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Abstract

We consider the estimation of parameters in Euler equations where
regressand or regressors may be non-stationary, and propose a
several-stage procedure requiring only knowledge of the Euler equation
and the order of integration of the data. This procedure uses the
information gained from pre-testing for the order of integration of
data series to improve specification and estimation. We can also
offer an explanation of the frequent empirical finding that discount
rates and adjustment costs are poorly estimated. Both analytical and
experimental (Monte Carlo) results are provided.



1. Introduction.

There has recently been considerable attention devoted to the
explanation of different forms of dynamic economic behaviour, in
particular as reflected in the relationship between adjustment lags
and multi-period forecasts based upon the rational expectations
hypothesis (REH). For example, there exists a substantial literature
concerned with the formal intertemporal theory of employment and price
determination by competitive or oligopolistic firms which face convex
costs of changing employment or prices (see, for example, Sargent
(1978), Rotemberg (1982), and Nickell (1987)). The simplest model
which could be called representative of this literature is the
intertemporal quadratic adjustment model (QAC) which stems from
intertemporal optimising behaviour subject to quadratic adjustment
costs (Sargent (1981)) yielding linear behavioural rules, either in
the open form of the Euler equation or in the closed form of the
partial adjustment model with a target based upon expectations about
the future paths of the forcing variables.

Faced with the choice of estimating such models by asymptotically
fully-efficient methods (see Hansen and Sargent {(1982)) based on the
closed-form solution, or by less efficient but consistent methods (see
Kennan (1979) and Wickens (1982)) based upon direct estimation of the
Euler equation, the latter are in practice often pref‘erred.1 There

are probably three especially important reasons for this choice.

It may also be used as a first step before implementation of the

asymptotically fully efficient method.



First, the fully-efficient methods often involve a high computational
cost. Second, these methods do not seem to be very robust to the
imposition of incorrect a priori restrictions on the processes
governing the forcing variables. Third, since the stability
characteristics of the solution (stable, unstable or saddlepath) are
important in determining the method by which the model can be
estimated with full efficiency, it is preferable to have a method
which can be implemented without the necessity of using an assumption
about the characteristics of the unknown solution.

The present paper therefore examines the stochastic properties of
the variables and parameter estimates which appear in linear Euler
equations derived from the simple QAC model. In particular, we
concentrate on the consequences of assuming that the forcing variables
contain unit roots (i.e., stochastic trends) rather than being
stationary about deterministic trends, and on the implications of this
hypothesis for the wuse of consistent, but not asymptotically
efficient, methods of estimation.

The assumption of stationarity around a deterministic trend is of
course implicit 1in the standard practice 1in this literature of
"de-trending" series before carrying out estimation by either of the
classes of procedures (e.g. Sargent (1978), Kennan (1979), Blanchard
(1983) and Shapiro (1986)). Since the validity of this assumption has
recently been widely questioned (beginning with Nelson and Plosser
(1982)), it seems worthwhile to examine the consequences of the
hypothesis of stochastic trend, especially in the context of methods
which make use only of the Fuler equation. We show that, where series

of interest are integrated of order one or greater, we can use the



information gained from pre-testing for the order of integration to
improve the specification and estimation procedure. In particular, we
are able to avoid assumptions such as those of knowledge of the
discount factor, or of the forms of the processes generating the
forcing variables, which are implicit in some existing techniques.

In section 2 we set out the relevant economic theory and its
implications for observable processes. In section 3 we examine what
is perhaps the most popular method of consistent estimation, Kennan’'s
(1979) two-step procedure. In section 4 we examine the consequences
of assuming that the forcing variables are integrated processes,
stating a theorem relating to the orders of integration and offering
various several-stage alternatives to Kennan's procedure. Section S
presents a small Monte Carlo experiment in which we examine the
finite-sample properties of one estimation method, while Section 6

concludes.

2. The Model.

We will use a stylised intertemporal QAC model., of the type
suggested by Kennan (1979), in which an economic agent is faced with
the task of taking a sequence of decisions at each time period t. The
values chosen, denoted by yt (t =1, 2, 3,...), chase a stochastic
target variable y:; Yi is observable, and y: is linearly related to

an observed strictly exogenous forcing variable x, according to

t

*»
Vi = th + e, (1)

where B is a parameter capturing the desired relationship between Yi

*»
and Xy and e, reflects the influence of omitted variables in Yy It

is assumed that e, is realised before yt is determined and is a white



noise process. It is also assumed that2

p(L)xt ='ey, {(2)

where p(L) is a rational lag polynomial containing, in general, d unit
» »

roots so that p(L) = (l-L)dp (L), with d = 1 and e (L) having all

roots outside the unit circle; e

t is uncorrelated at all leads and

lags with e, This last property follows from the strict exogeneity

3
of Xy -

Models of this type have been extensively analysed in the
literature. The (yt} sequence is chosen to minimise the expected

value of a quadratic loss function given by

2 = 2 2
S
Et §=o¢ { (yt+s = yt+s) + c{Ayt+s] ] (3)

where Et(') denotes the mathematical expectation conditional! on the

information set ¢t; ¢ 1is the discount factor. The first-order
condition for this minimisation is

-

¥e = ¥ * cAyt - ¢C(Etbyt+l) =0 (4)

In order to focus our attention on the existence of stochastic
trends (unit roots) we have abstracted from the presence of drifts
and/or trends in the equations. Hence the variables may be
interpreted as deviations from any deterministic components, and for
the empirical analysis, detrending of the original series could

therefore be appropriate.

