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1. INTRODUCTION AND SUMMARY 

The problem of optimal estimation of missing observations in stationary Autoregres

sive Moving Average (ARMA) models was solved in Jones (1980). Extension of his ap

proach to nonstationary integrated ARMA (i.e., ARIMA) models posed serious problems, 

having mostly' to do with the specification of the starting conditions for the Kalman filter 

and the definition of a. proper likelihood. Several solutions have been proposed, among 

them, the "transformation" approach of Kohn and Ansley (1986), the "diffuse prior" ap

proach of De Jong (1991), and the "conditional1ikelihood" approach of Gomez and Mar

avail (1994). These solutions share the basic features of the approach in Jones: the use 

of (some version of) the Kalman Filter (KF) for likelihood evaluation, "skipping" in the 

computations the missing observations. Maximum likelihood estimation of the AruMA pa

rameters is then possible, and some smoothing algorithm, such as the Fixed Point Smoother 

(FPS), interpolates the missing values. We shall refer to this general approach as the "skip

ping approach". Since the Kohn-Ansley, De Jong, and G6mez-Maravall approaches are 

equivalent, due to its simplicity, we shall use the latter to represent the skipping approach 

method. 

It is also well known (see, for example, Sargan and Drettakis, 1974) that a sensible 

alternative to the problem of missing observations estimation is through dummy variables 

that take a value of unity at the point where the observation is missing, and zero elsewhere; 

see Harvey (1989, pp. 145-146). Subject to a qualification to be made below, one could 

think of the following procedure: Fill, first, the holes corresponding to the missing values 

with arbitrary data, and then use maximum likelihood estimation of an ARIMA model 

with Additive Outliers; this procedure could be seen as a particular case of the intervention 

analysis of Box and Tiao (1975). The difference between the arbitrary value set by the 

user and its corresponding estimated parameter can be used as the missing observation 

estimator. In fact, when the model parameters are known, this difference coincides with 

the conditional expectation of the missing value given the observed data (see, Brubacher 

and W ilson, 1976). 

We shall refer to this procedure as the "Additive Outlier" (AO) approach to missing 

observations estimation. Be that as it may, when the model parameters are not known and 

are to be estimated by maximum likelihood, the AO and the skipping approaches will differ, 

due to the fact that the determinantal term in the Gaussian likelihoods will be different. 

The determinantal term in the AO likelihood includes the effect of the filled-in v-dlues; that 
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of the skipping likelihood will ignore these effects. Since differences in likelihood produce 

differences in parameter estimates, if the AD likelihood is not corrected, the AD approach 

can only be seen as an approximate way to obtain the maximum likelihood estimators. The 

difference between the two likelihoods was pointed out by Pena (1987), in the context of 

autoregressive models, and, for stationary ARMA models, analysed by Ljung (1989), who 

went on to provide some insights into the nonstationary case. For this case, however, there 

was no attempt to define the likelihood of the nonstationary observed series. In this paper, 

we present a rigorous development of the AD approach to missing observations estimation 

in the general non stationary case, which we shall denote the "corrected AD" approach. The 

paper further shows the equivalence of this and the skipping (plus smoothing) approach. 

Computationally efficient ways to perform both approaches are provided in detail, and 

it is further seen how the correction that needs to be applied to the AD likefihood is 

trivially obtained from KF computations for the usual AO likelihood. Results for the three 

(skipping, AO, and corrected AD) approaches are then compared through simulation for 

different models, different sample sizes, and different distributions of missing observations 

in the series. 

Dne practical advantage of the standard AO approach, both in the stationary and 

nonstationary cases, is that it can be easily implemented with existing software if one is 

ready to accept the approximation implied by not correcting the determinantal term. In 

fact, this is the approach followed in the new X12ARIMA procedure (Findley et al., 1996). 

Assessing the influence of the determinantal correction is a by-product of the paper. 

The last part of the paper contains a simulation exercise to assess the relative perfor. 

mance of the different approaches. It is concluded that there is a brief trade·off between 

both approaches. When the number of missing observations is small, the additive out· 

lier approach can be easier and faster to implement. However, as the number of missing 

observations increases, it is clearly outperformed by the skipping approach. 

The paper is structured as follows. Section 2 reviews briefly first the skipping approach 

in the stationary case, as suggested by Jones (1980), and then its generalization to the 

nonstationary case, following Gomez and Maravall (1994). In Section 3, we consider the 

additive outlier approach, and analyze in detail a nonstationary series that follows a general 

ARlMA model where all missing observations have been replaced by arbitrary values and 

a dummy variable has been specified for each of them. Section 4 presents the simulation 

exercise. Computational details to carry the estimation procedures efficiently, as well as 
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the proofs of the results mentioned in the main text, are presented in two Appendices. 

2. SKIPPING APPROACH 

2.1 Stationary Series, ARMA Model 

Let the observed series Zo = (z(td,Z(t2), ... ,Z(tM»)', 1:S; tt < t2 < ... < tM :s; N, be 

the outcome of the ARMA model: 

�(B)z(t) = 8(B)a(t), (2.1) 

where </>(§) = 1+</>,B+"'+</>pBP and 8(B) = 1+8,B+ . .  +8,B' are finite polynomials in 

the lag operator B, of degrees p and q, respectively, and {a( t)} is a sequence of independent 

N(O, u2) variables. The model is assumed stationary, that is, all roots of the polynomial 

tP(B) lie outside the unit circle. To avoid unbounded standard errors of the interpolators, 

we further assume the model invertible, i.e. the roots of 8(B) lie outside the unit circle; see 

Maravall and Peiia (1992). If there are no missing observations, letting r = max{p, q + 1} 

and defining tPi = 0 when i > p, one state space representation for this model is 

x(t) = Fx(t - I) + Ga(t) 

z(t) = H'x(t), 

(2.2a) 

(2.2b) 

where t = I, ... , N, x( t) = (z( t), z( t + I I t), . .. , z( t + r - 1 I t))', G = (1, ,p,, ... , ,p,_,)" 

H = (1,0, ... , 0)', 

[�, 1 0 
0 1 

F= 
0 0 

-tPr-t -tPr-2 

and the 1/Ji- weights are obtained from 1/J(B) = 8(B)/tP(B) = E:o .piEi. The expression 

z( t+i ! t) is the orthogonal projection of z( t+i) on the subspace generated by {z( s) : S :s; t}, 

and coincides with the conditional expectation E(z(t + i) I z(s) : s :s; t), i = 1, . . .  , r-1. 

The state vector x( t) contains, thus, the series z( t) and its (r - l)-periods-ahead forecast 

function with respect to the semi-infinite sample {z(s) : S :s; t}. The Kalman filter can then 

be applied to model (2.2) for prediction and likelihood evaluation. As starting conditions, 
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one takes the first two moments of the unconditional distribution of the initial state vector, 

x(I). 
For the general case, when some observations may be missing, the observation equation 

(2.2b) is replaced with 

z(t) = H'(t)x(t) + <>(t)W(t). t = 1 •. . . •  N. 

where H'(t) = (1.0 •. . . •  0). <>(t) = 0 if z(t) is observed. H'(t) = (0.0 • . . . •  0), <>(t) = 1 

if z(t) is missing (Brockwell and Davis 1 987, p. 494). The variable Wet) represents an 

Niid(O,l) variable, independent of {z(td, . . . , Z(tM)}. Thus, when z(t) is missing, in 

the Kalman filter equations. x(t I t) = x(t I t - 1). E(t I t) = E(t I t - 1). where 

x(t I t + i) = E(x(t) I z(I) • . . . •  z(t + ill. E(t I t + i) = Var(x(l) I z(I) • . . . •  z(1 + i)). 

1 :s; t 5 N, i ='-1 , 0, and both the residual and the standard error corresponding to a 

missing value are ignored when evaluating the likelihood function; see Jones (1980). 

Having obtained parameter estimates by maximizing the likelihood function using the 

prediction error decomposition, estimators of the missing values can be obtained through 

the simplified FPS of Gomez and Maravall (1994); see also Anderson and Moore (1979). 

2.2 Nonstationary Series, ARlMA Model 

Let {z(t)} be a nonstationary process such that the transformation u(t) = O(B)z(t) 

renders it stationary and let { .(Ill follow the ARMA model (2.1). Then. {z(tll follows 

the nonstationary model 

.p(B)8(B)z(l) = 8(B)a(I). (2. 3) 

where o(B) = 1 + olB + .. . + odBd denotes a polynomial in B with all roots on the unit 

circle. Typically, li(B) will contain regular and/or seasonal differences. 

