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Abstract

The time aggregation properties of the Hodrick-Prescott (HP) filter to decompose a time
series into trend and cycle are analized for the case of annual, quarterly, and monthly data. It
is seen that aggregation of the disagreggate component estimators cannot be obtained as
the exact result from applying an HP filter to the aggregate series (and viceversa).
Nevertheless, using several criteria, one can find HP decompositions for different levels of
aggregation that provide similar results. The approximation works better for the case of
temporal aggregation than for systematic sampling. The criterion finally proposed to find
“close to equivalent” HP filters for different frequencies of observation is trivial to apply, and
does not depend on the particular series at hand, nor on the series model.
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1. Introduction

The subjectiveness in the concept of business cycle has derived in multiple methodologies
for its identification (see, for example, Canova (1998)). Be that as it may, and despite
substantial academic criticism (see, for example, Cogley and Nason (1995), Harvey (1997),
or King and Rebelo (1993)), the Hodrick-Prescott (HP) filter has become the core of the
paradigm for business-cycle estimation in short-term economic analysis at policy making
institutions. The HP filter decomposes a time series into two components: a long-term trend
component and a stationary cycle (see Hodrick and Prescott (1980), Kydland and Prescott
(1990), and Prescott (1986)); it is a linear filter that requires previous specification of a
parameter known as lambda, λ. This parameter tunes the smoothness of the trend, and

depends on the periodicity of the data and on the main period of the cycle that is of interest
to the analyst. Nevertheless, as pointed out by Wyne and Koo (1997), the parameter does
not have an intuitive interpretation for the user, and its choice is considered perhaps the
main weakness of the HP method (Dolado et al. (1993)).

For quarterly data (the frequency most often used for business-cycle analysis), there is an
implicit consensus in employing the value of λ=1600, originally proposed by Hodrick and

Prescott (1980) based on a somewhat mystifying reasoning (“…a 5% cyclical component is
moderately large, as is a 1/8 of 1% change in the growth rate in a quarter…”). Still, the
consensus around this value undoubtedly reflects the fact that analysts have found it useful.
The consensus, however, disappears when other frequencies of observation are used. For
example, for annual data, Baxter and King (1999) recommend the value λ=10 because it

approximates a band pass filter that removes from the cycle periodicities larger than 8
years; Dolado et al. (1993) employ λ=400 as a result of dividing 1600 by 4, the ratio of the

number of observations per year for quarterly and annual data (this value of λ is also

considered, together with λ=100, by Apel et al. (1996)); while Backus and Kehoe (1992),

Giorno et al. (1995) or European Central Bank (2000) use the value λ=100. Concerning

monthly data (a frequency seldom used), the popular econometrics program E-views uses
the default value 14400, while the Dolado et al. reasoning would lead to λ=4800. This paper

deals with the problem of finding appropriate values of λ that yield consistent results under

aggregation (or disaggregation). Although the solution we shall eventually propose extends
trivially to any other frequency, we shall concentrate the discussion on annual, quarterly, and
monthly observations.

Let f denote the number of observations per year (hence f=12 for monthly data, f=4 for
quarterly data, and f=1 for annual data), and denote by λf the HP parameter used for that

frequency of observation. In order to compute values of λ that are consistent under

aggregation (we shall refer to them as “equivalent” values), the basic comparison will be the
following. Let h and l (h>l) denote a higher and a lower frequency of observation. Firstly, for a
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fixed λh for the higher frequency, we shall find a value λl, for the lower frequency, such that

the components obtained with direct and indirect estimation are as close as possible. Direct
estimation denotes the decomposition obtained by applying λl to the low frequency data;

indirect estimation refers to the decomposition obtained by aggregating the components
obtained by applying λh to the high frequency data. Secondly, for a given λl for the low

frequency data, we shall try to find λh, for the high frequency data such that the difference

between direct and indirect adjustment is as small as possible. Although, as shall be seen,
the extension to other values is immediate, in the discussion that follows we shall use the
widely accepted value of λQ=1600 for quarterly data as the pivotal value for the comparisons.

2. The Hodrick-Prescott Filter

We shall adopt the standard Box and Jenkins (1970) terminology, whereby an ARIMA(p,d,q)

model denotes the model

( ... ) ( ... )1 11 1+ + + ∇ = + + +φ φ θ θB B x B B ap
p d

t q
q

t ,

where B is the lag operator, such that B x xj
t t j= − , ∇ = −1 B  is the regular difference, and

at is a white-noise innovation. When p=0, the model name will be abbreviated to IMA(d,q).

Further, if x t requires d differences to become stationary, xt will be called "integrated of order

d ", or I(d).

Assume we are interested in decomposing a time series (x1 … xT) into a long-term trend mt

and a residual, ct, to be called “cycle”. The HP filter provides the sequences (m1 … mT) and

(c1 … cT) such that

ttt cmx +=   t=1,…,T, (2.1)

and the loss function

( )∑∑
==

∇+
T

t
t

T

t
t mc

3

22

1

2 λ (2.2)

is minimized. The first term in (2.2) penalizes large residuals (i.e., poor fit), while the second
term penalizes lack of smoothness in the trend. The parameter λ regulates the trade-off

between the two criteria. The solution is given by the expression xAm 1ˆ −= , with

'KKIA λ+= , where m̂  is the estimated value of the vector (m1 … mT)’, x is the vector

(x1 … xT)’, K  is a (T-2)xT matrix with elements Kij=1 if i=j or i=j+2, Kij=-2 if i=j+1, and Kij=0
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otherwise (see Danthine and Girardin (1989)). King and Rebelo (1993) showed that the filter

could be given a model-based interpretation whereby (x1 … xT) is the realization of a

stochastic process consisting of the sum of an IMA(2,0) stochastic trend, plus an

orthogonal white-noise residual. Under these assumptions, the HP filter solution is equivalent

to finding the minimum mean square error (MMSE) estimator of mt and ct. As shown in

Harvey and Jaegger (1993), the Kalman filter can be used to obtain those estimators. Kaiser
and Maravall (1999) show that the HP estimators can also be given a slightly different model-
based interpretation, that implies an alternative computational algorithm. We summarize this
approach.

Letting “w.n. (0,ν)” denote a white noise (niid) variable with zero mean and variance ν, the

models for mt and ct can be expressed as

mtt am =∇2  , amt ∼ w.n. (0 ,νm) ; (2.3a)

ct ∼ w.n. (0 ,νc) ; (2.3b)

with amt orthogonal to ct. From (2.1) it follows that

tmtt cax 22 ∇+=∇ (2.4)

and hence the reduced form for x t is an IMA(2,2) process, say

ttHPt aBBaBx )1()( 2
21

2 θθθ ++==∇  , ta ∼ w.n. (0 ,νa) , (2.5)

where the identity

tmttHP caaB 2)( ∇+=θ  (2.6)

determines the parameters θ1, θ2, and νa. The fact that the r.h.s. of (2.6) is the sum of the

two orthogonal components, one of them white noise, implies that tx2∇  has a strictly

positive spectral minimum, or, in other words, that tHP aB)(θ  is an invertible process;

therefore, 1)( −BHPθ will always converge. The MMSE estimator of mt and ct can now be

obtained with the Wiener-Kolmogorov (WK) filter. When

λ = νc /νm (2.7)

these estimators are the ones obtained with the HP filter.

In general for a stationary component nt with moving average (MA) expression
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tnt bBn )(ψ= , bt ∼ w.n. (0,νb) , (2.8)

contained in a stationary series with MA expression

txt aBx )(ψ= , at ∼ w.n. (0,νa) ; (2.9)

the WK filter that provides the MMSE estimator of nt (when a doubly infinite realization of x t is

available) is given by

)()(
)()(

),(
FB
FB

v
v

FB
xx

nn

a

b
n ψψ

ψψ
ϑ = , (2.10)

where F(=B-1) denotes the forward operator, such that jtt
j xxF += . When the series - and

perhaps the component- is nonstationary (NS), the MA representation (2.9) - and perhaps

(2.8) - will not converge. But if (2.10) converges in B and F, (2.10) can be seen as the WK

filter extended to NS series, and still provides the MMSE of the component (Bell (1984) and
Maravall (1988)). From (2.3) and (2.5), after simplification, it is obtained that, for the HP trend
and cycle, the filters are given by

)()(
1

),(
FBv

v
FB

HPHPa

m
m θθ

ϑ = ; (2.11)

)()(
)1()1(

),(
22

FB
FB

v
v

FB
HPHPa

c
c θθ

ϑ
−−

= . (2.12)

It is immediately seen that 1),(),( =+ FBFB cm ϑϑ
 
(which implies ttt cmx ˆˆ += ). Therefore,

we shall concentrate attention in ),( FBmϑ , and ),( FBcϑ  can be trivially obtained as

),(1),( FBFB mc ϑϑ −= .