For the sake of simplicity, we have assumed the existence of only
one exogenous variable. The approach can however be generalised to
allow the existence of several non-cointegrated forcing variables
whose VAR representation requires differencing d times to achieve

stationarity.
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or equivalently

-1
EtAyt+1 = ¢ Ayt - (a/¢){(yt - th) - et), (5)

-1
where 6 = c .

Since the model satisfies the Simon-Theil conditions . for
first-period certainty equivalence, it is well known (see Nicke!ll

(1987)) that upon imposing the terminal condition

¢ i »
11: ¢ -Et[yt+T LTS I CAyt,+'['] =0,

the closed-form solution of (5) has the partial adjustment

representation

o =
= = - S 3
yt(l-uL) = (1-p)(1 ¢u).§=0 () Etyt+s’ D<pu<l (8)
o
= B(l—u)(l—¢u).§ﬂ3(¢uﬁEtxt+S + (1-u) (1-¢ule, (7)
= B(l-u)(1-¢u).Lg&ggl_:_ggg:lgggll. x, o+ (1-p)(1-gple, {8)

plop)(1 - gul™h)
where p is the stable root of the saddle-path quadratic such that
£(m) =7 - (1 + ¢ +as¢)n+¢ ' =0,
wher‘e4 f{0) >0, f(1) < 0 and f(n) > » as 1 - «.
There are several features of the simplification from (6} to (8)

that are worth noting. First, in moving from (6) to (7), we have made

use of the relation given by equation (1) and also of the standard

These conditions guarantee the existence of a stable root. The

conditions may be verified by noting that & and ¢ are both greater

that O.
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. _ _ 5 ]
assumption that Etet = e and Etet+s = 0 for all s > O. Next, in
moving from (7) to (8) we use the Hiener-l(olmogorov6 prediction

formula which, when applied to our example, implies that
@

-1
Zo(¢l‘”5Etxt+s= LEEQB)-:_QE‘I:_:ELI_‘ll X
* plgu)(1 - guL™")
The Jjoint estimation of (2) and (8), while exploiting the

cross-equation restrictions imposed by the REH (Sargent (1978)), forms
ghe basis of the fully asymptotically efficient method. In order to
implement this procedure knowledge of the process generating the Xy
series is required and it is thus subject to the objections discussed
in the introduction. At the expense of efficiency, but retaining
consistency, the Euler equation given by (5) can be estimated
directly, either by a two-step method involving OLS regressions
(Kennan's procedure) or by-errors-in-variables IV methods (see Wickens
(1982)). In the latter case, use is made of the fact that the
disturbance terms are serially correlated. Since the two-step method
has become very popular in applied work (see Pesaran (1987) and the

references cited therein), we examine it in the next section.

Kennan (1979) introduced a further disturbance term in (8) to
represent deviations of the actual values of yt from their
corresponding planned values. However under the assumptions that (i)
e, is realised before Ye is chosen, and (ii) the process generating
the Xy process is known, the main points of the Kennan approach may be
illustrated, without loss of generality, even in the absence of this
additional disturbance term.

6 See, e.g., Hansen and Sargent (1982).
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3. Kennan's Two-Step Procedure.

This procedure (see Muellbauer (1979), Muellbauer and Winter
(1980) for examples of its use) uses knowledge of the closed-form
solution, given by (8), and of the Euler equation, given by (5).

Denoting the forward-looking target in the partial adjustment model

(8) by dt' we obtain

d, = B(1~¢u). [pleu) - ¢uL "p(L)]-x, = D(L)x, (9)
p(eu)(1 - ¢ul™ )
SV T MYyt (1-u)D(L)xt + (l-u)(l—¢u)et. (10)

Since, under previous assumptions, (k =z 0) and x

Yt-k-1 g1 27°

uncorrelated with e OLS applied to (10) yields a consistent
estimator of pu. If the discount factor ¢ is known, a consistent

estimator of & is given by
éz (1-1) (1-¢u) (11)
u

This is the first step of the Kennan procedure7.

