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Abstract

We establish the asymptotic normality of marginal sample quantiles for S-mixing vector 

stationary processes. S-mixing is a recently introduced and widely applicable notion of 

dependence. Results of some Monte Carlo simulations are given.
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Resumen

Establecemos la normalidad asintótica de cuantiles muestrales marginales para un proceso 

vectorial estacionario S-mixing, una noción de dependencia recientemente propuesta y que 

cubre un amplio rango de procesos temporales. También mostramos resultados de una 

simulación de Monte Carlo.
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1 Introduction

Let us assume that {Xt, t ∈ Z} is a strictly stationary and ergodic p–variate process. We
denote by X

(i)
t the i–th component of Xt with marginal distribution function F (i)(x) =

P (X
(i)
t ≤ x), and τ–quantile q

(i)
τ = inf{x|F (i)(x) ≥ τ}. Analogously, let

F (i)
n (x) =

1

n

n∑
k=1

I{X(i)
k ≤ x}

be the i–th marginal empirical distribution function and denote the empirical τ–quantile by

q(i)τ,n = inf{x|F (i)
n (x) ≥ τ}.

The aim of this note is to investigate the asymptotic behaviour of the marginal sample
quantiles for p–dimensional stationary processes {Xt} and obtain the asymptotic normality
of the empirical quantile vector (q

(1)
τ1,n, . . . , q

(p)
τp,n)

′ for given τ1, . . . , τp ∈ [0, 1].
Asymptotic properties of sample quantiles have been of great interest since Cramér (1946)

[5] gave the joint asymptotic normality of sample quantiles coming from an independent and
identically distributed (i.i.d.) univariate population. Babu and Rao (1988) [1] derived the
joint asymptotic normality of marginal sample quantiles coming from an i.i.d. multivariate
population. In the case of dependent processes, Sen (1968) [14] extended the results of Bahadur
(1966) [2] to m–dependent stochastic processes and showed the asymptotic normality of sample
quantiles. Duta and Sen (1971) [8] extended those results to show the asymptotic normality
of sample quantiles for multivariate autoregressive processes. Sen (1972) [15] investigated
the asymptotic almost sure representation of a sample quantile for a stationary process of
φ–mixing random variables. He showed that Bahadur’s (1966) [2] asymptotic almost sure
representation of sample quantiles also holds under the φ–mixing condition. One of the most
recent papers in this context is Wu (2005) [17] who obtained Bahadur’s representation for
a class of linear and non-linear (scalar) processes. Oberhofer and Haupt (2005) [11] showed
the asymptotic distribution of the unconditional quantile estimator and the joint asymptotic
normality of several quantiles by using results on convex stochastic optimization and mixing
properties of an indicator process.

In this note, we investigate the asymptotic behaviour of sample quantiles for a vector
stationary process. The use of quantiles in statistical inference abound, in particular in the
context of heavy tails where moments may not exist. They have been used for the estimation
of parameters (Dominicy and Veredas (2012) [7] and Dominicy et al. (2012) [6]). Multivariate
dependencies between financial products have often been computed with copulas. Fermanian
and Scaillet (2003) [9] use sample marginal quantiles from time series data as a non–parametric
method to estimate copulas. The 2007-2010 financial and the 2009-2012 European sovereign
debt crises have highlighted the importance of tail –or rare– events. When they occur, their
effect is spread over the system, creating tail correlation. Ricci and Veredas (2012) [12]
introduce TailCoR, a new measure of tail correlation for financial time series that is based on
sample marginal quantiles.

The classical approach to obtain limiting distributions for statistics of weakly dependent
processes is to impose mixing conditions (i.e. α–, φ–, ψ–, and β–mixing). Those classical
mixing conditions are interesting and lead to acute results. However, often they are not only
difficult to be verified but require as well strong smoothness of the process, and so their
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range of applications in time series context is somewhat limited. A drastic example is an
AR(1) process with iid Bernoulli innovations (εt) (i.e. εt = ±1 with probability 1/2). When
Xt = 1

2Xt−1 + εt the dependence amoung the variables Xt decays obviously very fast but
surprisingly this process is not mixing (see Rosenblatt (1985) [13]).

The inadequacy of classical mixing conditions in the time series context has lead to a
number of new approaches for dealing with weak dependence in the last couple of years.
One of these approaches is the so called S–mixing introduced by Berkes et al. (2009) [3].
S–mixing is attractive since its verification is almost immediate (it is a trivial exercise to
verify it for the AR-processes) and it nests a large number of well–known and well–used
econometric models such as linear processes (especially ARMA models), GARCH models
and its extensions, and stochastic volatility models, among others. A remarkable property
of S–mixing is the fact that it doesn’t require any higher order moment assumptions to be
verified. Since we are interested in quantiles and processes that are probably heavy-tailed, this
is of particular interest. Furthermore, using the results of Berkes et al. (2009) [3] we avoid
establishing Bahadur’s (1966) [2] representation, which is a theoretically interesting result,
but not necessary for the asymptotic normality of quantiles. We refer to Berkes et al. (2009)
[3] for a number of examples within this framework.