The filters (2.11) and (2.12) are symmetric and centered and, because of invertibility of

θHP(B), convergent. Since (2.6) implies

cmaHPHP vFBvvFB 22 )1()1()()( −−+=θθ , (2.14)

and considering (2.7), the filter (2.11) can alternatively be expressed in terms of the HP
parameter λ as:

22 )1()1(1
1

),(
FB

FBm −−+
=

λ
ϑ . (2.15)
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The estimator of mt  will thus be obtained through

tmt xFBm ),(ˆ ϑ= . (2.16)

It will prove useful to look at the frequency domain representation of the filter (2.15), given by

its Fourier transform (FT). If [ ]πω ,0∈  denotes the frequency measured in radians,

replacing B by the complex number e-iω, and using the identity ωωω ijij eej += −)cos(2 , the

FT of (2.15) is given by

2))cos(1(41
1

),(
ωλ

λω
−+

=mG (2.17)

and ),(1),( λωλω mc GG −= . Expression (2.17) is the gain function of the filter. Equating the

pseudo-autocovariance functions (ACF) of the two sides of (2.16), and taking the FT yields

[ ] )(),(),( 2
ˆ ωλωλω xmm SGS = (2.18)

where ),(ˆ λωmS  and )(ωxS  are the pseudo-spectra of tm̂  and x t. Given that the pseudo-

spectrum provides a description of how different frequencies contribute to the variation of x t,

expression (2.18) shows that the squared gain of the filter indicates which frequencies are

selected from x t to provide the estimator tm̂ .

Figure 1a shows the shape of the squared gain of (2.15) for different values of λ. The larger

the value of λ, the smaller is the contribution of high frequencies, and hence smoother

trends will be obtained. Figure 1b displays a realization of an IMA(2,2) process, and Figures

1c and 1d compare the trends and cycles, respectively, obtained for the different values of λ.

Naturally, smoother trends imply cycles with larger amplitude and longer periods.

The WK filter (2.15) extends from −∞ to ∞. Its convergence, however, would allow us to use

a finite truncation. But, as characterizes all 2-sided filters, estimation of the component at
both ends of a finite series requires future observations, still unknown, and observations
prior to the first one available. As shown by Cleveland and Tiao (1976) the optimal (MMSE)
estimator for end points can be obtained by extending the series at both ends with forecasts

and backcasts, so that expression (2.16) remains valid with x t replaced by the extended

series. There is no need however to truncate the filter: using the Burman-Wilson algorithm in
Burman (1980), Kaiser and Maravall (2001) present the algorithm for the HP filter case, and
show how the effect of the infinite extensions can be exactly captured with only 4 forecasts
and backcasts. The WK application of the HP filter is computationally efficient and
analytically convenient.
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Figure 1a: Gain of the HP filter for Figure 1b: Realization of an IMA(2,2) process
different values of λ
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Figure 1c: Estimated trends for different values of λ
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We shall consider two types of aggregation. In the first one the aggregate variable is the sum
(or average) of the disaggregate variable; in the second one, the aggregate variable is
obtained by periodically sampling one observation from the disaggregate variable. The first
case will be denoted "temporal aggregation", and the second case, "systematic sampling".
Although temporal aggregation is the most frequently used method, systematic sampling
affects some important variables such as, for example, European Monetary Union monetary
aggregates.

Two important remarks should be made:

a) Given that seasonal variation should not contaminate the cyclical signal, the HP filter
should be applied to seasonally adjusted series. As shown in Kaiser and Maravall (2001),
the presence of higher transitory noise in the seasonally adjusted series can also
contaminate the cyclical signal and its removal may be appropriate. In this paper, the
issue of seasonal adjustment or noise removal will not be addressed, and we shall
assume that the series does not contain seasonality, or that it has been appropriately
removed.

b) It is well known (see Baxter and King (1999)) that the HP filter displays unstable behavior
at the end of the series. As shown in Kaiser and Maravall (2001), end-point estimation is
considerably improved if the extension of the series needed to apply the filter is made
with proper forecasts, obtained not with model (2.5), but with the correct ARIMA model

for the series in question. We shall always apply the filter in this manner.

3. Temporal Aggregation of the Hodrick-Prescott Filter

In order to analyze the aggregation properties of the HP filter, it will prove helpful to use the
WK representation. We have mentioned that the HP filter can be seen as the filter that

provides the MMSE estimator of an unobserved component mt in the full model consisting of

equations (2.1), (2.3), and (2.5), with ct white noise and λ given by (2.7). Let the aggregate

series consist of non-overlapping sums of k consecutive values of the disaggregate series.

We adopt the following notation:

• Aggregate series will be represented by capital letters; disaggregate series by small
letters.

• T and t denote the time sub-index for the aggregate and disaggregate series respectively.
Thus, if T and t refer to the same date 11 ... +−− +++= ktttT xxxX , and in general,

 1)1(1 ... ++−−−−− +++= kjtjktjktjT xxxX , j=1,2,…. (3.1)
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• b  denotes the backward operator and ∇ the difference operator for the disaggregate
series. Thus jttt

j
tj xxxbx −−=−=∇ )1( .

• kS  is the aggregation operator for the disaggregate series: 1...1 −+++= k
k bbS . Thus

 jktkjT xSX −− = ; (3.2)

 kk S∇=∇ . (3.3)

• B denotes the backward operator and D the difference operator for the aggregate series.
Thus 1)1( −−=−= TTTT XXXBDX .

• The same convention applies to the disaggregate and aggregate components, mt, and
MT, and ct and CT.

• We shall denote an “HP-type decomposition” the decomposition of an IMA(2,2) model
into the sum of an IMA(2,0) model plus orthogonal white noise.

Starting with a disaggregate HP-type decomposition, in order to derive the aggregate filter,
we aggregate series and components, and see if they are consistent with an HP-type
decomposition. As shown by Stram and Wei (1986), aggregation preserves the order of
integration of the series, thus, from (2.5), we consider D2XT. From the identity

21
2 2 −− +−= TTTT XXXXD  it is easily found using (3.2) that tkkT xSXD 22 ∇= , or using

(2.5) and (3.3),

ttHPkT ababSXD )()(32 αθ == , (3.4)

where α(b) is a polynomial in b of order 3k-1 . From

1)3(1311
2 ... ++−−−−−− +++= kjtkjktjktjT aaaXD αα j=0,1,2… ,

it is seen that the ACF of D2 XT  is such that 1ρ  and 2ρ  are nonzero, while 0=jρ  for j>2.

Therefore, D2 XT follows an IMA(2,2) process.

Proceeding in a similar way with the aggregate trend component, it is found that

mtktkkT aSmSMD 322 =∇= , (3.5)

where 3)( km Sb =α  is a polynomial in b of order 3k-3 . From

3)3(,33,1,1,,
2 ... ++−−−−−− +++= kjtmkmkjtmmkjtmjT aaaMD αα  j=0,1,2… ,
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it follows that D2 MT is also an IMA(2,2) model. As for the cycle, it is immediately seen that

CT is a white-noise variable, with variance vC =k vc.

In summary, aggregation of the HP filter yields an IMA(2,2) series, an IMA(2,2) trend, and a

white-noise cycle. The trend specification implies that the aggregate components cannot be
seen as the result of a direct HP-type decomposition of the aggregate series: the HP-filter
does not preserve itself under temporal aggregation.

Be that as it may, from an applied point of view it is important to know whether the departure
of the aggregate components from an HP-type decomposition is relatively large or, on the
contrary, close to negligible, in which case an HP-type decomposition of the aggregate
series could approximate well the components obtained with the indirect procedure. We
shall consider two separate problems:

a) Given the disaggregate HP decomposition, and the components for the aggregate series
obtained by aggregating the disaggregate components, can we obtain a value of λ that

provides a direct HP decomposition of the aggregate series with components that are
close to the former ones?

b) Given a direct HP-decomposition of the aggregate series, can we obtain a value of λ that

provides an HP-decomposition of the disaggregate series with components that, when
aggregated, are close to the components of the direct decomposition?

The two problems could be discussed following the general approach of Stram and Wei
(1986). For our purposes, however, we can follow an alternative, much simpler, approach.
Assuming that the value λQ=1600 for quarterly data provides the reference value, question a)

is relevant to determine the equivalent λA for annual data; question b) is relevant to

determine the equivalent value of λ M for monthly data.

