BANCO DE ESPAÑA

ESTIMATING EULER EQUATIONS WITH INTEGRATED SERIES

Juan J. Dolado, John W. Galbraith and Anindya Banerjee

ESTIMATING EULER EQUATIONS WITH INTEGRATED SERIES (*)

Juan J. Dolado
John W. Galbraith
Anindya Banerjee

(*) A previous version of this paper was presented at the European Meeting of the Econometric Society, Munich, 1989, and at the Malinvaud Seminar, Paris, 1989. We are grateful to Samuel Bentolila, David Hendry, Françoise Maurel, Alain Monfort, Arthur Treadway and Mike Wickens for much useful commentary, and to J. Roas for very capable computing assistance. Galbraith thanks FCAR for research, support under grant number NC-0047.

El Banco de España al publicar esta sexie pretende facilitar la difusiôn de estudios de interés que contribuyan al mejor conociniento de la economáa española.

Los análisis, opiniones y conclusiones de estas investigaciones representan las ideas de los autores, con las que no necesaxiamente coincide el Banco de España.

Abstract

We consider the estimation of parameters in Euler equations where regressand or regressors may be non-stationary, and propose a several-stage procedure requiring only knowledge of the Euler equation and the order of integration of the data. This procedure uses the information gained from pre-testing for the order of integration of data series to improve specification and estimation. We can also offer an explanation of the frequent empirical finding that discount rates and adjustment costs are poorly estimated. Both analytical and experimental (Monte Carlo) results are provided.

1. Introduction.

There has recently been considerable attention devoted to the explanation of different forms of dynamic economic behaviour, in particular as reflected in the relationship between adjustment lags and multi-period forecasts based upon the rational expectations hypothesis (REH). For example, there exists a substantial literature concerned with the formal intertemporal theory, of employment and price determination by competitive or oligopolistic firms which face convex costs of changing employment or prices (see, for example, Sargent (1978), Rotemberg (1982), and Nickell (1987)). The simplest model which could be called representative of this literature is the intertemporal quadratic adjustment model (QAC) which stems from intertemporal optimising behaviour subject to quadratic adjustment costs (Sargent (1981)) yielding linear behavioural rules, either in the open form of the Euler equation or in the closed form of the partial adjustment model with a target based upon expectations about the future paths of the forcing variables.

Faced with the choice of estimating such models by asymptotically fully-efficient methods (see Hansen and Sargent (1982)) based on the closed-form solution, or by less efficient but consistent methods (see Kennan (1979) and Wickens (1982)) based upon direct estimation of the Euler equation, the latter are in practice often preferred. ${ }^{1}$ There are probably three especially important reasons for this choice.

[^0]First, the fully-efficient methods often involve a high computational cost. Second, these methods do not seem to be very robust to the imposition of incorrect a priori restrictions on the processes governing the forcing variables. Third, since the stability characteristics of the solution (stable, unstable or saddlepath) are important in determining the method by which the model can be estimated with full efficiency, it is preferable to have a method which can be implemented without the necessity of using an assumption about the characteristics of the unknown solution.

The present paper therefore examines the stochastic properties of the variables and parameter estimates which appear in linear Euler equations derived from the simple $Q A C$ model. In particular, we concentrate on the consequences of assuming that the forcing variables contain unit roots (i.e., stochastic trends) rather than being stationary about deterministic trends, and on the implications of this hypothesis for the use of consistent, but not asymptotically efficient, methods of estimation.

The assumption of stationarity around a deterministic trend is of course implicit in the standard practice in this literature of "de-trending" series before carrying out estimation by either of the classes of procedures (e.g. Sargent (1978), Kennan (1979), Blanchard (1983) and Shapiro (1986)). Since the validity of this assumption has recently been widely questioned (beginning with Nelson and Plosser (1982)), it seems worthwhile to examine the consequences of the hypothesis of stochastic trend, especially in the context of methods which make use only of the Euler equation. We show that, where series of interest are integrated of order one or greater, we can use the
information gained from pre-testing for the order of integration to improve the specification and estimation procedure. In particular, we are able to avoid assumptions such as those of knowledge of the discount factor, or of the forms of the processes generating the forcing variables, which are implicit in some existing techniques.

In section 2 we set out the relevant economic theory and its implications for observable processes. In section 3 we examine what is perhaps the most popular method of consistent estimation, Kennan's (1979) two-step procedure. In section 4 we examine the consequences of assuming that the forcing variables are integrated processes, stating a theorem relating to the orders of integration and offering various several-stage alternatives to Kennan's procedure. Section 5 presents a small Monte Carlo experiment in which we examine the finite-sample properties of one estimation method, while Section 6 concludes.

2. The Model.

We will use a stylised intertemporal QAC model, of the type suggested by Kennan (1979), in which an economic agent is faced with the task of taking a sequence of decisions at each time period t. The values chosen, denoted by $y_{t}(t=1,2,3, \ldots)$, chase a stochastic target variable $y_{t}^{*} ; \quad y_{t}$ is observable, and y_{t}^{*} is linearly related to an observed strictly exogenous forcing variable x_{t} according to

$$
\begin{equation*}
y_{t}^{*}=\beta x_{t}+e_{t} \tag{1}
\end{equation*}
$$

where β is a parameter capturing the desired relationship between y_{t} and x_{t}, and e_{t} reflects the influence of omitted variables in y_{t}. It is assumed that e_{t} is realised before y_{t} is determined and is a white
noise process. It is also assumed that ${ }^{2}$

$$
\begin{equation*}
\rho(L) x_{t}=\varepsilon_{t} \tag{2}
\end{equation*}
$$

where $\rho(L)$ is a rational lag polynomial containing, in general, d unit roots so that $\rho(L)=(1-L)^{d} \rho(L)$, with $d \geq 1$ and ρ (L) having all roots outside the unit circle; ε_{t} is uncorrelated at all leads and lags with e_{t}. This last property follows from the strict exogeneity of $x_{t}{ }^{3}$

Models of this type have been extensively analysed in the literature. The $\left\{y_{t}\right\}$ sequence is chosen to minimise the expected value of a quadratic loss function given by

$$
\begin{equation*}
E_{t} \sum_{s=0}^{\infty} \phi^{s}\left[\left(y_{t+s}-y_{t+s}^{*}\right)^{2}+c\left(\Delta y_{t+s}\right)^{2}\right] \tag{3}
\end{equation*}
$$

where $E_{t}($.$) denotes the mathematical expectation conditional on the$ information set $\Phi_{t} ; \phi$ is the discount factor. The first-order condition for this minimisation is

$$
\begin{equation*}
y_{t}-y_{t}+c \Delta y_{t}-\phi c\left(E_{t} \Delta y_{t+1}\right)=0 \tag{4}
\end{equation*}
$$

2
In order to focus our attention on the existence of stochastic trends (unit roots) we have abstracted from the presence of drifts and/or trends in the equations. Hence the variables may be interpreted as deviations from any deterministic components, and for the empirical analysis, detrending of the original series could therefore be appropriate