Suppose first that there are no missing observations, and let z = (z{ 1), z(2), . . .  ,z( N»)' 

and u = (u( d + 1),  u( d + 2), . . .  , u( N», be the observed series and the differenced series, 

respectively. The nonstationarity of {z( t)} prevents us from using the prediction error 

decomposition, since the distribution of x( 1) is not well defined. In order to define the 

likelihood, we proceed as in Gomez and Maravall (1994) and make the following assump

tions: 

Assumption A: The variables {z(l), . . .  , zed)} are independent of the variables { u(t)}. 

Assumption B: The variables {z(l), . .. , zed)} are jointly normally distributed. 
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The first assumption is a standard one when forecasting with ARIMA models; see 

Brockwell and Davis (1987), pp. 304-307. The likelihood of ARIMA models is usually de

fined as the likelihood of the differenced series, L(u); see Box and Jenkins, chap. 7. Letting 

ZJ = (z( I), . .. , z( d»)' and ZJI = (z( d + 1) • . . . •  z(N»', it is easily seen that differencing the 

data implies the transformation [z[,u'J' = J[Z[,2//]', where J = [J},J//]', h = [lei, 0], lei 

is the identity matrix of rank d and 

[ /j, JIl = 
0 

1 �l 
If we partition J// = {JI, J2} conforming to z/ and Z//, one can write 

[ ZI ] [I, a] [ZI] Z// 
= -=:'J1 ::: u ' 

where::: = J:;1 is the lower triangular matrix 

J 
The (i-coefficients are obtained from 

l//j(B) = L �iBi (2.4) 
i=O 

and the rows of -'3)1 can be obtained recursively as shown in Bell (1984). Specifically, 

letting Ai; = 6ij, i,j = 1, ... , d, where 6ij is the Kronecker delta, the row vectors A� = 
(Alt, . . . ,Adt), t = d+ 1, ... ,N, of the (N -d) x d matrix A = -3J} can be obtained from 

the recursions 

(2.5) 

and the relation 

(2.6) 

holds. Let v = 3u. Then, the likelihood L(v) based on v coincides with the likelihood L(u) 

based on u because:=: has unit determinant. Given that v = ZIJ - Az[, the log-likelihood 
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based on u is (throughout the paper all log-likelihoods will be defined up to an additive 

constant) 

I(u) = -�{(N -d)ln(u') + In I n.1 +(z// - AZfyn;'(z// - AZf)/U'), (2.7) 

where Var(v) = 0"20v, n", = �n,,=', and Var(u) = a20". Equation (2.7) constitutes 

an expression of the Box-Jenkins log-likelihood in tenns of the original series. Another 

interpretation can be obtained if assumptions A and B hold. Given that the matrix J = 

[J}, JIIJ' has unit detenninant, the log-likelihood l(z) of the observed series Z = [zJ' zJJJ' 
verifies l(z) = l(z[,u) = l(zd + leu). Therefore, under assumptions A and B, we have the 

result 

LEMMA 1. I(u) = I(z// I Zf). 

That is, the Box-Jenkins log-likelihood is equal to the log-likelihood of Zll conditional 

on z[. In order to use the Kalrpan filter with the original (not the differenced) series, we 

need a state space representation suitable for nonstationary series. One such representation 

is given also by (2.2), with the 4> and tP coefficients replaced with the 4>. and t/J. ones, 

respectively, where¢"(B) = ¢(B)6(B) and t/J.·(B) = 8(B)/¢'(B) = 2::, t/Ji B', ¢i = 0 

when i > p + d, and r = max{p + d, q + 1}. The elements of the state vector are now z(t) 
and z(t + i I t) = z(t + i) - t/J;a (t + i) - ... - t/Ji_la(t + I), i = I, . . . ,r -I. The following 

lemma, whose proof is omitted, ensures that this state space representation is correct. 

LEMMA 2. z(t + r - I I t) = -¢;z( t - I) - ¢;-l z( tit - I) - ... -¢; z( t + r -2 I 
t -I) + t/J;_la(t). 

The Kalman filter can then be applied to compute the conditional log-likelihood 

l(ZIl I ZI) through the prediction error decomposition. The starting conditions can be 

obtained from (2.6) as follows. If we consider the definition of the elements of the state 

vector x(t), it,can be seen that x(d + 1) = A.z[ + =-.U�, where A� is the r x d submatrix 

of A formed by the first r rows, =-. is the r x r submatrix of =- formed by the first r 

rows and the first r columns, U. = [u(d+I),u(d+2Id+I), ... , u(d+r Id+I)I', and 

u(d+i I d+l) = E(u(d+i) lu(t): t::; d+I), i = 2, . . . ,r. Therefore, we can take as 

starting condi tions 

.(d + II d) = E (.(d + I) I z(,): I::; s::; d) = A.Zf 
E( d + I I d) = Var (.( d + I) I z( s) : I ::; , ::; d) = =:. f;( d + I I d)=::, 
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where t(d + 1 I d) = ECU.U!) can be computed from the stationary process {u(i)}, which 

follows model (2.1); see Jones (1980). 

If there are missing observations and the observed series Zo = (z(tl), z(t2), ... , Z(tM»', 

:::; tl < t2 < < iM :::; N, is a subvector of the complete series z = \zj,zjIl', we can 

proceed as follows. Let ZJo = (z(tt), . .. ,z(t,\;»', k:::; d, and Zlm be the subvectors of z/ 
corresponding to the observed and missing values in ZJ, respectively, and let ZJlo be the 

subvector of Zll formed with the observed values in Z/J. Then, we can write 

(2.8) 

where Aa and Va are the submatrix and subvector, respectively, of A and V = :='u corre

sponding to the observed values in the series. Both Lemma 1 and (2.8) suggest a natural 

way to extend the log-likelihood (2.7) to the case of missing observations. We can r:on

sider in equation (2.8) Zlm as fixed and define the likelihood of the observed series as the 

likelihood of the generalized least squares (GLS) regression model 

(2.9 ) 

where YQ = ZlIo - BoZlo· This is the definition of Gomez and Maravall (1994). Then: the 

log-likelihood when there are missing observations is 

where Var(vo} = /72nv�. In order to evaluate the log-likelihood and interpolate missing 

values, we can now use the method of Gomez and Ylaravall (1994). The log-likelihood 

evaluation is made simpler by concentrating 21m and /72 out of the log-likelihood (2.10). 

Given the parameters (tPl,"" ¢P' 81, .. . J1q), of the AR�IA model (2.1), this is done by 

replacing in (2.10) Zlm and /72 with their GLS estimators in model (2.9), which are also 

the maximum likelihood estimators. 

It is important to mention that only the Kalman filter and the simplified fi..xed point 

smoother of Gomez and MaravaH (1994) are necessary to perform the calculations. Com

pared with the modified versions of these algorithms of Kohn and Ansley (1986), this means 

a significant simplification both conceptually and in the programming burden. Also, as 've 

will see in Section 4, it is not necessary to evaluate the vector Yo and the matrix Co before 

applying the Kalman filter. The computations are done automatically by means of an 
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"Augmented Kalman filter" (AKF) algorithm, easy to program, and detailed in Appendix 

A. 

2.3 Regression Model with ARIMA Errors 

Consider the regression model 

z(l) = y'(I)f3 + v(I), (2.11) 

where fJ :;: (fJl, .. ·,fJh)' is a vector of parameters, y'(t) is a vector of h independent 

variables, z( t) is the dependent variable, and {v( t)} is assumed to follow the ARIMA 

model given by (2.3). If, as in the previous Section, Zo denotes the observed series, defining 

the vector Vo:;: (v(t1\ .. . . ,V(tM))' and the M x h matrix Yo with the vectors y'(t),t = 
tl, ... , tM, as rows, we can write Zo :::; YofJ + Vo, where the matrix Yo is assumed of rank 

h. Since {vet)} follows the ARlMA model (2.3), similarly to (2.8), we can write" 11110 :;:; 
Bolllo + CoVlm + vo, where Vllo. 11/0 and Vim are the vectors of errors corresponding to the 

subvectors Zllo, Zlo and Zlm of the complete series z, defined at the end of the previous 

section. Let Ylo, Yllo and Ylm be the matrices with rows the vectors y'(t) corresponding 

to the vectors Via, Vllo and 111m, respectively. Replacing 1I1l0 with Zllo - YllofJ, 1110 with 

Zio - YlofJ and Vim with Zim - YlmfJ in the above expression, the following regression 

model is obtained 

where the regression parameters are Zim and fJ. Letting Yo :::; Zllo - BoZlo. it can be 

rewritten as 

Yo = [Co, Yllo - BoYlo - GoYim] [zlm. fJ']' 

:;: [Co, Yllo - AoYI] [Zlm,fJ'j' , (2.12) 

where YI is the d x h matrix formed with the vectors y'(t), t = 1, . . . • d, as rows, and Ao 
is the matrix defined by BoYfo + CoYlm = AoYI. which coincides with that of (2.8). The 

log-likelihood of the observed series is defined as that of the GLS model (2.12). The same 

algorithms of the previous section can now be used for prediction, interpolation and log

likelihood evaluation (the vector of regression parameters is now [zlm' fJl]', instead of Z/m). 
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If we define the vector ,(t) = (v(t), v(t + 1 I t), ... , v(t + r - 1 I t)), then the state space 
representation is given by (2.2a) and the observation equation z(t) = y'(t)f3 + H'{t)x(t) + 
cr(t)W(t}, where H(t), oCt) and Wet) are as in Section 2.1 and the elements of the state 
vector are as in Section 2.2 with z replaced with v. 