From (2.6), (3.3) and (3.4),

tkkmtktmtkT cSaScaSXD 23232 )( ∇+=∇+= , (3.6)

where T and t always are assumed to refer to the same date. The ACF of the r.h.s. of (3.6)

is given by

ckkmkk vSSvSS 2233 ∇∇+ , (3.7)

where an upper bar denotes the corresponding polynomial with B replaced by F (i.e.
k

k F−=∇ 1 ). Given that, from (3.4),
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jktHPkjT abSXD −− = )(32 θ j=0,1,2 ,

the variance and lags 1 and 2 autocovariances of D X T j
2

− , to be denoted Γ0, Γ1, and Γ2,

measured in the aggregate time units, are equal to the variance and lags k and 2k

autocovariances of (3.7), to be denoted γ0, γ1k, and γ2k, measured in the disaggregate time

units. If the direct HP decomposition of the aggregate series XT is given by

X M CT T T= +

MTT AMD =2 , AMT ∼ w.n. (0,νM) , (3.8)

with CT  white noise (0,νC) orthogonal to AMT, setting Γj =γjk (j=0,1,2), a system of three

equations is obtained, of the type:

cmC

cmC

cmCM

vavav
vavav
vavavv

2212

2111

2010

4
6

+=
+=−
+=+

. (3.9)

The system can be standardized by dividing by νm. Given νm and νc or, considering (2.7), the

HP parameter λ for the disaggregated decomposition, the system of three equations with

two unknowns will not have a solution for ν M and νC, i.e., for the HP-parameter of the

aggregate decomposition. Inversely, given νM and νC, the system will not have a solution for

νm and νc.

Focusing on the relationship between monthly, quarterly, and annual aggregation the
coefficients aij in (3.9) can be easily obtained from (3.7), yielding the matrices
















−=

3
12

18

1
50

141

3A  ,
















−=

4
16

24

6
216

580

4A  ,
















−=
12
48

72

2002
53768

137292

12A ,

where the subindices correspond to k=3, k=4, and k=12. For the quarterly value λ=1600,

setting νm=1 and νc=1600, it is easily seen that no equivalent annual value for λ can be found

because the system has no solution for νM and νC. Likewise, setting νM =1 and νC =1600 no

equivalent monthly value for λ can be obtained because the system has no solution for νm

and νc. These results are obvious from the structure of (3.9): the ratio of the l.h.s. of the last

two equations is equal to -4, while this needs not be true for the ratio of the two r.h.s.
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Letting λM, λQ, and λA denote the value of the HP-parameter for the decomposition of the

monthly, quarterly and annual series, respectively, we can try to find values of λM and λA

consistent with λQ=1600 by solving the system consisting of the first two equations of (3.9).

This way of proceeding yields eventually

λM =115204 ;  λA =7.02 . (3.10)

For these values, the ratio of the r.h.s. of the last two equations of (3.9) is approximately

-3.99 and -3.96, respectively, and hence very close to -4. Thus, although there are no values
of λM and λA that provide an exact HP decomposition of the monthly and annual series

consistent with the quarterly one, the previous approximation provides values that are
surprisingly close to an exact solution. When, instead of the first and second equation of the
system (3.9), the first and third equation are chosen, the value of λM decreases while that of

λA increases by relatively small amounts, and the approximation is also close to the exact

solution. More generally, we can solve the system (3.9) in a least-square sense, by
minimizing

[ ]Γ j M C jk m c
j

v v v v( , ) ( , )−
=

∑ γ
2

0

2

. (3.11)

To find λA, we set νm=1 and νc=1600, and minimize (3.11) with respect to νM and νC.; on the

other hand, to obtain λM, we set νM =1 and νC =1600 and solve (3.11) with respect to νm and

νc. This yields

λM =114013 ;  λA =7.19 (3.12)

values that are very close to those in (3.10). Thus, under temporal aggregation, there seems
to be a range of values for λM and λA that can be seen as close to being equivalent.
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4. Aggregation of the Hodrick-Prescott Filter under Systematic Sampling

The previous section considered the case of temporal aggregation, namely, when the
aggregate series is the sum of non-overlapping sequences of consecutive values. We
consider now the case in which the aggregate variable is obtained by systematic sampling

every k periods. Following the same notation as before, if T and t refer to the same date, the

aggregate series is obtained as

 X xT j t jk− −=  j=0,1,2... 

Proceeding as in the previous section, in order to derive the aggregate filter, our first interest
is to obtain the models for the aggregate series and components. From

tkt
kk

TTTT xxbbXXXXD 22
21

2 )21(2 ∇=+−=+−= −− ,

using (2.5) and (3.3) it is found that

ttHPkT ababSXD )()(22 αθ == (4.1)

where α(b) is of order 2k . Expression (4.1) remains valid for XT-j if at is replaced by at-jk,

j=1,2... from which it is immediately found that D2XT has nonzero covariances only for lags 0,

±1 and ±2. Therefore, similarly to the temporal aggregation case, the aggregate variable XT

follows an IMA(2,2) model.

Using a similar derivation for the (systematically sampled) trend aggregate component, it is
obtained that

tkt
kk

TTTT mmbbMMMMD 22
21

2 )21(2 ∇=+−=+−= −−  

or using (2.3) and (3.3),

       mtkT aSMD 22 =          (4.2)

where Sk
2  is a polynomial in b of order 2(k-1). The autocovariances for lag 0 and lag jk of the

r.h.s. of (4.2) provide the autocovariance for lag 0 and j of D2MT. It is easily checked that this

implies that MT  is an IMA(2,1) process. As for the aggregate cycle, CT  (=ct) is a white

noise variable, with variance νC =νc.
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Summarizing, although aggregation under systematic sampling implies a model for the
aggregate trend different than the one implied by temporal aggregation (an IMA(2,1) versus

an IMA(2,2) model), it still remains true that the decomposition for the aggregate obtained by

aggregating the disaggregate components is not of the HP type. The HP decomposition
does not preserve itself under systematic sampling.

Proceeding as before, plugging (2.6) in (4.1) yields

tkmtktmtkT caScaSXD 22222 )( ∇+=∇+= (4.3)

and the ACF of the r.h.s. of (4.3) is equal to

ckkmkk vvSS 2222 ∇∇+ . (4.4)

Therefore, as in the case of temporal aggregation, equating the lag-0, lag-1 and lag-2

covariances of D2XT  to the lag-0, lag-k  and lag-2k  covariances in (4.4) yields a system of

three equation of the type (3.9), where the ai j-coefficients are determined from (4.4). For
k=3,4 and 12, the matrices of those coefficients are now given by
















−=
1
4

6

0
4

19

3A ;  
















−=
1
4

6

0
10

44

4A  ;
















−=
1
4

6

0
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12A ,

and it is easily seen that, given νm and νc, in none of the three cases the system has a

solution for νM and νC ; similarly, given νM and νC , the system has no solution for νm and νc.

Although no exact solution exists, our interest as before is to see if we can find values for λM

and λA that produce HP decompositions for the monthly and annual series that are

approximately consistent with the HP decomposition obtained for the quarterly series with
λQ=1600. First, we proceed to solve the system of the first two equations for the case of

annual aggregation: setting νm=1 and νc=1600, we obtain the solution for νM and νC. Second,

we solve the system of the first two equations for the case of monthly to quarterly

aggregation: setting νM =1 and νC =1600, we obtain the solution for νm and νc. The values for

the HP-parameter are

λM =40001 ;  λA =27.08 . (4.5)

If the variances obtained are inserted in the third equation, the ratio of the second to third
equation, which should be -4 for the exact solution, turns out to be approximately -3.99 in
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both cases. The conclusion is the same as for the temporal aggregation case: the
approximate solution is very close to satisfying exactly the full system of three equations.

To find the least squares solution to the system of three equations, for the quarterly to
annual aggregation case, from (3.11) and λQ=1600 it is seen that the expression

( ) ( ) ( )SS v v v vM C C C= + − + − + + −6 9644 4 6390 1600
2 2 2

has to be minimized with respect to νM and νC. Analogously, for the quarterly to monthly

disaggregation case, we minimize the expression

( ) ( ) ( )222 16001600169601619 −++−+−+= ccmcm vvvvvSS

with respect to νm and νc. Using (2.7) this yields the values:

λM=39627 ;  λA=27.49 . (4.6)

Again the two sets of values (4.5) and (4.6) are very close.

In summary, the lack of aggregation property of the HP filter seems more apparent that real.
Although there will be no set of values λM, λQ and λA that will exactly satisfy the aggregation

constraints, we can find values that provide close approximations. The procedure we have
used to obtain these approximation is rather simple, but requires however some prior work
by the analyst. Moreover, we have looked at straightforward aggregation of the filter, but we
do not know what this aggregation implies in terms of the cycle features: will the properties
of the filter (in particular, the gain) be affected? Will the dominant period in the cycle be
different? Ultimately, it would be convenient to obtain a rule, trivial to apply, that would permit
the analyst to find equivalent values of λ to use for any type of observation frequency. To this

issue we turn next.
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5. Aggregation by Fixing the Period for which the Gain is One Half (the Cycle
of Reference).

