and Vodopivec, 2006; Lalive, 2008; Tatsiramos and van Ours,

2014; Schmieder and von Wachter, 2016). The results generally show that the generosity of

UB prolongs unemployment duration, suggesting that the insured unemployed may behave

opportunistically while searching for jobs.

Beyond its well-known effects during unemployment, UI may induce a moral hazard be-

haviour in both employers and employees, which can alter job separation rates. On the demand

side, firms may have an incentive to exploit the UI system to adjust their workforce in case

of negative demand shocks (Feldstein, 1976). On the supply side, workers may have a prefer-

ence for leisure combined with UB compensation. In this case, they have an incentive to work

just long enough to attain UB eligibility and then exit employment. Understanding the relative

importance of these two behaviours is fundamental as it entails different policy implications.

While employees’ moral hazard may imply reduced UI generosity, employers’ moral hazard

could support the introduction of firing taxes to prevent excessive layoffs (Zweimüller, 2018).

In this paper, we aim to estimate the causal effect of UB eligibility on layoff probability

and to provide some insight on the role of the employer and employee’s moral hazard. Our

contribution to the literature is threefold.

First, we bring new evidence by exploiting quasi-experimental variation in UB eligibility

conditions in Italy.1 The analysis relies on an inflow sample of more than 400,000 new jobs

drawn from administrative registries covering the period of 2005 to 2012, which we follow until

job separation. We identify the impact of attaining UB eligibility by exploiting two eligibility

conditions in the Italian UI system: i) at least 52 working weeks in the last two calendar years

and ii) at least one day of work before this two-year horizon. Identifying the effect of UI

eligibility is challenging since it is confounded by the effect of work experience accumulated

along the job spell. To control for this confounder, we add a control group of workers who

cannot attain UB eligibility despite accumulating the same level of work experience over the

last two years. This extends the standard before-and-after analysis previously implemented in

the literature in the same spirit of a difference-in-differences (DiD) estimator.

1In contrast to the empirical literature on unemployment duration, the effects of UI on layoffs have received

little attention. An old literature focused on the impact of the UI system on the layoff rate in the United States

(Feldstein, 1976, 1978; Saffer, 1983; Topel, 1984, 1983; Anderson and Meyer, 1993). Within the more recent

empirical literature, only two papers have studied the impact of UI on the probability of layoff: Rebollo-Sanz

(2012) for Spain and Light and Omori (2004) for the United States. See Section 2 for more details.
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and the worker’s side by exploiting the large sample of new jobs in two ways. First, we estimate

heterogeneous effects before and after 2008, the onset of the Great Recession, when the forces

at work determining the incentives to engage in opportunistic behaviour may have changed.

On the one hand, in downturns, employers may be more tempted to exploit the UI system in

order to reduce their firing costs. On the other hand, workers should have lower incentives

to shirk because in bad times it is more difficult to find a new job in case of layoff. Second,

we try to understand the role of employers’ firing costs. In Italy during the period of the

analysis, the employment protection legislation (EPL) on individual layoffs was more stringent

for firms with more than 15 employees. Hence, smaller firms could more easily offer job

packages that included the wage and a probability of being laid off (Zweimüller, 2018), thereby

taking advantage of the UI system to adjust their workforce. From these contrasting expected

behavioural changes, we shed new light on the two sides of moral hazard.

As a third contribution, we provide evidence that the impact of UB eligibility on layoffs in

Italy is not homogeneous across regions, despite these being characterised by the same labour

market institutions. We focus on a particular geographical dimension that is related to the

puzzling and long-lasting North–South divide in Italy (e.g. Manacorda and Petrongolo, 2006)

and is reflected in differences in socio-economic measures, social norms and the ability to

cooperate (Banfield, 1958; Guiso et al., 2004; Bigoni et al., 2016, 2018). Our conjecture is that

a low level of trust in the south of Italy may induce employees and employers to easily feel

justified in adopting opportunistic behaviour and in being part of an implicit contract affected

by moral hazard.2

Our results confirm the existence of moral hazard, which we argue to be demand-induced.

According to our preferred specification, we find that immediately after reaching UI eligibility,

the probability of layoff increases by 12% for about 16 weeks. The impact is significantly

larger after the Great Recession, when the instantaneous increase is of 21%, while no effect is

found before 2008. In the South, the effect peaks at 24% between nine and 16 weeks from UI

eligibility, whereas in the rest of Italy, the overall effect is not significantly different from zero.

The layoff rates in smaller firms also show a more pronounced reaction. Similar conclusions

are reached if we rely on a regression discontinuity design (RDD) estimator identifying the

effect around the 52 weeks eligibility threshold.

The paper is structured as follows. In Section 2, we present the theoretical setting and re-

view the existing empirical literature. Section 3 presents the Italian institutional framework for

the period under analysis. Section 4 describes the data and the sample. Section 5 shows some

descriptive evidence and results based on a RDD framework. Section 6 presents our preferred

model, a DiD design in a duration model, and interprets the results. Section 7 concludes.

2Eugster et al. (2017) exploited the cultural differences across the Swiss language areas to study the impact of

culture on job search behaviour. They found that unemployment duration is longer in Latin language areas com-

pared to German-speaking ones. Eugster et al. (2011) found that Latin language areas have a higher preference

for redistributive social insurance compared to German language areas.

Second, we provide new insights on the relative importance of moral hazard on the firm’s
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2 Theoretical framework and existing evidence

In the standard Diamond–Mortensen–Pissarides model with endogenous job destruction, jobs

are destroyed when an idiosyncratic shock decreases job productivity below a reservation level

(Mortensen and Pissarides, 1994). According to this model, UBs improve the employee’s out-

side option, which raises the reservation productivity threshold of the job and, therefore, the

job separation probability. Specific supply and demand factors may affect the behaviour of the

agents and create a moral hazard to exploit the UI system.

On the labour supply side, the positive shock on the outside option may induce the worker

to reduce their exerted effort. Therefore, the more generous the UB compensation, the higher

the probability for the worker of being fired or of inducing a layoff (Shapiro and Stiglitz, 1984;

Jurajda, 2002). Furthermore, there may be cases in which a worker may prefer an intermittent

working pattern in which periods of work, long enough to reach UB eligibility, are alternated

with periods under UB compensation. Knowing this preference, it might be convenient for a

firm to have a policy of only firing workers who qualify for UI. More workers will apply to this

firm, knowing its reputation for timing its layoffs with UI eligibility. The firm will therefore

reduce the costs of filling the vacancy and be able to choose candidates from a larger pool

(Christofides and McKenna, 1996; Green and Sargent, 1998).

On the labour demand side, at least two arguments may explain a boost in dismissals. First,

UB eligibility may attenuate firms’ expected separation costs due to possible litigation disputes.

In some countries, like Italy, judges can have significant discretionary power to determine if

a layoff is legitimate. In this context, they might more often rule in favour of the firm if

the worker is eligible for UB, lowering the expected firing costs for employees entitled to

UB and creating an incentive to wait until UI eligibility is attained before firing. Second,

according to implicit contract models, the job relationship between workers and firms relies on

implicit contracts that take into account the wage and a positive probability of layoff due to

future macroeconomic uncertainty. In the presence of a UI system, firms use temporary layoffs

and the availability of UB compensation to adjust the workforce to macroeconomic conditions

(Feldstein, 1976; Baily, 1977). In addition, based on a job search model with UI insurance,

Jurajda (2003) shows that a firm’s optimal layoff strategy when facing a cyclical downturn is to

fire workers with generous UB entitlements. This is because the firm internalises the fact that

these individuals will search less intensively and remain unemployed longer. Therefore, once

economic conditions improve, the firms may recall them more easily.

Finally, UBs may generate collusive behaviour between employers and employees, in which

they share the surplus of UBs by officially terminating the employment relationship but main-

taining it off the books.

The empirical literature focusing on the impact of UB eligibility on employment duration

has been quite limited.3 Earlier studies for the United States in general showed that tempo-

rary layoffs were more common when UI was not fully funded by experience rating (Feldstein,
4

2014; Inderbitzin et al., 2016).

3A related literature studied UB provision as an alternative policy to early retirement (Baguelin and Remillon,
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1976, 1978; Saffer, 1983; Topel, 1984, 1983; Anderson and Meyer, 1993).4 A few North Amer-

ican empirical studies exploited exogenous changes in the eligibility rules for UBs to study the

impact of UB eligibility on employment duration by means of a DiD approach. Solon (1984)

used the fact that since 1983, voluntary resignation conferred the right to UBs in some US

states. Although his results were imprecise, they were compatible with the hypothesis that

more stringent conditions for UBs reduce job quitting, supporting the moral hazard hypothe-

sis. Green and Riddell (1997) and Baker and Rea (1998) studied the impact of a reform that

changed the UB eligibility conditions in Canada in 1990. They found that UB eligibility in-

creased the hazard rate out of employment. Finally, other studies investigated the effect of a

3-year extension of UBs targeted at older workers in Austria during the late 1980s. Based on

DiD approaches, the authors estimated an increase of about 4–11 percentage points in the entry

rate into unemployment (Winter-Ebmer, 2003) and a 28% increase in the job separation rate

(Lalive et al., 2015).

Another strand of the literature estimated duration models to identify the impact of UB

eligibility on employment duration without exploiting exogenous reforms of the UI system.

For the United States, Jurajda (2002) considered the period of 1974–1979 (i.e. before the UI

reform) and showed that the attaining UB eligibility decreased the duration of employment.

Furthermore, by exploiting cross-state and cross-year variation in UB calculations, Light and

Omori (2004) found that more generous UBs deterred workers from voluntary job quitting. For

Canada, Christofides and McKenna (1995, 1996) and Green and Sargent (1998) showed that

in the late 1980s, the employment exit rate increased after attaining UB eligibility, suggesting

moral hazard as an explanation. A more recent paper focused on Europe. Rebollo-Sanz (2012)

studied the effect of reaching UB eligibility on employment duration in Spain. The author

compared the outcomes before and after reaching UB eligibility and found a positive effect of

UB eligibility on layoffs, but not on job quitting. She focused on job episodes that had not yet

met UB requirements before the start of the spell and that had different levels of accumulated

working weeks at the beginning of the spell. The author controlled for total past experience,

a baseline hazard rate for duration dependence and UB eligibility dummies. However, as UB

eligibility is attained by accumulating work experience along the spell, the author could not

separate the effect of UI from the experience effect, which remained a confounding factor. As

explained in Section 6, compared to this evaluation strategy, we make a step forward and, in

a DiD setting, disentangle the effect of work experience accumulated along the spell from the

job duration dependence.

4In an experience-rated UI system, firms pay UI taxes that are proportional to their use of the UI system, which is

an implicit tax on firing aiming to reduce excess layoffs.
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3 Institutional set-up

In this section, we briefly describe the Italian institutional set-up of the UI system and the EPL.

Both institutions can indeed interact and affect layoffs. Both the labour market institutions

regulating the UI system and firing practices have changed in the last two decades. In what

follows, we focus the discussion on the period under analysis, which goes from 2005 to 2012.

3.1 Firing system

In terms of the legislation of layoffs, Italy was historically characterised by significant rigidities.

The EPL for open-ended contracts was, for example, one of the strictest among the OECD

countries.5 The highest source of rigidity was related to the dismissal of individual workers:

the employer could only fire an employee if there was a fair reason. An individual dismissal

was considered to be fair when it was motivated by situations referred to as just cause, just
objective motive or just subjective motive.

• Just cause referred to cases of serious worker misconduct that impeded the development

of a trustful labour relationship between both parties. Dismissal for just cause was a last

resort solution and occurred without notice.6

• Just objective motive referred to economic reasons for termination. The employer had to

prove that, due to economic reasons, (i) the company had to be reorganised and (ii) the

employee could not be transferred to other functions within the company (not necessarily

the functions the worker was hired for) or to other companies in the same group (Law

604/66).

• Just subjective motive referred to employee misconduct. This is similar to just cause but

for less serious misconduct, and the layoff had to occur with notice.

In all cases, the burden of proof of the fairness of the layoff laid with the employer (Bal-

lestrero, 2012). If the court declared that the dismissal was unfair, then workers in firms with

more than 15 employees could be reinstated in the workplace and receive compensation equal

to the remuneration foregone until reintegration with a minimum of five months of salary (Ar-

ticle 18, Law 300/1970). Workers in firms with less than 15 employees were not entitled to

5According to the 2012 OECD indicator on the strictness of EPL, Italy ranked fourth after Portugal, the Czech

Republic and the Netherlands.
6Examples of misconduct leading to a dismissal for just cause include abandoning the workplace if this harms

the safety of people or the plant, unjustified absence from the workplace for multiple days, a false medical

certificate, refusal to take up work again after sick leave, insubordination, having a second job whose interests

are in conflict with the company’s activities, defamation of the company, having committed a crime not related

to the company but that could harm the company’s reputation, theft of company holdings of substantial value and

badge falsification.
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than 15 employees dealt with larger expected firing costs.7

Labour disputes in Italy could take years before settlement. This implied uncertain and

substantial costs for firms in case of loss. In 2006, the average duration of disputes for layoffs

was 718 days for first instance trials and 646 days for second instance trials. Workers won

in 2/3 and 1/3 of cases in first and second instance trials, respectively (ISTAT, 2008). High

expected costs in case of loss and the discretionary power of labour courts to determine whether

a dismissal was fair were a strong deterrent for employers looking to fire workers.

3.2 Unemployment insurance system

The Italian UI system sheltered private sector salaried workers who incurred an involuntary

job loss or resigned for ‘just cause’8 and satisfied the following eligibility conditions related

to one’s previous employment history. Figure 1 provides a visual representation of the UB

eligibility rules:

C.1. ‘weeks requirement’: the worker needs at least 52 full-time working weeks during the

biennium before the end of the job spell (i.e. C.1 biennium in Figure 1);

C.2. ‘experience requirement’: the worker needs at least one day of work in the period before
the C.1 biennium (C.2 period in Figure 1).