2.4 A Brief Remark on the Likelihood of Nonstationary Models and "The 

Conditional Likelihood" Approach 

Let us assume, first, that there are no missing values, and the observed series is 
z = (z}, .. . ,ZN)'. If d denotes the number of observations lost in differencing, letting 
"'( = (ZI, . . . •  Zd), ,we can write 

t=d+l, . . . ,N, (2.13) 

where Ut = E:=g-I {jUt_i, Ut is the differenced series 6(B)z{. {i is as in (2.4), and the Ars 
are obtained through (2.5). The distribution of /, the starting conditions, is unknown. If 
we consider, for instance, the state space representation of the equa�ion 6(B)zt = Uti given 
by 

1 
o 

o 
1 

o 1 [ z,_, 1 [ 0 1 .�. Zt��
.
_l + .�. 

-61 zC-l Ut 

and iterate indefinitely (equivalent to making the starting conditions approach the infinitely 
remote past), given that the eigenvalues of F are aU of unit modulus, the variance of x(t) 
will go to 00. It seems clear that I should be seen as a vector of nuisance random variables, 
that should be removed in order to properly define the likelihood. 

The classical Box-Jenkins approach, removes I by differencing the series. This is the 
same as making a linear transformation of the data, Jz = h,uY, with unit determinant, 
so that the likelihood can be factorized as 

p(z) = p(Jz) = p(1,u) = p(1 I u)p(u), 

where p(u) does not contain I, and P(, I u) does not contain information on the model 
parameters. The likelihood is then defined as pC u). 

An alternative solution consists in assuming that I is independent of the series {UtL 
condition on I in (2.13), and define the likelihood using the conditional density p(Zd+l, ... , 
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ZN I ZI, ... , Zft) . As Lemma 1 showed, the two likelihoods coincide. An advantage of the 

"conditional likelihood" approach is that it is easily extended to related models. Further, 

it is particularly adequate for algorithms that recursively update conditional expectations, 

such as the KF, and provides an easy solution to the problem of the starting values. 

Thus, assume now that there are missing values, and the observations are z 

(ZIII . . .  ,ZIM )" with 1 ::; tl < < tM. Expression (2.13) is still valid, although some 

of the missing values may be among the first d periods, and hence contained in i. From 

the point of view of the conditional likelihood, however, this presence is of no relevance. We 

still assume that i is independent of {ud, and condition on i in expression (2.13); by doing 

so, i becomes a fixed parameter. As a consequence, if there are missing values in i, these 

become parameters in the likelihood, �hich is then defined as p( Zt.+I' . . . ,ZtM I ZI, ... ,Zft), 

where tic is the largest integer in (tl, ... , tM) which is ::; d. We next see how this con

ditional likelihood approach is straightforward to apply in the AO approach to missing 

observations estimation. 

3. ADDITIVE OUTLIER APPROACH 

3.1 Stationary Series, ARMA Model 

Let the observed series Zo be that in Section 2.1 with the same assumptions holding, 

and let Z = (z(l). z(2), . .. , z(N))' be the complete series, which includes the unobserved 

values. If z denotes the series obtained from Z by replacing the missing values Zm with 

tentative values zm, the following theorem provides an expression for the log-likelihood 

I(zo) based on Zo, in tenns of z. 

THEOREM 1. Let w = zm - Zm. Then, the log-likelihood 0/ the obJerved value" Zo i" 

I(z,) = -�{N In(,,') + In I 0, I + In I X'O;' X 1 +  (Z - Xw)'O;l(Z - Xw)/,,'), 

where Var(z) = cr2flz , X i" the N x (N - M) matrix whoJe column" are unit vectorJ, 

"uch that the i-th column haJ a one in the po"ition correJponding to the i-th miJJing 

value, i = 1,2, ... ,N - M, w = (Xlfl;IX)-lX'fl;li and w = 2m - E(zm I zo). AZ"o, 

Mse(w) = Var(zm I z,) = "'(X'O�'X)-'. 
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A similar result was first obtained by Peiia (1987) for a first order autoregressive 

model, and was generalized to stationary ARMA models by Ljung (1989). Theorem 1 

implies that, in order to evaluate the log-likelihood I(zo), all we have to do is, first, fill 

in th� series z with tentative values irn. and then use a standard method to compute log

likelihoods for regression models with ARMA errors. Note, however, that the likelihood 

in Theorem 1 includes the determinantal term In 1 X'fl;-l X I. If this correction is not 

made, only an approximation to the exact log-likelihood is obtained. The interpolations 

of the missing values Zm are simply zrn. - w. In Appendix B we describe in more detail 

the algorithms we use, simpler yet equivalent to those of Kohn and Ansley (1985). Note 

that the filled-in series is used for likelihood evaluation and, therefore, no skipping takes 

place. This allows for faster routines than the ones used with skipping. However, there is 

a computational burden implicit in the number of regression parameters. 

3.2 Nonstationary Series', ARIMA Model 

Let the observed series Zo = (z(td, Z(t2) • . .. , Z(tM))'. 1 :$ tl < t2 < ... < tM :$ N, 

be a subvector of the complete series Z = [z�, z�/J', with the assumptions and notation of 

Section 2.2 holding. Given the definition of the log-likelihood (2.10), we can proceed as 

in Section 3.1 because Zlm is considered fixed and the covariance structure of the error 

in model (2.9) is known. Let ZIJm be the subvector of Z1/ containing the missing values 

in ZII. Partition ZIJ = Az[ + v = BZlo + CZ1m + v conforming to ZlIo and Zllm, such 

that (2.8) and ZlIm = AmZI + 11m = BmZlo + CmZlm + Um hold. If ill denotes the series 

obtained from ZlI replacing the unobserved values ZIJm with tentative values illm, the 

following theorem, analogous to Theorem 1. provides an expression for the log-likelihood 

l(yo) based on Yo, in terms of [z�, z] 11'. 

THEOREM 2. Let Wil = illm - ZlIm· Then, the log-likelihood ba3ed on Yo i3 

(3.1) 

where Xli i3 the (N - d) x (N - M - d + k) matrix whoJe columnJ are unit vector3, 

Juch that the i-th column ha3 a one in the p03ition correJponding to the i-th miuing 

value in ZIl, i = 1,2, ... ,N - M - d + k, Wli = (X�In;;-1 XII}-l X�[fl;;-l(Z1l - AZI), and 
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WlI = ZlIm-AmZI-E(ZlIm-ArnZI! ZUo-AoZI). Al"o, Mse(wll) = Var(zlIm-AmZI! 
zlIo -AoZI) = 0"2(XIln;;-1 XlI)-I. 

Note that in (3.1) the parameters to estimate are (¢h . . .  , <Pp, 81, ... , 8q), 0"2 and ZIrn. 
No tentative values have been assigned yet to the elements of ZIrn. As we mentioned at 

the end of Section 2.2, replacing: in (2.10) 0"2 and ZIm with the GLS estimators il2 and 

iI"" respectively, of model (2.9), we can concentrate 0"2 and ZIrn out of the log-likelihood. 

We will show later that the same concentrated log-likelihood can be obtained replacing 

also ZIm with tentative values ilm and concentrating 0"2 and WI = ZIm - ZIrn out of the 

log-likelihood (3.1). But first we will give in the next corollary an alternative expression 

to (3.1) based on differencing [zl,ilII and the columns of [O',X1IY-

COROLLARY 1. With the notation of theorem 2, let u· = lu{zl' ilIl' and XiI = 
lIT [O',X�I]" where lIT i" the matriz defined in Section 2.2, be the re"ult of differencing 

[z1' ZI I I' and the column" of [0', XI T]" re"pectively. Then, the log-likelihood (3.1) can be 

ezpre""ed 113 

l(yo) = -�{(M-k)ln(u2)+lnl n. l + ln l xi;n�'XiI I 

(3.2) 

WIT = (Xj�n;l XiI )-1 Xi�n;lu· and Mse(wIT) = 0"2(Xi�n;1 XiI )-1, where, (13 in Sec

tion 2.2 , u = JIT Z i" the differenced "erie" and V ar( u) = u2n". 