3 For the sake of simplicity, we have assumed the existence of only one exogenous variable. The approach can however be generalised to allow the existence of several non-cointegrated forcing variables whose VAR representation requires differencing d times to achieve stationarity.
or equivalently

$$
\begin{equation*}
E_{t} \Delta y_{t+1}=\phi^{-1} \Delta y_{t}+(\delta / \phi)\left\{\left(y_{t}-\beta x_{t}\right)-e_{t}\right\} \tag{5}
\end{equation*}
$$

where $\delta \equiv c^{-1}$.
Since the model satisfies the Simon-Theil conditions. for first-period certainty equivalence, it is well known (see Nickell (1987)) that upon imposing the terminal condition

$$
\lim _{T \rightarrow \infty} \phi^{T} \cdot E_{t}\left[y_{t+T}-y_{t+T}^{*}+c \Delta y_{t+T}\right]=0
$$

the closed-form solution of (5) has the partial adjustment representation

$$
\begin{align*}
& y_{t}(1-\mu L)=(1-\mu)(1-\phi \mu) \cdot \sum_{s=0}^{\infty}(\phi \mu)^{s} E_{t} y_{t+s}^{*} ; 0<\mu<1 \tag{6}\\
& =\beta(1-\mu)(1-\phi \mu) \cdot \sum_{s=0}^{\infty}(\phi \mu)^{s} E_{t} x_{t+s}+(1-\mu)(1-\phi \mu) e_{t} \tag{7}\\
& =\beta(1-\mu)(1-\phi \mu) \cdot\left[\underline{\rho}(\underline{\phi} \underline{\mu})-\underline{\phi} \underline{L^{-1}} \underline{\rho}^{-1}(\underline{L}) \underline{]} \cdot x_{t}+(1-\mu)(1-\phi \mu) e_{t}\right. \tag{8}\\
& \rho(\phi \mu)\left(1-\phi \mu L^{-1}\right)
\end{align*}
$$

where μ is the stable root of the saddle-path quadratic such that
$f(\eta)=\eta^{2}-\left(1+\phi^{-1}+\delta / \phi\right) \eta+\phi^{-1}=0$,
where ${ }^{4} f(0)>0, f(1)<0$ and $f(\eta) \rightarrow \infty$ as $\eta \rightarrow \infty$.
There are several features of the simplification from (6) to (8) that are worth noting. First, in moving from (6) to (7), we have made use of the relation given by equation (1) and also of the standard

4 These conditions guarantee the existence of a stable root. The conditions may be verified by noting that δ and ϕ are both greater that 0 .
assumption that $E_{t} e_{t}=e_{t}$ and $E_{t} e_{t+s}=0$ for all $s>0 .{ }^{5}$ Next, in moving from (7) to (8) we use the Wiener-Kolmogorov ${ }^{6}$ prediction formula which, when applied to our example, implies that

$$
\begin{aligned}
\sum_{s=0}^{\infty}(\phi \mu)^{s} E_{t} x_{t+s}= & \left.\underline{[\rho(\phi \mu)-}-\phi \mu L^{-1} \rho(L)\right] \\
& \rho(\phi \mu)\left(1-\phi \mu L^{-1}\right)
\end{aligned}
$$

The joint estimation of (2) and (8), while exploiting the cross-equation restrictions imposed by the REH (Sargent (1978)), forms the basis of the fully asymptotically efficient method. In order to implement this procedure knowledge of the process generating the x_{t} series is required and it is thus subject to the objections discussed in the introduction. At the expense of efficiency, but retaining consistency, the Euler equation given by (5) can be estimated directly, either by a two-step method involving OLS regressions (Kennan's procedure) or by-errors-in-variables IV methods (see Wickens (1982)). In the latter case, use is made of the fact that the disturbance terms are serially correlated. Since the two-step method has become very popular in applied work (see Pesaran (1987) and the references cited therein), we examine it in the next section.

5
Kennan (1979) introduced a further disturbance term in (8) to represent deviations of the actual values of y_{t} from their corresponding planned values. However under the assumptions that (i) e_{t} is realised before y_{t} is chosen, and (ii) the process generating the x_{t} process is known, the main points of the Kennan approach may be illustrated, without loss of generality, even in the absence of this additional disturbance term.

3. Kennan's Two-Step Procedure.

This procedure (see Muellbauer (1979), Muellbauer and Winter (1980) for examples of its use) uses knowledge of the closed-form solution, given by (8), and of the Euler equation, given by (5). Denoting the forward-looking target in the partial adjustment model (8) by d_{t}, we obtain

$$
\begin{align*}
& d_{t}=\beta(1-\phi \mu) \cdot\left[\underline{\rho}(\phi \underline{\mu})-\phi \mu L^{-1} e(L)\right] \cdot x_{t}=D(L) x_{t} \tag{9}\\
& \rho(\phi \mu)\left(1-\phi \mu L^{-1}\right) \\
& \Rightarrow y_{t}=\mu y_{t-1}+(1-\mu) D(L) x_{t}+(1-\mu)(1-\phi \mu) e_{t} . \tag{10}
\end{align*}
$$

Since, under previous assumptions, $y_{t-k-1}(k \geq 0)$ and x_{t-1} are uncorrelated with e_{t}, OLS applied to (10) yields a consistent estimator of μ. If the discount factor ϕ is known, a consistent estimator of δ is given by

$$
\begin{equation*}
\hat{\delta}=\frac{(1-\hat{\mu})(1-\phi \hat{\mu})}{\hat{\mu}} \tag{11}
\end{equation*}
$$

This is the first step of the Kennan procedure ${ }^{7}$.
The second step uses knowledge of (5), the Euler equation, and constructs the variable s_{t} :

7 In Kennan's formulation the discount factor R is assumed known in the objective function $E \sum_{t=1}^{\infty} R^{t}\left\{a_{1}\left(x(t)-X^{*}(t)\right)^{2}+a_{2}(x(t)-x(t-1))^{2}\right\}$, which is minimised with respect to $X(t)$. The solution will not be affected by dividing the terms in parentheses by ($1 / \mathrm{a}_{1}$), which makes the problem analogous to that which we consider, expressed in (3). Hence assuming that R is known is equivalent to the assumption in our context that ϕ is known.

$$
s_{t}=\Delta y_{t+1}-\phi^{-1} \Delta y_{t}-(\hat{\delta} / \phi) \cdot y_{t} .
$$

From (5) it is clear that

$$
\begin{equation*}
s_{t}=-(\beta \delta / \phi) x_{t}+u_{t+1} \tag{12}
\end{equation*}
$$

where $u_{t+1}=\left(y_{t+1}-E_{t} y_{t+1}\right)-(\delta / \phi) \cdot e_{t}-\phi^{-1}(\hat{\delta}-\delta) y_{t}$
The innovation $\eta_{t+1}=\left(y_{t+1}-E_{t} y_{t+1}\right)$ can be obtained by using the Wiener-Kolmogorov formula, under the assumption that the forcing variable x_{t} is generated by (2). We therefore have

$$
\begin{equation*}
\eta_{t+1}=(1-\mu)(1-\phi \mu)\left[e_{t+1}+\beta \rho(\phi \mu)^{-1} \varepsilon_{t+1}\right] \tag{13}
\end{equation*}
$$

Hence u_{t+1} is given by

$$
\begin{equation*}
u_{t+1}=(1-\mu)(1-\phi \mu)\left[e_{t+1}+\beta \rho(\phi \mu)^{-1} \varepsilon_{t+1}\right]-(\delta / \phi) e_{t}-\phi^{-1}(\hat{\delta}-\delta) y_{t} \tag{14}
\end{equation*}
$$

$\hat{\delta}-\delta \rightarrow 0$ as $T \rightarrow \infty$ by the consistency of $\hat{\delta}$, and $e_{t+1}, \varepsilon_{t+1}$ and e_{t} are all uncorrelated with x_{t}. It follows that plim $\left\{T^{-1} \Sigma_{t} s_{t} u_{t+1}\right\}=0$ and that an OLS regression in (12) will yield a consistent estimator of β, the remaining unknown parameter of the model.

Note however that u_{t+1} has an $M A(1)$ structure since $E\left(u_{t+1} u_{t}\right)=$ $-(\phi)^{-1} \delta^{2} \mu \neq 0$ and the remaining cross-covariances are zero for any lag polynomial $\rho(L)$. Thus OLS will provide an inconsistent estimator of the standard error of $\hat{\beta}$. Kennan showed that the biases would generally be upwards. This of course might not be an important consideration if we wanted only a consistent estimator of β, say, to serve as an initial condition for the fully efficient approach.