Figure 1: Unemployment Benefit (UB) Requirements

−2 years before

job spell termination

job spell termination

C.2: at least 1 day of work C.1: full-time working weeks ≥ 52

Calendar time t

C.2 period C.1 biennium

Following termination, the jobless workers satisfying C.1 and C.2 had to officially register

their unemployment status at one of the local public employment offices in order to collect UB

payments. UBs were provided for seven months up until 2007 and for eight months after 2007.

The UB amount was related to one’s gross remuneration in the three months before the job loss

and was capped (i.e. e1014 in 2007). The replacement rate decreased along the unemployment

spell. Until 2007, it was 50% during the first 6 months and dropped to 40% afterwards. After

2007, the replacement rate was increased by 10 percentage points (Law 247/2007).9

7The regulation on dismissals was changed in January 2013 by Law 92/2012.
8Examples of resignation for ‘just cause’ are: mobbing, having suffered sexual harassment in the workplace,

delayed or missed wage payments, deterioration in work tasks and being moved to a different establishment

without organizational or technical reasons.
9For workers older than 50 years of age at job loss, before (after) 2008 the maximum duration was 10 (12) months,

with a replacement rate of 30% (40%) from the 10th (9th) month.

reintegration and the compensation was between 2.5 and six months. Hence, firms with more
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Workers who did not fully qualify for UBs could be eligible for a reduced version, which

were much less generous but were subject to looser criteria. These reduced UBs were paid all

at once in the calendar year after the job loss. Until 2007, they covered the same number of

days worked during the year before the job loss, with a maximum of five months and a (capped)

replacement rate of 30%. From 2008, the maximum number of months was raised to six and

the replacement rate increased to 35% for the first 120 days and 40% afterwards.

4 Data and sample

4.1 Data

We use administrative data from the social security registers of the Italian Social Security Insti-

tute (LoSai INPS). The overall sample available for research has a longitudinal structure up to

2015 and covers 6.5% of all salaried and semi-subordinate employees10 working in the private

sector. The data contains individual employment histories since 1985, unemployment benefit

receipts from 1999 and other information on assimilated working weeks (e.g. sickness, mater-

nity leave, military service, short-term compensation). The unit of observation is the single job

contract. For each contract, the dataset provides information on the start and termination date,

termination reason, location, firm sector, firm size, qualification and type of contract. It also

contains worker characteristics such as gender and year of birth.

We selected a sample of fresh job spells starting between January 1st 2005 and December

31st 2011. We excluded job spells beginning prior to 2005 because the job starting date and the

job termination reason were unavailable. We followed job spells until the end of 2012 because

in 2013, labour market regulations changed. We excluded apprenticeships from our sample

because apprentices were eligible for UBs only in special cases. We also exclude, contracts in

agriculture due to the high seasonality of job relations in this sector and the specific UB rules.

This selection resulted in an initial sample of 1,766,405 fresh job spells. The main outcome

variable of interest in the analysis is job duration until separation, T , which is measured every

two weeks from hiring. Job spells can terminate for different reasons. From the information in

LoSai, we can distinguish among the three main causes of job exit: i) firm layoff; ii) employee’s

voluntary resignation; and iii) end of a temporary or seasonal job. If an individual experienced

a job interruption of less than three weeks and then restarted working in the same firm, we

consider the two jobs as the same uninterrupted spell. By doing so, contract transformations

are considered as unique job spells.11 We denote by Z the random variable indicating the

10Semi-subordinate employees are workers with contracts for temporary collaborations that are de facto subordi-

nate to the employer but formally self-employed.
11This is especially important for the renewing of temporary contracts because in Italy, multiple renewals of

temporary contracts were allowed if there was a waiting time of 20 (10) days between the end of the old and the

beginning of the new contract when the duration of the old contract was (less) more than six months.
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accumulated full-time working weeks in the C.1 biennium. This random variable is indexed

as Zt to indicate the accumulated working weeks in a particular elapsed duration t of the job

spell.12

4.2 Treatment definition

At the start of the job spell (t = 0), we calculate the accumulated working weeks Zt=0 during

the initial C.1 biennium. Then, we update the value of Zt at the end of each t until the end of

the spell, with t ticking two weeks. The calculation of Zt is based on the mobile biennium C.1,

which moves along the spell duration. For a given t, the end of the mobile biennium coincides

with the calendar time t periods after the start of the job. The beginning of the mobile biennium

is calculated going back two years.

While requirement C.1 is standard in UI systems (although the exact numbers vary from

country to country), requirement C.2 is an Italian peculiarity. If employers and/or employees

time an opportunistic behaviour with UI eligibility, we expect to see an increase in the layoff

probability when Zt reaches 52 (i.e. when C.1 is satisfied) only for spells that also satisfy

criterion C.2. We define these units as ‘treated’, while those not satisfying criterion C.2 are

our ‘controls’, who cannot claim UB eligibility even when Zt turns equal to 52. We define the

treatment status at the beginning of the spell, i.e. when t = 0. Figure 2 clarifies the differences

between the two groups by way of a calendar timeline: the only difference is in the employment

history during the C.2 period: the treated group worked at least one day, whereas the controls

had no days of work.

Figure 2: Treated and control group definitions

(a) Treated: satisfy C.2 but not C.1 at the job spell start

−2 years

from job spell start

t = 0
job spell start

working days > 0 Z0 job duration

Calendar time t

(b) Controls: satisfy neither C.2 nor C.1 at the job spell start

−2 years

from job spell start

t = 0
job spell start

working days = 0 Z0 job duration

Calendar time t

C.2 period C.1 biennium

12In what follows, we express random variables in upper case and their particular realizations in lower case.
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4.3 Sample selection

We further narrowed our sample as follows. First, we removed the jobs that satisfied UB

eligibility requirement C.1 from the beginning of the spell (i.e. Z0 ≥ 52). This is because we

want to observe how the job separation rate evolves before and after attaining UB eligibility.

Second, we dropped the spells of individuals who, at the moment of hiring, had more than two

years of past employment experience in the C.2 period. This selection criterion is to ensure that

the treated and the controls are not too different in terms of past employment histories. Third,

we dropped spells of workers older than 60 at the start of the job. Finally, we removed spells

lying in the bottom or the top percentile of the hourly wage distribution and part-time jobs. The

final sample is made up of 424,473 fresh job spells, translating into 6,110,657 observations (i.e.

potential job terminations every two weeks). A total of 184,676 spells belong to treated group

(43.5%), while 239,797 are controls.

Table 1 reports summary statistics on completed and uncompleted spells. We right-censored

all of the spells still ongoing at the end of 2012 or surviving after 104 weeks of tenure (28,568

spells). The first right-censoring is due to the end of the observed time window. The second

was applied because both C.1 and C.2 were always satisfied after 104 weeks of elapsed job

duration and all spells would move to the treated group. Similarly, we right-censored a further

30,290 spells belonging to the control units as soon as they satisfied C.2, since otherwise they

would shift to the treated group from that moment onwards. About 11.5% of the job spells

ended because of layoff. This fraction is larger for the treated (13.2%) than for the controls

(10.2%).

Table 1: Summary statistics of job spell durations by treatment status

Total Treated Controls

Number of job spells

Total 424,473 184,676 239,797

Completed due to layoff 48,636 24,293 24,343

Completed due to resignation or end of temporary contract 316,979 141,417 175,562

Right-censored on 31/12/2012 or at 104 weeks 28,568 18,966 9,602

Right-censored when controls become treated 30,290 0 30,290

Fraction of right-censored spells 0.139 0.103 0.166

Fraction of completed spells due to layoff 0.115 0.132 0.102

Fraction of completed spells due to resignation or end of temporary contract 0.747 0.766 0.732

Average job duration (weeks) 28.844 30.932 27.235

Duration percentiles (weeks)

10th 4 4 4

25th 8 8 8

50th 18 18 16

75th 40 42 38

Figure C.1 in Appendix C shows the distribution of Z0 for the treated and control groups.

Both groups share very similar absolute frequencies at all values of Z0 apart from zero, when it

is higher for the control group. Table 2 reports summary statistics of the observables that we use
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as covariates in the following analyses. We control for individual characteristics (age at spell

start and gender), variables capturing past employment history (whether one already benefited

of income support in the past and some employment features of the last year), characteristics

of the job spell under analysis (contract type, firm size, location and calendar time of the job

spell start) and the regional GDP growth rate (which varies over the spell).13 The treated and

control groups do not differ in many characteristics. The most notable differences are age (the

treated are 3.8 years older, on average) and a variable work experience before hiring. These

differences are to be expected as the treatment status depends on past employment history.

Table 2: Summary statistics of the covariates by treatment status

Whole sample

——————————————— Treated Controls

Mean Std. Dev. Min. Max. Mean Mean

Individual characteristics
Age at the start of the job spell (years) 28.428 8.274 15.000 60.000 30.558 26.787

Woman 0.332 0.471 0.000 1.000 0.320 0.341

Ever received income support of any type 0.054 0.227 0.000 1.000 0.120 0.004

Blue-collar job in calendar year before the start of the job spell 0.320 0.467 0.000 1.000 0.433 0.233

Employment contract in the calendar year before the start of the job spell
Open-ended contract 0.127 0.333 0.000 1.000 0.176 0.089

Temporary contract 0.298 0.457 0.000 1.000 0.359 0.251

Seasonal employment 0.046 0.209 0.000 1.000 0.063 0.032

No employment 0.530 0.499 0.000 1.000 0.403 0.628

Characteristics of the job spell
Firm size

5 employees or less 0.277 0.447 0.000 1.000 0.288 0.268

Between 6 and 15 employees 0.187 0.390 0.000 1.000 0.189 0.186

Between 15 and 50 employees 0.168 0.374 0.000 1.000 0.169 0.167

Between 51 and 100 employees 0.188 0.391 0.000 1.000 0.186 0.190

More than 100 employees 0.180 0.384 0.000 1.000 0.167 0.190

Type of contract
Open-ended 0.345 0.475 0.000 1.000 0.350 0.341

Temporary 0.601 0.490 0.000 1.000 0.591 0.609

Seasonal 0.054 0.225 0.000 1.000 0.058 0.050

Geographical area
North-West 0.287 0.453 0.000 1.000 0.269 0.302

North-East 0.247 0.431 0.000 1.000 0.236 0.255

Centre 0.180 0.384 0.000 1.000 0.178 0.182

South 0.193 0.395 0.000 1.000 0.211 0.179

Islands 0.093 0.290 0.000 1.000 0.107 0.082

Year at the start of the spell
2005 0.128 0.335 0.000 1.000 0.138 0.121

2006 0.144 0.351 0.000 1.000 0.155 0.135

2007 0.184 0.387 0.000 1.000 0.160 0.202

2008 0.164 0.370 0.000 1.000 0.135 0.186

2009 0.121 0.326 0.000 1.000 0.116 0.124

2010 0.131 0.337 0.000 1.000 0.144 0.121

2011 0.128 0.334 0.000 1.000 0.152 0.110

Month of the year at the start of the spell
January–April 0.304 0.460 0.000 1.000 0.305 0.303

May–August 0.409 0.492 0.000 1.000 0.412 0.406

September–December 0.287 0.453 0.000 1.000 0.283 0.291

Time-varying covariate
Regional yearly GDP growth rate at job spell start 0.003 0.041 -0.071 0.180 0.004 0.002

Number of job spells 424,473 184,676 239,797

13The regional growth rate of the GDP varies on a yearly basis.
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To get a better idea of how many individuals collected UBs, in Figure 3 we report the take-

up rate of the standard UBs after the end of a job spell across the value of Z measured at the

termination date. Graphs a) and c) focus on the treated, while graphs b) and d) are for the

controls. The graphs at the top (a and b) are for job spells ending with a layoff. The graphs at

the bottom (c and d) refer to job spells ending due to worker resignation. Three features are

worth mentioning:

1. Graph a) shows a clear discontinuity in the UB take-up rate once the treated attain 52

weeks of working weeks in the last two years. The UB take-up rate is almost but not

always exactly zero when Z < 52. This might be due to measurement error induced, for

example, by an underestimation of Z for individuals with multiple jobs. In addition, as has

also been observed in other countries (see e.g. Anderson and Meyer, 1997 for the US), the

UB take-up rate does not jump to 1 once eligibility is attained. This might be due to, for

example, the individual having moved to another job, self-employment, education, or not

having officially registered the unemployment status at the public employment office.14

2. For the controls, the UB take-up rate after layoff does not jump at the cut-off (graph b).

We can observe a very low fraction of the control group collecting UBs after layoff to

the right of the cut-off. In principle, they should not collect UBs because they do not

satisfy C.2. However, because we evaluated satisfaction of C.2 on the basis of data on

past employment history, there may have been some marginal measurement errors in the

construction of the administrative data.

3. Graphs c) and d) show that when job termination is due to the worker’s voluntary resig-

nation, it is very unlikely that the worker will collect UBs. For the treated group, very

few job spells are followed by UBs. In some special cases, workers can indeed collect

UBs to the extent that C.1 and C.2 are met and if the resignation was for ‘just cause’; as

mentioned in Section 3.

5 First evidence

We begin our analysis by providing suggestive evidence of the relationship between UB eligi-

bility and firing probability. We then estimate the local impact of UB eligibility on the firing

rate by means of a logit estimator and RDD analysis, which exploits the discontinuity in UB

eligibility at the 52nd accumulated working week during the C.1 biennium.

14A similar pattern is observed if we focus on temporary jobs terminated due to contract expiration (graphs avail-

able upon request).
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Figure 3: UB take-up rate after job termination by treatment status and termination reasons

Notes: We plot the fraction of individuals collecting UBs after the end of the job spell by accumulated working weeks (Z) at job termination.