Suppose now that iI denotes the vector obtained from ZI replacing the missing values 

ZIrn with tentative values ifm and let i = [ii, iiI]' he the complete filled in series. Define 

WI;;: iTrn - Zfrn and W = Iw/,wlIl'. Then, we can write 

[ Z/] [i/] [XI 
zlI ill 

-
0 

where XI is the dx (d- k) matrix whose columns are unit vectors, such that the i-th column 

has a one in the position corresponding to the i-th missing value in ZI, i = 1,2, . . .  , d -k, 
or, in obvious and more compact notation, Z = i -Xw. The main result of this section is 

contained in the next theorem. 
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THEOREM 3. Let i1 = luz and X· = ll1X, where ll1 is the matrix defined in 

Section 2.2, be the result of differencing z and the columnJ of X, reJpectively. Then, 

maximizing the log-likelihood (2.10) or, equivalently, (3.2) with respect to Zlm. yield" the 

Zlm. -maximized log-likelihood 

,(yo) = -�((M - k) In(u') + In I n. I + In I Xi;n�' XiI I 

+(fi - X"w)'n�'(fi - X'w)/u'), 

where w iJ the GLS eJtimator of w in the model u = X·w + 11., Xi[ = III [O',Xhf, 
u = ll1z M, 4J in Section 2.2, the differenced JerieJ and Var(u} = q2nt .. Therefore, 

w = (X·' n�' X')-' X·' n�'fi and M se(w) = u'(X" n;' X·)-'. 

Note that, by Theorems 2 and 3, the interpolations ilm of Zlm and illm of ZlIm are 
simply Zlm -W[ and zlJm - WII, respectively, where W = [wl,wllJ' is given by Theorem 3. 

[Another expression for ZIIm, is ZlIm = BmZ}o+CmZlm+P(Yo-CoZlm), where P is .the ma
trix such that E(ZIIm -Amz} I Zl10 -• .£loz}) = P(zlIo-Aozl), P = Cov(vm, vo)Var-1(vo).] 

Note also that in the zIm-maximized log-likelihood >'(Yo) of Theorem 3 the correction 
In I xi�n;;:l Xii I in the determinantal term involves only the missing values contained in 
ZII and not those contained in the data lost by differencing ZI. 

In the stationary case, by Theorem 1, the interpolator in the AO approach, zm - W, 

is equal to E(zm J zo). Therefore it is identical to the one obtained in the skipping 
approach, since that conditional expectation is precisely what the KF, used as in Jones 
(1980), provides; see Section 2.1. This result extends to the nonstationary case, as stated 
in the following corollary. 

COROLLARY 2. The interpolator of the mi.ssing obJervationJ obtained with the Jkip

ping and the A 0 approacheJ are identical. 

As already mentioned, compared to the standard estimation of additive outliers in 
the series, the AO approach to interpolating missing values implies a correction in the 
likelihood. As stated in the following lemma, for a large enough number of observations, 
the effect of this correction becomes negligible. 

LEMMA 3. Let M denote the number of obJertiationJ. If the location and the to

tal number of mi.uing valueJ remain conJtant aJ M -+ 00, the determinantal correction 

vaniJhe3. 
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By Theorem 3, we can use the stationary series ii, obtained by differencing the filled in 

series i, to evaluate the log-likelihood >'(Yo). Hence, we can apply any of the fast algorithms 

existing in the literature to evaluate log-likelihoods of ARMA models. For example, the 

algorithm of Ansley (1979), the innovations algorithm of Brockwell and Davis (1987), or the 

Kalman filtering algorithm of Morf, Sidhu and Kailath (1974), as described by Pearlman 

(1980) and improved by Melard (1984). We use an improved version of this last algorithm, 

detailed in Appendix A. 

3.3 Regression Model with ARIMA Errors 

Consider th.e regression model (2.11), where the vectors P and y(t) are as in Section 

2.3 and the residuals {v(tll follow the ARIMA model (2.3) with z(t) replaced with v(t). 

With the notation of the previous section, if we define the vector v = (v(I), ... , v(N))' 

and the N x h matrix Y with the vectors y'(t), t = 1, .. . , N, as rows, we can write 

i = {X, YJ Iw', ,8'], + v. Differencing this equation, we can proceed as in the previous 

section, the only difference being that the vector of regression parameters is now [w', ,8']', 

instead of w. 

4. COMPUTATIONAL PERFORMANCE OF THE TWO APPROACHES 

We have presented two approaches to the problem of optimal estimation of missing 

observations in possibly nonstationary time series. One uses first the Kalman filter for 

likelihood evaluation, skipping the missing observations, and applies then a smoothing 

algorithm to int.erpolate the unobserved values. This approach will be denoted the SK 

approach. The second approach fills the holes in the series with arbitrary numbers and 

treats them as additive outliers, with the likelihood function appropiately corrected. We 

shall refer to this as the AOC approach. Efficient and relatively simple ways to apply both 

approaches are detailed in Appendix A. It was seen how the two approaches are equivalent, 

so that they represent two alternative algorithms to compute the conditional expectation 

of the missing values given the available observations. While the SK approach avoids GLS 

estimation of the additive outlier parameters and requires less memory, the AOe approach 

uses a "complete" series so that differencing can take place and faster routines can be 

applied for likelihood evaluation. Thus, it is of interest to assess the relative performance 
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in practice of the two approaches. In the comparison, we shall include a third approach: 

the additive outlier approach without determinantal correction, to be denoted AON. As 

was seen in Section 3, this approach provides an asymptotic approximation and has the 

advantage that, since the likelihood considered is the standard additive outlier likelihood, 

it can be implemented with existing software. 

We have run a simulation experiment on a 133 Pentium PC with series of length 100 

generated from the following four models 

AR(I) 
MA(I) 

ARlMA(I, I, 0) 
ARIMA(O,I,I)(O,I,I) 

(I - .8B)z(t) 
z(t) 

(I - .8B)(1 - B)z(t) 
(I - B)(I - BI2)z(t) 

art) 
(I - .7B)a(t) 
a( t) 
(I - .4B)(1 - .6BI2)a(t), 

where, aCt) ....... N(O,l). To obtain each series, 600 observations were first generated using 

independent N(O, 1) deviates obtained by Box-MulIer's method. Then, the first 500 obser

vations of each series were discarded. We have considered three patterns of missing data: 

One missing observation (number 50), five consecutive missing observations (numbers 41-

-45), and twenty missing observations (numbers 2,7,15,20,25, 32,33, 38,42,45,50,51,63, 

72,79, 81,84, 85,86, 90). The missing values have been obtained using three estimation 

procedures. The first corresponds to the SK approach, the second to the additive out

lier approach with determinantal correction (AOe), and the third to the additive outlier 

approach without determinantal correction (AON). For each of the four models and for 

each possible combination of estimation procedure and pattern of missing data, we have 

performed 1000 simulations. All estimations have been made with the program TRAMO 

("Time Series Regression with ARIMA Noise, Missing Observations, and Outliers"; Gomez 

and Maravall (1996), available from the first two authors upon request.) 

Tables 1-4 below correspond to the four models. In each of these tables, we show 

the results of the three methods of estimation for each pattern of missing data. We 

have denoted by ME, RMSE, and TRMSE the mean error, root mean squared error and 

theoretical root mean squared error, respectively. The TRMSE's have been obtained by 

runnig the program with the specified models fixed and interpolating the missing values. 

To facilitate interpretation of the tables, the following result is of help. For an infinite 

realization of an ARIMA series, the optimal interpolator of the missing values is a two

sided, convergent, filter. When there is only one missing observation, (at time t), the filter 
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is given by (see, for example, Brubacher and Wilson, 1976) 

00 

v(B,F) = - L >�')(B' + F'), (4.1 ) 
.1:=1 

where F = B-1, and pii) is the k·lag autocorrelation of the inverse model of (2.3), namely 

O(B)x(t) = ¢(B)o(B)a(t). (4.2) 

Further, 

RMSE [z(t)] = 1/,,(,), (4.3) 

where U(i) is the standard deviation of x(t) in model (4.2). In practice, this RMSE provides 

a lower bound for the RMSE of estimators in a finite sample. When close enough to the 

end of the series or to another missing value, the RMSE will, of course, be larger. 