The second step uses knowledge of (5), the Euler equation, and

constructs the variable st:

7 In Kennan's formulation the discoung factor R is assumed known in
© .t Fu 2 g

the objective function E XZR {al(x(t)-X CEET % aZ(X(t)-X(t-l)) }.
t=1

which is minimised with respect to X(t). The solution will not be

affected by dividing the terms in parentheses by (l/all. which makes
the problem analogous to that which we consider, expressed in (3).
Hence assuming that R is known is equivalent to the assumption in our

context that ¢ is known.
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- — -1 - 5 -
s, = Ayt+1 ¢ Ayt (87¢) Yy
From (5) it is clear that

S, = -(Bé/¢)xt * Y, (12)

- — -— - -1 - -
where Yo = (yt+1 Etyt*l) (6/¢).et ¢ (& a)yt.

The innovation LI E ) can be obtained by using

(Y41 tYt+1

the Wiener-Kolmogorov formula, under the assumption that the forcing

variable Xy is generated by (2). We therefore have

n Ly = (- (1-emdley g + Below) e ). (13)

Hence u,,, is given by

U,y = (- (l-gule, ., + 89(‘“”-1°t+1] - (8/¢)e, - ¢ (s - S)¥ys
(14)

8 -3 0a T » » by the consistency of &, and e € and e, are

t+17 "t+1 t

all uncorrelated with x,. It follows that plim [r"zt

t } = 0 and

StYt+1
that an OLS regression in (12) will yield a consistent estimator of g,

the remaining unknown parameter of the model.

Note however that u has an MA(1) structure since E(u u, )
t+1 t+1°t

-(¢Y452p 2 0 and the remaining cross-covariances are zero for any lag

polynomial p(L). Thus OLS will provide an inconsistent estimator of
the standard error of §B. Kennan showed that the biases would
generally be upwards. This of course might not be an important

consideration if we wanted only a consistent estimator of B, say, to
serve as én initial condition for the fully efficient approach.

To summarise, the Kennan procedure was developed to find a
consistent estimator of the parameters of interest in a framework in
which all the series of interest were stationary, so that interesting
features of integrated processes were not considered. Moreover, there

are several objections which could be made to the Kennan approach.
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First, it exploits, fairly directly, knowledge of the process
generating the Xy series. This information is crucial because in its
absence the first step may be mis-specified and an inconsistent
estimator of u(8) may result. Second, the discount factor is assumed
to be known. In some instances this may be regarded as an
unreasonable assumption and we might therefore wish to estimate ¢.

~

Finally, and perhaps less importantly, the standard error of B is
biased.

Given these objections, it is of interest to ask whether a simple
estimation procedure could be found which makes use only of the Euler
equation and disregards the specific characteristics of the process
generating the forcing variable, apart from its order of integration.
If such a method of estimation of B, 8, and ¢ existed, we could use
the Generalised Method of Moments (GMM)8 to obtain the correct
variance-covariance matrix of the estimators. The next section is

devoted to a discussion of this possibility.

4. Euler Equations with Integrated Variables.

We must now be more specific about the data generation process
for the Xy and the Yi series. There are two special cases of the lag
polynomial p(L) in which we are particularly interestedg. These are

p(lL) =1-L=> %, B E _ VE (152)

and

See Hansen and Sargent (1982).

More generally, we consider series which are integrated of order

d, denoted X, ~ 1(d).
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—— Fer 2 = g
p(L) =1 -2L+L=sx =2x , -% _,*¢,. (15b)
We also specify, as 1initial conditions, xo = 0 for (1i5a), and
X =%x _ =0 for (15b).
0 -1

Equation (15a) corresponds to the case in which x, is a random

t
walk, while under the process given by (15b) the first difference of
the Xy series is a random walk. In another terminology, Xy has one
unit root, or is I(1), if it is generated by (15a) while it has two
unit roots, or is I(2), if it is generated by (15b).10

Under (15a) it is easy to demonstrate that the process governing
Yy given by equation (8) above, simplifies to

Yy T HY g v B(lmwixy + (1-p)(1-¢pde,, (16a)
while under (15b) we have

Ve T MY, * B(1-p) (1-¢u) 'x, — B(1-p)eu(1-¢u) 'x,

+ (1-#)(1-¢u)et. (16b)
Since p is within the unit circle, it may be seen from (16a) that

y, is 1(1) when x_ is I(1). (16b) shows that Yy is I1(2) when x, is

t t

1(2)
Next, we examine the characteristics of the deviations from the

long-run solution of (5): it has been suggested (Salmon (1982), for

10 This is the terminology of Engle and Granger (1987). A series Xy

with no deterministic component is said to be integrated of order d,

denoted Dby e * I1(d), if Adxt has a Wold representation.
Equivalently, X, may be said to have d unit roots. As Nelson and
Plosser (1982) showed, many economic time series seem to be adequately

characterised by processes which have one (or two) unit roots which is

our reason for concentrating below on I(1) and 1(2) processes.
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example) that a desirable property of any dynamic behavioural equation
is that these deviations be zero in the steady state, which we
interpret in this framework as implying I(0) processes. These
deviations are calculated as zt = yt—th. Consider first the case in

which x, and y, are each I(1): that is, x

t and y, are generated by

t
(15a) and (16a) respectively. Then

_ _ -1

2, =Yy, - th = (1 ~ uL) [-Buet + (l-u)(1-¢p)et], (17a)
Clearly z, is I1(0); therefore in this case Ye ~ th is 1(0) regardless
of the value of ¢. In the terminology of Engle and Granger (1987), yt
and x, are CI(1, 1) v ¢. When Yi and X, are generated by (15b) and