5.1 Descriptive evidence

Figure 4 reports the Kaplan–Meier hazard rate of job separation for the 424,473 spells by

treatment status and reason of exit. Graph a) shows that both the treated and the controls have a

very similar profile in the job separation rate when we do not consider exits due to layoff: at the

beginning, the probability of job termination due to resignation or end of temporary/seasonal

contract is quite large and peaks at about four months of job seniority, with the probability of

leaving the job in a given interval of two weeks being about 3.6%. The peak is explained by the

probationary periods and the typical duration of many temporary contracts. Afterward, the job

hazard rate quickly decreases, declining to about 1%–1.4% at the 80th week of job seniority.

Several reasons can explain the decline in the hazard rate along the elapsed job duration:

bad job matches are dissolved quickly, temporary contracts are typically not long-lasting and

further heterogeneity generates selection over time and leaves only good matches in the sample.

The treated group shows a similar job exit rate at the beginning of a spell but a much lower

probability of exit once the first year has passed. Because treated individuals have more past

work experience, a longer job duration is expected. However, the difference in the job hazard

rate between the treated and the controls is reverted once we focus on the exits due to layoffs

only. Graph b) of Figure 4 shows that the layoff hazard rate of the treated is well above that

of the controls for most of the time, converging only when approaching the second year of

job seniority. Furthermore, the difference in the layoff rate is more substantial for individuals
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Figure 4: Smoothed Kaplan–Meier job hazard rate
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Notes: The elapsed job durations (T ) are grouped into intervals of two weeks. The reported job hazard rates are therefore probabilities

of leaving a job in a two-week interval, conditional on surviving until the beginning of that interval. The graphs are based on a weighted

kernel smoothing of the estimated hazard rates (Epanechnikov kernel function with a half-width of four). In graph a), the focus is on jobs

terminated because of resignation or the end of temporary/seasonal contract. Graphs b), c) and d) focus on layoffs. Graph c) considers

only spells with Z0 ≥ 20, while graph d) includes only spells with Z0 = 0. In all of the graphs, the job spells ending for the other reason

are right-censored when this happens.

starting the spell with a high level of Z0 (graph c), who are expected to attain UB eligibility

earlier. Treated units with Z0 = 0 (graph d) show a spike only after the 52nd week of elapsed

job duration, which corresponds to the moment when they attain UI eligibility. This suggests

that the eligibility attained by the treated during the spell might increase the chances of layoff.

5.2 Regression discontinuity design

In this subsection, we pooled over t the information on job exit and accumulated working

weeks, resulting in 6,110,657 observations. Each job spell contributes to this dataset until

either a job exit is observed or the spell is right-censored.

In a first analysis, we estimated pooled logit models with two different dependent variables:

i) a dummy equal to 1 if the spell ended in the subsequent two weeks because of layoff; and

ii) a dummy equal to 1 if the termination in the subsequent two weeks was due to resigna-

tion. We regressed these binary responses on the elapsed job duration t,15 the set of covariates

15This is specified with a set of dummies that are grouped every four weeks until the 64th week, every eight weeks

until the 88th week and a unique dummy from the 89th week onwards. This is the same specification used for

the baseline hazard in the duration models of Section 6.
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shown in Table 2 and the working weeks accumulated by the end of each t (Zt). The latter

non-parametrically enters the linear index of the logit model by a piecewise constant specifi-

cation with the accumulated working weeks grouped into two-week intervals. We estimated

the pooled logit models separately for the treated and the control groups. Since the job spells

started with different values of Z0, we can disentangle the duration dependence (t) from the

effect of the time-varying variable Zt, as per the previous literature (e.g. Rebollo-Sanz, 2012).

In our case, there is also a second identifying source that is of help in disentangling these: Zt

does not necessarily evolve along the job spell at the same rate as t (or does not evolve at all

over some t). This happens if, in the initial part of the C.1 biennium, the worker accumulated

work experience that is lost as the biennium moves during the spell.

Figure 5: Predicted probabilities of job exit across the accumulated working weeks from logit

model estimates
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Notes: To draw these graphs, we: i) estimated logit models with the dependent binary variable equal to 1 if the layoff (graphs a and

b) or resignation (graphs c and d) is observed in the subsequent two weeks, as a function of a full set of 52 dummies for the values of

Z accumulated by the end of each t period grouped into two-week intervals and a set of elapsed duration dummies and covariates; ii)

estimated the predicted probabilities of job exit for each Z at the mean of the other covariates; iii) plotted the predicted probabilities along

with their quadratic fit to the left and the right of the 52 working weeks cut-off.

Figure 5 shows the predicted probabilities of job exit in the subsequent two weeks across

the accumulated working weeks (at the mean of the other regressors) along with their quadratic

fit to the left and the right of the cut-off of the 52nd accumulated working week. Recall that

our treated group is composed of spells that already satisfied the experience condition C.2

at the start of the job spell. These spells became eligible for UBs as soon as they satisfied
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the working weeks condition C.1. Hence, if UB eligibility has an impact on the firing rate,

we expect to observe a jump in the probability of layoff for the treated group as soon as the

accumulated working weeks exceed 52. In contrast, we should not observe any jump: i) for the

control group since for this group, satisfying the working weeks requirement is not sufficient

for UB entitlement; ii) when we model the probability of resignation. All of these intuitions

are confirmed by the graphs in Figure 5. Indeed, graph a) shows that the probability of layoff

suddenly grows from 0.6% to 0.7% when the treated reach the 52nd accumulated working

week, which is a substantial relative increase of about 17%. No jump at Z = 52 can be

detected in the remaining plots.16

We then formally exploit the discontinuity in UB eligibility and implement a sharp RDD

to estimate the local average treatment effect (LATE) of satisfying condition C.1. In this RDD

setting, the accumulated working weeks zit of job spell i at elapsed duration t represent the

forcing variable. We compare the job separation rate just before and after the 52nd working

week. For simplicity, covariates are not included. We use local linear regressions with triangu-

lar weights and choose the bandwidth following the optimal mean squared error criterion as in

Calonico et al. (2014). The underlying linear probability model in error term form estimated

by RDD separately for the treated and the controls is:

ykit = αk + δk · (zit ≥ 52) + βkzit · (zit < 52) + γkzit · (zit ≥ 52) + εkit, (1)

where

• ykit is equal to 1 if job spell i at elapsed job duration t will end within two weeks due to

reason k.

• (·) is the indicator function, which is equal to 1 if the argument is true.

• αk is the constant.

• zit is the accumulated working weeks at the end of the elapsed job duration t.

• βkzit · (zit < 52) is the linear relationship between the forcing variable and the outcome

to the left of the cut-off.

• γkzit · (zit ≥ 52) is the linear relationship between the forcing variable and the outcome

to the right of the cut-off.

• (zit ≥ 52) is a dummy indicator equal to 1 once the worker has accumulated at least 52

working weeks in the last biennium. The associated parameter δ is the discontinuity at the

cut-off (LATE) in the relation between the accumulated working weeks and the outcome.

• εkit is the idiosyncratic error term (with zero conditional mean).

16If we split the sample by year of hiring (before and after 2008), firm dimension (above and below 15 employees)

and geographical area (South and rest of Italy), we observe similar but more pronounced jumps after 2008, in

smaller firms and in the South. No discontinuity is visible for the other dimensions, however. These results are

in figures C.3–C.5 in Appendix C.
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Figure 6: RDD-predicted probabilities of job exit across the accumulated working weeks

Notes: These graphs report RDD plots for the dependent binary variable equal to 1 if the layoff (graphs a and b) or resignation (graphs

c and d) is observed in two weeks, where Z is the forcing variable with cut-off at 52 accumulated working weeks. We used local linear

regression with triangular weights and bandwidth following the optimal mean squared error criterion in Calonico et al. (2014).

Figure 6 graphically summarises the RDD estimation results. The RDD point estimates

along with further estimation details are in Appendix C, Table C.1. For the treated (graph a),

the RDD estimator yields an effect of 0.11 percentage points on the layoff probability (with

robust bias-corrected p-value equal to 0.031), which amounts to a 15% increase in relative

terms. The LATE for the controls is equal to 0.06 percentage points, which is insignificant at

the 10% level. Similarly, the effect on the resignation rate of the treated and the controls is 0.03

(p-value 0.681) and 0.04 (p-value 0.563) percentage points, respectively. These estimates are

very much in line with the predicted probabilities from the logit model estimates.17

6 Main estimation results

The empirical evidence in Section 5 suggests that UB eligibility boosts the probability of job

termination due to layoff. However, the assumptions to be satisfied in order to assign a causal

interpretation to the RDD estimates might be considered as too strong. First, the RDD approach

relies on the assumption of no manipulation of the forcing variable Z, meaning that firms and

17As found in the logit model, if we split the sample by year of hiring, geographical area and firm size, we estimate

a larger effect after 2008 (+31%, p-value = 0.000), in smaller firms (+22%, p-value = 0.003) and in the South

(+26%, p-value = 0.007). The LATE in the other dimensions is not significant at the 5% level (see tables C.1

and C.2 in Appendix C).
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workers should not fully control the accumulated working weeks. However, if the agents time

the firing according to UB eligibility requirements, we might expect a reduction in layoffs

for values of Z just below the 52 week eligibility threshold, which might upwardly bias the

estimates. Furthermore, agents manipulating the forcing variable may not be a random sample

and could have particular characteristics related to the probability of job termination. This

would imply that factors determining the outcome process do not evolve smoothly with respect

to the forcing variable, generating the failure of the their local continuity restriction (Hahn

et al., 2001; Lee and Lemieux, 2010). Second, in Section 5, when analysing the probability

of job termination due to one reason, we simply right-censor job spells that were terminated

for other competing reasons, as if these exits were exogenously driven. However, the same

observed and unobserved determinants of one exit, including UB eligibility, could also affect

the job termination rate for other reasons, generating endogenous attrition in the longitudinal

dimension of our pooled dataset. Failure to appropriately account for attrition can bias the

estimation results. Third, for many workers, the cut-off at 52 accumulated working weeks

might coincide with the moment at which they reach a particular moment in their career. For

example, for the treated starting their job spell with Z0 = 0, the 52nd working week is likely to

be attained at one year of job seniority. If one year of job seniority is a milestone for the future

development of a career within the firm, for example, as an informal probationary period, a

confounding component would bias the RDD estimate.

In this section, we propose a mixed proportional hazard (MPH) model for duration out-

comes designed to overcome these problems and credibly claim that we identify the UB effect

on the firing rate. This is not free of cost. Modelling job exits using the MPH specifica-

tion imposes a parametric structure on the job duration distribution, since the hazard rate fully

characterises the corresponding duration distribution. This parametric structure, which is not

required in the linear probability model estimated by RDD, is the price that we pay.

First, we design our duration model so as to take into account the presence of unobserved

heterogeneity, which affects the sample composition over time and will allow us to compare

spells with different amounts of accumulated working weeks at hiring. Second, we model

competing risks of exit, jointly determined by observed and unobserved characteristics. Third,

we use both controls and treated spells and focus on their differential evolution in the job

separation rates both before and after the accumulation of 52 working weeks, as if in a DiD

design. The control group allows us to isolate the common impact of experience. By doing so,

we are able to net out confounding components related to work experience and job seniority that

might induce a spurious jump in the job separation rates for reasons other than UB eligibility.

We are also able to test whether there are anticipatory effects before the cut-off that would

violate the RDD assumption of no manipulation of the forcing variable Z. Finally, it allows us

to move from a local identification of the effect to a more general one across Z ≥ 52, avoiding

the sensitivity to manipulations just around the 52 weeks eligibility threshold.
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6.1 DiD hazard rate specification and results

The dependent variable is the job spell duration until either layoff or other type of termination

(resignation or end of temporary/seasonal contract). Therefore, we model two competing risks

of exiting a job: layoff l and other reasons o. The observed durations are grouped into time

intervals of two weeks. The time unit t ∈ N0 is therefore a two-week period. To avoid the

dependency of parameters to the time unit of observation (Flinn and Heckman, 1982), we

model the discrete-time process as in a grouped continuous-time model (van den Berg and

van der Klaauw, 2001). The transition intensity of a job spell to k ∈ {l, o} is specified with the

following MPH form:18

θk(t|xt, zt, d,vk) = exp
{
Γk(t) + Λ0k(zt) + β′

0kxt + d · [Λ1k(zt) + β′
1kxt

]
+ d · v1k + (1− d) · v0k

}
, (2)

where

• d is an indicator variable equal to 1 if the job spell belongs to the treated and 0 otherwise.

• exp[Γk(·)] is the piecewise constant baseline hazard common to all job spells. We use a

piecewise constant function since parametric assumptions that are too strict are a possible

sources of bias. The discrete time axis of the job spells is cut into 20 intervals.19 Let

the cut-points of the time axis be 0 = c0 < c1 · · · < c19 = ∞. The assumed piecewise

constant specification of the function Γk(·) for k ∈ {l, o} is:

Γk(t) =
20∑
s=1

(cs−1 < t ≤ cs)γk,s. (3)

The 20 coefficients γk,s map the profile of the transition intensity towards risk k.20

• xt is the vector of covariates controlling for observed heterogeneity. Table 2 lists the full

set of covariates included in xt. Apart from the regional yearly GDP growth rate, all

other controls are time-invariant and measured at the beginning of the job spell. The con-

formable parameter vector β0k is the common impact of covariates, whereas β1k captures

the deviation from the common impact of the observables for the treated.