For the four models considered above, the ACF's of their inverses show that for the 

pure AR models (first and third model) convergence of (4.1) will occur with just one or two 

periods, respectively, at each side of t. T he MA model and, in particular, the mixed model 

(i.e., mod�ls two and four) imply slower convergences, in accordance with the convergence 

properties of the expressions (1-.7 B)-I and (1_.6BI2)-I. For the four models, expression 

(4.3) yields 
AR(I): 
MA(I): 

ARIMA(I, I, 0): 
ARlMA(O,I,1 )(0,1,1): 

RMSE[(i(t)] = 

RMSE[ (i( t)] 
RMSE[(i(t)] = 

RMSE[(i(t)] 

.781, 

.714, 

.453, 

.748. 

From Tables 1-4, it is seen that those (asymptotic) RMSE are identical to the TRMSE 

computed by the Kalman filter for the first three models when there is one missing obser

vation. For the last model, the small discrepancy is caused by the fact that (1 - .6BI2)-1 

has not fully converged in 4 years. When there are 5 missing observations, the tables 

show the deteriotation in RMSE caused by the presence of consecutive observations; this 

is particularly true for relatively simple models. When there are 20 missing values, Tables 

1 and 3 show how for pure AR models, the filters converge fast, and the lower bound for 

the RMSE is often achieved. The MA model gets close on a few occasions, while the mixed 

model is always above. Comparing the four models, it is of some consolation however that 

for the case with RMSE systematically above the lower bound (the mixed model,) the 

deterioration due to consecutive missing values is markedly smaller. 
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Comparison of the SK and AOe columns reveals differences in the two alternative 

algorithms to compute the same conditional mean. Comparison of the AOC and the AON 

colunms, in tum, shows the effect of the determinantal correction needed to compute the 

proper likelihood. The tables indicate that, for the pure AR models, the SK and the 

AOe approaches yield identical results, and that those of the AOe and AON approaches 

are nearly identical. For the MA and the mixed models, the SK and AOe approaches 

provide some differences, though small, and the same can be said of the AOC and AON 

approaches. Clearly, the results reflect the convergence properties of the "inverse" filters. 

The two equivalent algorithms yield identical results when the filters converge fast; when 

convergence is slow some differences may appear. In particular, for the more complex 

model (the mixed one,) the differences implied by not correcting the likelihood seem non

negligible. 

The values of RMSE in the columns of Tables 1-4 are the averages over the 1000 

replications of the RMSE provided as output of the Kalman filter. For the additive outlier 

approach without determinantal correction (the AON columns), the RMSE can be some

what misleading because of the misspecification of the likelihood function implicit in this 

approach. Tables 5 and 6 present the Monte Carlo (Me) RMSE of the interpolators for all 

cases considered, computed, for each case, as the sample value over the 1000 replications. 

It is seen that the Me RMSE are always close to the theoretical RMSE. When the number 

of MO is small, the Me RMSE of the three methods (SK, AOe, AON) are practically 

identical; only for the more complex Airline model there is a slight difference and the AON 

approach tends to display slightly smaller precision when there are 5 missing values (the 

Me RMSE of the skipping approach is always smaller, except for the first observation, for 

which it is the same.) 

When the number of missing observations increases to 20, it is seen that it still is 

true that for the simple AR models, the differences between the approaches are negligible. 

However, for the MA and mixed ARIMA model �he skipping approach becomes noticeably 

better. For the MA model, 19 of the 20 missing values present larger MC RMSE (an 

�verage increase of about 6%); for the mixed ARIMA model, the 20 missing values are all 

better estimated with the skipping approach. 

As for computational efficiency, Table 7 presents the elapsed times in seconds for the 

average of the simulations for all combinations: model for the series-patterns of missing 

data-estimation approach. In all cases, the AOe and AON approaches display negligible 
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differences. When there is only one missing observation, and if the model is small (any 

of the first three), there are practically no differences between the approaches. For the 

larger mixed model, the additive outlier approach is faster. When the number of missing 

observations increases to 5, for the small models the SK approach is slightly faster, while 

for the larger model, the additive outlier approach is still preferable. When the number of 

missing observations increases to 20, the SK approach is always much faster. (Notice that 

the fractions of seconds reported in Table 5, which include the printing of an output file, 

evidence the efficiency of the algorithms described in Appendix A). 

Taken as whole, the results seem to indicate clearly the following. When there are 

few missing observations (l, even 5, in 100) the three approaches yield practically iden

tical results, in terms of point estimators, their associated precision, and computational 

efficiency. 

When the number..of missing observations is large (20 in 100) the skipping approach 

becomes clearly preferable. It is considerably faster and yields more precise estimators. 

Further, from the precision point of view, enforcing the determinantal correction in the 

additive outlier approach may be important. 
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Table 1. Model (1 - .8B)z(t) = a(t) 

observation SK A O e  A ON 

number ME RMSE ME RMSE ME RMSE TRMSE 

1 mi.uing observation 

n = 50 .000 .767 .000 .767 .000 .767 .781 

5 missing observations 

n = 41 -.053 1.001 -.053 1.001 -.054 1.001 .979 
42 -.039 1.219 -.039 1.219 -.039 1.219 1.211 
43 -.007 1.278 -.007 1.278 -.007 1.278 1.274 
44 -.017 1.216 -.017 1.216 -.017 1.216 1.211 
45 .002 1.021 .002 1.021 .002 1.021 .979 

20 missing ob3ervation3 

n = 2  .008 .776 .008 .776 .008 .775 .781 
7 .004 .767 .004 .767 .004 .767 .781 

15 - .046 .760 -.046 .760 -.045 .759 .781 
20 .008 .765 .008 .765 .007 .765 .781 
25 -.015 .793 -.015 .793 -.015 .792 .781 
32 .004 .861 .004 .861 .004 .861 .895 
33 -.025 .872 -.025 .872 -.026 .870 .895 
38 -.OlD .760 - .OlD .760 -.011 .761 .781 
42 -.OlD .772 -.OlD .772 -.OlD .772 .781 
45 .0lD .804 .0lD .804 .0lD .803 .781 
50 .015 .884 .015 .884 .013 .883 .895 
51 .031 .909 .031 .909 .029 .907 .895 
63 .016 .777 .016 .777 .017 .777 .781 
72 .009 .745 .009 .745 .009 .745 .781 
79 .000 .768 .000 .768 .000 .767 .781 
81 .020 .787 .020 .787 .020 .788 .781 
84 -.026 .943 -.026 .943 -.026 .941 .942 
85 -.020 1.093 -.020 1.093 -.021 1.092 1.079 
86 .005 .952 .005 .952 .004 .951 .942 
90 -.044 .801 - .044 .801 - .045 .800 .781 

SK: Skipping approach 
AOe: Additive outlier approach with determinantal correction 
AON: Additive outlier approach without determinantal correction 
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Table 2. Model z(t) = (1  - .7B)a(t) 

observation SK A OC A ON 

nu.mber ME RMSE ME RMSE ME RMSE TRMSE 

1 missing observation 

n = 50 -.003 .726 -.003 .726 -.003 .728 .714 

5 missing observation.s 

n = 41 -.050 1.033 -.050 1.033 -.049 1.033 1.000 
42 .045 1.235 .045 1.235 .045 1.235 1.221 
43 .026 1.200 .026 1.200 .026 1.200 1.221 
44 -.023 1.206 -.023 1.206 -.023 1.206 1.221 
45 .040 1.001 .041 1.001 .040 1.002 1.000 

20 missing observations 

n = 2  .014 .841 .019 .828 .018 .828 .828 
7 -.018 .778 -.021 .753 -.021 .753 .726 

15 -.015 .748 - .028 .728 -.028 .728 .726 
20 .005 .744 -.007 .725 -.007 .725 .735 
25 .011 .772 .014 .740 .014 .740 .727 
32 .013 1.010 .007 1.003 .007 1.003 1.002 
33 .001 .963 .001 .956 .001 .956 1.007 
38 -.008 .774 -.003 .755 -.003 .755 .746 
42 .018 .787 .021 .776 .021 .776 .781 
45 .037 .794 .040 .784 .040 .784 .770 
50 .002 1.008 .004 .995 .004 .995 1.007 
51 -.017 1.008 -.021 .995 -.021 .995 1.000 
63 -.013 .764 - .026 .725 -.026 .726 .715 
72 .011 .757 .009 .717 .009 .717 .717 
79 -.015 .823 -.009 .812 -.009 .812 .821 
81 .028 .853 .032 .847 .032 .847 .860 
84 -.036 1.049 -.034 1.046 -.034 1.046 1.033 
85 .019 1.223 .019 1.223 .019 1.223 1.221 
86 .007 1.029 .005 1.026 .005 1.026 1.016 
90 -.017 .781 -.019 .748 -.019 .748 .736 