To summarise, the Kennan procedure was developed to find a consistent estimator of the parameters of interest in a framework in which all the series of interest were stationary, so that interesting features of integrated processes were not considered. Moreover, there are several objections which could be made to the Kennan approach.

First, it exploits, fairly directly, knowledge of the process generating the x_{t} series. This information is crucial because in its absence the first step may be mis-specified and an inconsistent estimator of $\mu(\delta)$ may result. Second, the discount factor is assumed to be known. In some instances this may be regarded as an unreasonable assumption and we might therefore wish to estimate ϕ. Finally, and perhaps less importantly, the standard error of $\hat{\beta}$ is biased.

Given these objections, it is of interest to ask whether a simple estimation procedure could be found which makes use only of the Euler equation and disregards the specific characteristics of the process generating the forcing variable, apart from its order of integration. If such a method of estimation of β, δ, and ϕ existed, we could use the Generalised Method of Moments (GMM) 8 to obtain the correct variance-covariance matrix of the estimators. The next section is devoted to a discussion of this possibility
4. Euler Equations with Integrated Variables.

We must now be more specific about the data generation process for the x_{t} and the y_{t} series. There are two special cases of the lag polynomial $\rho(L)$ in which we are particularly interested ${ }^{9}$. These are

$$
\begin{equation*}
\rho(L)=1-L \Rightarrow x_{t}=x_{t-1}+\varepsilon_{t} \tag{15a}
\end{equation*}
$$

and

[^1]$\rho(L)=1-2 L+L^{2} \Rightarrow x_{t}=2 x_{t-1}-x_{t-2}+\varepsilon_{t}$.
We also specify, as initial conditions, $x_{0}=0$ for (15a), and $x_{0}=x_{-1}=0$ for (15b).

Equation (15a) corresponds to the case in which x_{t} is a random walk, while under the process given by (15b) the first difference of the x_{t} series is a random walk. In another terminology, x_{t} has one unit root, or is $I(1)$, if it is generated by (15a) while it has two unit roots, or is $I(2)$, if it is generated by (15b). 10

Under (15a) it is easy to demonstrate that the process governing y_{t}, given by equation (8) above, simplifies to

$$
\begin{equation*}
y_{t}=\mu y_{t-1}+\beta(1-\mu) x_{t}+(1-\mu)(1-\phi \mu) e_{t}, \tag{16a}
\end{equation*}
$$

while under (15b) we have

$$
\begin{align*}
y_{t}=\mu y_{t-1} & +\beta(1-\mu)(1-\phi \mu)^{-1} x_{t}-\beta(1-\mu) \phi \mu(1-\phi \mu)^{-1} x_{t-1} \\
& +(1-\mu)(1-\phi \mu) e_{t} \tag{16b}
\end{align*}
$$

Since μ is within the unit circle, it may be seen from (16a) that y_{t} is $I(1)$ when x_{t} is $I(1)$. (16b) shows that y_{t} is $I(2)$ when x_{t} is I(2)

Next, we examine the characteristics of the deviations from the long-run solution of (5): it has been suggested (Salmon (1982), for

This is the terminology of Engle and Granger (1987). A series x_{t} with no deterministic component is said to be integrated of order d, denoted by $x_{t} \sim I(d)$, if $\Delta^{d} x_{t}$ has a wold representation. Equivalently, x_{t} may be said to have d unit roots. As Nelson and Plosser (1982) showed, many economic time series seem to be adequately characterised by processes which have one (or two) unit roots which is our reason for concentrating below on I(1) and I(2) processes.
example) that a desirable property of any dynamic behavioural equation is that these deviations be zero in the steady state, which we interpret in this framework as implying $I(0)$ processes. These deviations are calculated as $z_{t}=y_{t}-\beta x_{t}$. Consider first the case in which x_{t} and y_{t} are each $I(1)$: that is, x_{t} and y_{t} are generated by (15a) and (16a) respectively. Then

$$
\begin{equation*}
z_{t}=y_{t}-\beta x_{t}=(1-\mu L)^{-1}\left[-\beta \mu \varepsilon_{t}+(1-\mu)(1-\phi \mu) e_{t}\right] \tag{17a}
\end{equation*}
$$

Clearly z_{t} is $I(O)$; therefore in this case $y_{t}-\beta x_{t}$ is I(0) regardless of the value of ϕ. In the terminology of Engle and Granger (1987), y_{t} and x_{t} are CI (1, 1) $\forall \phi$. When y_{t} and x_{t} are generated by (15b) and (16b), similar operations yield

$$
\begin{equation*}
z_{t}=\left(1-\mu L^{-1}\right)\left[-(1-\phi) \beta \mu(1-\phi \mu)^{-1} \Delta x_{t}+(1-\mu)(1-\phi \mu) e_{t}\right] \tag{17b}
\end{equation*}
$$

Note from (17b) that, in general, z_{t} is $I(1)$; that is, y_{t} and x_{t} are CI(2, 1). The only exception would occur when $\phi=1$; we omit this no-jiscounting case, as discussed below.

While the DGP's (15a) and (16a) and (15b) and (16b) have been used for the sake of illustration in analysing the integration and co-integration propoerties of y_{t} and x_{t}, it is possible to prove (see Appendix) the following theorem for general specifications of the lag polynomial $\rho(L)$ and any order of integration greater than or equal to one.

Theorem. If x_{t} is $I(d), d \geq 1, e_{t}$ is $I(0), x_{t}$ and y_{t} are generated by
(2) and (8) respectively, and $F(L)$ is the rational lag polyrionial

$$
F(L)=(1-\mu)(1-\phi \mu)\left[\frac{\left.\rho \rho(\phi \mu)-\phi \mu L^{-1} \rho(L)\right]}{\rho(\phi \mu)\left(1-\phi \mu L^{-1}\right)(1-\mu L)}\right]
$$

with $\mu>0, \phi<1$, then the following statements hold:
(i) y_{t} is $I(d)$
(ii) Let $z_{t} \equiv y_{t}-\beta x_{t}, s_{x t} \equiv\left(\beta \Delta x_{t}, \beta \Delta^{2} x_{t}, \ldots, \beta \Delta^{d-1} x_{t}\right), f_{j}=$ $F^{(j)}(1)(-1)^{j} /(j!)(j=1,2, \ldots d-1)$ and $f^{\prime} \equiv\left(f_{1}, f_{2}, \ldots f_{d-1}\right)$, where $F^{(J)}$ denotes the $j^{\text {th }}$ derivative of $F(L)$ evaluated at $L=1$. Then $\left[z_{t}-f^{\prime} s_{x t}\right]$ is $I(0)$.
(iii) z_{t} is $I(d-1)$.
(iv) Let $s_{y t} \equiv\left(\Delta y_{t}, \Delta^{2} y_{t}, \ldots, \Delta^{d-1} y_{t}\right)$, with f^{\prime} defined as in (ii). Then $\left[z_{t}-f^{\prime} s_{y t}\right]$ is $I(d-2) \forall d \geq 2$.

Corollary If x_{t} is $I(1)$ and e_{t} is $I(0)$, then y_{t} is also $I(1)$ and z_{t} is $I(0)$; if x_{t} is $I(2)$ and e_{t} is $I(0)$, then y_{t} is also $I(2), z_{t}$ is $I(1)$ and $z_{t}-b_{t} \Delta y_{t}$ is $I(0)$ for all values of ϕ not equal to 1 .

This theorem suggests that if x_{t} is $I(d), d \geqslant 2$, then there is no linear combination of y_{t} and x_{t} which is stationary. This implies that if an agent discounts the future, his optimal strategy never involves choices of y_{t} such that the gap between y_{t} and the growing target. y_{t}^{*}, is asymptotically eliminated. In other words, given discounting (as stated in part (iii)), when $d \geq 2$, it is not worth incurring the additional adjustment costs necessary to catch up completely with a target the variance of which is exploding at a certain rate. This feature has also been discussed by Nickell (1985) and Pagan (1985), in the context of variables with deterministic
growth rates. We extend their results to a framework in which growth is stochastic. Moreover part (ii) of the theorem characterises those deviations which vanish in the steady state, and part (iv) presents an alternative characterisation which is $I(O)$ when $d=2$ and in general reduces by one the order of integration of z_{t}.