In the engineering literature, a well-known family of filters designed to remove (or estimate)
the low-frequency component of a series is the Butterworth family (see, for example Gomez
(1999)). The filter is described by its gain function which, for the two-sided expression and
the sine-type subfamily of filters, can be expressed as

12

0 )2/(
)2/(

1)(

−




















+=

d

m sin
sin

G
ω
ω

ω , 0 ≤ ≤ω π , (5.1)

and depends on two parameters, d and ω0. From (5.1), G(ω0)=1/2, and hence the parameter

ω0 can be seen as the frequency for which 50% of the filter gain has been achieved. We

shall refer to the cycle associated with that frequency as the "cycle of reference". Setting

d=2 and defining [ ]β ω=
−

sin4
0

1
2( / ) , the gain can also be expressed as

( )[ ]G sinm ( ) /ω β ω= +
−

1 24 1
. (5.2)

From the identity 2 2 12sin ( / ) cos( )ω ω= − , (5.2) can be rewritten as

  ( )[ ] 12)cos(1)4/(1)(
−

−+= ωβωmG ,

which, considering (2.17), shows that the filter is precisely the HP filter, with λ=β/16, or

[ ] 12
0 ))cos(1(4

−
−= ωλ . (5.3)

Therefore, knowing the parameter ω0, the HP filter parameter λ can be easily obtained, and

viceversa. In this way, λ can be given an alternative interpretation in terms of the frequency

associated with G(ω0)=1/2. If τ denotes the period it takes for completion of the full cycle of

cos(ω0), τ  is related to the frequency (in radians) through

τ=2π/ω . (5.4)

Using (5.3) and (5.4), we can express the period τ directly as a function of λ, as
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τ π
λ

= −2 1
1

2
/ cos( )a . (5.5)

Equations (5.3)-(5.5) allow us to move from period to frequency, and then to λ (and

viceversa) in a simple way. For example, with λ=1600 applied to quarterly data, it is found

that τ =39.7 quarters, or close to a 10 year period. A possible alternative criterion for finding

values of the HP parameter λ that provide relatively consistent and convenient results under

aggregation or disaggregation is to preserve the period of the cycle of reference.

Assume we accept λQ=1600 as the appropriate value of λ for quarterly series. We have seen

that λQ=1600 implies a period of 39.7 quarters. Thus, for annual data, the period of the cycle

of reference is, according to (5.5), τ =9.9 years. From (5.4), ωA=2π/9.9, and (5.3) yields

λA=6.65. On the other hand, the period of 39.7 quarters is, in terms of monthly observations,

equal to 119.1 months. Using (5.4) and (5.5), it is found that the equivalent value of λ for

monthly data is λM=129119. Thus, using this criterion, the values of λ that are consistent for

the monthly and annual frequencies of observation, in the sense that they will preserve the
period of the cycle of reference implied by λQ=1600, are

λM=129119 ; λA=6.65 , (5.6)

close to the values in (3.10) and (3.12), derived previously for the case of temporal
aggregation. They are considerably different, however, from the values obtained for the case
of systematic sampling.

The procedure of finding λ's that are approximately consistent under aggregation by means

of fixing the period of the cycle of reference (i.e., the cycle for which the gain of the filter is
½), is simple to apply, and can be used for aggregating or disaggregating series with any
frequency of observation.

An example can illustrate the types of approximation implied. In Giorno et al. (1995) the
method used by the OECD for the estimation of the output gap is described: it uses the HP
filter with λQ=1600 and λA=100. These values are referred to as "de facto industry standards"

(the European Central Bank (2000) has also used similar values); the two values however
are inconsistent. Using λA=100 for annual data, from (5.5), the period of the cycle of

reference is τA=19.8 years or, very approximately, 20 years, which in terms of quarterly data

becomes τQ=79.2 quarters. From (5.3) and (5.4), this implies the use of λQ=25199,

considerably higher that the "de facto" value of 1600. For the same example of Figure 1,
Figure 2 compares the cycles (for annual data) obtained directly with λA=100 and, indirectly

with λQ=1600, the two "de facto" values. The cycles display important differences. Which of
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the two estimators of the cycle should be chosen? It would be clearly desirable to achieve a
higher degree of consistency, and perhaps the use of a 10-year period for the cycle of
reference is more appropriate for short-term policy than the use of a 20-year one. Figure 3
compares the direct and indirect cycle estimators for annual data with λA=6.7 and λQ=1600,

the two values associated with the 10-year-period cycle of reference. They are certainly
much closer.

A comment should be made on the interpretation of the cycle of reference. On occasion, the
HP filter is described as a filter that removes (or estimates) cycles with periods longer than 6
years (see Baxter and King (1999) or Canova (1998)). This description is somewhat
misleading. The slope of the gain function is not vertical, and hence there is a range of
cyclical periods for which the removal is only partial. For example, as we have just seen with
λQ=1600, the gain will be 50% for a 10-year cycle. From (2.17) it is found that, roughly, the

percentage decreases to 30% for an 8-year cycle and to about 10% for a 6-year cycle; it
increases to 70% for a 12-year cycle, and to 90% for a 16-year one. Thus one can say that,
approximately, cycles with period below 6 years will be excluded from the trend, while cycles
with periods above 16 years will be fully included. For cycles with periods within these two
limits, the participation will gradually increase with the length of the period.

Figure 2: Cycles in annual data when Figure 3: Cycles in annual data when
λQ=1600 and λA=100.  λQ=1600 and λA=6.7
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6. Aggregation by Fixing the Period Associated with the Maximum of the
Cycle Spectrum

Ultimately, the properties of the cycle obtained are a combination of two factors: on the one
hand, the characteristics of the filter employed; on the other hand, the stochastic properties
of the series in question. In the previous two sections we have looked at the first of these
factors. We consider now their interaction. To describe the characteristics of the estimated
cycle the most appropriate tool is its spectrum. Similarly to (2.16), we can write the
estimator of the cycle as

$ ( , )c B F xt c t= ϑ , (6.1)

where ϑc B F( , )  is given by (2.12). Inspection of (2.12) and (6.1) shows that the filter will

cancel up to four unit AR roots in the series. Given that the number of regular differences

needed to render a series stationary is, in practice, always smaller than four, it follows that

tĉ  will be a stationary process. Its spectrum can be expressed as

[ ] )(),(),( 2
ˆ ωλωλω xcc SGS = , (6.2)

where Gc(ω,λ) is the gain of the filter (2.12), and Sx(ω) is the (pseudo) spectrum of x t;

therefore the spectrum of the cycle estimator is straightforward to obtain. Clearly, series with
different stochastic structures will imply different spectra for the cycle even when the same
HP filter is used.

As an example, consider the spectra of the cycles for two series that follow a standard and a
second-order random-walk model, namely

tt ax =∇ 1 , (6.3a)

tt ax =∇ 2
2 . (6.3b)

From (2.12) and (6.1), the estimators of the cycle can be expressed in terms of the

innovations ta  as

t
HPHP

ct a
FB

FB
kc

)()(
)1)(1(

ˆ
2

1 θθ
−−

= , (6.4a)

t
HPHP

ct a
FB

F
kc

)()(
)1(

ˆ
2

2 θθ
−

= , (6.4b)
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where kc=νc /νa. The FT of the ACF of (6.4a) and (6.4b) yield the two spectra, namely,

[ ] ac VS
22

32

1
)cos1(41

)cos1(8
)(

ωλ

ωλ
ω

−+

−
= , (6.5a)

[ ] ac VS
22

22

2
)cos1(41

)cos1(4
)(

ωλ

ωλ
ω

−+

−
= . (6.5b)

The two spectra are displayed in Figure 4 for λ=1600.

Figure 4: Spectra of the cycle component of first and second-order random walk (λ=1600)
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Although different, both have the well-defined shape of the spectrum of a stochastic cyclical
component, with the variance concentrated around the spectral peak. The cycle associated
with the frequency for which the spectrum reaches a maximum will be denoted the “cycle of
dominance”, and possibly represents the most relevant single descriptive feature of the HP
cycle. Thus a natural criterion for aggregation could also be preservation of the cycle of
dominance. (This is similar to approximating spectral densities by preserving the mode, see
for example Durbin and Koopman (2000)).