The remaining sections are laid out as follows. In Section 2 we review briefly the S–mixing
property and state the joint asymptotic distribution for marginal quantiles. Section 3 covers
the Monte Carlo study and Section 4 concludes. The proof of the theorem, other technical
results, and figures are relegated to the Appendix.

2 Setup and main result

Throughout this note, we assume that the p–dimensional process {Xt, t ∈ Z} has the following
form

Xt = f(εt, εt−1, . . .), (1)

where {εt} is an i.i.d. sequence taking values in a measurable space S and f : S∞ → R
p is

a measurable function. Representation (1) is quite natural in time series and it implies that
the process {Xt} is strictly stationary and ergodic. As the aim is to show the asymptotic
normality of the empirical quantile vector

(q(1)τ1,n, . . . , q
(p)
τp,n)

′

for given τ1, . . . , τp ∈ [0, 1], we need to impose stronger conditions on the structure of {Xt}.
We use the S–mixing condition introduced in Berkes et al. (2009) [3].1

Definition 1 A random process {Xt, t ∈ Z} is called S–mixing if it satisfies the following
two conditions.

i) For any t ∈ Z and m ∈ N, there exists some approximating random vectors Xtm such
that P (|Xt −Xtm| ≥ γm) ≤ δm, for some numerical sequences γm → 0 and δm → 0.

ii) For any disjoint intervals I1, . . . , Ir of integers and any positive integers m1, . . . ,mr,
the vectors {Xtm1 , t ∈ I1}, . . . , {Xtmr , t ∈ Ir} are independent provided the separation
between Ik and Il is greater than mk +ml.

1Originally introduced for scalar processes, this notion of mixing is straightforwardly generalized to vector–
valued series.
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S–mixing requires approximating random vectors Xtm that can be constructed in various
ways. Among them, we will use a coupling method. Let {ε(k)t , t ∈ Z, k ∈ Z} be an i.i.d. array
of random elements all having the same law as ε0. Now we set the approximating random
vectors as

{Xtm, t ∈ Z} = {f(εt, εt−1, . . . , εt−m, ε
(t)
t−m−1, . . .), t ∈ Z}. (2)

This way of construction leads Xtm’s to have same marginal distributions as those of Xt’s,
while being now m–dependent. If the process is weakly dependent, then with increasing m
the approximations Xtm are expected to converge (in some sense to be specified) to Xt.

Before stating the theorem, we need two assumptions. The first relates to the marginal
distribution functions F (i), while the second relates to the dependence structure of Xt.

Assumption 1 For any i = 1, . . . , p, the distribution F (i)(x) has a density f (i)(x) that is
positive and continuous in a neighbourhood of q(i)τi and f (i)(x) is uniformly bounded by some
constant B.

Assumption 2 The process {Xt, t ∈ Z} has representation (1) and with approximations (2)
it is S–mixing with coefficients γm = δm = O(m−A), A > 4.

Equipped with the definition of S–mixing and the assumptions, we present the theorem.

Theorem 1 Let {Xt} be a stationary process satisfying Assumptions 1 and 2. Let us define
V = diag

(
f (1)(q

(1)
τ1 ), . . . , f (p)(q

(p)
τp )

)
and Q =

∑
h∈ZET0T

′
h with

Tk =
(
I{X(1)

k ≤ q(1)τ1 } − τ1, . . . , I{X(p)
k ≤ q(p)τp } − τp

)′
.

Then
√
n
(
q(1)τ1,n − q(1)τ1 , . . . , q(p)τp,n − q(p)τp

) D→ N (0,Ψ),

where Ψ = V −1QV −1. The element in the i–th row and j–th column of the matrix Ψ is given
by

ψij =

∑
h∈Z

(
P
({X(i)

0 ≤ q
(i)
τi } ∩ {X(j)

h ≤ q
(j)
τj })−τiτj

)

f (i)(q
(i)
τi )f

(j)(q
(j)
τj )

.