• zt is the time-varying variable measuring the number of working weeks determining the

satisfaction of C.1. It takes values of positive integers up to a maximum of 104. Its

value is updated at the end of each t. exp[Λ0k(zt)] is a piecewise constant function so

18In what follows, we omit the subscript i indicating job spell i for the sake of keeping the notation simple.
19To reduce the number of parameters to estimate, we assume that the profile changes every two time units (i.e.

every four weeks) until the 64th week. The profile is then allowed to change every four time units (i.e. every

eight weeks) until the 88th week. From week 89 onward, the baseline hazard is assumed to be constant.
20We imposed the innocuous normalization of γk,1 to 0 for all k ∈ {l, o}.
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as to flexibly retrieve the impact, common to everybody, of the accumulated working

weeks on the transition intensities. exp[Λ1k(zt)] is also a piecewise constant function

measuring the deviation from the common effect for the treated. To increase precision,

we regroup the support of Z into 10 intervals.21 Let the cut-points of the support of Z

be 0 = q0 < q1 · · · < q10 = 104. The assumed piecewise constant specification of the

function exp[Λek(zt)] for k ∈ {l, o} and e ∈ {0, 1} is:

Λek(zt) =
10∑
s=1

(qs−1 < zt ≤ qs)λek,s. (4)

• vk ≡ (v1k, v0k) captures unobserved heterogeneity for the treated (v1k) and the controls

(v0k). The impact of unobserved heterogeneity on the transition intensities is treatment-

specific and therefore takes into account that the treated and the control group might

systematically differ in unobservables. We denote by G the mixing joint distribution

of V ≡ (V0l, V0r, V1l, V1r) with finite first moments. As explained in Appendix D, we

assume a discrete distribution with four points of support with unknown location of the

probability masses.

The parameters (λ1l,1, . . . , λ1l,10) characterise the different evolution of the effect of accu-

mulated work experience on the layoff transition intensity of the treated with respect to the

control group. They are therefore the parameters of primary interest. If employers and/or em-

ployees time layoffs with UB eligibility, then we expect the function Λ1l(Z) to display a sudden

profile change after Z = 52 (when only the treated attain UB eligibility) with respect to the

baseline interval of Z. We consider as the baseline interval the band of Z that is closest to the

cut-off in the pre-treatment period (43 < Z ≤ 51).22 Hence, by comparing the periods before

and after this cut-off, both for the treated and the control group, we measure the impact of UB

eligibility on the log transition intensity as in the usual DiD set-up for linear models of the

conditional mean of the outcome variable.23

The MPH specification of the transition intensities in Equation (2) is such that the system-

atic part, the impact of Z and the unobserved heterogeneity depend on the treatment status.

21The eight central intervals are equally spaced (eight weeks), the first is 12 weeks long (up to and including

week 11), the last goes from week 76 onwards to increase precision, as fewer individuals reach this level of

accumulated experience.
22Indeed, we normalised λek,6 to 0 for each e ∈ {0, 1} (i.e. controls and treated) and k ∈ {l, o}, which is the

impact of Z on the transition intensity when 43 < Z ≤ 51.
23Table C.3 in Appendix C displays the estimation results of the function Λl(zt) from an MPH model with com-

peting risks estimated using only the treated, similarly to Rebollo-Sanz (2012). If we use only the treated, we

cannot disentangle the impact of accumulated work experience from that of UB eligibility. Interestingly, how-

ever, we find that the layoff transition intensity clearly decreases in the accumulated working weeks up to the

moment of UB eligibility, when it suddenly jumps and then flattens out. After the 76th accumulated working

week, it regains its decreasing profile. This suggests a positive impact of UB eligibility on the layoff transition

intensity. However, the effect is likely to be downward-biased due to the observed negative relationship between

work experience and layoffs.
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The baseline hazard of each transition intensity is instead common to both the treated and the

controls. If the baseline hazards depend on the treatment status, then we could eventually re-

cover the effect of UI entitlement on the job layoff rate by separately estimating the job hazard

rate of the treated and the controls and taking the difference in the functions Λek(Z) for the two

groups (e = 0, 1). As such, under the MPH specification, regularity conditions on the MPH

components, the finiteness of the first moment of the mixing distribution G and the orthogo-

nality between the observed and unobserved determinants,24 we can invoke the identification

result in Abbring and van den Berg (2003a) for competing risks MPH hazard functions with

single-spell data.25

Similarly to the usual DiD set-up, some assumptions must be satisfied to recover the treat-

ment effect on the treated (ATT) of UB eligibility on the layoff hazard rate from the difference

between Λ1l(Z) and Λ0l(Z), for Z ≥ 52. First, conditional on (v,x, zt), there should be no

time-varying unobservables determining the time to UB eligibility. If there were time-varying

omitted variables affecting both UB eligibility and the job hazard rate, then the impact of Z on

the layoff transition intensity for the treated and control groups would be different for spurious

reasons, not solely because of UB eligibility. In a standard DiD approach for linear conditional

means, this translates to the common trend assumption, which, in our case, means that the ac-

cumulation of work experience Z should have a common effect for both groups in the absence

of UB eligibility. Second, no anticipation over the baseline interval of the pre-treatment period

(44 ≤ Z < 52) should hold. If the treated reacted to the treatment during this reference period,

then the estimated effects were biased; see e.g. Ashenfelter’s dip (Ashenfelter and Card, 1985).

In our model, we flexibly estimate the function Λ1l(Z|Z < 52) in the pre-treatment period so

as to provide evidence that the data support the parallel trend and no-anticipation assumptions.

This is similar to the strategy that is often used in standard DiD design, consisting of including

leads of the indicator for the treated in the treatment period (see e.g. Autor, 2003).26

The transition intensities fully characterise the duration distribution. Hence, once we opt

for the MPH specification in Equation (2) and assign a particular distribution to the unobserved

heterogeneity, we can write down the sample log-likelihood as a function of a finite set of

parameters and maximise it with respect to these. Appendix D provides details on the derivation

of the log-likelihood function.

24The failure of the orthogonality condition between observed and unobserved determinants does not necessarily

imply a bias in the estimation of the effects of interest. We lose the possibility of giving a structural interpretation

to the coefficients of the observables (Cockx et al., 2013; Cockx and Picchio, 2013).
25The identification result in Abbring and van den Berg (2003a) is in continuous time, whereas our durations are

grouped into two-week periods. In a large Monte Carlo simulation, Gaure et al. (2007) assessed, however, that

time-of-events models a là Abbring and van den Berg (2003b) with time-grouped data are estimated without

bias when the time-grouping is incorporated in the derivation of the likelihood function. We therefore explicitly

took into account the time-grouping in the derivation of the likelihood function, as described in Appendix D.
26We also take into account that the treated and the control groups might differ in time-invariant unobserved

heterogeneity. If not controlled for, this could also invalidate the DiD identification strategy as the selection

effects operating on individuals over the elapsed job duration might modify the sample composition of the two

groups in different ways. The results without unobserved heterogeneity are in tables B.1–B.3 of Appendix B.
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Table 3 reports the estimated coefficients λ̂1l,1, . . . , λ̂1l,10, which capture the impact of UB

eligibility on the layoff transition intensity. The full set of estimation results of the MPH model

are reported in Appendix A, Tables A.1–A.4. As soon as the UB eligibility kicks in, the layoff

exit rate of the treated jumps significantly by 12.2%.27 The increase in the job layoff transition

intensity stays at a similar level for about 16 weeks of work experience. Then, for Z ≥ 68, the

treated and control groups have similar layoff exit rates. The sudden but temporary increase in

the layoff transition intensity after UB eligibility suggests that the job matches that are meant to

be dissolved with an improvement in the employees’ outside option immediately take advantage

of the opportunity, as if the job mismatches were prearranged. Jobs surviving beyond the 76th

week are probably higher quality matches and the workers’ improved outside option is not large

enough to generate job destruction.

The placebo test for the pre-treatment period passes, as none of the coefficients of the pre-

treatment dummies λ̂1l,1, . . . , λ̂1l,5 are significantly different from zero. Furthermore, while

the Wald test of the joint insignificance of λ̂1l,7, . . . , λ̂1l,10 is confidently rejected at the 1%

level (p-value = 0.001), the coefficients in the pre-treatment period are jointly insignificant

(p-value = 0.352). Hence, when both the treated and the controls do not satisfy the eligibility

requirement for UB, their layoff exit rate evolves in a parallel way. This supports the validity

of our identifying assumptions.

Table 3: Estimated ATTs on the layoff transition intensity

Coeff. S.E.

Before UB eligibility (Z < 52)
1–11 accumulated working weeks (λ1k,e) -0.056 0.044

12–19 accumulated working weeks (λ2k,e) -0.009 0.044

20–27 accumulated working weeks (λ3k,e) 0.015 0.044

28–35 accumulated working weeks (λ4k,e) 0.012 0.044

36–43 accumulated working weeks (λ5k,e) 0.020 0.046

44–51 accumulated working weeks (λ6k,e) 0.000 -

After UB eligibility (Z ≥ 52)
52–59 accumulated working weeks (λ7k,e) 0.115 ** 0.049

60–67 accumulated working weeks (λ8k,e) 0.117 ** 0.056

68–75 accumulated working weeks (λ9k,e) 0.063 0.062

76+ accumulated working weeks (λ10k,e) -0.082 0.055

Wald test H0: λ1l,1 = · · · = λ1l,5 = 0 p-value = 0.352

Wald test H0: λ1l,7 = · · · = λ1l,10 = 0 p-value = 0.001

Number of job spells 424,473

Notes: *** Significant at the 1% level; ** significant at the 5% level; * significant at the 10% level.

6.2 Sensitivity analysis

In Appendix E, we report several robustness checks to test the sensitivity of our DiD estimation

results of the ATTs. We re-estimate the MPH model after deleting seasonal jobs and after

keeping only open-ended contracts. We parametrically specify the baseline hazard to avoid

2712.2% = [exp(0.115)− 1] · 100.
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possible biases coming from too flexible specifications in the baseline hazard and unobserved

heterogeneity (Baker and Melino, 2000). We also change the definition of the treatment group.

According to our baseline definition, the treatment group is made up of the spells of workers

with at least one day and no more than two years of work experience during the C.2 period.

We test whether the results are sensitive to this choice by re-estimating the benchmark model

after modifying the maximum work experience to 26 weeks and 156 weeks. We check whether

the results are sensitive to the right-censoring of the controls becoming treated. We implement

a RDD estimator in the competing risks MPH model on the treated units only and including a

cubic polynomial specification across Z, with different coefficients to the right and left of the

cut-off. In all of these cases, the estimated ATTs were very close to those from the benchmark

model, and the RDD estimator delivers very similar results to the LATE estimates obtained on

pooled data in Section 5 (+15-17%).

Although we did not find evidence of significant anticipatory effects along Z grouped into

intervals of (mainly) eight weeks, in a further check, we test whether evidence of an antici-

patory effect shows up when the worker gets very close to the UB eligibility threshold of 52

accumulated working weeks. We do this by re-estimating the benchmark model with the piece-

wise constant specification of Λek(Z) augmented by a further dummy equal to 1 when Z = 51,

for k ∈ {l, o} and e ∈ {0, 1}. If, indeed, firms and employees adopt an opportunistic behaviour

and agree to wait until UB eligibility before firing, this should be reflected in a dip in the layoff

exit rate just before UB entitlement, generating an anticipatory effect with the opposite sign

than the one found in the after-treatment period. Model (11) in Table E.1 of Appendix E shows

that this extra dummy for Z = 51 has the expected negative sign, pointing to a reduction of

5.2% in the layoff exit rate just before UB eligibility, which may explain the different effect

estimated by implementing the RDD estimators (+15-17%) and the DiD estimator close to the

threshold (+12%). However, this anticipation effect is not significantly different from zero and

all of the other ATTs are close to those of the benchmark model.

Finally, we run a validation test, in the spirit of a placebo test, by estimating the impact of

UB eligibility on the (voluntary) resignation exit rate. Because the general rule is that workers

voluntarily resigning lose UB eligibility (see graph c in Figure 3), we do not expect significant

ATTs for Z ≥ 52. Operationally, we keep the competing risks structure unchanged, i.e. the

number of competing risks is still fixed to two, but now, one risk of exit is voluntary resignation

and the second risk is the residual category including all of the other exit risks (e.g. layoff and

the end of temporary/seasonal job). As expected, the estimated ATTs from this modified model

do not display any evidence of a sudden increase in the job exit rate for voluntary quitting.

6.3 Mechanisms

We find a sizable impact on the rate at which workers are laid off as soon as they acquire UB

eligibility. In this section, we aim to gain a better understanding of the mechanisms at play with
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the help of the information coming from possible heterogeneous effects. To get more insight

into the role of the economic situation, social norms and firing costs, we divide the population

into subgroups along geographical dimension, firm size and year of hiring, and re-estimate the

benchmark DiD model. The ATTs are reported in Table 4 along with the p-values from the

equality tests between the coefficients of each pair of independent samples (Clogg et al., 1995;

Brame et al., 1998).

The first dimension of heterogeneity is related to the economic situation, which changed

significantly after 2008. The Great Recession should have modified the incentives for moral

hazard of employers and employees in different directions. On the one hand, in economic

downturns or in periods of higher demand uncertainty, employers need to adjust their work-

force and exploiting UB eligibility may be a way to reduce the expected firing costs. On the

other hand, deteriorated economic conditions should make workers less willing to agree on job

packages that involve a certain probability of layoff once UB eligibility is attained: because the

probability of finding a new job decreases in downturns, the outside option is less valuable and

more risky.28 Panel a) shows that when splitting the job spells into those started before and after

January 2008, it seems that the latter are driving the findings for the whole sample. No effect

on the layoff transition intensity is detected among spells started before the economic crisis,

whereas UB eligibility boosts the layoff exit rate of job spells started after 2008 by 21.2% in

the eight weeks following UB eligibility and by 14.4% in the subsequent eight.

Second, we investigate the role of employers’ firing costs by dividing the sample between

firms with more and with fewer than 15 employees, a threshold that also coincides with differ-

ent EPL on layoffs. As explained in Section 3, firms with more than 15 employees face large

expected firing costs. By contrast, employers with less than 15 employees are subject to much

looser EPL and lower expected firing costs. Hence, smaller firms might more easily offer job

packages including, as a feature of the agreement, a probability of being laid off at UB eligi-

bility (Zweimüller, 2018). As shown in panel b) of Table 4, the effect is statistically significant

only for smaller firms, while for larger firms it is very close to zero. Because our estimates are

driven by firms with fewer than 15 employees, the results might suggest that low rigidity is a

driver of the effect. However, large and small firms differ on other dimensions besides different

EPL regimes. For example, stronger interpersonal relations and trust between employees and

their employer might play a more significant role in smaller firms and facilitate collusion to ex-

ploit the UB system. Nonetheless, we should be careful in interpreting these results; although

the point estimates of the ATTs are quite different in size between large and small firms, their

difference is not statistically significant.