Thus an alternative procedure to find HP filters that are approximately consistent under time

aggregation is the following. First, given λQ, obtain Sc(ω) for the quarterly cycle. Second,

compute the period for which the maximum of Sc(ω) is achieved. Preserving this period

implies, for annual data, to obtain the value of λA associated with the period τQ/4; for monthly

data, to derive the value of λM associated with the period 3τQ. An advantage of this approach

is that it combines the characteristics of the filter with the specific features of the series of
interest. On the other hand, it has the disadvantage that no general equivalence between λ’s

Random walk Second-order

 random walk
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for different frequencies of observation can be obtained, since the equivalence depends on
the ARIMA model for the series. As a consequence, two issues are of interest:

a) what is the equivalence for some of the most relevant ARIMA models;

b) if the much simpler criterion of fixing the period associated with the cycle of reference of
the previous section (that does not depend on the series model) is used, will the results
be much different from the ones obtained with the criterion of fixing the period associated
with the cycle of dominance?

In order to apply the criterion we need to obtain the spectrum of the disaggregate and
aggregate cycle, which depends on the model for the series. Two cases will be
distinguished, namely, an I(1) and an I(2) series. Further, since, in both cases, our starting

point will be the value of λQ for the quarterly series, and our aim is to find the monthly λM  and

annual λA, we need to consider models that are consistent under aggregation. For the I(1)

case, a model consistent under both temporal aggregation and systematic sampling is the
I(1,1) model

tt bBz )1( µ+=∇ bt ∼ w.n. (0,Vb) ; (6.6a)

and, for the I(2) case, the same is true for the IMA(2,2) model

tt bBBz )1( 2
21

2 µµ ++=∇ bt ∼ w.n. (0,Vb) ; (6.6b)

(treating the unit AR roots as AR polynomials, the results are in Brewer (1973)). Following the

previous notation, when the model refers to the disaggregate series, we have zt=x t, µ=θ,

bt=at, and Vb=Va; while for the aggregate series, zt=XT, µ=Θ, bt=At, and Vb=VA. It is worth

noticing that the IMA(d,d) formulation is attractive because it is the limiting model for time

aggregates of ARIMA(p,d,q) models (Tiao (1972)).

Let, in general, θQ =(θ1,θ2) denote the MA parameters of the quarterly model (θ2=0 for the

IMA(1,1) case), and θT denote the vector with the MA parameters of the transformed model

(annual or monthly). Likewise, let SQ(ω,θ,λ) and ST(ω,θ,λ) denote the spectra of the quarterly

cycle and of the cycle for the transformed series, respectively. In all cases (temporal
aggregation or systematic sampling, aggregation of quarterly to annual data or
disaggregation of quarterly to monthly data, IMA(1,1) or IMA(2,2) models) the procedure to

obtain the equivalent values of λ for the transformed series can be summarized as follows.
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1. Given θQ and λQ, obtain the frequency ωQ such that SQ(ω,θQ,λQ) is maximized in

the interval [ ]πω ,0∈ , and the associated period τQ.

2. Transform τQ into τT and obtain the associated frequency ωT.

3. Use the relationship between the variance and covariances of the disaggregate

and aggregate series to find θT given θQ.

4. Find λT such that ST(ωT,θT,λ) is maximized. This λT is the equivalent value of λQ.

Although the procedure is general, in our application we fix λQ=1600 for the quarterly data.

6.1. IMA(1,1) Model

When zt follows model (6.6a), it is straightforward to find that the spectrum of the cycle in the

HP decomposition of zt is given by

[ ] bc VS )cos21(
)cos1(41

)cos1(8
),,( 2

22

32

ωµµ
ωλ

ωλ
λµω ++

−+

−
= , (6.7)

and maximizing ),,( λµωcS with respect to ω  yields
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Alternatively, solving for λ, it is obtained that

[ ] ( )ωµ
µ

ω
λ ~cos1)1(

2
~cos14

3~
2 −+

−
−

= . (6.9)

Figure 5 presents the function )(~ λτ f=  derived from (5.4) and (6.8) for fixed values of the

MA parameter µ. Three values of µ are considered: µ=0, -0.4, -0.8. The figure illustrates the

important influence of λ on the cycle period although, when λ is large, relatively large

variations in its value hardly affect the length of the period. The figure also reveals how little

effect µ has on the period of the cycle of dominance since the three values of µ provide very

similar lines. This fact is confirmed by Figure 6, which displays the spectra of the cycle for

λ=1600 and three values of µ. Although µ strongly affects the stochastic variance of the

cycle, the frequency for which the maximum is achieved is seen to be practically constant.
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Figure 5. IMA(1,1): Period of the cycle Figure 6: IMA(1,1): Spectrum of the cycle
of dominance as a function of λ for various µ
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(a) From Quarterly to Annual Data

Steps (1) and (2) above are common to the case of temporal aggregation and systematic

sampling: setting λQ=1600 and µ=θQ, expression (6.8) yields ωQ, or τQ =2π/ωQ. For annual

series, preserving the period of the cycle of dominance implies setting τA =τQ/4 and ωA

=2π/τA. In order to obtain λA form (6.9) we need to obtain the model for the annual series;

this model is different for the two types of aggregation.

For the temporal aggregation case, proceeding as in Section 3 and using the same notation,
it is found that

tQTTT abSXXDX )1(2
41 θ+=−= − , (6.10)

where, as before, T and t refer to the same date, expressed in annual and quarterly time

units. Similarly, 4
2
41 )1( −− += tQT abSDX θ , from which it follows that XT is an IMA(1,1) model,

tAT ABDX )1( θ+= . (6.11)

Therefore the variance and lag-1 autocovariance of the r.h.s. of (6.11),

AA V)1( 2
0 θ+=Γ , (6.12a)

AAVθ=Γ1 , (6.12b)

µ = 0, -0.4, -0.8

τ

λ frequency

µ = 0.2

µ = - 0.6

µ = - 0.2
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have to be equal to the variance and lag-4 autocovariance of the r.h.s. of (6.10), which, after
simplification, are equal to

aQQ V)448044( 2
0 θθγ ++= , (6.13a)

aQQ V)102410( 2
4 θθγ ++= . (6.13b)

Equating the r.h.s. of (6.12a, b) with the r.h.s. of (6.13a, b) yields

2

22

102410

4480441

QQ

QQ

A

A

θθ

θθ

θ
θ

++

++
=

+
.

Letting c= )102410/()448044( 22
QQQQ θθθθ ++++ , the MA parameter of the annual IMA(1,1)

model is given by the invertible solution of equation

012 =+− AA cθθ . (6.14)

For the case of systematic sampling, equation (6.10) is replaced by

tQtttT abSxbxxDX )1()1( 4
4

4 θ+=−=−= − , (6.15)

so that, after simplification, the system (6.13) is replaced by

aQQ V)464( 2
0 θθγ ++= , (6.16a)

aQVθγ =4 . (6.16b)

Defining QQQc θθθ /)464( 2++= , the MA parameter for the IMA(1,1) annual model is again

the invertible solution of (6.14).

Having obtained θA, setting µ=θA, and Aωω =~  in (6.9), the equivalent value of λ for annual

series, λA, is obtained. The period associated with the cycle spectral maximum will be

identical for the quarterly and annual series.
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(b) From Quarterly to Monthly Data

Step (1) is as in the previous case. For λQ=1600 and µ=θQ, (6.8) yields ωQ and hence the

period τQ associated with the cycle spectral peak. Preserving this period implies for monthly

data, setting τM =3τQ and ωM =2π/τM. In order to obtain the equivalent value for λM through

(6.9) we need to derive the model for the disaggregate monthly series. Given that the
quarterly model is an IMA(1,1) model, the monthly series will also follow an IMA(1,1) model.

As before, to obtain the MA parameter we need to distinguish between temporal aggregation

and systematic sampling.

Under temporal aggregation, expression (6.10) remains unchanged, with S4 replace by

S3=1+B+B2. The relationship between the variance and lag-1 autocovariance for the

quarterly series and the variance and lag-3 autocovariance for the monthly series is found to
be

aMMAQ VV )193219()1( 22 θθθ ++=+ (6.17a)

aMMAQ VV )4114( 2θθθ ++= (6.17b)

Letting c1= QQ θθ /)1( 2+ , and solving (6.17) for θM, it is obtained that θM, the MA parameter

of the disaggregate monthly model, is the invertible solution of the equation x2+c2x+1=0,

where c2=(32-11c1)/(19-4c1). The equation has complex solutions when θQ≥ 0.3 so that

IMA(1,1) monthly models aggregate into IMA(1,1) quarterly models with the MA parameter

restricted to the range -1<θQ <0.3. In practice, it is unlikely that the estimated value of θQ falls

outside this range.

For the case of systematic sampling, equation (6.15) remains valid, with S4 replaced by S3.