The theorem also enables us to suggest consistent strategies for estimating directly the parameters of interest (β, γ, ϕ) in the Euler equation. The essential idea is to take advantage of the linear combinations given in parts (ii) to (iv) of the theorem to obtain a consistent estimate of β regardless of the order of integration of the underlying variables. This estimate can then be taken as given in estimating ϕ and δ.

There are two cases that we consider, in which both y_{t} and x_{t} are respectively $I(1)$ and $I(2)$; an even higher order of integration for the two series would not generally be regarded as likely to be a good characterisation of observed economic variables.
4.1: Estimation when x_{t} is $I(1)^{11}$.

First, check using the usual testing procedures (e.g. Dickey and Fuller (1979), (1981), Said and Dickey (1984)) that the orders of integration of y_{t} and x_{t} are indeed consistent. If x_{t} is $I(1)$ but y_{t} is not, the DGP of ($y_{\hat{\imath}}, x_{t}$) cannot have the characteristics of the QAC model. If y_{t} is also $I(1)$, the next step is to test the null

11 We do not consider the estimation of (16a) directly as this equation was derived using the specific assumption that x_{t} is a random walk; in this section we concentrate on general I(1) (or I(2)) processes.
hypothesis of no co-integration between x_{t} and y_{t} using procedures such as those suggested by Engle and Granger (1987) or Johansen (1988).

Next, reparameterise the Euler equation (5) by substituting for $E_{t} y_{t+1}$ using the definition of u_{t+1} given in (12) ff; that is, we would estimate, if β were known,

$$
\begin{equation*}
\Delta^{2} y_{t+1}=\left(\phi^{-1}-1\right) \Delta y_{t}+(\delta / \phi)\left[y_{t}-\beta x_{t}\right]+\tilde{u}_{t+1} \tag{18}
\end{equation*}
$$

where $\tilde{u}_{t+1}=(1-\mu)(1-\phi \mu)\left[e_{t+1}+\beta p(\phi \mu)^{-1} \varepsilon_{t+1}\right]-(\delta / \phi) e_{t}$
The theorem states that y_{t} and x_{t} are CI(1, 1) for all values of ф. Thus, by the Stock (1987) super-consistency result ${ }^{12}$., the estimate of β in a static regression of y_{t} on x_{t} converges to its true value at a rate proportional to the sample size; β may reasonably be taken as given when estimating (18), having been derived from a previous static regression; this constitutes the first stage in the estimation process. Altering equation (18) slightly by using $\hat{\beta}$, the super-consistent estimate of β, the final form of the equation we

12
This establishes that static regressions integrated of order greater than or equal to one give T-consistent estimates of the long-run solution. Thus, possible sources of misleading inference such as simultaneity biases are not worrisome in such cases; these biases are of a lower order of integration than are the regressors and the regressand, and can be relegated to the residuals without affecting the estimate of the long-run solution. However, Hansen and Phillips (1988) propose an estimator with improved finite-sample properties which could be used in the first step of this and the following cases.
would estimate is given by

$$
\begin{gathered}
\Delta^{2} y_{t+1}=\left(\phi^{-1}-1\right) \Delta y_{t}+(\delta / \phi)\left[y_{t}-\hat{\beta} x_{t}\right]+\tilde{u}_{t+1}+(\delta / \phi)\left(z_{t}-\hat{z}_{t}\right) \quad\left(18^{\prime}\right) \\
=\theta_{1} \Delta y_{t}+\theta_{2} \hat{z}_{t}+\left[\tilde{u}_{t+1}+\theta_{2}\left(z_{t}-\hat{z}_{t}\right)\right]
\end{gathered}
$$

Note that the bracketed error term follows an MA(1) process since $\left(z_{t}-\hat{z}_{t}\right)$ is $o(1)$ (see Engle and Granger (1987)).

Finally use an IV procedure to estimate (18'); since \tilde{u}_{t+1} follows a first-order moving average process, estimation of ϕ and δ by IV is consistent. The instruments ought to be taken from the information set Φ_{t-1} (for example, $\hat{z}_{t-1}, \Delta x_{t-1}, \Delta y_{t-1}$ and lags of these: see Hansen and Sargent (1982)); note that the regressand and the regressors in (18') are each I(0). The IV procedure will yield estimators of ϕ and δ consistent to $O_{p}\left(\mathrm{~T}^{-1 / 2}\right)$. Note also that

$$
\hat{\phi}=\left(\hat{\theta}_{1}+1\right)^{-1} ; \hat{\delta}=\left(\hat{\theta}_{1}+1\right)^{-1} \hat{\theta}_{2} .
$$

and thus both parameter estimates may be identified from the regression. If ϕ is restricted in (18') to a value not equal to its true value, the estimator of δ will be biased, the bias being $O\left(T^{-1 / 2}\right)$.
4.2: Estimation when x_{t} is $I(2)$.

Consider now the case in which the y_{t} and x_{t} processes are each I(2). The case $\phi=1$ is now omitted, because the terminal condition will fail to hold under these circumstances; the closed-form solution (6) will no longer be valid. However since $\phi=1$ corresponds to the case of no discounting, it is in any event of little economic interest.

If $0<\phi<1$, then by the theorem and corollary, y_{t} and x_{t} are CI(2, 1). This also implies that Δy_{t} and Δx_{t} are CI(1, 1) with the co-integrating vector given by (1, - $\boldsymbol{\beta}$). Hence in a regression of Δy_{t}
on Δx_{t}, we would reject the null hypothesis of a unit root in the residuals and would obtain a T-consistent estimator of β in the first step.

The estimator $\hat{\beta}$ of β may then be used in estimating the Euler equation (18'). This second step cannot be implemented directly because the regressand is $I(O)$ while the regressors are each $I(1)$: nevertheless, a modification will produce a consistent estimate of the co-integrating vector. The appropriate modification is given by part (iv) of the theorem, from which it may be seen that z_{t} and Δy_{t} are CI(1,1) with the co-integrating vector given by ($1 ;-f_{1}$), where $f_{1}=$ $-(1-\phi) \delta^{-1}$. Normalising θ_{1} to unity, differencing both sides of (16b) and using (17b), we can see that

$$
\begin{equation*}
\Delta y_{t}=-(1-\phi)^{-1} \delta z_{t}+\omega_{t} . \tag{19}
\end{equation*}
$$

where ω_{t} is an $I(0)$ series by (iv). Regressing Δy_{t} on \hat{z}_{t} provides a consistent estimator (of $O_{p}\left(T^{-1}\right)$) of $(1-\phi)^{-1} \delta$, because this co-integrating parameter is unique. Finally ϕ may be estimated by IV, using the following reparameterisation of (18):

$$
\begin{equation*}
\Delta^{2} y_{t+1}=\left(\phi^{-1}-1\right)\left[\Delta y_{t}+\hat{\pi} \cdot \hat{z}_{t}\right]+\left[\tilde{u}_{t+1}+(\delta / \phi)\left(\hat{z}_{t}-z_{t}\right)\right] \tag{20}
\end{equation*}
$$

where $\hat{\pi}$ is the estimate of $(1-\phi)^{-1} \delta$ derived from (19) and \hat{z}_{t} is given. in the usual way, by $\left(y_{t}-\hat{\beta} x_{t}\right)$. Regressions (19) and (20) are the second and third steps of the procedure, respectively.