Another driving force might be related to trust in society and social norms. Differences

in social norms could lead to heterogeneous responses to the same moral hazard incentive.

28In 2008, the UB system also became more generous to a certain extent, which might have increased the incentive

to exploit the UI system. The raise in the replacement rate was mild, however, and also applied to the ‘reduced’

UB for workers with very few accumulated working weeks. Therefore, it is unlikely to play a major role.
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Table 4: Heterogeneity of estimated ATTs on the layoff transition intensity by selected

dimensions

Significance test

of the difference

between the ATTs,

(1) (2) (3) (4) (1)-(3):

Coeff. S.E. Coeff. S.E. p-value

Panel a) Before 2008 After 2008

Before UB eligibility (Z < 52)
1–11 accumulated working weeks (λ1l,1) -0.093 0.065 -0.028 0.060

12–19 accumulated working weeks (λ1l,2) -0.029 0.065 -0.005 0.060

20–27 accumulated working weeks (λ1l,3) -0.023 0.065 0.034 0.061

28–35 accumulated working weeks (λ1l,4) 0.028 0.065 -0.017 0.061

36–43 accumulated working weeks (λ1l,5) 0.006 0.067 0.018 0.063

44–51 accumulated working weeks (λ1l,6) 0.000 – 0.000 –

After UB eligibility (Z ≥ 52)
52–59 accumulated working weeks (λ1l,7) 0.005 0.074 0.192 *** 0.067 0.061

60–67 accumulated working weeks (λ1l,8) 0.088 0.082 0.135 * 0.078 0.673

68–75 accumulated working weeks (λ1l,9) 0.032 0.091 0.100 0.086 0.584

76 or more accumulated working weeks (λ1l,10) -0.057 0.079 -0.113 0.076 0.610

Wald test H0: λ1l,1 = · · · = λ1l,5 = 0 p-value = 0.381 p-value = 0.862

Wald test H0: λ1l,7 = · · · = λ1l,11 = 0 p-value = 0.520 p-value = 0.000

Number of job spells 193,616 230,857

Panel b) Firms with more than than Firms with fewer than

15 employees 15 employees

Before UB eligibility (Z < 52)
1–11 accumulated working weeks (λ1l,1) -0.155 ** 0.070 0.041 0.056

12–19 accumulated working weeks (λ1l,2) -0.064 0.070 0.072 0.056

20–27 accumulated working weeks (λ1l,3) -0.028 0.071 0.079 0.056

28–35 accumulated working weeks (λ1l,4) -0.002 0.071 0.049 0.057

36–43 accumulated working weeks (λ1l,5) 0.108 0.074 -0.020 0.058

44–51 accumulated working weeks (λ1l,6) 0.000 – 0.000 –

After UB eligibility (Z ≥ 52)
52–59 accumulated working weeks (λ1l,7) 0.044 0.081 0.131 ** 0.063 0.395

60–67 accumulated working weeks (λ1l,8) 0.062 0.094 0.112 0.070 0.671

68–75 accumulated working weeks (λ1l,9) 0.021 0.104 0.040 0.078 0.881

76 or more accumulated working weeks (λ1l,10) -0.115 0.089 -0.110 0.070 0.962

Wald test H0: λ1l,1 = · · · = λ1l,5 = 0 p-value = 0.006 p-value = 0.389

Wald test H0: λ1l,7 = · · · = λ1l,11 = 0 p-value = 0.372 p-value = 0.003

Number of job spells 227,526 196,947

Panel c) South Centre-North

Before UB eligibility (Z < 52)
1–11 accumulated working weeks (λ1l,1) 0.002 0.064 -0.103 * 0.060

12–19 accumulated working weeks (λ1l,2) 0.096 0.064 -0.097 0.061

20–27 accumulated working weeks (λ1l,3) 0.079 0.065 -0.034 0.061

28–35 accumulated working weeks (λ1l,4) 0.067 0.066 -0.031 0.061

36–43 accumulated working weeks (λ1l,5) 0.053 0.068 0.001 0.062

44–51 accumulated working weeks (λ1l,6) 0.000 – 0.000 –

After UB eligibility (Z ≥ 52)
52–59 accumulated working weeks (λ1l,7) 0.150 ** 0.073 0.053 0.068 0.331

60–67 accumulated working weeks (λ1l,8) 0.216 *** 0.082 -0.024 0.079 0.035

68–75 accumulated working weeks (λ1l,9) 0.125 0.092 0.000 0.087 0.319

76 or more accumulated working weeks (λ1l,10) -0.046 0.084 -0.089 0.075 0.707

Wald test H0: λ1l,1 = · · · = λ1l,5 = 0 p-value = 0.304 p-value = 0.321

Wald test H0: λ1l,7 = · · · = λ1l,10 = 0 p-value = 0.005 p-value = 0.463

Number of job spells 121,301 303,172

Notes: *** Significant at the 1% level; ** significant at the 5% level; * significant at the 10% level.
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There is evidence of different social norms between the South and the rest of Italy (Banfield,

1958). For example, according to the laboratory-in-the-field experiment in Bigoni et al. (2016,

2018) and the 2008 European Values Survey, people in the south of Italy have a much lower

level of trust in people and in society. With this general sentiment of distrust towards the oth-

ers, employers and employees may find it easier to feel justified in behaving opportunistically

and exploiting the UI system.29 Related to this, undeclared employment also occurs more in

the South than in the rest of Italy.30 In a society where undertaking undeclared work is more

widespread, firms and workers might more easily agree, once UB eligibility is attained, to offi-

cially terminate the official employment relationship but maintain it off the books. The surplus

coming from the UB could then be shared between both sides of the job relation, depending on

their bargaining power. Panel c) of Table 4 reports the estimation results of interest when we

split Italy into South and Centre-North.31 In the South, the layoff transition intensity increases

by 16.2% when UB eligibility is attained. The increase peaks at 24% between 60 and 67 weeks

of accumulated work experience and then fades away. In the rest of Italy, the effect of UB

eligibility is instead not significantly different from zero and the joint significance test of the

overall effect for Z ≥ 52 reported at the bottom of panel c) of Table 4 cannot reject the null

hypothesis. This suggests that the effect at the national level is mainly driven by the labour

market in the South. When testing whether the ATTs in the South are different from those in

the Centre-North, we find that only the difference in the effect for weeks 60–67 is significant

at the 5% level. The other ATTs, although quite different in size between the South and the

Centre-North, do not formally show a significant difference, due to the increasing standard er-

rors when we split the sample into subgroups. Although the sample size seems large, because

the duration increases at a similar rate as the accumulated working weeks, we start having a

problem of lack of precision when looking at the heterogeneity of ATTs.

In our administrative dataset, we cannot find information on job relations that are off the

books. However, if workers and firms agree on officially terminating the job relation to main-

tain it off the books once UB eligibility is attained, displaced workers who are entitled to UB

should display a higher probability of officially re-entering the same firm after UB exhaustion.

As shown in Appendix F, the probability of re-hiring by the same firm does not display discon-

tinuities at the eligibility cut-off measured at firing. This suggests that the larger effect detected

in the South is not linked to undeclared work replacing official employment. However, it does

not completely rule it out because the undeclared job relation could go on for many years.

29Guiso et al. (2004) exploit these geographical differences in Italy and find evidence that low trust in society

leads to lower financial development. In addition, low-trust areas are associated with a greater use of loans from

relatives or friends, as opposed to bank loans.
30According to the estimates in De Gregorio and Giordano (2015), irregular employment was 15.7% of total

employment in the South, compared with 9.8% for the whole country. Moreover, according to data collected by

the Italian Labour Inspectorate, each audit finds, on average, about 19% more undeclared jobs in the South than

in the rest of Italy, albeit the audits per firm in the South are more than twice as many as those in the Centre-North

(6.2% versus 2.9%). See C.4 in Appendix C for more details on these types of descriptive statistics.
31Southern regions are defined following the European NUTS1 category: Abruzzo, Molise, Campania, Puglia,

Basilicata, Calabria, Sicily and Sardinia.
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Deriving clear-cut policy implications from our estimated ATTs and their heterogeneity is

not straightforward. The main difficulty is obtaining data to credibly disentangle the detected

opportunistic behaviour in the moral hazard component on the firms’ side from that on the

employees’ side. If we could do this, then we would be able to suggest to what extent the

policy maker should intervene to reduce the opportunistic behaviour of firms, by introducing

an experience rating system to reduce layoffs, for example, and/or the moral hazard behaviour

of workers, such as by making the UB system less generous.

Although we do not have evidence regarding which side of the labour market mostly deter-

mines our empirical findings, there are several hints suggesting that the dominant moral hazard

is on the firm side. First, lower firing costs should not increase employees’ incentives to exploit

the UI system, but rather, employers’. Similarly, the boost in the layoff exit rate for workers

eligible for UB after 2008 might have little to do with the moral hazard of employees. The

Great Recession should have reduced the willingness of workers to opportunistically exploit

the UB system by lowering the value of the outside option. Furthermore, most of the layoffs in

our sample are due to economic reasons (91.8%) and not the misconduct of the worker (8.2%).

To gauge the importance of the first type of layoff in driving our findings, we redefine the two

competing risks by isolating layoffs for economic reasons in one of these and by including all

of the other reasons for job exit into the second risk. Table 5 reports the estimated ATTs on the

exit rate due to layoffs for economic reasons. They are very much in line with those from the

benchmark analysis.32 This corroborates the hypothesis that it might mostly be employers who

take the initiative for the layoff and, therefore, who drive our findings.33 Hence, we argue that:

i) the main driver of the estimated ATTs is likely to be employers’ moral hazard behaviour; and

ii) policy interventions targeted at reducing the moral hazard of firms, especially small firms,

should effectively contribute to reducing excessive layoffs.34

The importance of limiting excessive layoffs is not only related to the issue of the optimal

use of the UB system in protecting dismissed workers, but it also has indirect and long-term

implications that are linked to the time that the excess displaced workers take to find a new

job. First, excessive layoffs may increase the proportion of unemployed affected by stigma,

with lower re-employment possibilities (Canziani and Petrongolo, 2001). Second, if there is an

excessive number of layoffs entitled to UB, then there will be an excessive number of unem-

ployed workers with a reduced job-search effort and/or higher reservation wage. The larger the

32An analysis with worker misconduct as the outcome of interest gives compatible point estimates, though these

are rather imprecise given the limited number of layoffs attributed to such a reason (results available upon

request).
33We refrain from assigning to the observed reason for job termination the actual revealed initiative of one of

the two parties to terminate the job relationship, as they may have agreed on the formal reason for the job

termination.
34In this spirit, a 2013 labour market reform introduced a firing tax in Italy (Law 92/2012). Although this may be

a step in the right direction, the introduction of firing taxes may have unintended consequences in a dual labour

market such as the Italian market: permanent contracts risk becoming even less attractive than temporary jobs.
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Table 5: Estimated ATTs on the transition intensity of layoffs for economic rea-

sons

Coeff. S.E.

After UB eligibility (Z ≥ 52)
52–59 accumulated working weeks (λ1l,7) 0.124 ** 0.052

60–67 accumulated working weeks (λ1l,8) 0.107 * 0.059

68–75 accumulated working weeks (λ1l,9) 0.052 0.066

76 or more accumulated working weeks (λ1l,10) -0.066 0.057

Wald test H0: λ1l,1 = · · · = λ1l,5 = 0 p-value = 0.265

Wald test H0: λ1l,7 = · · · = λ1l,10 = 0 p-value = 0.004

Log-likelihood -1,463,163.6

Number of job spells 424,473

Notes: *** Significant at the 1% level; ** significant at the 5% level; * significant at the 10% level.

actual disincentive effects in looking for and accepting a new job, the more relevant this indirect

effect is for policy implications. In the economics literature, many studies link UB generosity

with an increase in unemployment duration (see, for example, the survey by Schmieder and

von Wachter, 2016). To gauge the extent to which this indirect implication could be relevant in

Italy, from our sample we select workers who were laid off and follow them over time from that

moment. We then estimate logit models for the probability of re-entering employment in six,

nine and twelve months from dismissal as a function of a full set of dummies for the value of

the working weeks accumulated at firing and the other covariates. We run the model separately

for the treated and the controls. Figure C.2 in Appendix C displays the predicted probabilities

across the working weeks accumulated at firing by treatment status. Interestingly, when firing

occurs at Z < 52, we find that both groups share a similar probability of finding a new job

in six, nine, and twelve months. Above 52 weeks, the re-employment probability suddenly

drops but only for the treated. These profiles indicate that the excessive layoffs detected in

the baseline model also have indirect and long-lasting consequences for the re-integration of

the unemployed entitled to UB into the labour market. This reinforces the need for a policy

intervention.

7 Conclusions

Unemployment insurance (UI) protects workers in the event of job loss and grants earnings

stability. Previous literature has shown that it introduces a moral hazard on the job-seeking

behaviour of the unemployed. In this paper, we show that this moral hazard is not only limited

to unemployment spells but also affects employment spells. As in most countries the eligibility

for unemployment benefits (UBs) depends on the amount of contributions to social security,

both workers and firms may behave strategically to satisfy such conditions and appropriate the

surplus coming from the UI system. UB eligibility may therefore distort firms and workers’

behaviour and affect the duration of existing jobs. The relative importance of moral hazard on

the firm’s and the worker’s side is an open question.
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In this paper, we investigated whether and to what extent layoffs are affected by the attain-

ment of UB eligibility during the job spell. In our empirical analysis we focus on Italy, a country

characterised by the lack of an experience rating system, like many countries in Europe. Wide

economic and cultural differences across regions and different levels of employment protection

legislation between firms make Italy an interesting case to study heterogeneity in response to

UB eligibility. We rely on an inflow sample of more than 400,000 new jobs drawn from admin-

istrative registries covering the period of 2005 to 2012. To identify the impact of UB eligibility

on the layoff transition intensity, we exploit the peculiarity in the eligibility conditions of the

Italian UI system. Our identification strategy is based on a difference-in-differences estima-

tor that compares the layoff probability of individuals before and after the attainment of UI

eligibility to a control group that cannot claim UBs.