3 Monte Carlo study

We carry out a Monte Carlo experiment to assess the finite sample performance of the sam-
ple quantiles in a bivariate setup. Extensions of this experiment to higher dimensions are
straightforward but they do not add value added since we are interested in marginal quan-
tiles. We generate 500 draws of 100 (small sample) and 1000 (large sample) observations
from two bivariate dynamic models, one for the location (a VAR(1)) and another for the
scale (a CCC-GARCH(1,1)).2 In both settings we assume that the vector of innovations εt
follows a multivariate Student–t distribution with zero location, identity dispersion matrix,

2The bivariate VAR(1) model is defined as xt = c+Axt−1 + εt, where c is a 2× 1 vector of intercepts, A
is a 2× 2 matrix and εt is a 2× 1 vector of innovations.
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and the degrees of freedom being either ν = 10 or ν = 20. Two remarks to these choices.
First, ν = 20 produce moderate tails in the distribution of the innovations, while those for
ν = 10 are fairly heavy. Second, the unconditional distribution of xt has heavier tails in the
CCC −GARCH(1, 1) model than those of the innovations, and hence for ν = 10 the tail of
the observations are heavier than those of the innovations.3

For the VAR(1) model, we set the vector of constants c equal to zero and A to

A =

(
0.5 0.2
0.2 0.5

)
.

As for the CCC–GARCH(1,1), the correlation is 0.5 and the parameters for the conditional
dispersions are given by θ = [ω1, α1, β1, ω2, α2, β2] = [0.05, 0.05, 0.7, 0.05, 0.05, 0.7]. Thus, we
consider 8 scenarios and for each we estimate the quantiles for τ = {0.01, 0.10, 0.25, 0.5}.
Results are displayed in the form of Q–Q plots (sample distribution of the 500 estimated
quantiles against the Gaussian distribution) in Figures 1–4 in the Appendix. Each figure has
two panels, for 100 and 1000 observations respectively. The first two figures are for the VAR(1)
model, while the other two are for the CCC–GARCH(1,1).4

Results are in line with the intuition. For the VAR, the sample distribution of the estimated
quantiles is well approximated by the asymptotic distribution of 0.25 and 0.50 quantiles for
any tail thickness and sample size. The sample distribution of extreme quantiles show slight
departures from Gaussianity for n = 100, in particular for ν = 10, but it improves substantially
for n = 1000. Similar conclusions are drawn for the CCC–GARCH(1,1), except that, due to
the volatility clustering, more observations are needed in the case of ν = 10 for the sample
distribution to be closely represented by the asymptotic counterpart.

4 Conclusions

In this note we show the asymptotic normality of marginal sample quantiles for vector station-
ary processes under the S–mixing condition. The results obtained via Monte Carlo simulations
confirm the theoretical result.

The bivariate CCC-GARCH(1,1) model is defined as xt = H
1/2
t εt where εt is an i.i.d. vector standardized

error process, and Ht = [hij,t] is the 2×2 conditional dispersion matrix of xt, expressed as Ht = DtPDt where
Dt = diag(H

1/2
t ) and P = [ρij ] is positive definite with ρii = 1 for i = 1, 2. The diagonal elements follow a

GARCH(1,1) model hii,t = ωi +αix
2
ii,t−1 +βihii,t−1, and the off–diagonal are given by hij,t = h

1/2
ii,th

1/2
jj,tρij , for

1 ≤ i �= j ≤ 2.
3This reasoning follows the same lines as the well known fact that the unconditional distribution entailed

by a Gaussian GARCH(1,1) has standardized kurtosis larger than 3.
4We did further simulations with different specifications of the conditional mean and variance. Results,

available under request, do not change qualitatively the conclusions.
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Proof. It is sufficient to give the proof component–wise. Since F (x) is continuous, monotonously
increasing and strictly monotone in a neighbourhood of qτ we have qτ,n → qτ if and only if F (qτ,n) →
F (qτ ). Thus we evaluate

|F (qτ,n)− F (qτ )| ≤ |F (qτ,n)− Fn(qτ,n)|+ |Fn(qτ,n)− F (qτ )|
≤ sup

x∈R
|F (x)− Fn(x)|+ |Fn(qτ,n)− τ |. (4)

Now the result follows from the Glivenco–Cantelli theorem for stationary processes (see e.g. Stute and
Schumann (1980) [16]) and (3). �

Our next lemma is a special case of the main result in Berkes et al. (2009) [3]. To state it we introduce

R(x, n) =

n∑
k=1

Yk(x) where Yk(x) = I{Xk ≤ x} − F (x), x ∈ R.

Lemma 2 Under Assumptions 1 and 2 the series

Γ(x, x′) =
∑

−∞<k<∞
EY0(x)Yk(x

′) (5)

converges absolutely for every choice of parameters (x, x′) ∈ R
2. Moreover, there exists a two-parameter

Gaussian process K(x, n) such that EK(x, n) = 0 and EK(x, n)K(x′, n′) = (n ∧ n′) Γ(x, x′) and for
some ε > 0

sup
0≤n≤N

sup
x∈R

|R(x, n)−K(x, n)| = o
(
N1/2(logN)−ε

)
a.s. (6)

The next lemma will allow us to deduce asymptotic normality for the quantiles from the empirical
process.