The system of covariance equations (6.1) is then replaced by:

( ) ( )1 3 4 32 2+ = + +θ θ θQ A M M aV V

θ θQ A M aV V= ,

so that, if c1= ( ) /1 2+ θ θQ Q  and c2=(4-c1)/3, the value of θM is the invertible solution of the

equation x2+c2x+1=0. The system yields complex solutions when θQ>0.33 and hence

systematic sampling of monthly IMA(1,1) models yields quarterly IMA(1,1) models with the

MA parameter restricted to the range -1<θQ<0.33, very similar to the temporal aggregation

case.
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Table 1 displays the equivalent monthly and annual values of λ, with the quarterly value set

at λQ=1600, obtained with the criterion of preserving the period associated with the cycle

spectral peak, when the series follows an IMA(1,1) process, and for different values of the

MA parameter θQ. It is seen, first, that when θQ is not close to -1, the period associated with

the cycle spectral peak (i.e., the cycle of dominance) takes a value between roughly 7 and
7.5 years.

Table 1: IMA(1,1): monthly and annual λ values that preserve the period of the cycle spectral

peak for λQ=1600.

temporal aggregation systematic sampling
annual

(λA)
monthly

(λM in 103)
annual

(λA)
monthly

(λM in 103)

-0.9 3.22 8.38 127.5 33.24 45.3
-0.8 5.72 6.53 129.3 20.86 71.4
-0.7 6.74 6.22 129.6 14.21 97.8
-0.6 7.14 6.12 129.8 10.85 112.0
-0.5 7.32 6.07 129.8 9.14 119.4
-0.4 7.41 6.05 129.8 8.21 123.4
-0.3 7.47 6.04 129.9 7.66 125.8
-0.2 7.50 6.03 129.9 7.33 127.2
-0.1 7.52 6.02 129.9 7.11 128.2
0.0 7.53 6.02 129.9 6.97 128.8
0.1 7.54 6.02 129.9 6.88 129.2
0.2 7.55 6.02 129.9 6.81 129.8
0.3 7.55 6.01 129.9 (*) 6.77 129.7
0.4 7.56 6.01 - 6.74 -
0.5 7.56 6.01 - 6.72 -
0.6 7.56 6.01 - 6.70 -
0.7 7.56 6.01 - 6.69 -
0.8 7.56 6.01 - 6.69 -
0.9 7.56 6.01 - 6.68 -

(*) Computed for θQ = 0.295. Values of θQ below this line cannot be obtained
by aggregation of monthly IMA(1,1) models.

period of the
cycle of

dominance
(in years)θQ

equivalent values of λ

When aggregation of the series is made through temporal aggregation the results are seen

to be very stable in all cases. The monthly equivalent values λM are always close to 130000,

and the annual equivalent value λA, unless θQ is close to -1, is slightly above 6. These values

are close to the ones obtained with the criterion of preserving the period of the cycle of

reference (i.e., the value of ω for which the gain of the HP filter is ½), given by (5.6).

When aggregation is achieved through systematic sampling, the results are less stable, and
the criterion of preserving the cycle of dominance provides a less satisfactory approximation
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in the neighborhood of θQ=-1. Nevertheless for the range -0.7<θQ<1, the results are

considerable stable and not too distant to the ones obtained for the temporal aggregation

case. (Notice that, if λQ=1600 is chosen as the quarterly value, the annual value λA=100 used

by the OECD and the ECB is far from any of the values contained in the table).

Altogether, from an applied point of view, the differences between the equivalent λ values are

moderate, and the approximation (discussed in Section 5) based on the criterion of
preserving the cycle of reference, which is trivial to compute and does not depend on the
particular series at hand nor on the series model, provides in most cases a reasonably

close approximation. The only exception may be series with values of θQ close to -1, in

which case λA might need to be increased and λM decreased.

The following example illustrates the closeness of the approximations. ”Monthly” series were

generated for the IMA(1,1) model (6.6a) with θ =-0.3 and Va=1. The monthly series was

aggregated into quarterly and annual series. Using the monthly values of λM derived with the

criteria of preserving the cycle of reference and the cycle of dominance, the monthly HP
cycle was obtained. These monthly cycles were then aggregated into quarterly and annual
ones. Then, setting λQ=1600, the direct quarterly cycle was obtained, and aggregated into

annual. Finally with the two annual values of λA implied by the two criteria, the direct annual

cycle was obtained.

Figure 7 compares the monthly, quarterly and annual cycles obtained with the direct and
indirect procedures, for the two cases of temporal aggregation and systematic sampling.
Part a) compares the quarterly cycles obtained through aggregation of the monthly cycles
using the two criteria of preserving the cycle of reference (IR) and of dominance (ID), with

the one obtained through direct adjustment of the quarterly series with λQ=1600 (D). Part b)

compares the annual cycles obtained by aggregation of the monthly cycles using the two
criteria (IMR and IMD), with the ones obtained indirectly through aggregation of the direct

estimation of the quarterly cycle (IQ), and with the ones obtained through direct estimation

on the annual data using the two criteria (DR and DD). In all cases, the differences between

the different cycle estimators are mild. This conclusion remains valid for other values of θM,

except for the case of systematic sampling with θM <-0.8.



BANCO DE ESPAÑA / DOCUMENTO DE TRABAJO N.0108 29

Figure 7a: Quarterly cycles
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Figure 7b: Annual cycles
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6.2. IMA(2,2) Model

When zt follows the IMA(2,2) model given by (6.6b), from (2.12) and (6.1) it is found that the

HP cycle follows the model

$
( ) ( )

( ) ( )
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F B B
B F

at t=
− + +
+ − −
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1 1
1 1 1

2
1 2
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The spectrum is maximized for
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1 1 2 2
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 ,  (6.19)

and the value of ω for which (6.18) attains a maximum can be found numerically from the

first-order conditions; we represent this value as

~ ~( , , )ω ω λ µ µ= 1 2 . (6.20)

Proceeding as in the previous section, given µ1 and µ2 for the quarterly model and λQ, we

use (6.20) to compute the frequency of the quarterly cycle of dominance, and the associated
period. Expressing this period in terms of annual and monthly data, we obtain the annual and

monthly associated frequencies. Once we know the MA parameters µ1 and µ2 of the annual

and monthly model, (6.19) provides the values of λA and λM equivalent to λQ. The monthly,

quarterly, and annual series follow IMA(2,2) models, but the procedure used in the previous

section to derive the relationship between the MA parameters of the models becomes very

cumbersome. We follow instead the Stram-Wei procedure described the Appendix A.

Let x t, (θ1, θ2), and Va denote the disaggregate series, the MA parameters of its model, and

its innovation variance, respectively. Likewise, let XT, (Θ1,Θ2), and VA denote the aggregate

series, the MA parameters of its model, and its innovation variance. If (γ0,γ1,γ2) and (Γ0,Γ1,Γ2)

represent the variance, lag-1, and lag-2 autocovariances of ∇2x t and ∇2XT, respectively, we

have

γ θ θ0 1
2

2
21= + +( )Va , (6.21a)

aV)1( 211 θθγ += , (6.21b)

γ θ2 2= Va , (6.21c)

and, replacing (θ1,θ2), and Va by (Θ1,Θ2), and VA, similar expressions hold for Γ0, Γ1 and Γ2.

If γ and Γ denote the vectors γ=(γ0,γ1,γ2)' and Γ=(Γ0,Γ1,Γ2)', the Stram-Wei procedure

permits us to express the relationship between γ and Γ as

Γ=Mγ ,

where M is a (3x3) matrix whose construction is detailed in Appendix A. Thus, given γ, one

can obtain Γ and, using the inverse relationship γ=M -1Γ , given Γ, one can obtain γ. The
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aggregate/disaggregate MA parameters are found by factorizing the ACF obtained, as

explained in the Appendix B. The M matrices relevant to our application are found to be

Temporal Aggregation Systematic Sampling

Quarterly to Annual   Aggregation M=

















56226
512456216
9121092580

M=

















100
322410
628044

Monthly to Quarterly Aggregation M=

















2161
13211150
180252141

M=

















100
16114
203219

Table 2 is analogous to Table 1 for the IMA(2,2) case, and displays the equivalent monthly

and annual λ values when the quarterly value is λQ=1600, using the criterion of preserving the

period associated the cycle spectral peak (the quarterly MA values θQ,1 and θQ,2 are

restricted to lie in the invertible region; see Box and Jenkins, 1970, p.73). Altogether, the

values of the θ parameters have a moderate effect on λA and λM, and the values equivalent

to λQ=1600 are similar to those obtained for the IMA(1,1) case. As before, they are also

close to those obtained with the criterion of preserving the cycle of reference.