Note that in (20) both the regressand and the regressor are I(0). We will therefore obtain a consistent estimator of ϕ which converges to its true value at rate $\mathrm{T}^{-1 / 2}$. Here, setting $\phi=1$ in the original parameterisation of the Euler equation, (18), can have very unsatisfactory consequences, especially if ϕ is substantially below unity. This is easily seen in (18') where setting $\phi=1$ eliminates
the Δy_{t} regressor; the only remaining regressor is \hat{z}_{t} which is I(1) while the regressand is $I(0)$. This implies that $\hat{\theta}_{2}$ converges to zero at rate T, which in turn implies adjustment costs that are too high to be credible (consider Muellbauer's (1979) employment function, for example).

In summary, therefore, we have described a sequential (two-step for I(1) processes, three-step for $I(2)$ processes) procedure for estimating β, δ and ϕ which makes use only of the Euler equation and knowledge of the number of unit roots in the DGP of the forcing variables. Simple co-integrating regressions yield estimates of some of the structural parameters; these estimates are super-consistent, converging to their true values at rates faster than $T^{-1 / 2}$. Pre-tests for the order of integration will in some cases rule out the QAC model as the DGP for the data at an early stage. By the theorem above, this will arise if x_{t} and y_{t} are found not to have the same order of integration.

In order to examine the finite sample properties of instrumental variables estimation of the model (18'), or alternative parameterisations of the same, we consider a set of Monte Carlo simulations in the next section.

5. Monte Carlo Results

This section describes the simulation study undertaken to supplement the analytical results reported above. We pay particular attention to the finite-sample behaviour of the IV estimators used in the last stage of the procedure. It is assumed in this exercise that the investigator has correctly deduced the orders of integration of
the series from pre-testing; an obvious qualification lies in the frequently-observed low power of such tests.

The exercise is divided into two parts, corresponding to the I(1) and $I(2)$ cases above. The first deals with variables y_{t} and x_{t} which are individually I(1), and which follow the DGP given by equations (15a) and (18), with $e_{t} \sim N\left(0, \sigma_{e}^{2}\right), \varepsilon_{t} \sim N\left(0, \sigma_{\varepsilon}^{2}\right) ; \sigma_{\varepsilon}^{2}=\sigma_{e}^{2}=1.13$ and $E\left(\varepsilon_{t} e_{s}\right)=0$. We take $\beta=1, \phi=(1.0,0.95,0.70)$ and $\mu=(0.95$, 0.85). The sample size is $T=100$, the number of replications is $N=$ 1000 and the model is (18). To guarantee the existence of the first moments of the parameter estimates $\hat{\theta}_{1}$ and $\hat{\theta}_{2}$ we use an over-identified generalised instrumental variables estimator. In experimental practice, the consequence of not doing so is the occasional appearance of extremely large (in absolute value) values for the estimated parameters, such that there is no clear convergence to a reliable average as the number of replications is increased. This results from the fact that the coefficient estimates have no finite moments when exactly identified IV estimates are formed ${ }^{14}$.

13 Finite-sample results are not invariant to these variances; this combination makes visible some of the important points to be made below, but of course represents only an example of the outcomes which can emerge.

14
For the mean to exist, we must have at least one extra instrument; for the second moment to exist, we must have two extra. The non-existence can arise because of potential near-singularities in the moment matrix, leading to arbitrarily large parameter estimates (see Sargan (1981)).

The natural instruments to choose, since Δy_{t} and z_{t} are correlated with the error term in (18), are Δy_{t-1} and z_{t-1}. In order to obtain an over-identifying GIV estimator it is natural also to choose some lags of these quantities. This is the strategy followed here; we choose the values dated $t-2$ as well as those dated $t-1$. The instrumental variables z_{t-i} estimated in the first stage of the procedure were used in place of the $\mathbf{z}_{\mathrm{t}-\mathrm{i}}$.

Table 1
Mean Values of Coefficient Estimates from Monte Carlo Experiment ${ }^{15}$
$T=100 ; N=1000$ DGP: (15a), (18); $\quad x_{t} \sim I(1)$

ϕ	θ_{1}	θ_{2}	$\hat{\theta}_{1}$	$\hat{\theta}_{2}$	$\hat{\theta}_{1}$	$\hat{\theta}_{2}$

I: $\beta=1, \mu=0.95$						
1.00	0.0000	0.0026	$\begin{aligned} & -0.0212 \\ & (0.0004) \\ & (0.0003) \end{aligned}$	$\begin{aligned} & -0.0102 \\ & (0.0011) \\ & (0.0009) \end{aligned}$	0.	$\begin{gathered} 0.0021 \\ (0.0002) \\ (0.0002) \end{gathered}$
0.95	0.0526	0.0054	$\begin{aligned} & -0.0231 \\ & (0.0005) \\ & (0.0005) \end{aligned}$	$\begin{gathered} 0.0011 \\ (0.0001) \\ (0.0000) \end{gathered}$	0.	$\begin{gathered} 0.0046 \\ (0.0004) \\ (0.0003) \end{gathered}$
0.70	0.4286	0.0252	$\begin{gathered} 0.2362 \\ (0.0021) \\ (0.0016) \end{gathered}$	$\begin{aligned} & -0.0025 \\ & (0.0003) \\ & (0.0002) \end{aligned}$	0.	$\begin{aligned} & -0.0526 \\ & (0.0081) \\ & (0.0067) \end{aligned}$

II: $\beta=1, \mu=0.85$

1.00	0.0000	0.0265	-0.0118	-0.0010	0.	0.0212
			(0.0001)	(0.0021)		(0.0054)
0.95	0.0526	0.0358	-0.0103	0.0062	0.	0.0236
			(0.0031)	(0.0021)		(0.0054)
			(0.0026)	(0.0025)		(0.0046)
0.70	0.4286	0.1021	0.2682	0.0941	0	-0.1290
			(0.0093)	(0.0310)		(0.0160)
			(0.0086)	(0.0350)		(0.0133)

$15 \theta_{i}$: theoretical values; $\hat{\theta}_{i}$: unconstrained estimates; $\hat{\theta}_{i}$: constrained estimates. Standard errors are in parentheses, the first being that from GIV estimation and the second from 2S2SLS estimation.

The second and third columns of each block in Table 1 represent the true values taken by the parameters θ_{1} and θ_{2} in equation (18) for each element of the range of values of the structural parameters given at the heading of each block ${ }^{16}$. Columns 4 and 5 show the parameter estimates when ϕ is not fixed but estimated along with the other parameters; finally columns 6 and 7 (yielding estimates denoted $\hat{\theta}_{i}$) give the estimates of the parameters θ_{i} when ϕ is fixed at unity and Δy_{t} therefore vanishes from the DGP (and is removed from the model).

We report two sets of standard errors with these estimates. The first bracketed figure corresponds to the mean standard error obtained using the GIV estimation method described above; the second figure is the mean standard error obtained using the Cumby et al. (1983) two-step two-stage least squares method (2S2SLS). Denoting the regressors in (18) by X, the instrument set by W and the disturbance by u, we have that the asymptotic distribution of $\hat{\theta} \equiv\left(\hat{\theta}_{1}, \hat{\theta}_{2}\right)$ is given by

$$
\begin{equation*}
T^{-1} \operatorname{plim}\left[\frac{X^{\prime} W}{T} \Omega^{-1} \frac{W^{\prime} X}{T}\right]^{-1} \tag{21}
\end{equation*}
$$

where $\Omega \equiv$ plim T^{-1} 'uu'W.
The matrix given in (21) is the true variance-covariance matrix of the GIV estimators, so it is interesting to compare it with the reported matrix. In order to implement (21), we have used a simple estimator proposed by Newey and West (1987), which ensures that Ω is positive definite. The estimate is

16
Estimates of the co-integrating parameter β were generally close to unity, although in some cases small sample biases could certainly emerge (see Banerjee et.al. (1986)).