We find robust evidence that UB eligibility increases the layoff exit rate by 12% as soon

as eligibility is attained. The effect persists for about 16 weeks. The sudden boost suggests

that the workers’ improved outside option can dissolve the most fragile job matches, while

it is not enough to terminate longer-lasting jobs. We detect significant heterogeneity in the

effects. The results are driven by layoffs of jobs started after 2008, in small firms and in the

South. A stronger effect during the Great Recession and in smaller firms is compatible with an

induced moral hazard on the employer’s side. First, in downturns, employees should have lower

incentives to shirk because the outside option is less valuable due to the greater difficulty in

finding a new job. Second, in Italy smaller firms have lower firing costs and therefore can more

easily take advantage of the UI system to adjust their workforce. Finally, only a small minority

of the layoffs observed in our sample are due to the misconduct of the worker. The results are

in line with the hypothesis that employers exploit the UB system for labour adjustments when

negative economic shocks occur (Zweimüller, 2018).

From a policy perspective, our study has important implications, not only for Italy. In con-

trast to the US, most European countries have not adopted experience rating systems which

require firms to pay unemployment taxes based on their use of UBs. Some countries have in-

troduced limited interventions targeting specific groups such as older workers (e.g. Delalande

tax in France and Arbeitslosengeld I in Germany), but they involve a small minority of jobs.

Since our findings suggest that the excessive layoffs might be due to employers’ moral hazard,

the introduction of an experience rating system may be of help to prevent firms from misus-

ing the UB system. Furthermore, its introduction should make jobs longer lasting, which may

have indirect positive consequences on productivity in the economy if longer-lasting jobs are

associated with gains in general and firm-specific human capital. Finally, as we found evi-

dence that the mass of excessive layoffs results in an excessive number of insured unemployed

workers with longer-lasting unemployment spells, re-aligning firms’ incentives is even more

fundamental.
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Appendix

A Full set of estimation results of the DiD MPH competing risk model
with unobserved heterogeneity

Table A.1: Impact of accumulated working weeks (Z) on transition intensities, Italy

Transition intensity for

Layoff transition intensity (l) other termination reason (o)

————————————————– ————————————————–

For everybody Deviation for the treated For everybody Deviation for the treated

Coeff. S.E. Coeff. S.E. Coeff. S.E. Coeff. S.E.

Cumulated working weeks (Z)
1–11 accumulated working weeks (λ1k,e) 0.636 *** 0.035 -0.056 0.044 0.995 *** 0.014 -0.067 *** 0.018

12–19 accumulated working weeks (λ2k,e) 0.454 *** 0.035 -0.009 0.044 0.646 *** 0.014 -0.058 *** 0.018

20–27 accumulated working weeks (λ3k,e) 0.271 *** 0.035 0.015 0.044 0.403 *** 0.014 -0.014 0.018

28–35 accumulated working weeks (λ4k,e) 0.179 *** 0.036 0.012 0.044 0.237 *** 0.014 0.004 0.018

36–43 accumulated working weeks (λ5k,e) 0.084 ** 0.037 0.020 0.046 0.121 *** 0.014 0.019 0.019

44–51 accumulated working weeks (λ6k,e) 0.000 – 0.000 – 0.000 – 0.000 –

52–59 accumulated working weeks (λ7k,e) -0.068 * 0.040 0.115 ** 0.049 -0.110 *** 0.016 -0.018 0.021

60–67 accumulated working weeks (λ8k,e) -0.207 *** 0.045 0.117 ** 0.056 -0.307 *** 0.018 -0.019 0.024

68–75 accumulated working weeks (λ9k,e) -0.300 *** 0.051 0.063 0.062 -0.523 *** 0.021 -0.040 0.028

76+ accumulated working weeks (λ10k,e) -0.684 *** 0.049 -0.082 0.055 -0.796 *** 0.021 -0.203 *** 0.024

Wald test H0: λ1l,1 = · · · = λ1l,5 = 0 p-value = 0.352

Wald test H0: λ1l,7 = · · · = λ1l,10 = 0 p-value = 0.001

Number of job spells 424,473

Notes: *** Significant at the 1% level; ** significant at the 5% level; * significant at the 10% level.
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Table A.2: Impact of covariates on transition intensities, Italy

Transition intensity for

Layoff transition intensity (l) other termination reason (o)

————————————————– ————————————————–

For everybody Deviation for the treated For everybody Deviation for the treated

Coeff. S.E. Coeff. S.E. Coeff. S.E. Coeff. S.E.

(Age− 15)/100 -4.027 *** 0.292 3.459 *** 0.456 -4.316 *** 0.129 2.867 *** 0.217

(Age− 15)2/1000 1.177 *** 0.079 -0.853 *** 0.115 1.090 *** 0.036 -0.656 *** 0.055

Woman -0.208 *** 0.015 -0.075 *** 0.022 -0.065 *** 0.006 -0.029 *** 0.010

Ever received income support 0.254 ** 0.113 0.008 0.115 -0.011 0.054 0.088 0.056

Blue collar job in year before spell start 0.322 *** 0.028 0.087 ** 0.037 0.393 *** 0.011 0.042 *** 0.016

Employment contract in the calendar year before the start of the job spell - Reference: Temporary contract
Open-ended contract 0.181 *** 0.030 0.036 0.037 0.106 *** 0.013 -0.050 *** 0.017

Seasonal employment -0.135 *** 0.046 0.037 0.058 -0.096 *** 0.021 -0.002 0.027

No employment 0.073 *** 0.023 0.031 0.033 0.080 *** 0.009 -0.078 *** 0.014

Firm size - Reference: 5 or fewer employees
Between 6 and 15 -0.187 *** 0.019 -0.028 0.026 -0.125 *** 0.009 -0.003 0.014

Between 15 and 50 -0.335 *** 0.021 -0.028 0.029 -0.069 *** 0.009 -0.005 0.014

Between 51 and 100 -0.678 *** 0.022 -0.106 *** 0.032 -0.085 *** 0.009 0.023 * 0.014

More than 100 -0.641 *** 0.027 0.001 0.040 0.058 *** 0.009 0.039 *** 0.015

Type of contract - Reference: Open-ended
Temporary 0.022 0.016 0.031 0.023 -0.497 *** 0.007 -0.161 *** 0.011

Seasonal 0.869 *** 0.033 -0.307 *** 0.048 0.430 *** 0.017 -0.110 *** 0.026

Geographical area - Reference: North-West
North-East 0.066 *** 0.023 -0.080 ** 0.034 0.035 *** 0.008 -0.063 *** 0.012

Centre 0.211 *** 0.023 -0.067 ** 0.034 -0.033 *** 0.009 -0.074 *** 0.014

South 0.824 *** 0.021 -0.003 0.031 -0.044 *** 0.009 -0.042 *** 0.014

Islands 0.888 *** 0.026 -0.055 0.036 0.045 *** 0.012 -0.102 *** 0.018

Year at the start of the spell - Reference: 2005
2006 -0.169 *** 0.031 0.058 0.043 -0.070 *** 0.014 0.017 0.021

2007 -0.192 *** 0.036 -0.029 0.052 -0.079 *** 0.016 -0.028 0.025

2008 -0.015 0.037 -0.060 0.053 -0.029 * 0.017 -0.100 *** 0.027

2009 -0.236 *** 0.044 -0.038 0.063 0.036 * 0.020 -0.108 *** 0.031

2010 -0.319 *** 0.036 -0.011 0.051 -0.027 * 0.016 -0.131 *** 0.024

2011 -0.552 *** 0.040 0.058 0.055 -0.174 *** 0.017 -0.102 *** 0.026

Month of the year at the start of the spell - Reference: January–April
May–August 0.390 *** 0.018 -0.021 0.024 0.436 *** 0.008 -0.058 *** 0.011

September–December 0.303 *** 0.019 0.005 0.026 0.363 *** 0.008 0.000 0.012

Regional yearly GDP growth rate -1.149 *** 0.294 0.017 0.432 -0.171 0.129 0.188 0.205

Notes: *** Significant at the 1% level; ** significant at the 5% level; * significant at the 10% level.
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Table A.3: Estimation results of the baseline transition in-

tensities, Italy

Transition intensity for

Layoff transition intensity (l) other termination reason (o)

——————————- ——————————-

Coeff. Std. Err. Coeff. Std. Err.

Elapsed job spell (weeks)

[1, 4] 0.000 – 0.000 –

[5, 8] 0.189 *** 0.019 0.401 *** 0.008

[9, 12] 0.285 *** 0.023 0.625 *** 0.010

[13, 16] 0.538 *** 0.026 0.917 *** 0.012

[17, 20] 0.446 *** 0.030 0.806 *** 0.014

[21, 24] 0.400 *** 0.034 0.779 *** 0.017

[25, 28] 0.652 *** 0.036 1.078 *** 0.018

[29, 32] 0.553 *** 0.041 0.905 *** 0.020

[33, 36] 0.517 *** 0.044 0.915 *** 0.022

[37, 40] 0.643 *** 0.047 1.020 *** 0.024

[41, 44] 0.625 *** 0.051 1.033 *** 0.025

[45, 48] 0.657 *** 0.054 1.076 *** 0.027

[49, 52] 0.656 *** 0.058 1.144 *** 0.028

[53, 56] 1.032 *** 0.059 1.453 *** 0.029

[57, 60] 0.957 *** 0.064 1.243 *** 0.032

[61, 64] 1.077 *** 0.068 1.330 *** 0.033

[65, 72] 1.262 *** 0.066 1.534 *** 0.033

[73, 80] 1.582 *** 0.075 1.855 *** 0.037

[81, 88] 1.665 *** 0.081 1.847 *** 0.040

[89, 104] 1.773 *** 0.082 1.884 *** 0.041

Notes: *** Significant at the 1% level; ** significant at the 5% level; * significant

at the 10% level.

Table A.4: Estimated unobserved heterogeneity distribution of the MPH transition intensities

and summary statistics of the estimation, Italy

Layoff transition intensity (l) Transition intensity for other termination reason (o)

————————————————– ————————————————–

Controls Treated Controls Treated

Coeff. Std. Err. Coeff. Std. Err. Coeff. Std. Err. Coeff. Std. Err.

Unobserved heterogeneity support points
v1 -5.132 *** 0.067 -5.079 *** 0.062 -3.505 *** 0.031 -3.203 *** 0.032

v2 -3.028 *** 0.171 -6.356 5.387 -1.658 *** 0.118 -4.411 ** 2.166

v3 -8.719 *** 0.360 -8.563 *** 0.428 -6.766 *** 0.154 -6.893 *** 0.175

v4 -6.294 *** 0.127 -6.469 *** 0.728 -4.375 *** 0.052 -4.512 *** 0.260

Unobserved heterogeneity logistic weights of the probability masses
λ1 1.015 *** 0.129

λ2 -1.944 *** 0.179

λ3 -1.730 *** 0.111

λ4 0.000 –

Resulting unobserved heterogeneity probability masses
p1 1.189

p2 0.062

p3 0.076

p4 0.431

Log-likelihood -1,469,772.3

AIC/N 6.926

Number of parameters 201

Number of job spells 424,473

Number of time-spell observations 6,110,657

Notes: *** Significant at the 1% level; ** significant at the 5% level; * significant at the 10% level.
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B Full set of estimation results of the DiD MPH competing risk model
without unobserved heterogeneity

Table B.1: Estimation results of the baseline transition

intensities, Italy

Transition intensity for

Layoff transition intensity other termination reason

——————————- ——————————-

Coeff. Std. Err. Coeff. Std. Err.

Elapsed job spell (weeks)

[1, 4] 0.000 – 0.000 –

[5, 8] 0.078 *** 0.016 0.304 *** 0.007

[9, 12] 0.081 *** 0.018 0.444 *** 0.007

[13, 16] 0.242 *** 0.020 0.647 *** 0.007

[17, 20] 0.057 *** 0.022 0.449 *** 0.008

[21, 24] -0.067 *** 0.025 0.345 *** 0.009

[25, 28] 0.104 *** 0.025 0.566 *** 0.009

[29, 32] -0.079 *** 0.028 0.313 *** 0.011

[33, 36] -0.190 *** 0.031 0.250 *** 0.012

[37, 40] -0.133 *** 0.033 0.287 *** 0.013

[41, 44] -0.225 *** 0.035 0.226 *** 0.014

[45, 48] -0.258 *** 0.038 0.203 *** 0.015

[49, 52] -0.337 *** 0.040 0.194 *** 0.015

[53, 56] -0.036 0.039 0.425 *** 0.015

[57, 60] -0.198 *** 0.044 0.129 *** 0.018

[61, 64] -0.148 *** 0.047 0.146 *** 0.020

[65, 72] -0.086 0.040 0.223 *** 0.016

[73, 80] 0.042 0.045 0.353 *** 0.018

[81, 88] -0.002 0.050 0.216 *** 0.021

[89, 104] -0.044 0.046 0.105 *** 0.019

Notes: *** Significant at the 1% level; ** significant at the 5% level; * signif-

icant at the 10% level.
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Table B.2: Estimation results of the impact of accumulated working weeks (Z) on

transition intensities, Italy

Transition intensity for

Layoff transition intensity other termination reason

————————————————– ————————————————–

For everybody Deviation for the treated For everybody Deviation for the treated

Coeff. S.E. Coeff. S.E. Coeff. S.E. Coeff. S.E.