SK: Skipping approach 
AOe: Additive outlier approach with determinantal correction 
AON: Additive outlier approach without determinantal correction 

- 2 4-



Table 3. Model (1 - .8B)(1 - B)z(t) = a(t) 

ohs ervation SK AOC A ON 

number ME RMSE ME RMSE ME RMSE TRMSE 

1 missing observation 

n = 50 -.008 .449 -.008 .449 -.008 .449 .453 

5 missing observations 

n = 41 -.034 .817 -.034 .817 -.034 .817 .801 
42 -.044 1.286 -.044 1 .286 -.044 1.286 1.298 
43 -.018 1.453 -.018 1.453 -.018 1.453 1.476 
44 -.008 1.273 -.008 1.273 -.008 1.272 1.298 
45 .008 .797 .008 .797 .008 .797 .801 

20 mi3sing observations 

n = 2  -.013 .483 -.013 .483 -.013 .482 .486 
7 -.001 .438 -.001 .438 -.001 .438 .453 

15 -.011 .429 -.011 .429 -.011 .429 .453 
20 -.004 .446 -.004 .446 -.004 .446 .453 
25 -.017 .459 -.017 .459 -.017 .459 .453 
32 .016 .591 .016 .592 .017 .592 .605 
33 .002 .597 .002 .597 .003 .597 .605 
38 -.012 .457 -.012 .457 -.012 .457 .453 
42 - .OlD .451 - .OlD .451 -.010 .451 .453 
45 .011 .470 .011 .470 .011 .470 .453 
50 -.009 .592 -.009 .592 -.009 .592 .605 
51 -.001 .587 -.001 .587 -.002 .587 .605 
63 .018 .443 .018 .443 .018 .444 .453 
72 -.004 .443 -.004 .443 -.004 .443 .453 
79 .008 .457 .008 .457 .008 .456 .459 
81 .001 .457 .001 .457 .001 .458 .459 
84 -.022 .679 - .022 .679 -.022 .678 .697 
85 -.034 .897 -.034 .897 -.034 .897 .919 
86 -.017 .679 -.017 .679 -.017 .679 .697 
90 -.023 .453 -.023 .453 -.023 .453 .453 

SK: Skipping approach 
AOC: Additive outlier approach with determinantal correction 
AON: Additive outlier approach without deterrninantal correction 
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Table 4. Model (1 - B)(1 - B12)Z(t) = (1 - AB)(1 - .6B1 2)a(t) 

ob.5ervation SK A O C  A ON 

nu.mber ME RMSE ME RMSE ME RMSE TRMSE 

1 mis3ing ob3ervation 

n = 50 .002 .753 .001 .753 .001 .753 .751 

5 missing observations 

n = 41 -.041 .854 -.043 .854 -.043 .855 .837 
42 -.'041 .915 -.042 .915 -.042 .915 .905 
43 -.025 .933 - .024 .934 -.024 .934 .927 
44 -.056 .933 -.056 .933 -.056 .932 .905 
45 -.029 .872 -.029 .872 -.029 .872 .837 

20 missing observations 

n = 2  -.020 .918 -.019 .917 -.019 .922 .884 
7 -.002 .861 .000 .859 .003 .866 .849 

15  -.051 .788 -.052 .786 -.050 .789 .792 
20 .000 .834 -.004 .827 .003 .834 .814 
25 -.014 .770 -.013 .770 -.020 .776 .772 
32 -.009 .799 - .011 .795 -.004 .817 .826 
33 -.032 .825 -.032 .824 -.029 .835 .818 
38 -.013 .770 -.014 .770 -.016 .784 .788 
42 -.013 .749 -.014 .749 -.015 .753 .759 
45 -.009 .789 -.009 .788 -.006 .791 .780 
50 .004 .822 .003 .820 .005 .832 .815 
51 .022 .841 .019 .838 .022 .851 .810 
63 .007 .771 .007 .771 .006 .776 .777 
72 .018 .759 .018 .759 .019 .769 .786 
79 -.010 .773 -.009 .772 -.009 .780 .790 
81 .017 .805 .016 .804 .018 .815 .791 
84 -.025 .875 -.025 .875 -.032 .881 .865 
85 -.024 .906 -.023 .906 -.029 .913 .874 
86 -.502 .881 -.002 .881 -.005 .888 .847 
90 - .046 .888 -.047 .887 -.051 .894 .846 

SK: Skipping approach 
AOe: Additive outlier approach with determinantal correction 
AON: Additive outlier approach without deterrninantal correction 
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Table 5. MONTE CARLO MEAN SQUARE ERRORS 

observation AR(l) MA(l) 

number SK AOC A ON SK AOC A ON 

1 mi.",ing ob3ervation 

n = 50 .772 .772 .772 .715 .715 .716 

5 missing observations 

n = 41 .950 .950 .950 .965 .965 .966 
42 1.155 1 .155 1.155 1.229 1.229 1.229 
43 1.251 1.251 1.251 1.212 1.212 1.212 
44 1.205 1.205 1.205 1.194 1.194 1 . 194 
45 1.016 1.016 1.016 .964 .964 .965 

20 mi.S3ing ob"ervation.s 

n = 2  .761 .761 .760 .845 .874 .873 
7 .788 .788 .786 .765 .840 .837 

15 .762 .762 .762 .737 .835 .832 
20 .799 .799 .799 .734 .823 .819 
25 .781 .781 .781 .752 .821 .818 
32 .912 .912 .9ll 1.021 1.053 1.048 
33 .900 .900 .901 1.041 1.064 1.065 
38 .762 .762 .761 .773 .817 .818 
42 .773 .773 .774 .807 .882 .883 
45 .792 .792 .792 .758 .818 .812 
50 .884 .884 .884 1.007 1.030 1.029 
51 .898 .898 .897 1.002 1.030 1.034 
63 .757 .757 .758 .745 .810 .813 
72 .805 .805 .804 .765 .852 .847 
79 .815 .815 .816 .828 .870 .867 
81 .753 .753 .753 .895 .940 .939 
84 .951 .951 .952 1.032 1.051 1.050 
85 1.066 1.066 1.066 1.269 1.269 1.269 
86 .921 .921 .917 1.021 1.053 1.054 
90 .788 .788 .789 .759 .836 .833 

SK: Skipping approach 
AGe: Additive outlier approach with determinantal correction 
AON: Additive outlier approach without determinantal correction 
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Table 6. MONTE CARLO MEAN SQUARE ERRORS 

ob3ervation ARl( l,l)  ARlMA(O, 1, 1)(0, 1, 1) 
number SK A O C  A ON SK A OC A ON 

1 mi""ing observation 

n = 50 .451 .451 .451 .744 .744 .744 

5 mi33ing observation" 

n = 41 .787 .787 .788 .834 .834 .834 
42 1.254 1.254 1.253 .886 .886 .887 
43 1.427 1 .427 1.426 .920 .920 .921 
44 1.266 1.266 1.266 .895 .895 .896 
45 .793 .793 .793 .851 .851 .853 

20 mi.",ing oburvation.! 

n = 2  .477 .477 .477 .924 .924 .936 
7 .436 .436 .436 .853 .854 .869 

15 .450 .450 .450 .793 .793 .802 
20 .462 .462 .462 .838 .838 .850 
25 .458 .458 .458 .769 .769 .778 
32 .608 .608 .608 .846 .846 .855 
33 .611 .611 .611 .819 .819 .830 
38 .452 .452 .452 .781 .780 .784 
42 .451 .451 .451 .755 .755 .770 
45 .464 .464 .464 .788 .788 .793 
50 .598 .598 .598 .809 .810 .822 
51 .599 .599 .599 .822 .822 .839 
63 .457 .457 .457 .768 .768 .783 
72 .469 .469 .469 .825 .825 .834 
79 .486 .486 .486 .826 .826 .832 
81 .433 .433 .433 .781 .781 .789 
84 .711 .711 .711 .909 .909 .924 
85 .904 .904 .903 .896 .896 .909 
86 .672 .672 .672 .852 .852 .868 
90 .458 .458 .458 .861 .861 .875 

SK: Skipping approach 
AOe: Additive outlier approach with determinantal correction 
AON: Additive outlier approach without determinantal correction 
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Table 7. Elap3ed time in 3econd. (average) 

approach AR(1) MA(1) ARIMA(1, 1,  0) ARIMA(O, 1, 1)(0, 1, 1 )  

1 missing obUTvation.s 

SK .06 .07 .07 .52 
A O C  .08 .08 .08 .17 
AON .09 .09 .08 .19 

5 missing ob.servations 

SK .06 .08 .07 .55 
A O C  .10 .14 . 1 1  .26 
AON . 1 1  .12 .11  .33 

20 missing observations 

SK .07 .07 .07 .65 
A O C  .36 .33 .32 1.02 
AON .38 .33 .33 .95 

SK: Skipping approach 
AGe: Additive outlier approach with determinantal correction 
AON: Additive outlier approach without determinantal correction 
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APPENDIX A, COMPUTATIONAL DETAILS 

In Sections 2 and 3 we developed two equivalent approa.ches to the problem of max

imum likelihood estimation of parameters and interpolation of missing values in general 

regression models with nonstationary ARIMA errors when some of the observations may 

be missing. Both procedures are based on the definition of a. conditional likelihood, which 

is particularly well suited for efficient computation. In this appendix we provide the com

putational details of both procedures; they are implemented in the program TRAMO, 

mentioned in Section 4, and available from the first two authors upon request. 