(16b), similar operations yield

z, = (1-uL7)(-(1-¢)Bu(1-¢u) "ax, + (1-p)(1-¢ule, ] (17b)
Note from (17b) that, in general, z, is I(1); that is, Yi and x, are
Cl(2, 1). The only exception would occur when ¢ = 1; we omit this

no-iiscounting case, as discussed below.

While the DGP's (15a) and (16a) and (15b) and (16b) have been
usec for the sake of illustration in analysing the integration and
co-integration propoerties of yt and xt, it is possible to prove (see
Appendix) the following theorem for general specifications of the lag
polynomial p(L) and any order of integration greater than or equal to

one.
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Theorem. If Xy is I(d), d =z 1, e, is 1(0), Xy and y, are generated by

(2) and (8) respectively, =nd F(L) is the rational lag polynuaial
F(L) = (1-p)(1-¢u) [ fpten) - ¢ul 'p(L)]

p(eu)(1 - ¢uL™*)(1 - pL)
with o4 > 0, ¢ < 1, then the following statements hold:

(i) Yy is 1(d)

. _ _ 2 d-1 i}

(ii) Let z, =y, th, S = (BAxt, BA Xpo oo BA xt)' fj

FP) 0270 (3 = 1,2,...9-1) and ¢ = (4, by --.. f4;). where

F'Y) denotes the jth derivative of F(L) evaluated at L = 1. Then

(z, - ¢ sxt] is 1(0).

(iii) z, is I(d-1).

(iv) Let s = (Ay A2y Ad-ly ), with {' defined as in (ii)
yt t’ A e ’

Then [zt - ¢ Syt] is I(d-2) v d = 2.

Corollary If Xy is 1(1) and e, is I(0), then Yy is also I(1) and z

t t

is 1(0); if %y is 1(2) and e, is I(0), then Yy is ‘also 1(2), z, is

1(1) and z, - g,'lAyt is 1(0) for all values of ¢ not equal to 1.

This theorem suggests that if Xy is I(d), d =2 2, then there is no
linear combination of Yi and Xy which is stationary. This implies
that if an agent discounts the future, his optimal strategy never
involves choices of yt such that the gap between yt and the growing
target, y:. is asymptotically eliminated. In other words, given
discounting (as stated in part (iii)), when d =z 2, it is not worth
incurring the additional adjustment costs necessary to catch up
completely with a target the variance of which is exploding at a

certain rate. This feature has also been discussed by Nickell (13985)

and Pagan (1985), in the context of variables with deterministic



growth rates. We extend their results to a framework in which growth
is stochastic. Moreover part (ii) of the theorem characterises those
deviations which vanish in the steady state, and part (iv) presents an
alternative characterisation which is I(0) when d = 2 and in general
reduces by one the order of integration of z, -

The theorem also enables us to suggest consistent strategies for
estimating directly the parameters of interest (B, ¥, ¢) in the Euler
equation. The essential idea is to take advantage of the linear
combinations given in parts (ii) to (iv) of the theorem to obtain a
consistent estimate of B regardless of the order of integration of the
underlying variables. This estimate can then be taken as given in
estimating ¢ and &.

There are two cases that we consider, in which both Ye and Xy are
respectively I(1) and I1(2); an even higher order of integration for
the two series would not generally be regarded as likely to be a good

characterisation of observed economic variables.

4.1: Estimation when X, is 1(1)11.

&

First, check using the usual testing procedures (e.g. Dickey and
Fuller (1879), (1881), Said and Dickey (1984)) that the orders of
integration of Ye and Xy are indeed consistent. If xt is I(1) but Yi
is not, the DGP of (yt, xt) cannot have the characteristics of the QAC

model. If Yy is also I(1), the next step is to test the nuill

1 We do not consider the estimation of (16a) directly as this

equation was derived using the specific assumption that x, is a random

t

walk; in this section we concentrate on general I(1) (or 1I(2))

processes.
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hypothesis of no co-integration between x, and Ye using procedures

t
such as those suggested by Engle and Granger (1987) or Johansen

(1988).
Next, reparameterise the Euler equation (5) by substituting for

Etyt+1 using the definition of u,,, 8iven in (12) ff; that is, we

would estimate, if B were known,

By, ., = (97 - Lay, + (3/¢)ly, - Bx,] + U (18)

t+1’
~ . - = _1 o
where ULy = (1-p) (1 ¢u)[et+1 + Bplou) £t+1] (6/¢>]et
The theorem states that Yy and Xy are CI(1, 1) for all values of
¢. Thus, by the Stock (1987) super-consistency resultlg. the estimate