Accumulated working weeks (Z)
1–11 0.409 *** 0.033 -0.038 0.040 0.740 *** 0.012 0.020 0.016

12–19 0.247 *** 0.033 0.053 0.042 0.426 *** 0.012 0.039 ** 0.017

20–27 0.125 *** 0.034 0.060 0.043 0.247 *** 0.013 0.056 *** 0.017

28–35 0.087 ** 0.035 0.049 0.044 0.137 *** 0.014 0.054 *** 0.018

36–43 0.040 0.037 0.033 0.045 0.072 *** 0.014 0.042 ** 0.018

44–51 0.000 – 0.000 – 0.000 – 0.000 –

52–59 -0.003 0.040 0.095 * 0.049 -0.044 *** 0.015 -0.048 ** 0.020

60–67 -0.062 0.045 0.076 0.055 -0.162 *** 0.018 -0.075 *** 0.023

68–75 -0.063 0.049 -0.006 0.060 -0.278 *** 0.020 -0.133 *** 0.026

76 or more -0.287 * 0.045 -0.123 ** 0.049 -0.370 *** 0.017 -0.282 *** 0.021

Notes: *** Significant at the 1% level; ** significant at the 5% level; * significant at the 10% level.

Table B.3: Estimation results of the impact of covariates on transition intensities, Italy

Transition intensity for

Layoff transition intensity other termination reason

————————————————– ————————————————–

For everybody Deviation for the treated For everybody Deviation for the treated

Coeff. S.E. Coeff. S.E. Coeff. S.E. Coeff. S.E.

(Age− 15)/100 -2.692 *** 0.266 2.628 *** 0.418 -3.253 *** 0.101 2.409 *** 0.164

(Age− 15)2/1000 0.853 *** 0.072 -0.658 *** 0.105 0.835 *** 0.028 -0.544 *** 0.042

Woman -0.196 *** 0.014 -0.046 ** 0.021 -0.050 *** 0.005 -0.015 ** 0.008

Ever received income support 0.242 ** 0.107 0.037 0.109 -0.022 0.046 0.134 *** 0.047

Blue–collar job in year before spell start 0.230 *** 0.027 0.066 * 0.035 0.295 *** 0.009 0.033 *** 0.012

Employment contract in the last year before the start of the job spell - Reference: Temporary contract
Temporary contract 0.127 *** 0.028 0.048 0.034 0.055 *** 0.011 -0.043 *** 0.014

Seasonal employment -0.083 * 0.044 0.034 0.055 -0.042 ** 0.016 -0.006 0.021

No employment 0.076 *** 0.022 0.036 0.031 0.094 *** 0.008 -0.090 *** 0.011

Firm size - Reference: 5 or fewer employees
Between 6 and 15 -0.147 *** 0.017 -0.021 0.024 -0.094 *** 0.007 0.003 0.011

Between 15 and 50 -0.295 *** 0.019 -0.013 0.027 -0.041 *** 0.008 0.004 0.011

Between 51 and 100 -0.617 *** 0.021 -0.100 *** 0.031 -0.041 *** 0.007 0.017 0.011

More than 100 -0.617 *** 0.027 -0.037 0.039 0.084 *** 0.008 0.011 0.011

Type of contract - Reference: Open-ended
Temporary 0.125 *** 0.015 0.059 *** 0.021 -0.394 *** 0.006 -0.110 *** 0.009

Seasonal 0.844 *** 0.030 -0.219 *** 0.045 0.400 *** 0.012 -0.021 0.018

Geographical area - Reference: North-West
North-East 0.048 ** 0.022 -0.064 0.033 0.020 *** 0.006 -0.043 *** 0.010

Center 0.218 *** 0.023 -0.042 0.033 -0.031 *** 0.007 -0.037 *** 0.011

South 0.799 *** 0.020 -0.003 0.029 -0.058 *** 0.007 -0.024 ** 0.011

Islands 0.850 *** 0.024 -0.042 0.034 0.025 ** 0.010 -0.063 *** 0.014

Year at the start of the spell - Reference: 2005
2006 -0.137 *** 0.029 0.047 0.040 -0.049 *** 0.011 0.005 0.017

2007 -0.146 *** 0.034 -0.028 0.049 -0.045 *** 0.013 -0.027 0.020

2008 0.002 0.034 -0.046 0.049 -0.016 0.014 -0.086 *** 0.021

2009 -0.212 *** 0.041 -0.037 0.058 0.043 *** 0.016 -0.113 *** 0.024

2010 -0.278 *** 0.034 -0.001 0.047 -0.004 0.013 -0.130 *** 0.018

2011 -0.447 *** 0.038 0.073 0.052 -0.095 *** 0.014 -0.088 *** 0.020

Month of the year at the start of the spell - Reference: January–April
May–August 0.271 *** 0.016 -0.022 0.022 0.333 *** 0.006 -0.064 *** 0.009

September–December 0.169 *** 0.017 -0.063 *** 0.024 0.238 *** 0.006 -0.077 *** 0.009

Regional yearly GDP growth rate -1.042 *** 0.278 0.119 0.404 -0.136 0.105 0.258 0.160

Notes: *** Significant at the 1% level; ** significant at the 5% level; * significant at the 10% level.
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C Further tables and figures

Table C.1: Sharp RDD estimates based on local linear regressions

Panel a) Outcome: exit due to layoff
Treated group Control group

Italy South Centre-North Italy South Centre-North

Coeff. (effect at cut-off Z = 52) 0.0011 0.0034 0.0004 0.0006 0.0014 0.0006

Robust p-value 0.0310 0.0070 0.3080 0.1010 0.2950 0.1200

Robust lower bound 95% CI 0.0001 0.0009 -0.0004 -0.0001 -0.0010 -0.0002

Robust upper bound 95% CI 0.0022 0.0054 0.0014 0.0013 0.0033 0.0017

Effect in % 0.1477 0.2596 0.0705 0.1070 0.1374 0.1493

Eff. number of obs. (Left) 434,856 154,089 330,294 658,079 139,030 245,014

Eff. number of obs. (Right) 320,549 105,381 244,323 448,039 95,866 203,940

Panel b) Outcome: exit due to resignation
Treated group Control group

Italy South Centre-North Italy South Centre-North

Coeff. (effect at cut-off Z = 52) 0.0004 0.0010 0.0002 0.0004 0.0005 0.0003

Robust p-value 0.6810 0.2940 0.8400 0.5630 0.6020 0.7040

Robust lower bound 95% CI -0.0011 -0.0009 -0.0016 -0.0010 -0.0018 -0.0013

Robust upper bound 95% CI 0.0017 0.0030 0.0020 0.0018 0.0032 0.0020

Effect in % 0.0234 0.0948 0.0113 0.0258 0.0378 0.0197

Eff. number of obs. (Left) 393,418 178,803 275,797 430,200 120,452 327,803

Eff. number of obs. (Right) 296,416 117,431 211,016 332,396 86,881 255,066

Notes: This table reports sharp RDD estimates using local linear regression. In Panel a (b) the dependent binary

variable ykit is equal to 1 if the layoff (resignation) is observed in two weeks. Z is the forcing variable with

cut-off at 52 accumulated working weeks. We used local linear regressions as in Calonico et al. (2014) with the

following options: triangular kernel; variance–covariance matrix estimated using the heteroskedasticity-robust

nearest-neighbour variance estimator; bandwidth selected based on the MSE-optimal bandwidth selector.

Table C.2: Sharp RDD estimates: heterogeneous effects

a) Treated group - layoff b) Treated group - resignation

Smaller Larger <2008 ≥2008 Smaller Larger <2008 ≥2008

Coeff. (effect at cut-off Z = 52) 0.0022 0.0003 -0.0002 0.0023 -0.0001 0.0008 -0.0001 0.0004

Robust p-value 0.0090 0.5160 0.8130 0.0000 0.9040 0.2430 0.9160 0.3860

Robust lower bound 95% CI 0.0005 -0.0008 -0.0014 0.0013 -0.0023 -0.0007 -0.0024 -0.0007

Robust upper bound 95% CI 0.0039 0.0016 0.0011 0.0037 0.0021 0.0027 0.0023 0.0017

Effect in % 0.2218 0.0513 -0.0233 0.3152 -0.0078 0.0602 -0.0058 0.2530

Eff. number of obs. (Left) 207,873 205,942 270,149 407,058 169,298 226,983 163,001 449,965

Eff. number of obs. (Right) 160,133 170,842 200,841 267,739 138,501 182,961 139,014 286,513

Notes: This table reports sharp RDD estimates using local linear regression by firm size (≤ or > 15 employees)

and year of hiring (< or ≥ 2008). In column a (b) the dependent binary variable ykit is equal to 1 if the layoff

(resignation) is observed in two weeks. Z is the forcing variable with cut-off at 52 accumulated working weeks.

We used local linear regressions as in Calonico et al. (2014) with the following options: triangular kernel;

variance–covariance matrix estimated using the heteroskedasticity-robust nearest-neighbour variance estimator;

bandwidth selected based on the MSE-optimal bandwidth selector.
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Table C.3: The impact of accumulated working weeks

on the layoff transition intensity with unobserved het-

erogeneity for the treated

Before UB eligibility (Z < 52)
1–11 cumulated working weeks (λ1l,1) 0.482 *** 0.032

12–19 cumulated working weeks (λ1l,2) 0.378 *** 0.031

20–27 cumulated working weeks (λ1l,3) 0.221 *** 0.030

28–35 cumulated working weeks (λ1l,4) 0.147 *** 0.028

36–43 cumulated working weeks (λ1l,5) 0.085 *** 0.028

44–51 cumulated working weeks (λ1l,6) – –

After UB eligibility (Z ≥ 52)
52–59 cumulated working weeks (λ1l,7) 0.069 ** 0.031

60–67 cumulated working weeks (λ1l,8) 0.024 0.038

68–75 cumulated working weeks (λ1l,9) 0.096 ** 0.045

76 or more cumulated working weeks (λ1l,10) -0.500 *** 0.049

Log-likelihood -672,615.7

Number of job spells 184,676

Number of parameters 121

Notes: *** Significant at the 1% level; ** significant at the 5% level; * signifi-

cant at the 10% level.

Table C.4: Data on frequency of labour inspections across regions

Number Number Undeclared Ratio Ratio undeclared

of firms of audits jobs found audits/firms jobs/audits

(2015) (2016) (2016) (%)

Piemonte 316,258 9,768 2,552 3.1 0.261

Valle d’Aosta 11,223 155 56 1.4 0.361

Liguria 120,647 5,137 1,156 4.3 0.225

Lombardia 786,798 14,758 3,985 1.9 0.270

Trentino Alto Adige 83,418 – – – –

Veneto 384,164 7,985 2,305 2.1 0.289

Fiuli-Venezia Giulia 81,566 3,446 609 4.2 0.177

Emilia-Romagna 360,034 10,406 3,322 2.9 0.319

Tuscany 314,456 10,854 3,502 3.5 0.323

Umbria 65,261 3,935 498 6.0 0.127

Marche 124,092 5,096 1,112 4.1 0.218

Lazio 417,132 11,990 4,526 2.9 0.377

Abruzzo 95,791 5,017 1,211 5.2 0.241

Molise 20,360 2,361 562 11.6 0.238

Campania 330,569 14,043 6,698 4.2 0.477

Puglia 245,374 15,164 5,164 6.2 0.341

Basilicata 34,215 6,849 949 20.0 0.139

Calabria 104,153 8,133 2,812 7.8 0.346

Sicilia 259,346 – – – –

Sardinia 100,816 6,826 2,030 6.8 0.297

Italy 4,339,091 141,920 43,048 3.3 0.303

South (no Sicily) 830,462 51,567 17,396 6.2 0.337

Centre-North (no Trentino Alto Adige) 3,082,447 90,356 25,653 2.9 0.284

Sources: The number of firms comes from ISTAT, Risultati economici delle imprese, retrieved from

http://dati.istat.it/Index.aspx?DataSetCode=DCSP_SBSREG. The number of audits and the number of

undeclared jobs come from National Labour Inspectorate, Monitoraggio gennaio-dicembre 2016, re-

trieved from https://www.ispettorato.gov.it/it-it/studiestatistiche/Pagine/Monitoraggio-trimestrale-attivita-

di-vigilanza.aspx.
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Figure C.1: Distribution of accumulated working weeks Z0 at job spell start (t = 0)
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Figure C.2: Predicted re-employment probabilities in 6, 9 and 12 months since firing across the

accumulated working weeks (Z) at layoff

(a) In 6 months after layoff

(b) In 9 months after layoff

(c) In 12 months after layoff

Notes: The re-employment probabilities are predicted at the sample mean of the covariates. They are calculated after the estimation of logit

models for the probability of re-entering employment in 6, 9 and 12 months from dismissal, as a function of a full set of dummies for the

value of the accumulated working weeks at firing and the other covariates and separately for the treated and the controls. The solid curves

are quadratic fits of the predicted probabilities, separately computed to the left and to the right of the cut-off of 52 accumulated working

weeks.
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Figure C.3: Logit estimates of the relation between the accumulated working weeks (Z) and

the probability of job exit in 2 weeks by year of hiring
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Note: See the footnote of Figure 5.
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Figure C.4: Logit estimates of the relation between the accumulated working weeks (Z) and

the probability of job exit in two weeks by geographical area
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Figure C.5: Logit estimates of the relation between the accumulated working weeks (Z) and

the probability of job exit in two weeks by firm size
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D Likelihood function and estimation of the DiD MPH competing risk
model

In this appendix, we describe the likelihood function and its derivation for the DiD MPH model

in Subsection 6.1. The contribution to the likelihood function of job spell i is fully characterised

by the transition intensities specified in Equation (2). If the job spell is right-censored after t

periods, then its contribution is given by the survivor function until the end of the t-th time unit:

Lc
i(t|xit, zit, di,vi;Θ) ≡ S(t|xit, zit, di,vi) =

t∏
τ=1

exp

⎧⎨
⎩−

∑
k∈{l,o}

θk(τ |xiτ , ziτ , di, vik)

⎫⎬
⎭ ,

(D.1)

where τ ∈ and Θ is the set of unknown parameters. If the job spell i is complete and ends

in k, then its contribution to the likelihood function, which is derived below, is as follows:

Lk
i (t|xit, zit, di,vi;Θ) =

θk(t|xit, zit, di, vik)∑
r∈{l,o} θo(t|xit, zit, di, vik)

× [S(t− 1|xit−1, zit−1, di,vi)− S(t|xit, zit, di,vi)]. (D.2)

Because the likelihood contribution is conditional on the unobservables in vi, we need to

integrate them out after imposing an assumption on their distribution G. To avoid parametric

assumptions that are too strict, we follow Heckman and Singer (1984) and assume that the

vector vi ≡ (vi0l, vi0o, vi1l, vi1o) is a random draw from a discrete distribution function with

four points of support.35 The probabilities associated with the mass points sum to one and, for

m = 1, 2, 3, 4, are denoted by

pm=Pr(v0l=v0lm, v0o=v0om, v1l=v1lm, v1o=v1om)≡Pr(v = vm)

and specified as logistic transforms:

pm = exp(λm)
/ 4∑

g=1

exp(λg) m = 1, . . . , 4 λ4 = 0.