Table 2: IMA(2,2): monthly and annual λ values that preserve the period of dominance for

λQ=1600.
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temporal aggregation systematic sampling

θQ,1  θQ,2  

annual          
(λA)

monthly          
(λM in 103)

annual          
(λA)

monthly          
(λM in 103)

0.2 0.0 9.9 6.02 131.8 6.24 129.6
0.0 0.0 9.9 6.03 128.6 6.24 129.6
0.0 0.2 10.0 6.01 131.2 6.23 131.8
-0.2 0.0 9.9 6.03 127.7 6.24 129.6
-0.2 0.2 10.0 6.01 131.1 6.23 131.4
-0.4 0.0 9.9 6.04 125.2 6.26 129.6
-0.4 0.2 10.0 6.01 130.8 6.23 130.9
-0.6 0.0 9.7 6.05 117.7 6.29 129.5
-0.6 0.2 9.9 6.02 129.7 6.24 129.8
-0.8 0.2 9.9 6.04 125.7 6.28 125.6
-0.8 0.4 10.0 5.98 133.5 6.22 133.9
-1.0 0.2 9.4 5.99 102.9 6.59 102.7
-1.0 0.4 10.0 5.98 132.9 6.24 133.0
-1.4 0.6 10.1 5.74 140.8 6.23 140.9

period of the 
cycle of 

dominance 
(years)

equivalent values of λ

The following example illustrates the closeness of the approximations in the same way as
we did for the IMA(1,1) model. ”Monthly” series were generated for the IMA(2,2) model

(6.6b) with θ1 =-0.6, θ2 =0.2 and Va=1. The monthly series was aggregated into quarterly and

annual series, and then direct and indirect cycles were estimated using the previous
criterion. Figure 8 is the same as Figure 7 for the case of the IMA(2,2) model. As we can

see the all estimated cycles are almost identical.

Figure 8a: IMA(2,2) model: quarterly cycles
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Figure 8b: IMA(2,2) model: annual cycles
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7. Least squares minimization of the distance between direct and indirect
cycle.

For a particular application, it is always possible to compute close-to-equivalent values of λ

through least-squares minimization of the distance between the direct and indirect
aggregate cycles. If the indirect cycle is respected, and λ0 is the value of λ applied the

disaggregate series, the value λd to use for direct adjustment is given by

[ ]∑ −=
T

dTdTid CCmin
2

,0, )(ˆ)(ˆargˆ λλλ (4.3)

where )(ˆ
0, λTiC  and )(ˆ

, dTdC λ  denote the estimated indirect and direct aggregate cycle,

respectively. This procedure is, of course, considerably more complex and cumbersome
than the simple expressions (5.3) and (5.5), based on the criteria of preserving the cycle of
reference. Further, being dependent on the particular realization, minimization of the
distance between direct and indirect estimation, may produce variability in the values of λ,

that could yield inconsistencies for the different levels of aggregation. It is nevertheless of
interest to look at whether the (case-by-case) solution (4.3) is likely to yield values of λ that

strongly depart from the values obtained with the previous criteria.

We only looked at the case of aggregating quarterly series into annual ones (using λQ=1600

for direct estimation of the quarterly cycle), under temporal aggregation and systematic
sampling, and for the IMA(1,1) and IMA(2,2) models for different values of the parameters.

For each one of the cases, only 100 simulations were made; the results seemed clearly
stable given our level of precission (first decimal point in λA). For each simulation,

expression (4.3) was solved and dλ̂  estimated; then the mean and standard deviation of the

dλ̂ ’s obtained were computed.

Again, except for the case of systematic sampling an IMA(1,1) model with a large and

negative value of its MA parameter, the values of λA are considerable stable and relatively

close to the ones obtained with the previous criteria. One remarkable feature is that the
single value obtained with the criteria of preserving the cycle of reference (λA=6.65, see

expression (5.6)) is, in none of the cases, significantly different from the values in Tables 3
and 4. Comparison of Tables 1 and 3, and of Tables 2 and 4, shows that the least-squares
minimum distance procedure yields systematically slightly large values of λ. This can be

seen to be a result of the asymmetry around its mode of the spectrum, used when the
period of the cycle of dominance is preserved.
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Table 3: Least square minimization: IMA(1,1) models.

mean std.dev mean std.dev
-0.9 7.3 1.0 (*) (*)
-0.8 6.9 0.7 (*) (*)
-0.7 6.8 0.5 (*) (*)
-0.6 6.8 0.4 15.1 11.4
-0.5 6.7 0.3 14.0 16.7
-0.4 6.6 0.2 10.8 13.3
-0.3 6.7 0.2 8.8 3.7
-0.2 6.7 0.2 8.4 4.1
-0.1 6.6 0.2 7.5 2.0
0.0 6.6 0.2 7.4 1.7
0.1 6.7 0.2 7.6 1.3
0.2 6.7 0.2 7.1 1.2
0.3 6.6 0.2 7.2 1.3
0.4 6.7 0.2 7.1 1.2
0.5 6.6 0.1 7.2 1.1
0.6 6.6 0.1 7.1 1.2
0.7 6.6 0.1 7.1 1.1
0.8 6.6 0.1 7.0 1.2
0.9 6.6 0.1 7.0 1.2

temporal aggregation systematic sampling
θQ  λA λA

(*) Numerical problems because of the flat surface of the objective function around the minimum.

Table 4: Least square minimization: IMA(2,2) models.

mean std.dev mean std.dev
-0.9 0 6.6 0.1 7.2 1.4
-0.8 0 6.5 0.1 6.7 0.9
-0.6 0 6.5 0.1 6.7 0.7
-0.4 0 6.5 0.1 6.7 0.6
-0.2 0 6.5 0.1 6.6 0.6
0.0 0 6.5 0.1 6.5 0.7
0.2 0 6.5 0.1 6.4 0.6
0.4 0 6.5 0.1 6.6 0.6
0.6 0 6.5 0.1 6.6 0.6
0.8 0 6.5 0.1 6.5 0.6
0.9 0 6.5 0.1 6.6 0.4
-0.6 -0.3 6.6 0.1 6.9 1.1
-0.6 0.3 6.5 0.1 6.5 0.7
-0.5 -0.3 6.5 0.1 6.6 0.9
-0.5 0.3 6.5 0.1 6.6 0.6
-0.4 -0.3 6.5 0.1 6.6 0.9
-0.4 0.3 6.5 0.1 6.6 0.6
0.4 -0.3 6.5 0.1 6.6 0.6
0.4 0.3 6.5 0.1 6.5 0.6
0.5 -0.3 6.5 0.1 6.6 0.5
0.5 0.3 6.5 0.1 6.5 0.5
0.6 -0.3 6.5 0.1 6.6 0.6
0.6 0.2 6.5 0.1 6.5 0.5

θQ,1  θQ,2  

temporal aggregation systematic sampling
λA λA
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8. Conclusions

We have analyzed the time aggregation properties of the Hodrick-Prescott (HP) filter,
focusing on monthly, quarterly, and annual observations. Two types of aggregation have
been considered: Temporal Aggregation, whereby the aggregate series consists of (non-
overlapping) sums (or averages) of disaggregate values, and Systematic Sampling,
whereby the aggregate series is equal to a value of the disaggregate series sampled at
periodic intervals. The main results can be summarized as follows.

For the two types of aggregation, the HP filter does not preserve itself under aggregation, in

the following sense. If mt and ct are the trend and cycle obtained with the HP filter applied to

the disaggregate data, the aggregates obtained with them cannot be seen as the exact

result of an HP filter applied to the aggregate data or, alternatively, if Mt and Ct are obtained

from applying the HP filter to the aggregate data, they cannot be interpreted as the exact
result from aggregating the components obtained with an HP filter applied to the
disaggregate data.

Be that as it may, for the temporal aggregation case (the case most encountered in
practice), it is possible to find λ values for monthly, quarterly and annual data, that behave

well under aggregation, in the sense that direct and indirect adjustment of the aggregate data
is extremely close. These “equivalent” values of λ can be obtained through several criteria,

namely:

a) Least squares minimization of the distance between the aggregate and disaggregate
HP filters.

b) Preserving the period of the cycle for which the gain of the filter is ½ (the cycle of
reference).

c) Preserving the period of the cycle associated with the cycle spectral peak (the cycle
of dominance).

d) Least squares minimization of the distance between the direct and indirect estimates
of the cycle.

Criterion d) is the least appealing because it depends on the particular realization of the time
series at hand and provides the most computationally complicated solution. Criterion c) is
relatively complex and depends on the particular model identified for the series. Criterion b)
provides general results, obtained through a very simple rule, trivial to compute, that can be
easily applied to aggregate/disaggregate data with any frequency of observation. For the
case of temporal aggregation, all criteria lead to similar results for the equivalent values of λ.