of B in a static regression of y, on x, converges to its true value at

t
a rate proportional to the sample size; B may reasonably be taken as
given when estimating (18), having been derived from a previous static
regression; this constitutes the first stage in the estimation

process. Altering equation (18) slightly by |using é, the

super-consistent estimate of B, the final form of the equation we

12 This establishes that static regressions integrated of order

greater than or equal to one give T-consistent estimates of the
long-run solution. Thus, possible sources of misleading inference
such as-simultaneity biases are not worrisome in such cases; these
biases are of a lower order of integration than are the regressors and
the regressand, and can be relegated to the residuals without
affecting the estimate of the long-run solution. However, Hansen and
Phillips (1988) propose an estimator with improved finite-sample
properties which could be used in the first step of this and the

following cases.
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would estimate is given by

&

+ (6/¢}(zt = 2y Junlas)

8%, = (87 - Dby, + (8/9)ly, - Bx,] + T, y

~

+1

(z. - z)1.

= elAyt+ 6.z, + Iut+1+ 6,(z, t

27t

Note that the bracketed error term follows an MA(1) process since
(zt - zt) is o(1) (see Engle and Granger (1987)).

Finally use an IV procedure to estimate (18'); since Gt+1 follows

a first-order moving average process, estimation of ¢ and & by IV is

consistent. The instruments ought to be taken from the information

set @ (for example, ztwl'

t-1 Axt—l' sy, _, and lags of these: see

Hansen and Sargent (1982)); note that the regressand and the

regressors in (18’) are each I(0). The IV procedure will yield

-1/2
).

estimators of ¢ and 8 consistent to OP(T Note also that

- - N, an
¢ = (91 + 1) 73 6 = (91 + 1) 8.

and thus both parameter estimates may be identified from the

regression. If ¢ is restricted in (18’) to a value not equal to its
true value, the estimator of & will be biased, the bias being
o712

4.2: Estimation when X, is I(2).

Consider now the case in which the yt and x, processes are each

t

1(2). The case ¢ = 1 is now omitted, because the terminal condition
will fail to hold under these circumstances; the closed-form solution
(6) will no longer be valid. However since ¢ = 1 corresponds to the

case of no discounting, it is in any event of little economic

interest.

If 0 < ¢ < 1, then by the theorem and corollary, yt and xt are

Ci(2, 1). This also implies that Ayt and Ax, are CI(1, 1) with the

t

co-integrating vector given by (1, -B). Hence in a regression of Ayt
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on Axt, we would reject the null hypothesis of a unit root in the
residuals and would obtain a T-consistent estimator of B in the first
step.

The estimator é of B may then be used in estimating the Euler
equation (18'). This second step cannot be implemented directly
because the regressand is I(0) while the regressors are each I(1);
nevertheless, a modification will produce a consistent estimate of the
co-integrating vector. The appropriate modification is given by part

(iv) of the theorem, from which it may be seen that z, and Ayt are

t
CI(1,1) with the co-integrating vector given by (1, —el). where el =
~(1-¢)6_1. Normalising 8, to unity, differencing both sides of (16b)

and using (17b), we can see that

-1

Ayt =-(1-9) 8z, + w,, (19)
where wy is an I(0) series by (iv). Regressing Ayt on z, provides a
consistent estimator (of OP(T-I)) of (1-¢)7's, because this

co-integrating parameter is unique. Finally ¢ may be estimated by Iv,
using the following reparameterisation of (18):

Py, = @7 - Diay, ¢ mz ]+ G, + (/8)(z, - 2] (20)

where n is the estimate of (1—¢)-16 derived from (19) and ;t is given,
in the usual way, by (yt - éxt). Regressions (18) and (20) are the
second and third steps of the procedure, respectively.

Note that in (20) both the regressand and the regressor are I(0).
We will therefore obtain a consistent estimator of ¢ which converges

to its true value at rate T /2

Here, setting ¢ = 1 in the original
parameterisation of the Euler equation, (18), can have very
unsatisfactory consequences, especially if ¢ is substantially below

unity. This is easily seen in (18') where setting ¢ = 1 eliminates



the Ayt regressor; the only remaining regressor is 2, which is I(1)

while the regressand is I(0). This implies that 8_ converges to zero

2

at rate T, which in turn implies adjustment costs that are too high
to be credible (consider Muellbauer’s (1979) employment function, for
example) .

In summary, therefore, we have described a sequential (two-step
for I(1) processes, three-step for I{2) processes) procedure for
estimating B, 8 and ¢ which makes use only of the Euler equation and
knowledge of the number of unit roots in the DGP of the forcing
variables. Simple co-integrating regressions yield estimates of some
of the structural parameters; these estimates are super-consistent,
converging to their true values at rates faster than T2, Pre-tests
for the order of integration will in some cases rule out the QAC model
as the DGP for the data at an early stage. By the theorem above, this
will arise if Xy and y, are found not to have the same order of
integrat ion.