35Although Gaure et al. (2007) suggested choosing the number of support points that minimises the Akaike Infor-

mation Criterion (AIC), we had to limit their number to four for computational reasons, given that we have to

process more than 6 million job-time observations in the benchmark model. When progressively increasing the

number of support points up to four, the AIC showed decreasing values.



BANCO DE ESPAÑA 52 DOCUMENTO DE TRABAJO N.º 1904

unconditional on unobserved heterogeneity is:

Li(ti|xit, zit, di;Θ, λ1, λ2, λ3,v1,v2,v3,v4) =

4∑
m=1

pm(λm)
[
ciL

k
i (t|xit, zit, di;Θ,vm) + (1− ci)L

k
i (t|xit, zit, di;Θ,vm)

]
. (D.3)

The sample log-likelihood function which we maximised with respect to the parameters (Θ, λ1,

λ2, λ3, v1,v2,v3,v4) is given by the sum across the job spells of the natural logarithm of

Equation (D.3).

E Robustness checks

First, we investigate whether our findings are sensitive to the removal of seasonal jobs from the

sample, as these are likely to be quite a different type of contract, serving different technological

purposes, than open-ended or fixed-term contracts (Model (1) in Table E.1). In the same vein,

we retain only permanent jobs in Model (2). In Model (3), the estimation is run using only

permanent jobs as in Model (2), but we add additional covariates such as sector, daily salary

and collar type in the specification of the transition intensities. These variables are potentially

endogenous as forward-looking agents could respond on these margins by anticipating future

UI eligibility. Consequently, we excluded them from the benchmark analysis. The estimated

ATTs from these three alternative sample definitions and/or model specifications are very much

in line with those of the benchmark model, but somewhat larger. For example, when in Model

(2) we keep only permanent workers in the sample, the increase in the layoff exit rate amounts

to 15.1% and 19.8% at 52–59 and 60–67 accumulated working weeks, respectively. A more

substantial effect on permanent jobs was expected because these jobs are more likely to result

in firing than temporary positions, for which the employer typically waits until the end of the

contract to get rid of the worker.

Second, we parametrically specify the baseline hazards to avoid possible biases coming

from too flexible specifications in the baseline hazard and unobserved heterogeneity (Baker

and Melino, 2000). As in Baker and Melino’s (2000) simulations, in Model (4) we use a cubic

polynomial in durations for the baseline hazards of both competing risks. The estimated ATTs

are very much in line with those of the benchmark model.

Third, because the right-censoring of the controls becoming treated (i.e. eligible for C.2)

could be endogenously selective, in Model (5) we consider the change in the treatment status

occurring during the spell as a job exit towards the residual termination reason. By doing so,

we endogenously take into account the eventual compositional change in the control group. In

this check, the point estimates of the ATTs are also close to those of the benchmark model.

In Model (6), instead of right-censoring the controls that become treated during the job spell,

we retain them and model their job hazard rate while keeping them in the control group. By

By defining ci as the dummy indicator equal to 1 if spell i is censored and 0 if it is complete,

the contribution to the likelihood function of spell i with duration ti (complete or incomplete),
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doing so, we contaminate the control group, because now they satisfy C.2 and in the moment

at which they accumulate 52 working weeks over the previous two years, they will be entitled

to UB. The estimated effects are therefore expected to be biased towards zero. They can be

interpreted as intention-to-treat (ITT) effects or lower bounds of the true effect. Model (7) is

like (6) but focuses only on job spells in the South.36 As expected, the estimated ITT effects

are biased towards zero but still significant and sizable in the South.

Fourth, we check the sensitivity of our results to the definition of the treatment group.

According to our definition, the treatment group is made up of spells of workers with at least

one day and no more than two years of work experience during the C.2 period. We limited

the work experience to a maximum of two years to enhance comparability with the controls,

who have no work experience during the C.2 period. In this robustness check, we test whether

the results are sensitive to this choice by re-estimating the benchmark model after modifying

the maximum work experience to 26 weeks in Model (8) and 156 weeks in Model (9). The

latter reproduces results very similar to those of the benchmark model. Model (8) also returns

a point estimate of the ATT at 52–59 accumulated working weeks very close to that of the

benchmark model, translating into a boost in the layoff exit rate of about 11%. Because we are

losing a large part of the treated group,37 the increase in the standard errors makes the estimated

effect not significantly different from zero (p-value 0.102). The point estimate of the ATT for

the subsequent interval is instead halved with respect to the benchmark model. However, the

standard error increases by almost 30% with respect to the baseline model. Therefore, the

resulting 95% confidence interval largely encompasses the corresponding estimate from the

benchmark model.

The fifth robustness analysis is a validation test in the spirit of a placebo test. We estimate

the impact of UI eligibility on the (voluntary) resignation exit rate. Because the general rule

is that workers voluntarily resigning lose UB eligibility (see graph c) in Figure 3), we do not

expect significant ATTs for Z ≥ 52. Operationally, in Model (10) we keep the competing risks

structure unchanged, i.e. the number of competing risks is still fixed to two, but now one risk

of exit is voluntary resignation and the second risk is the residual category including all other

risks of exit (e.g. layoff and the end of a temporary/seasonal job). As expected, the estimated

ATTs of Model (10) do not display any evidence of a sudden increase in the job exit rate for

voluntarily quitting.

Although we did not find evidence of significant anticipatory effects along Z grouped into

intervals of (mainly) eight weeks, in a sixth robustness check, we test if evidence for an antic-

ipatory effect shows up when the worker gets very close to the UB eligibility threshold of 52

accumulated working weeks. We did this in Model (11) by re-estimating the benchmark model

with the piecewise constant specification of Λek(Z) augmented with a further dummy equal to

36The ITT effects in the Centre-North are also close to zero. They are available upon request.
37They decrease from 184,676 to 88,677.

In Model (6), instead of right-censoring the controls that become treated during the job spell,

we retain them and model their job hazard rate while keeping them in the control group. By
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1 when Z = 51, for k ∈ {l, o} and e ∈ {0, 1}. If indeed firms and employees opt for an oppor-

tunistic behaviour and agree to wait until UB eligibility before firing, this should be reflected in

a dip in the layoff exit rate right before UB entitlement, generating an anticipatory effect with

the opposite sign from the one found in the after-treatment period. Model (11) in Table E.1

shows that this extra dummy for Z = 51 has the expected negative sign, pointing to a reduction

of 5.2% in the layoff exit rate right before UB eligibility. This coefficient is not significantly

different from zero, however, and all of the other treatment effects are close to those of the

benchmark model. If we instead repeat the same robustness check only in the South (Model

(12)), which is where we found the strongest effect on layoffs, then the anticipatory dummy

implies a decrease in the layoff exit rate of 25.2%, with a p-value of 0.054.38

Finally, as an alternative identification strategy, we implement a regression discontinuity

design (RDD) estimator in the duration setting by removing the control units and including a

cubic polynomial specification across Z, with different coefficients to the right and left of the

cut-off (available upon request). We find that at the cut-off, the layoff exit rate significantly

jumps by 17.5% (p-value 0.001). This effect is very much in line with the results in the bench-

mark model, especially if one considers the slight overestimation coming from the dip right

before the cut-off (–5.2%) detected in Model (11).

To conclude, it is worth noting that in some specifications, the ATT at 76 or more accumu-

lated working weeks is significantly negative. However, this is not robust across models and is

also present in the validation test on resignations. As Z increases, control units become more

and more selective because they represent spells of workers with no previous experience during

the C.2 period but who survive for at least 76 weeks in the same job. While our model exten-

sively controls for (observed and unobserved) differences between treated and controls, we

acknowledge that the comparison may become harder for the very last values of Z. Hence, we

refrain from interpreting the coefficient of the differential exit rate for the treated for Z ≥ 76.

For the other coefficients, the robustness checks confirm the reliability of the estimates.

38The coefficients of the other dummies for the pre-treatment period are not significant even at the 10% level,

suggesting that an anticipatory effect is present only very close to the eligibility threshold. In the Centre-North,

we do not observe the anticipatory effect at the 51st week, which is in line with the lack of effect above the 52nd

week (results are available upon request).
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Table E.1: Robustness checks on the estimated DiD ATTs

Coeff. S.E. Coeff. S.E. Coeff. S.E.

Removing all temporary jobs
Removing seasonal jobs Removing all temporary jobs + sectors, wage, collar

(1) (2) (3)

After UB eligibility (Z ≥ 52)
52–59 accumulated working weeks (λ1l,7) 0.1199 ** 0.0505 0.1407 ** 0.0658 0.1311 ** 0.0656

60–67 accumulated working weeks (λ1l,8) 0.1509 *** 0.0574 0.1805 ** 0.0737 0.1610 ** 0.0731

68–75 accumulated working weeks (λ1l,9) 0.0937 0.0636 0.1504 ** 0.0814 0.1237 0.0800

76+ accumulated working weeks (λ1l,10) -0.0535 0.0565 -0.0006 0.0738 -0.0131 0.0698

Number of job spells 401,674 146,539 146,539

Modelling the exit of Retaining
controls that become controls that

Parametric baseline treated become treated (ITT)
(4) (5) (6)

After UB eligibility (Z ≥ 52)
52–59 accumulated working weeks (λ1l,7) 0.0987 ** 0.0491 0.1053 ** 0.0494 0.0769 0.0473

60–67 accumulated working weeks (λ1l,8) 0.0946 * 0.0559 0.0981 0.0562 0.0640 0.0533

68–75 accumulated working weeks (λ1l,9) 0.0334 0.0621 0.0271 0.0625 0.0312 0.0587

76+ accumulated working weeks (λ1l,10) -0.1018 * 0.0545 -0.1711 *** 0.0563 0.0176 0.0501

Number of job spells 424,473 424,473 424,473

South: retaining Treated: less than 26 Treated: less than 156
controls that weeks of experience in weeks of experience before

become treated (ITT) the biennium before hiring the biennium at hiring
(7) (8) (9)

After UB eligibility (Z ≥ 52)
52–59 accumulated working weeks (λ1l,7) 0.1445 ** 0.0690 0.1015 0.0622 0.0945 ** 0.0447

60–67 accumulated working weeks (λ1l,8) 0.1739 ** 0.0770 0.0643 0.0717 0.0811 0.0503

68–75 accumulated working weeks (λ1l,9) 0.1253 0.0858 0.0795 0.0792 0.0345 0.0554

76+ accumulated working weeks (λ1l,10) 0.0384 0.0772 -0.1883 *** 0.0701 0.0180 0.0472

Number of job spells 121,301 328,474 467,127

Including dummy for South: including dummy for
ATTs on resignation Z = 51 to capture Z = 51 to capture

(Validation test) anticipatory effects anticipatory effects
(10) (11) (12)

Anticipatory effect at Z = 51 -0.0530 0.1032 -0.2909 * 0.1514

After UB eligibility (Z ≥ 52)
52–59 accumulated working weeks (λ1l,7) 0.0364 0.0339 0.1083 ** 0.0509 0.1151 0.0752

60–67 accumulated working weeks (λ1l,8) 0.0269 0.0390 0.1100 * 0.0574 0.1800 ** 0.0839

68–75 accumulated working weeks (λ1l,9) 0.0713 0.0441 0.0565 0.0636 0.0893 0.0934

76+ accumulated working weeks (λ1l,10) -0.1079 *** 0.0374 -0.0896 0.0559 -0.0831 0.0856

Number of job spells 424,473 424,473 121,301

Notes: *** Significant at the 1% level; ** significant at the 5% level; * significant at the 10% level.
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F Re-hiring in the same firm

In this appendix, we empirically check whether the probability of being re-hired in the same

firm changes around the UI eligibility threshold. First, we select from our sample job spells in

the South that end with layoff. We then estimate the probability of re-entering the same firm

within 18 months from the layoff with a logit model, as a function of a full set of dummies

for each value of Z measured at firing and conditional on the same covariates used in the

specification of the benchmark duration model. Figure F.1 displays the predicted probabilities,

at the means of the covariates, for each value of Z at firing by treatment status in the South. For

both the treated and the control groups, the predicted probability of re-entering the same firm

within 18 months is quite flat across the accumulated working weeks and, for the treated group,

does not jump at 52 accumulated working weeks. Finally, we obtain very similar findings if

we focus on the probability of re-entering the same firm within nine months (available upon

request).

Figure F.1: Predicted re-employment probabilities in the 18 months since firing across the

accumulated working weeks (Z) at layoff in the South

Notes: The re-employment probabilities are predicted at the sample mean of the covariates. They are calculated after the estimation of a

logit model for the probability of re-entering employment in the 18 months since dismissal as a function of a full set of dummies for the

value of the accumulated working weeks at firing and the other covariates and separately for the treated and the controls. The solid curves

are quadratic fits of the predicted probabilities, separately computed to the left and to the right of the cut-off of 52 accumulated working

weeks.
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