$$
\begin{equation*}
\hat{\Omega} \equiv T^{-1} \sum_{t=1}^{T}\left[W_{t}^{\prime} \hat{u}_{t} \hat{u}_{t}^{\prime} W_{t}+\sum_{\substack{k=-m \\ k \neq 0}}^{m}(1-(k / m+1)) \cdot W_{t}^{\prime} \hat{u}_{t} \hat{u}_{t-k}^{\prime} W_{t-k}\right] \tag{22}
\end{equation*}
$$

where \hat{u}_{t} are the GIV residuals and $m=1$ for an MA(1) disturbance.
With a sample of 100 observations, the estimated values of $\hat{\theta}_{1}$ are negative for high values of μ and ϕ, indicating estimated values of ϕ slightly greater than unity. While the values are not plausible as estimates of a discount factor, we may have in these results some explanation of the commonplace empirical result that discount factors are not estimated to fall in, say, the interval [0.9. 1.0], as one might have expected a priori. However when we take a relatively low value of $\phi(e . g . \phi=0.7), \hat{\theta}_{1}$ becomes positive. A possible explanation lies in the small-sample biases which appear in the coefficient of the lagged dependent variable when estimating equations such as (18) (see, e.g., Grubb and Symons (1987)), which may also affect the estimates of $\hat{\theta}_{2}$. It is important to note also, from columns 5 and 6, that imposing $\phi=1$ when the true value of ϕ is, or is close to, unity improves the estimation of θ_{2}; the estimate is positive and close to the true value. However when $\phi=0.7$, imposing $\phi=1$ leads to poor estimates $\hat{\theta}_{2}$ of θ_{2}, as would be expected from the now-incorsistent estimator. Parameter estimates generally seem sorewhat nore accurate for lower values of μ, perhaps reflecting the fact that z_{t} then looks more like an $I(0)$ variable (recall (17a) ${ }^{17}$),

With respect to the standard errors, we observe that in most cases the GIV-estimated standard errors are higher than those from

This might be a possible explanation of the poor performance of Kennan's non-durable employment equation, where $\hat{\mu}$ seems high.

2S2SLS, confirming Kennan's result concerning upward biases: this also appears in Table 2. However the differences for the DGP that we have examined here are small.

The second simulation exercise uses (15b) and (18), with other features of the DGP (the generating processes for the disturbances) unchanged. Results, again for $\mathrm{N}=1000$ and $\mathrm{T}=100$ are found in Table 2.

Table 2

Mean Values of Coefficient Estimates from Monte Carlo Experiment ${ }^{18}$
$\mathrm{T}=100 ; \mathrm{N}=1000$
DGP: (15b), (18); $\quad x_{t} \sim 1(2)$

ρ	θ_{1}	θ_{2}	$\hat{\theta}_{1}$	$\hat{\theta}_{2}$	$\hat{\hat{\theta}}_{1}$	$\hat{\theta}_{2}$

II: $\beta=1, \mu=0.85$
0.39
0.95
0.70
0.0101
0.0283
-0. 0009
0.0228
0. 0.0231
(0.0092)
(0.0001) (0.0094)
(0.0072)
0.0526
0. 0358
$\begin{array}{cc}-0.0008 & 0.0308 \\ (0.0000) & (0.0097) \\ (0.0000) & (0.0082)\end{array}$
0. 0.0234
(0.0096)
(0.0081)
0.4286
0. 1021
$0.1215 \quad 0.0352$
$0 . \quad 0.0056$
(0.0521) (0.0172)
(0.0012)
(0.0482) (0.0181)
(0.0010)

[^2]As in the previous discussion, we distinguish three cases: \varnothing almost equal to unity (0.99), ϕ close to unity (0.95) and ϕ relatively far from unity (0.70). Only $\mu=0.85$ is considered, as the power of the co-integration test is relatively low when $\mu=0.95$. The second and third columns of Table 2 correspond to the true values given in the the same columns of Table 1.

When $\phi=0.99$, we observe again a negative value for $\hat{\theta}_{1}$, although this is very small in absolute value consistent with the fact that $\hat{\theta}_{1}$ is a T-consistent estimator of $\theta_{1}=0.0101$; moreover when $\phi=0.99 \hat{\theta}_{2}$ is quite well estimated, and similar results obtain when $\phi=0.95$, reflecting the finite sample continuity in the neighbourhood of $\phi=1$. Imposing $\phi=1$ renders the estimate $\hat{\theta}_{2}$ only slightly more accurate on average.

Finally when $\phi=0.7$, the ratio $\hat{\theta}_{2} / \hat{\theta}_{1}$, at 0.29 , is a good estimate of its theoretical counterpart $\delta / 1-\phi$ (recall (13)), which takes a value of 0.24 ; the individual coefficients, however, are not especially good estimates of θ_{1} and θ_{2}. In this last case, imposing ϕ $=1$ yields an estimate $\hat{\theta}_{2}$ which is quite small, reflecting again a T-consistent estimator of a parameter with a true value of zero. Similarly, the second-step regression of Δy_{t} on \hat{z}_{t} gave a value of $\hat{\delta} /(1-\phi)$ of 0.26 , while the third-step regression (20) yielded an estimate of θ_{1} of 0.35 , in each case, again, fairly close to the true values of .24 and .43 respectively.

[^3]the stable root is close to unity. Imposition of the restriction $\phi=$ 1 or ϕ equal to some value close to one is generally a reasonable strategy if the restriction is close to being valid, not surprisingly, but can lead to noticeable biases in results if the restriction is invalid in the case where the forcing variable is $I(1)$, and to very high estimated values of the adjustment costs when the forcing variable is I(2).

6. Concluding remarks

There have been a number of empirical studies in which investigators have estimated Euler equations in attempts to understand dynamic adjustment processes in the context of the QAC model. The results of such estimation need not, however, yield accurate estimates of critical parameters, especially if the integration properties of the data are disregarded as where non-stationarity is implicitly dealt with through commonplace procedures such as de-trending. By assuming that the forcing variables are integrated, we characterise the order of integration of the control variable and of the deviations from the target stemming from the optimal control rule. Several co-integrating relationships are found to be implied.

In view of these findings, we propose the use of an alternative several-stage procedure to that of Kennan (1979), which requires only knowledge of the Euler equation and the order of integration of the data. Some of the stages in estimation require the use of IV estimators rather than OLS as in Kennan's approach. The results reported here suggest that, even when estimation is by IV, the fact that regressions may be "inconsistent" (in the sense of having a

Abstract

regressand of different order of integration than the regressors) can lead to parameter values which approach zero rather than the correct theoretical values. In particular, we find that procedures such as Kennan's may be biased toward the finding of overly low (even negative, in small samples) estimates of discount factors and overly high costs of adjustment. However, we also find that the standard procedure of fixing the discount factor to unity (or slightly less than unity) seems to perform reasonably well when the true discount factor is indeed in that range. Nonetheless, it is risky even here to apply Kennan's method, which assumes knowledge of the discount factor: because of the considerable uncertainty surrounding this estimate: when it is well below unity the consequences of fixing it to unity can be serious, especially if the forcing variable is $I(2)$.

In general, these results suggest the importance of consideration of the orders of integration of underlying series in determining the outcome of estimation of Euler equations.