In order to examine the finite sample properties of instrumental
variables estimation of the model (187), or alternative

parameterisations of the same, we consider a set of Monte Carlo

simulations in the next section.

5. Monte Carlo Results

This section describes the simulation study undertaken to
supplement the analytical results reported above. We pay particular
attention to the finite-sample behaviour of the [V estimators used in
the last stage of the procedure. It is assumed in this exercise that

the investigator has correctly deduced the orders of integration of
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the series from pre-testing; an obvious qualification lies in the
frequently-observed low power of such tests.
The exercise is divided into two parts, corresponding to the I(1)

and I(2) cases above. The first deals with variables Y and Xy which

are individually I(1), and which follow the DGP given by equations

~ N(O, ci); 2w w g B o1y

(15a) and (18), with e, ~ N(0, ¢°), e
e £ L

t t

E(Etes) = 0. We take B = 1, ¢ = (1.0, 0.95, 0.70) and u = (0.95,
0.85). The sample size is T = 100, the number of replications is N =
1000 and the model is (18). To guarantee the existence of the first

-~

moments of the parameter estimates 91 and 52 we use an over-identified
generalised 1instrumental variables estimator. In experimental
practice, the consequence of not doing so is the occasional appearance
of extremely large (in absolute value) values for the estimated
parameters, such that there is no clear convergence to a reliable
average as the number of replications is increased. This results from
the fact that the coefficient estimates have no finite moments when

exactly identified IV estimates are formedl4.

13
Finite-sample results are not invariant to these variances; this

combination makes visible some of the important points to be made
below, but of course represents only an example of the outcomes which
can emerge.

14 For the mean to exist, we must have at least one extra

instrument; for the second moment to exist, we must have two extra.
The non-existence can arise because of potential near-singularities in
the moment matrix, leading to arbitrarily large parameter estimates

(see Sargan (1981)}.



The natural instruments to choose, since Ayt and zt are

correlated with the error term in (18), are Ayt._1 and z, 4 In order
to obtain an over-identifying GIV estimator it is natural also to
choose some lags of these quantities. This is the strategy followed

here; we choose the values dated t-2 as well as those dated t-1. The

instrumental variables L estimated in the first stage of the

procedure were used in place of the zt-i'
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Table 1

Mean Values of Coefficient Estimates from Monte Carlo Experimentls
T = 100; N = 1000

DGP: {i5a), (18); X, ~ 1(1)

b
3
¥
>

1.00 0.0000 0.0026 -0.0212 -0.0102 0. 0.0021
(0.0004) (0.0011) (0.0002)
(0.0003) (0.0009) (0.0002)
0.95 0.0526 0.0054 -0.0231 0.0011 0. 0.0046
(0.0005) (0.0001) (0 0004)
(0 0005) (0.0000) (0.0003}
0.70 0.4286 0.0252 0.2362 -0.0025 0. -0.0526
(0.0021) (0.0003) (0.0081)
(0.0016) (0.0002) (0.00867)

II: B3 =1, u=0.85

1.00 0.0000 0. 0265 ~-0.0118 -0.0010 0. 0.0212
(0.0001)  (0.0021) (0.0054)
(0.0001) (0.0016) (0.0046)
0.95 0.0526 0.0358 -0.0103 0.0062 0. 0.0236
(0.0031) (0.0021) (0.0054 )
(0.0026)  (0.0025) (0 0046)
0.70 0.4286 0. 1021 0.2682 0.0941 0. ~-0. 1290
(0.0093) (0.0310) (0.0160)
(0.0086) (0.0350)} (0.0133)
15 8.: theoretical values; @,: wunconstrained estimates; éi:

constrained estimates. Standard errors are in parentheses, the first

being that from GIV estimation and the second from 252SLS estimation
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The second and third columns of each block in Table ! represent
the true values taken by the parameters 61 and 62 in equation (18) for
each element of the range of values of the structural parameters given
at the heading of each blocle. Columns 4 and S show the parameter
estimates when ¢ 1s not fixed but estimated along with the other
parameters; finally columns 6 and 7 (yielding estimates denoted éi)
give the estimates of the parameters Gi when ¢ is fixed at unity and
Ayt therefore vanishes from the DGP (and is removed from the model).

We report two sets of standard errors with these estimates. The
first bracketed figure corresponds to the mean standard error obtained
using the GIV estimation method described above; the second figure is
the mean standard error obtained using the Cumby et al. (1983)
two-step two-stage least squares method (2S2SLS). Denoting the

regressors in (18) by X, the instrument set by W and the disturbance

by u, we have that the asymptotic distribution of 6

n
—_
D
o)
[O]

given by

. s oa-l
% olim [ﬁ" Q! M] , (21)

T T
where Q = plim T 'W uu'w.