A.l Skipping Approach and the Augmented Kalman Filter 

In order to evaluate the log-likelihood (2.10). we use the stale space representation 

x(t) = Fx(t - 1) + Ga(t) 

z(t) = H'(t)x(t) + a(t)W(t) 

defined in Sections 2.1 and 2.2 and an "Augmented Kalman Filter" (AKF) algorithm 

which we now describe. The log-likelihood (2.10) is that of the GLS model (2.9), where 

Var(v.) = u'n •. . G;ven the parameters (¢,8) = (¢" . . .  ,¢p,8" . .. ,8,), of the ARMA 

model (2.1), the log-likelihood (2.10) is maximized with respect to Zlm and u'1 by replacing 

them with their maximum likelihood estimators ifm and 0'2, respectively, which coincide 

with the GLS estimators of model (2.9). Minus two times the (Zlm,a2)-maximized 10g

likelihood is, apart from a constant, S(y.,) = I Qt>. 1 1/(M-k)(yo - CoZlmYS'lv.(y., - Coilm), 
and maximizing (2,10) is equivalent to minimizing S(y.,). Let {lv. = LL', where L is a 

lower triangular matrix, be the Cholesky decomposition of ilt>.. If we left-multiply (2.9) 

by the matrix L - 1 ,  we obtain the ordinary least squares (OLS) model 

(A.l) 

and the function S(Yo) can be rewritten as the nonlinear sum of squares 

S(y. )  = e' e, (A.2) 

where e :;; 1 L 11/(M-k) L-l(yo - Coilm). Therefore, if we can evaluate e, we can use a 

Gauss-Marquardt algorithm to minimize S(Yo) with respect to (4),8). 
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If there are no missing observations among the first d values of the series, then z [0 = z [, 
Yo = Zllo - Aoz[. model (2.9) becomes Yo = Vo and the Kalman filter can be used to 

compute L-1yo and 1 L I. The Kalman filter is the set of recursions 

e(t) = z(t) - H'(t)x(t I t  - 1) 

<7'(t I t - I) = H'(t)E(t I t  - I)H(t) + ,,'(t) 

K(t) = FE(t I t - 1)H(t)/<7'(t I t - 1) 

x(t + 1 I t) = Fx(t I t - I ) + I« t)e(t) 

E(t + l l t) = (F - J((t)H'(t))E(t l t - l )F' + GG', t = d + l , . . .  ,N, 

with starting conditions xed + 1 I d) = A.z{ and E(d + 1 I d) = =:.t(d + 1 I d)=:�, as in 

Section 2.2. Here x(t 1 t - 1) is the predictor of x(t) using {z(s) : 1 � tl ::; s :5  t - I} and 

V are x( t) - x( t i t  - 1)) = E( t i t  - 1). If the series is stationary, then x( t) is that of Section 

2.1,  d = 0, xed + 1 I d) = E(x(I)) = 0 and E(d + 1 I d) = Var(x(I)). The e(t) are the 

innovations or errors of predicting z(t) using {z(s) : 1 ::; tJ ::; s ::; t - l}j  they constitute 

an orthogonal sequence with zero mean and Var(e(t» = (72(t I t - 1), as given by the 

Kalman filter. Only those e(t) and u2(t 1 t - 1) are computed for which the corresponding 

observation z(t) is not missing. The elements e( t)/ u( t i t  -1)  corresponding to the observed 

z(t) form the vector L -lyo and 1 L 1 is simply the product of the u(t 1 t - 1) for which z(t) 
is not missing. Note that in the Kalman filter we suppose that (72 = 1 because (72 can be 

concentrated out of the log-likelihood. 

For the general case, when there may be missing observations among the first d values 

of the series, Kahn and Ansley (1985) show that the Kalman filter can be applied to the 

vector Yo and the columns of the matrix Co to obtain L-1yo and L-ICo, respectively, as 

well as I L I .  The AKF we apply uses a state vector for the data Yo and a state vector for 

each of the columns of the matrix Co. Define X(t) as the matrix whose columns are all 

those state vectors, in the order specified above, that is, first the state vector for the data 

Yo and then the state vectors for the columns of Co. The AKF is the Kalman filter with 

the equations for e(t) and x(t I t - I), respectively, replaced with 

E(t) = (z(t),O, . . .  , 0) - H'(t)X(t I t - I), X(t + 1 1  t) = FX(t I t - I) + 1« t)E(t), 

with the starting condition X(d + 1 1 d) = (B.z[o, -C.), where B. and C. are defined 

by the relation A.z[ = B.z/o + C.z1m and A. is the matrix defined in Section 2.2. Note 

that the AKF automatically builds the vector Yo = ZIlo - Boz/o and the matrix Co and, 
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therefore, it is not necessary to compute them before it is applied. Once the AKF starts 

to run, if z(t) is missing, then E(t). is not computed and both E(t) and u2(t 1 t - 1)  = 1 

do not contribute to the calculation of either (L-lYo,L-lCo) or 1 L I. The elements 

of E(t)/u(t I t - 1)  corresponding to the z(t} actually observed constitute the rows of 

the matrix (L-1Yo, L-1Co)' Similarly, 1 L 1 is equal to the product of the u(t 1 t - 1) 

corresponding to the observed values. 

After computing the matrix L -I CO with the AKF, the Q R algorithm can be applied 

to obtain an orthogonal matrix Q such that QI L-1Co = [RI, aT, with R upper triangular. 

If we partition Q = [QII ' Q�r conforming to R and 0 in [R', Olr, then, left-multiplying 

(A. I} by Q', it is obtained that 

(A.3) 

We assume in (A.3) that the matrix R has full rank, and refer the reader to Gomez 

and Maravall (1994) for the case in which there is a rank deficiency. From (A.3), the 

maximum likelihood estimators of Zlm and 172 can be obtained as Zlm = R-IQ�L-lyo 
and (;2 = (Q2L-1yo)' Q2L-Iyo' substituting in (A.2) yields S(Yo) = iii a, where a = 

I L j l/(M-k)Q2L-lyo. Note that, if the ARMA model (2.1) is the true model, then 
Q2L -lyo is distributed as N(O, 172 1M -k} and this vector can be used as residuals to test 

model adequacy. If the series is stationary, then the AKF reduces to the ordinary Kalman 

filter, as in Jones (1980). It is worth noticing that the AKF we present is similar to the 

Diffuse Kalman Filter (DKF) of De Jong (1991). The difference lies in that the AKF 

does not use the recursion of the DKF that accumulates the partial sums of squares and 

crossproducts. We believe that it is numerically safer to use the Cholesky decomposition 

of OliO to move from (2.9) to (A.  1) ,  and then apply the QR algorithm in order to obtain 

the GLS estimators Zlm and 172 . 

Once the parameters (¢, 8) of the ARMA model (2.1) have been estimated, the AKF, 

and a simplification thereof, can be used to predict future values and to interpolate missing 

values, respectively. Specifically, let z( t i N) = E( z( t) I z( t I ) , . . . , z( t M)) be the estimator 

of z(t} using the observed series Zo = (Z(tl)" " , Z(tM))I . If t < tM = N, we are interpo

lating and if t > tM, we are predicting. Given the definition of the state vector x(t) in 

Sections 2.1 and 2.2, it is easy to check that z(t I N) = H'x(t I N), where HI = ( 1 , 0, . . .  , 0) 

and x(t I N) = E(x(t) I z(t, ), . . .  , Z(tM))· 

Consider next predicting the state x( t) using {z(  s) : tl ::; S ::; t - 1} and let xC t i t  - 1 )  
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be this predictor. Suppose first that Z/rn is known. Then, it is not difficult to verify 

that X(t I t - 1) [1, - zlmi', where X(t I t - 1) ;s g;ven by the AKF, s.t;sfies the same 

recursion and starting condition as x(t I t - 1) in the ordinary Kalman filter. Hence, 

x(t I t - I) = X(t I t - I) [1, -zlmi' . 
If Z/m is not known and we estimate it with Zlm, obtained from (A.3), we can proceed 

in two steps. First, we predict x(t) using {z/m' {z(s) : tl � s � t - I}} ,  obtaining 

x(t I t - 1) = X(t I t - 1 ) [1 ,-zlrnJ', and then we predict this predictor using {z(s) : 

t, � s � t - I}. Thus, x(t [ t - 1) = X(t I t - 1)\1, -zlmi' . G;ven the orthogonality of 

x(t) - x(t I t - 1) and x(t I - 1) - x(t I t - 1) ,  the mean squared error of x(t I t - I) ;s 

Mse(x(t I t - I)) = Var(x(t) - x(t I t - I) + x(t I t - 1) - x(t I t - I)) 

= Var(x(t) - x(t I t - I)) + Var(x(t I t - I) - x(t I t - I)) 

= ,,'E(t I t - I) + Var (X(t I t - 1) [O,(z/m - Z/m)']') ' 

= ,,'E(t I t - I) + Xlm(t I t - 1)Var(Z/m)X/m(t I t - I), 

where X/met I t - 1) is the submatrix of X(t I t - 1) formed with all its columns except 

the first. 