Appendix

Proof of Theorem.
(i) Since y_{t} is generated by (8) it can be written as

$$
\begin{equation*}
y_{t}=\beta F(L) x_{t}+(1-\mu L)^{-1}(1-\mu)(1-\phi \mu) e_{t} . \tag{A1}
\end{equation*}
$$

Since $0<\mu<1$ and e_{t} is $I(0)$, the order of integration of y_{t} is given by the order of integration of $F(L) x_{t}$. This is in turn equal to the order of integration of x_{t} if $F(1) \neq 0$. Otherwise, $F(L)$ contains at least one unit root, leading to a lower order of integration. $F(L)$ can be written as

$$
\begin{align*}
& (1-\mu)(1-\phi \mu)\left[\frac{L-\phi \mu[\rho(L) / \rho(\phi \mu)]}{(L-\phi \mu)(1-\mu L)}\right] \\
& \Longrightarrow F(1)=1-\phi \mu[\rho(1) / \rho(\phi \mu)] . \tag{A2}
\end{align*}
$$

If x_{t} is $I(d), d>0$, then given the representation (2), we must have $\rho\left(1:=0\right.$, and by $A(2) F(1)=1(\neq 0)$. Thus y_{t} has the order of integration of x_{t} and part (i) of the theorem is proven.
(ii) Define $z_{t}=y_{t}-\beta x_{t}=\beta[F(L)-1] x_{t}+I(0)$.

If x_{t} is generated by (2), then through a Taylor expansion around $L=1$ it can be shown (see Stock (1987)) that

$$
\begin{equation*}
\rho(L) x_{t}=\left[\rho(1)+\sum_{j=1}^{d-1} \frac{\rho^{(j)}(1)}{j!}(-1)^{j}(1-L)^{j}+\tilde{\rho}(L)(1-L)^{d}\right] x_{t} \tag{A4}
\end{equation*}
$$

where $\rho^{(J)}$ denotes the $j^{\text {th }}$ derivative of $\rho(L)$ with respect to L^{J} and $\tilde{\rho}(\mathrm{L})$ has all roots outside the unit circle. If $x_{t} \sim I(d)$, then by (A4),$\rho(1)=\rho^{(1)}(1)=\ldots=\rho^{(d-1)}(1)=0$.

By a similar expansion, we obtain from (A3),
$F(L) x_{t}=\left[F(1)+\sum_{j=1}^{d-1} \frac{D^{(j)}(1)}{j!}(-1)^{j}(1-L)^{j}+\tilde{F}(L)(1-L)^{d}\right] x_{t}$, and $z_{t}=\beta\left[(F(1)-1) x_{t}+\sum_{j=1}^{d-1} f_{j} \Delta^{j} x_{t}\right]+I(0)$,
where $f_{j}=F^{(j)}(1)(-1)^{j} /(j!) \quad(j=1,2, \ldots d-1)$ and we have used the fact that $\tilde{F}(L)(1-L)^{\text {d }}$ must be $I(0)$. Since $F(1)=1$, x_{t} will not appear in (A5); this completes the proof of part (ii). Note that the coefficients ℓ_{j} will be functions of the underlying parameters and that $f_{j}=g\left(\rho^{(j)}(1), \phi, \mu\right)$. The formulae for the coefficients f_{j} can be obtained by repeated differentiation of $F(L)$.
(iii) Note that since $F(1)-1=0$ and $\xi_{1} \neq 0$ in (A5), the leading term in (A5) is I(d-1), as required to prove (iii).
(iv) Finally note from the definition of z_{t} that $\Delta^{j} z_{t}=\Delta^{j} y_{t}-\beta \Delta^{j} x_{t}$ and therefore $z_{t}-\ell^{\prime} s_{y t}$ is equal to $z_{t}-f^{\prime} s_{x t}+f^{\prime} s_{z t}$, where $s_{z t} \equiv$ $\left(\Delta z_{t}, \Delta^{2} z_{t}, \ldots, \Delta^{d-1} z_{t}\right)$. From (ii), $z_{t}-\ell^{\prime} s_{x t}$ is $I(0)$; from (iii) $\Delta^{j} z_{t}$ is $I(d-(j+1))$. The leading term in $s_{z t}$ is $I(d-2)$, and this is therefore the order of integration of $z_{t}-q^{\prime} s_{y t}$.

References

Banerjee, A., J. Dolado, D.F. Hendry and G.W. Smith (1986) "Exploring Equilibrium Relationships in Econometrics through Static Models: Some Monte Carlo Evidence". Oxford Bulletin of Economics and Statistics 48, 253-277.

Blanchard, O. -J. (1983) "The Production and Inventory Behavior of the American Automobile Industry". Journal of Political Economy 91, 365-400.

Cumby, R., J. Huizinga and M. Obstfeld (1983) "Two-step Two-stage Least Squares Estimation in Models with Rational Expectations". Journal of Econometrics 21, 333-355.

Dickey, D.A. and W.A. Fuller (1979) Distribution of the estimators for autoregressive time series with a unit root. Journal of the American Statistical Association 74, 427-431.

Dickey, D. A. and W.A. Fuller (1981) "Likelihood Ratio Statistics for Autoregressive Time Series with a Unit Root".Econometrica 49. 1057-1072.

Engle. R.F. and C.W.J. Granger (1987) "Co-Integration and Error Correction: Representation, Estimation and Testing. Econometrica 55 , 251-276.

Grubb, D. and J. Symons (1987) "Bias in Regressions with Lagged Dependent Variables". Econometric Theory 4, 371-386.

Hansen, B.E. and P.C.B. Phillips (1988) "Statistical Inference in Instrumental Variables Regression with I(1) processes". Cowles Foundation Discussion Paper No. 869.

Hansen, L.P. and T.J. Sargent (1982) "Instrumental Variables Procedures for Estimating Linear Rational Expectations Models". Journal of Monetary Economics 9, 263-296.

Johansen, S. (1988) "Statistical Analysis of Cointegration Vectors" Journal of Economic Dynamics and Control 12, 231-254.

Kennan, J. (1979) "The Estimation of Partial Adjustment Models with Rational Expectations". Econometrica 47, 1441-1455.

Muellbauer, J. (1979) "Are Employment Decisions Based on Rational Expectations?" Mimeo, Birkbeck College, L:ondon.

Mue llbauer, J. and J. Winter (1980) "Unemployment, Employment and Exports in British Manufacturing: A Non-Clearing Market Approach"'. European Economic Review 13, 383-409.

Nelson. C. and C. Plosser (1982) "Trends and Random Walks in Macroeconomic Time Series". Journal of Monetary Economics 10. 139-162.

Newey, W. and K.D. West (1987) "A Simple Positive-Definite Heteroskedasticity and Autocorrelation Consistent Covariance Matrix" Econometrica 55, 703-708.

Nickell, S.J. (1987) "Dynamic Models of Labour Demand". in Handbook of Labour Economics, O. Ashenfelter and R. Layard, eds., North Holland, Amsterdam.

Pagan, A.R. (1985) "Time Series Behaviour and Dynamic Specification". Oxford Bulletin of Economics and Statistics 47. 199-213.

Pesaran, M.H. (1987) The Limits to Rational Expectations. Basil Blackwell, Oxford.

Phillips, P.C.B. (1987) "Towards a Unified Asymptotic Theory for

Autoregression". Biometrika 70, 535-547.
Rotemberg, J. (1982) "Monopolistic Price Adjustment and Aggregate Output". Review of Economic Studies 49, 517-531.

Said, S.E. and D.A. Dickey (1984) "Testing for Unit Roots in Autoregressive - Moving Average Models of Unknown Order". Biometrika 71. 599-607

Salmon, M. (1982) "Error-correction Mechanisms". Economic Journal 92, 615-629.

Sargan, J. D. (1981) "On Monte Carlo Estimates of Moments that are Infinite". Advances in Econometrics 1, 267-299.

Sargent, T.J. (1978) "Estimation of Dynamic Labour Demand Schedules under Rational Expectations". Journal of Political Economy 86, 1009-1044.

Sargent. T.J. (1981) "Interpreting Economic Time Series". Journal of Folitical Economy 89, 213-248.

Shapiro, M.D. (1986) "The Dynamic Demand for Capital and Labor" Quarterly Journal of Economics 101, 513-542.

Stock (1987) "Asymptotic Properties of Least-Squares Estimators of Co-Integrating Vectors". Econometrica 55, 1035-1056.