The matrix given in (21) is the true variance-covariance matrix
of the GIV estimators, so it is interesting to compare it with the
reported matrix. In order to implement (21), we have used a simple

estimator proposed by Newey and West (1987), which ensures that Q is

positive definite. The estimate is

16 Estimates of the co-integrating parameter B were generally close

to unity, although in some cases small sample biases could certainly

emerge (see Banerjee et.al. (1986)).
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T -~ - m PO
-1 . . _ L .
T Lzl[wtututwt+z (1-(k/m+1)) ”t”t“t—kwt-k]’

pe]
1]

(22)

k==m

where uy are the GIV residuals and m=1 for an MA(1) disturbance.

With a sample of 100 observations, the estimated values of él are
negative for high values of g and ¢, indicating estimated values of ¢
slightly greater than unity. While the values are not plausible as
estimates of a discount factor, we may have in these results some
explanation of the commonplace embirical result that discount factors
are not estimated to fall in, say, the interval {0.39, 1.0}, as one

might have expected a priori. However when we take a relatively low

-~

value of ¢ (e.g. ¢ = 0.7), e1 becomes positive. A possible .

explanation lies in the small-sample biases which appear in the
coefficient of the lagged dependent variable when estimating equations

such as (18) (see, e.g., Grubb and Symons (1887)), which may also

affect the estimates of 92. It is important to note also, from

columns S and 6, that imposing ¢ = 1 when the true value ok ¢ is, or

is close to, unity improves the estimation of 6 the estimate is

2}

positive and close to the true value. However when ¢ = 0.7, imposing

¢ = 1 leads to poor estimates 82 of 82,

as would be expected from the
now-inconsistent estimator. Parameter estimates generally seem
sorewhat more accurate for lower values of u, perhaps reflecting the

fact that z, then looks more like an I(0) variable (recall (17a)17).

a

With respect to the standard errors, we observe that in most

cases the GIV-estimated standard errors are higher than those f{rom

7 This might be a possible explanation of the poor performance of

~

Kennan’s non-durable employment equation, where p seems high.
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2S2SLS, confirming Kennan's result concerning upward biases; this also
appears in Table 2. However the differences for the DGP that we have
examined here are smail.

The second simulation exercise uses (15b) and (18), with other
features of the DGP (the generating processes for the disturbances)

unchanged. Results, again for N=1000 and T=100 are found in Table z.

Table 2

Mean Values of Coefficient Estimates from Monte Carlo Experiment18

T = 100; N = 1000

DGP: (15b), (18); Xy ~ I(2)

>
]
>
>

0.89 0.0101 0.0283 -0.0008 0.0228 0. 0.0231
(0.0001) (0.0094) (0.0092)
(0.0001) (0.0084) (0.0072)
0.95 0.0526 0.03S58 -0.0008 0.0308 0. 0.0234
(0.0000) (0.0097) (0.0096)
(0.0000) (0.0082) (0.0081)
0.70 0. 4286 0.1021 0.1215 0.0352 0. 0. 0056
(0.0521) (0.0172) (0.0012)
(0.0482) (0.0181) (0.0010)
18 2 ;

Again, Bi: theoretical wvalues; ei: unconstrained estimates; ei:

constrained estimates. Standard errors are in parentheses, the first

being that from GIV estimation and the second from 2S2SLS estimation.
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As in the previous discussion, we distinguish three cases: ¢
almost equal to unity (0.99), ¢ close to unity (0.95) and ¢ relatively
far from unity (0.70). Only p = 0.85 is considered, as the power of
the co-integration test is relatively low when p = 0.85. The second
and third columns of Table 2 correspond to the true values given in
the the same columns of Table 1.

When ¢ = 0.99, we observe again a negative value for 6 although

1
this is very small in absolute value consistent with the fact that él
is a T-consistent estimator of 91= 0.0101; moreover when ¢ = 0.99 62
is quite well estimated, and similar results obtain when ¢ = 0.895,
reflecting the finite sample continuity in the neighbourhood of ¢ = 1.
Imposing ¢ = 1 renders the estimate 82 only slightly more accurate on

average.

Finally when ¢ = 0.7, the ratio 92/61 .

estimate of its theoretical counterpart &8/1-¢ (recall (18)), which

at 0.28, is a good

takes a value of 0.24; the individual coefficients, however, are not

especially good estimates of 61 and 92. In this last case, imposing ¢

= 1 yields an estimate 92 which is quite small, reflecting again a

T-consistent estimator of a parameter with a true value of zero.

Similarly, the second-step regression of Ayt on z, gave a value of

t
é/[1-¢) of 0.26, while the third-step regression (20) yielded an
estimate of 91 of 0.35, in each case, again, fairly close to the true
values of .24 and .43 respectively.