In particular, if the quarterly value λQ=1600 is used, the range of equivalent values for the

monthly and annual HP parameters are, approximately,
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115000 < λM < 130000 , 6 < λA < 7 ,

and, for values within these ranges, differences between direct and indirect aggregation are,
to all effects, negligible.

For the case of systematic sampling, the aggregation properties of the filter are less
satisfactory, the results are less robust with respect to the stochastic properties of the
series, and the equivalent monthly, quarterly, and annual values of λ are more volatile. As far

as the trend-cycle decomposition of the series is concerned, aggregation by averaging is
better behaved than aggregation through systematic sampling. Still, even in this latter case,
unless the series has a narrow spectral peak for the zero frequency (i.e., an MA root not far

from -1) the equivalent values of λ yield reasonably close results. If, as before, we set

λQ=1600, the range of values for the monthly and annual HP parameters are, approximately,

100000 < λM < 140000 6 < λA < 14 ,

Although wider than the ranges for the temporal aggregation case, for values within those
ranges, the difference between direct and indirect estimation is of moderate size. It is worth
pointing out that the values obtained with criterion a) for the case of systematic sampling,
given by (4.6), are not included in the previous range. This is due to the fact that WK
enforcement of the HP filter implicitly assumes an IMA(2,2) model for the series with one of

the MA roots very close to -1.

Bearing this exception in mind (systematic sampling of models with a unit root close to -1) it
seems safe to conclude that the criterion of preserving the period of the cycle for which the
HP filter gain is 50% provides the most appealing solution to the problem of providing HP
cycles for different data frequency that are reasonably compatible. First, as seen in Section
7, the values of λ provided by this criterion are extremely close the ones that minimize the

least-squares distance between direct and indirect estimation. Besides, the solution does
not depend on the series realization, nor on the series model; it consists of the application of
the simple expressions (5.3) and (5.5) to move among different frequencies. Table 5 exhibits
several triplets (λA, λQ and λM) with equivalent values of λ for the annual, quarterly and

monthly periodicities, under the criterion of preserving the cycle of reference; the table also
includes the period of this cycle. This period represents the value above which most of the
series variation is assigned to the trend. According to Table 5, a short-term interest would
indicate a reference period of about 10 years. The choice of this period is, ultimately,
arbitrary and should reflect the interest of the analyst, though consistency of the cycle for
different time units would seem a desirable property.

The table shows how the values of λ used in practice for the different levels of aggregation

are not quite equivalent. Given that larger values of λ imply longer periods of the cycle of

reference, the values used in practice show that, for more aggregated data, cycles with
longer periods have been seeked. This choice may well reflect the fact that annual data
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implicitly implies a larger perspective due to the time length between observations, so that,
for example, policy based on monthly data obviously can be more reactive to the short-term
than policy based on annual data. But when the disaggretate data is available, this reason for
inconsistency with respect to the time units makes no sense.

Table 5: Annual, quarterly, and monthly values of λ that are (approximately) compatible.

λA λQ λM

cycle of 
reference 

(years)

1           179              14,400         5.7

5           1,190           95,972          9.2

6           1,437           115,975        9.7

7           1,600          129,119        9.9

10       2,433           196,474        11.0

15         3,684           297,715        12.2

20         4,940           399,339        13.2

25         6,199           501,208        13.9

30         7,460           603,250        14.6

35         8,723           705,424        15.2

40         9,986           807,702        15.7

70         17,585         1,422,774     18.1

100     25,199         2,039,248     19.8

200       50,633         4,098,632     23.6

400     101,599       8,225,728     28.0
The most often used values are indicated in bold
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Appendix A: Construction of the Stram-Wei Aggregation Matrix

The Stram-Wei aggregation matrix, M, relates the second moments of the stationary

transformation of the aggregate series with those of the corresponding disaggregate series.

We consider IMA(d,q) models, so that the stationary tranformation of the series x t is ∇dx t.

Let k=h/j be the order of aggregation, where h and j are the number of observations per

year for the disaggregated and aggregated series respectively, and let d be the order of

integration of the disaggregate series. Define n=(d+1) for temporal aggregation and n=d for

systematic sampling.

Let γi and Γi be the autocovariance of order i for the stationary transformation of the

disaggregate and aggregate series respectively. Stram and Wei (1986) prove the following
relationship for the case of temporal aggregation:

))1((
21 )....1( −+

−+++=Γ knki
nk

i BB γ i=0,1,… (B1)

The systematic sampling case is not consider by Stram and Wei (1986) but, proceeding in a
similar manner it is straightforward to find that the relationship (B1) also holds.

If x t follows an IMA(d,q) model, then the aggregate series XT follows an IMA(d,Q) process

with Q≤[k-1(n(k-1)+q)], where [x] denotes the integer part of x. If γ and Γ denote the vectors

γ=(γ0,γ1,γ2)' and Γ=(Γ0,Γ1,Γ2)', the Stram-Wei procedure permits us to express the

relationship between γ and Γ as

Γ=Mγ .

Let S=(1+B+B2+...+B(k-1)) be the aggregation operator, and c be a 1x(2n(k-1)+1) vector with

elements (ci) the coefficients of Bi in the polynomial S2n. Define the matrix A as the following

(Q+1)(kQ+2n(k-1)+1)) matrix:
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where 0j is a 1xj vector of zeros.

Adding the column (n(k-1)+1-j) of matrix A to the column (n(k-1)+1+j) of the same matrix,

for j=1 to n(k-1), and then, deleting the first n(k-1) columns, we obtain a new matrix A*.

Then, the matrix M consists of the first q+1 columns of A*.

Consider as example a quarterly IMA(1,1) model which is aggregated to annual frequency.

In this case we have k=4, d=1, and q=Q=1.

For temporal aggregation n=(d+1)=2 and considering the coefficients of S2n=(1+B+B2+B3)4,

given by c=(1  4  10  20  31  40  44  40  31  20  10  4  1), it is found that A is the following (2x17)
matrix:









=

1
0

4
0

10
0

20
0

31
1

40
4

44
10

40
20

31
31

20
40

10
44

4
40

1
31

0
20

0
10

0
4

0
1

A ,

from which it is obtained that 







=

1
0

4
0

10
0

20
0

31
2

40
8

44
20

40
40

32
62

24
80

10
44

*A . The matrix M is









24
80
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44

and hence 
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Γ
Γ

1

0

1

0

24
80

10
44

γ
γ

.

Given that aQ V)1( 2
0 θγ += and aQVθγ =1  we have the same relationships as in (6.13a) and

(6.13b) that allows us to obtain the parameters of the aggregate model.

For the case of systematic sampling n=d=1, the vector c contains the coefficients of

S2n=(1+B+B2+B3)2, that is c=(1  2  3  4  3  2  1), and A is the following (2x11) matrix:









=

1
0

2
0

3
0

4
0

3
1

2
2

1
3

0
4

0
3

0
2

0
1

A .

Then, 







=

1
0

2
0

3
0

4
0

3
2

2
4

1
6

0
4

*A , and the matrix M is 







1
6

0
4

. Therefore we obtain the same

relationship as in (6.16a) and (6.16b), that allow us to obtain the parameters of the aggregate
model.
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Appendix B: Factorization of an MA(2) process

Given the variance, γ0, and the lag-1 and lag-2 autocovariances γ1 and γ2, of an MA(2)

model, the MA parameters can be obtained by solving the nonlinear system of equations

(6.21). We provide a much simpler procedure, based on the general algorithm in Maravall
and Mathis (1994, appendix A).

Compute b=γ1/γ2 and c=γ0/γ2-2, and let y1 and y2 be the two solutions of the equation

y2+by+c=0. Consider first the case in which the two roots are real. Solve the two equations

z2-yjz+1=0, j=1,2, and select in each case the root zj such that zj≥1. If the two roots

selected are z1 and z2, the MA(2) polynomial is given by θ(B)=(1-z1B)(1-z2B).

When the roots y1 and y2 are complex we proceed as follows. Let y1=a+bi and y2=a-bi;

define k=a2-b2-4, m=2ab, ( )( )[ ]h k k m= + + +2 2 1 2 1 2

2
/ /

/ . If k≥0, let c=h, d=m/2h; if k<0, let

d=[sign(m)]h, c=m/2d. Consider the two complex numbers

z z z ir i
1 1 1= +  ; z z z ir i

2 2 2= + ,

where z a cr
1 2= − +( ) / , z b di

1 2= − +( ) / , z a cr
2 2= − −( ) /  and z b di

2 2= − −( ) /  and

denote with zj the one with the smallest modulus. Then

θ1 2= z j
r

( ) ( )θ2

2 2
= +z zj

r
j
i ,

and the MA(2) polynomial is given by θ(B)=1+θ1B+θ2B2. The innovation variance can be

obtained through Va = + +γ θ θ0 1
2

2
21/ ( ) .
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