Lemma 3 There exists a q∗τ,n in the interval bounded by qτ and qτ,n such that we have the following
representation:

√
n (F (qτ )− Fn(qτ )) =

√
nf(q∗τ,n)(qτ,n − qτ ) + oP (1).

Proof. By the mean value theorem we have

F (qτ,n)− F (qτ ) = f(q∗τ,n)(qτ,n − qτ ).

Noting that F (qτ ) = τ we get via (3) that the left hand side above is equal to F (qτ,n) − Fn(qτ,n) +
Op(1/n). It remains to show that

Appendix: proofs

For simplicity, we will henceforth use the following notation Xt = X
(i)
t , F = F (i) and qτ = q

(i)
τ for

some generic component, its distribution and its τ–quantile, respectively. Let us further note that,
since all marginal distributions are continuous, the event {Xt = Xs} has probability zero if t �= s.
This means that the sample points X1, . . . , Xn are all distinct and thus the jumps of the empirical
distribution function have size 1/n. Consequently

|Fn(qτ,n)− τ | ≤ n−1 a.s. (3)

Before giving the proof of our main theorem, we need to state and prove some lemmas.

Lemma 1 Under the Assumptions 1 and 2 we have

(q(1)τ1,n, . . . , q
(p)
τp,n)

′ → (q(1)τ1 , . . . , q(p)τp )′ a.s.
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Via the Cramér–Wold device, the next lemma gives asymptotic normality of the marginal empirical
distribution functions evaluated at fixed arguments.

Lemma 4 Under Assumptions 1 and 2 we have that for any p–vectors v = (v1, . . . , vp)
′ with |v| = 1

and x = (x1, . . . , xp)
′ that

Zn :=
√
n

p∑
i=1

vi

(
F (i)
n (xi)− F (i)(xi)

) D→ N(0,v′Qv),

where Q is defined in Theorem 1.

Proof. Define

ηk =

p∑
i=1

vi

(
I{X(i)

k ≤ xi} − F (i)(xi)
)

and

ηkm =

p∑
i=1

vi

(
I{X(i)

km ≤ xi} − F (i)(xi)
)
,

where X
(i)
km are defined as in (2). Then Zn = n−1/2

∑n
k=1 ηk. By the Cauchy–Schwartz inequality we

have

E|ηk − ηkm|2 ≤
p∑

i=1

E
∣∣∣I{X(i)

k ≤ xi} − I{X(i)
km ≤ xi}

∣∣∣2

≤
p∑

i=1

E
(
I{X(i)

k ∈ [xi − δ, xi + δ])}+ I{|X(i)
k −X

(i)
km| > δ}

)

≤ p(2Bδ + P (|Xk −Xkm| > δ).

Choosing δ = δm = m−4 we obtain that
∑

m≥1(E|ηk − ηkm|2)1/2 < ∞. By a slightly adapted version
of Theorem 19.3. in Billingsley (1999) [4] this implies that the sequence {ηk} satisfies the central limit
theorem:

√
n ([F (qτ,n)− Fn(qτ,n)]− [F (qτ )− Fn(qτ )]) = op(1). (7)

By Lemma 2 we infer that there exists an ε > 0 and a Gaussian process K(x, n) such that

sup
x∈R

∣∣∣∣√n(Fn(x)− F (x))− 1√
n
K(x, n)

∣∣∣∣ = Op

(
(log n)−ε

)
.

Hence (7) follows if
∣∣∣ 1√

n
K(qτ , n)− 1√

n
K(qτn , n)

∣∣∣ P→ 0. In the proof of Lemma 6 of Berkes et al. (2009)
[3] it is shown that there is a τ > 0 such that

E

∣∣∣∣ 1√
n
K(x, n)− 1√

n
K(x′, n)

∣∣∣∣
2

≤ C|x− x′|τ .

This implies (see e.g. Lemma 2 in Lai (1974) [10]) that the processes {n−1/2K(x, n), x ∈ R} have
continuous sample paths. Since the law of {n−1/2K(x, n), x ∈ R} is independent of n, we get in view
of Lemma 1 the proof by routine arguments. �
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1√
n

n∑
k=1

ηk
D→ N(0, σ2),

where σ2 =
∑

h∈Z Cov(η0, ηh). The claim is now immediate. �

This leads to the proof of the main theorem.

Proof of Theorem 1. Lemma 1 shows that under our assumptions

f(q∗τ,n)
P→ f(qτ ) > 0.

A routine application of the Cramér–Wold device and Slutzky’s theorem to Lemma 3 and Lemma 4
yields the desired asymptotic normality of the empirical quantiles. �
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Appendix: figures

Figure 1: VAR(1) with ν = 10
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Figure 2: VAR(1) with ν = 20
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Figure 3: CCC-GARCH(1,1) with ν = 10
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Figure 4: CCC-GARCH(1,1) with ν = 20
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