To summarise the results of the experiments, it seems that
implementation of the two-step and three-step procedures give

reasonably accurate results for the processes used here, although

sizeable finite-sample biases can appear in the estimation of ¢ when
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the stable root is close to unity. Imposition of the restriction ¢ =
1 or ¢ equal to some value close to one is generally a reasonable
strategy if the restriction is close to being valid, not surprisingly,
but can lead to noticeable biases in results if the restriction is
invalid in the case where the forcing variable is I(1), and to very

high estimated values of the adjustment costs when the forcing

variable is I(2).

6. Concluding remarks

There have been a number of empirical studies 1in which
investigators have estimated Euler equations in attempts to understand
dynamic adjustment processes in the context of the QAC model. The
results of such estimation need not, however, yield accurate estimates
of critical parameters, especially if the integration properties of
the data are disregarded as where non-stationarity is implicitly dealt
with through commonplace procedures such as de-trending. By assuming
that the forcing variables are integrated, we characterise the order
of integration of the control variable and of the deviations from the
target stemming from the optimal control rule. Several co-integrating
relationships are found to be implied.

In view of these findings, we propose the use of an alternative
several-stage procedure to that of Kennan (1979), which requires only
knowledge of the Euler equation and the order of integration of the
data. Some of the stages in estimation require the use of 1V
estimators rather than OLS as in Kennan’s approach. The results
reported here suggest that, even when estimation is by IV, the fact

that regressions may be "inconsistent" (in the sense of having a
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regressand of different order of ‘integration than the regressors) can
lead to parameter values which approach zero rather than the correct
theoretical values. In particular, we find that procedures such as
Kennan's may be biased toward the finding of overly low (even
negative, in small samples) estimates of discount factors and overly
high costs of adjustment. However, we also find that the standard
procedure of fixing the discount factor to unity (or slightly less
than unity) seems to perform reasonably well when the true discount
factor is indeed in that range. Nonetheless, it is risky even here to
apply Kennan’'s method, which assumes knowledge of the discount factor:
because of the considerable uncertainty surrounding this estimate:
when it is well below unity the consequences of fixing it to unity can
be serious, especially if the forcing variable is I1(2).

In general, these results suggest the importance of consideration
of \the orders of integration of underlying series in determining the

outcome of estimation of Euler equations.
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Appendix
Proof of Theorem
(i) Since Yy is generated by (8) it can be written as
y, = BF(L)x, + (1= gD 7' (1 = @ (1 - gule, . (A1)
Since 0 < u < 1 and e, is 1(0), the order of integration of Y is
given by the order of integration of F(L)xt. This is in turn equal to

the order of integration of x, if F(1) = 0. Otherwise, F(L) contains

t

at least one unit root, leading to a lower order of integration.

F(L) can be written as

L - ¢ulp(L)/p(eu)]

(1 - (1 - ¢u)
(L - ¢u)(1 - pl)

r

=> F({1) = 1 - ¢ulp(1)/p(en)l. (A2)

If Xy is Itd), d > 0, then given the representation (2). we must have
egll; = 0, and by A(2) F(1) = 1 (= 0). Thus Yy has the order of
integration of Xy and part (i) of the theorem is proven

(ii) Define z, =y, - th = B[ F(L) - 1 Ix, + I(0). (A3)

t

If Xy is generated by (2), then through a Taylor expansion around

L =1 it can be shown (see Stock (1987)) that

(A4)

d-1 (j)(l) i . - a
p(L)x, = [p(l) + Z p (-1 - L)+ p(L)( 1 - L) ]xt,

j=1 J!

th
’ denotes the J derivative of p(L) with respect to L) and

where p(J

p(L) has all roots outside the unit circle. If x, ~ 1(d), then by

(Ad), p(1) = p' (1) = ... =p" (1) = 0.

By a similar expansion, we obtain from (A3),

d-1 _(j) _ .
F(L)x, = [F(l) £ 70 (D 1y - L)+ FL)C 1 - L)d]x ,
t , - t
ij=1 J-
d-1 5
and z, = 3[(?(1) - Dx, + ZejA xt] + 1(0), (AS)

j=1
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where ej = F(j)(l)(—l)J/(J!) (j = 1,2,...d-1) and we have used the
fact that F(L)( 1 - L)}" must be I(0). Since F(1) = 1, x, will not
appear in (AS); this completes the proof of part (ii). Note that the
coefficients ej will be functions of the underlying parameters and
that ej = g(p(”(l). ¢, 4). The formulae for the coefficients fj can
be obtained by repeated differentiation of F(L).

(iii) Note that since F(1) - 1 = 0 and #1 # 0 in (A5), the leading
term in (AS) is 1(d-1), as required to prove (iii)

(iv) Finally note from the definition of zt

that Ajzt = Ajyt =f Bﬂjx

and therefore R (4 syt is equal to z, - [4 Syt * [4 St where St
d-1

(Azt. A LAY A Zt)' From (ii), z, - ¢ S, 1S 1(0); from (iii)

Ajzt is I(d-(j+1)). The leading term in S,t is I(d-2), and this is

therefore the order of integration of L e'syt. L
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