Wickens, M. (1982) "The Efficient Estimation of Econometric Models with Rational Expectations". Review of Economic Studies 49. 55-67.

8501 Agustin Maravall: Predicción con modelos de series temporales.
8502 Agustin Maravall: On structural time series models and the characterization of components.
8503 Ignacio Mauleón: Predicción multivariante de los tipos interbancarios.
8504 José Viñals: El déficit público y sus efectos macroeconómicos: algunas reconsideraciones.
8505 José Luis Malo de Molina y Eloísa Ortega: Estructuras de ponderación y de precios relativos entre los deflactores de la Contabilidad Nacional.
8506 José Viñals: Gasto público, estructura impositiva y actividad macroeconómica en una economía abierta.
8507 Ignacio Mauleón: Una función de exportaciones para la economía española.
8508 J. J. Dolado, J. L. Malo de Molina y A. Zabalza: El desempleo en el sector industrial español: algunos factores explicativos. (Publicada una edición en inglés con el mismo número).
8509 Ignacio Mauleón: Stability testing in regression models.
8510 Ascensión Molina y Ricardo Sanz: Un indicador mensual del consumo de energia eléctrica para usos industriales, 1976-1984.
8511 J. J. Dolado and J. L. Malo de Molina: An expectational model oflabour demand in Spanish industry.
8512 J. Albarracín y A. Vago: Agregación de la Encuesta Industrial en los 15 sectores de la Contabilidad Nacional de 1970.
8513 Juan J. Dolado, José Luis Malo de Molina y Eloisa Ortega: Respuestas en el deflactor del valor añadido en la industria ante variaciones en los costes laborales unitarios.
8514 Ricardo Sanz: Trimestralización del PIB por ramas de actividad, 1964-1984.
8515 Ignacio Mauleón: La inversión en bienes de equipo: determinantes y estabilidad.
8516 A. Espasa y R. Galiàn: Parquedad en la parametrización y omisiones de factores: el modelo de las líneas aéreas y las hipótesis del census X-11. (Publicada una edición en inglés con el mismo número).
8517 Ignacio Mauleón: A stability test for simultaneous equation models.
8518 José Viñals: ¿Aumenta la apertura financiera exterior las fluctuaciones del tipo de cambio? (Publicada una edición en inglés con el mismo número).
8519 José Viñals: Deuda exterior y objetivos de balanza de pagos en España: Un análisis de largo plazo.
8520 José Marín Arcas: Algunos índices de progresividad de la imposición estatal sobrela renta en España y otros países de la OCDE.
8601 Agustin Maravall: Revisions in ARIMAsignal extraction.
8602 Agustin Maravall and David A. Pierce: A prototypical seasonal adjustment model.
8603 Agustin Maravall: On minimum mean squared error estimation ofthe noise in unobserved component models.
8604 Ignacio Mauleón: Testing the rational expectations model.
8605 RicardoSanz: Efectos de variaciones en los precios energéticos sobre los precios sectoriales y de la demanda final de nuestra economía.
8606 F. Martín Bourgón: Indices anuales de valor unitario de las exportaciones: 1972-1980.
8607 José Viñals: La política fiscal y la restricción exterior. (Publicadà una edición en inglés con el mismo número).
8608 José Viñals and John Cuddington: Fiscal policy and the current account: what do capital controls do?
8609 Gonzalo Gil: Política agricola de la Comunidad Económica Europea y montantes compensatorios monetarios.
8610 José Viñals: ¿Hacia una menorflexibilidad de los tipos de cambio en el sistema monetario internacional?
8701 Agustin Maravall: The use of ARIMA models in unobserved components estimation: an application to spanish monetary control.

8702 Agustin Maravall: Descomposición de series temporales: especificación, estimación e inferencia (Con una aplicación a la oferta monetaria en España).
8703 José Viñals y Lorenzo Domingo: La peseta y el sistema monetario europeo: un modelo de tipo de cambio peseta-marco.
8704 Gonzalo Gil: The functions of the Bank of Spain.
8705 Agustín Maravall: Descomposición de series temporales, con una aplicación a la oferta monetaria en España: Comentarios y contestación.
8706 P. L'Hotellerie y J. Viñals: Tendencias del comercio exterior español. Apéndice estadistico.
8707 Anindya Banerjee and Juan Dolado: Tests of the Life Cycle-Permanent Income Hypothesis in the Presence of Random Walks: Asymptotic Theory and Small-Sample Interpretations.
8708 Juan J. Dolado and Tim Jenkinson: Cointegration: A survey of recent developments.
8709 Ignacio Mauleón: La demanda de dinero reconsiderada.
8801 Agustín Maravall: Two papers on arima signal extraction.
8802 Juan José Camio y José Rodriguez de Pablo: El consumo de alimentos no elaborados en España: Análisis de la información de Mercasa.
8803 Agustin Maravall and Daniel Peña: Missing observations in time series and the «dual» autocorrelation function.
8804 José Viñals: El Sistema Monetario Europeo. España y la politica macroeconómice. (Publicada una edición en ingléscon el mismo número).
8805 Antoni Espasa: Métodos cuantitativos y análisis de la coyuntura económica.
8806 Antoni Espasa: El perfil de crecimiento de un fenómeno económico.
8807 Pablo Martin Aceña: Una estimación de los principales agregados monetariosen España: 1940-1962.
8808 Rafael Repullo: Los efectos económicos de los coeficientes bancarios: un análisis teórico.
8901 M. ${ }^{\text {a }}$ de los Llanos Matea Rosa: Funciones de transferencia simultáneas ded índice de precios al consumo de bienes elaborados no energéticos.
8902 Juan J. Dolado: Cointegración: una panorámica.
8903 Agustin Maravall: La extracción de señales y el análisis de coyuntura.
8904 E. Morales, A. Espasa y M. L. Rojo: Métodos cuantitativos para el análisis de le actividad industrial española.
9001 Jesús Albarracin y Concha Artola: El crecimiento de los salarios y el deslizamiento salarial en el periodo 1981 a 1988.
9002 Antoni Espasa, Rosa Gómez-Churruca y Javier Jareño: Un análisis economéérico de los ingresos por turismo en la economía española.
9003 Antoni Espasa: Metodología para realizar el análisis de la coyuntura de un fenómeno económico. (Publicada una edición en inglés con el mismo número).
9004 Paloma Gómez Pastor y José Luis Pellicer Miret: Información y documentación de las Comunidades Europeas.
9005 Juan J. Dolado, Tim Jenkinson and Simon Sosvilla-Rivero: Cointegration and unit roots: a survey.
9006 SamuelBentolila and Juan J. Dolado: Mismatch and Internal Migration in Spain, 1962-1986.
9007 Juan J. Dolado, John W. Galbraith and Anindya Banerjee: Estimating euler equstions with integrated series.
(1) Los Documentos de Trabajo anteriores a 1985 figuran en el catálogo de publicaciones daal Banco de España.

Información: Banco de España
Sección de Publicaciones. Negociado de Distribución y Gestión
Teléfono: 3385180
Alcalá, 50. 28014 Madrid

[^0]: 1
 It may also be used as a first step before implementation of the asymptotically fully efficient method.

[^1]: 8
 See Hansen and Sargent (1982).

 9
 More generally, we consider series which are integrated of order d, denoted $x_{t} \sim I(d)$.

[^2]: 18
 Again, θ_{i} : theoretical values; $\hat{\theta}_{\mathrm{i}}$: unconstrained estimates; $\hat{\theta}_{\hat{i}}$: constrained estimates. Standard errors are in parentheses, the first being that from GIV estimation and the second from 2S2SLS estimation.

[^3]: To summarise the results of the experiments, it seems that implementation of the two-step and three-step procedures give? reasonably accurate results for the processes used here, although sizeable finite-sample biases can appear in the estimation of ϕ when