If we are predicting, in order to obtain z(N + i I N), i == 1 , 2, . . . , we use the recursions 

X(N + i I N) = FX(N + i - I  I N), E(N + i I N) = FE(N + i - I  I N)F' + GG', 

initialized with X(N + 1 I N) and E(N + 1 1  N), as given by the AKF. The estimator of 

zeN +i) ;s zeN +i I N) = H'x(N +i I N), where x(N +i I N) = X(N +i I N) [1, -Z/mi' .  Its 

mean squared error ;s Mse(z(N + i  I N)) = H'Mse(x(N + i  I N))H, where Mse(x(N + i  I 

N)) = "'E(N + i I N) + X/m(N + i I N)Var(z/m)X/m(N + i I N) and Xlm(N + i  I N) ;s 

the submatrix of X(N + i I N) formed with all its columns except the first. 

If we are interpolating the missing observation z(j), where z(j) is not contained in 

Z/m or, equivalently, j > d, we can proceed as follows. Define first an Augmented FPS for 

k � j by the equations 

E"(k + l l k) = E"(k I k - l)(F - K(k)H'(k))', W(k) = E"(k I k - l)H(k),,-'(k I k - l), 

X(j I k) = X(j I k -l)+W(k)E(k), E(j I k) = E(j I k- l) - E"(k I k- l)H(k) (W(k))' , 

;n;l;aEzed w;th E"(j I j - 1) = E(j I j - 1). Here, K(k), ,,'(k I k - 1), E(k), X(j I j - 1) 

and E(j I j - 1) are those of the AKF. As in the case of prediction, it is easy to verify 
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that the interpolator x(j I k) of the state x(j) using {xis) , t, :s s :s k} is x(j I k) = X(j I 
k) 11, -i�m]" Also, x(j I k) = H'x(j I k) and Mse(z(j I k)) = H'Mse(x(j I k))H. Hence, 

if we define b(k) = H'K"(k), v'(j I k) = H'E"(k I k - 1) and u'(j I k) = H'E(j I k)H, we 

obtain, for k = j,j + 1, . . .  , N, the simplified equations 

v'(j I k + 1) = v'(j I k)(F - K(k)H'(k))', b(k) = v'(j I k)H(k)u-'(k I k - 1), 

H'X(j I k) = H'X(j I k - 1) + b(k)E(k), u'(j I k) = u'(j I k - 1) - v'(j I k)H(k)b(k), 

initialized with v'(j I j) = H'E(j I j - 1). These equations only require the storage of 

two scalars, b(k) and u'(j I k), and two vectors, v'(j I k) and H'X(j I k). When k = N, 
we obtain the interpolator of z(j), which is z(j I N) = H'x(j I N), where xU I N) = 
X(j I N) 11, -z�m]" Its mean squared error is Mse(z(j I N)) = H'Mse(x(j I N))H 
= u'{u'(j I N)} +H'X1m(j I N)Var(ilm)X�m(j I N)H and X1m(j I N)is the submatrix 

of XU I N) formed witn all its columns except the first. 

Finally, we consider the regression model (2.11) with the state space representation 

defined in Section 2.3. The log-likelihood of this model was defined as that of the GLS 

model (2.12). To evaluate the log-likelihood, we use the AKF with a matrix X(t) which 

includes h new columns added to the right of the existing ones, corresponding to states 

for the columns of the Yllo - AoY1 matrix. Also, the equation for E(t) is replaced with 

E(t) = (z(t),O, y'(t)) - H'(t)X(t I t - 1), where 0 is a 1 x (d - k) vector corresponding 

to the columns of the Co matrix, and the initialization for X(d + 1 I d) is replaced with 

X(d + 1 I d) = (B.z1o, -C., -A.Y1) ,  where YI is the matrix defined in Section 2.3 and 

A. is the r x d matrix defined in Section 2.2. Note that it is not necessary to evaluate 

the YIIo - AoYI matrix because the AKF builds it automatically. We can now proceed as 

before for log�likelihood evaluation, prediction or interpolation. 

A.2 Additive Outlier Approach and Augmented Morf-Sidhu-Kailath Filter 

With the notation of Section 3.3, consider the regression model z = [X, YJ [w', ,8'], + v. 

By Theorem 3, we can work with the differenced series and we showed in Section 2.2 that 

differencing a series is equivalent to multiplying it by the left by the matrix JII defined in 

that section. Hence, we consider the model 

fi = IX', Y'] Iw',fl'! ' + v' , (A.4) 

- 35 -



where ii = Juz, X* = JIIX, y* = JIIY and v· = JII v. 

In Section A.l, we considered the GLS model (2.9) or, more generally, (2.12) and 
developed a procedure to estimate the parameters of the ARIMA model, the regression 
parameters and the variance of the innovations. Clearly, this methodology can be applied 
to any regression model with ARlMA errors for the same purposes; only the meaning of 
the regression parameters will change. In particular, we can apply it to (A.4), and use an 
augmented version of the Kalman filtering algorithm of Marl, Sidhu and Kailath ( 1974) (in 
short AMSK), because in (A.5) there are no missing values and the errors are stationarY. 
The algorithm of Morl, Sidhu and Kailath (1974) is described in Pearlman (1980) and has 
been improved by Melard (1984). We use a similar algorithm, suited to our state space 
representation (2.2), which includes both the improvement for p > q of Melard (1984) and 
the improvement for seasonal moving avera.ge models due to Ansley ( 1979), discussed, but 
not implemented, also in Melard (1984). 

We describe first the basic AMSK, independently of the state space representation, 
and explain later how we can improve this algorithm by using the state space representation 
(2.2). Let X(t) be the matrix whose columns are the state vectors corresponding to the 
data ii and the columns of the matrix IX·, y·], in that order, To simplify the notation, 
define R(t) = H'E(t I t  - 1)H, where E(t I t - I) is that of the Kalman filter corresponding 
to the ARMA model (2.1) and H = (1 ,0, . . .  , 0)'. Then, the AMSK is the set of recursions 

E(t) = (u(t), x" (t), y" (t)) - H' X(t I t - 1) 

K(t + 1) = K(t) - (H'L(t)JR(t))FL(t)JR(t) 

L(t + 1) = FL(t) - H'L(t)K(t) 

R(t + 1) = R(t) - (H'L(t))'JR(t) 

X(t + l l t) = FX(t l t - l) + K(t)E(t), t = d + l, . . . , N, 

with starting conditions X(d + 1 I d) = 0, L(d + 1) = FE(d + 1 I d)H, K(d + 1) 

L(d + I)JR(d + 1) and R(d + 1) = H'E(d + 1 I d)H = H'Var(x(d + 1))H. Here x" (t) 
and y*'(t) are the rows of X* and Y·, respectively, x(t) is the state vector corresponding 
to the ARMA model (2.1) with z replaced with v·, and K(t) is that of the Kalman filter 
corresponding to the ARMA model (2.1). 

By Theorem 3, we have to use a correction in the determinantal term for log-likelihood 
evaluation. The computation of the correction term I xi�n-l XiI I, where Var(,,· ) = 
(120, can be facilitated if we change the order of the elemen�s of the vector of regression 
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parameters w. Specifically, put W = [WfJ ,WfJ' , 

and X* = J[[X. If n = LL', with L lower triangular, is the Cholesky decomposition of 

the matrix n, applying the QR algorithm to the matrix L -1 [X*, y*] yields an orthogonal 

matrix Q such that Q' L -1 [X*, Y* ] = [R', oT, with R upper triangular. If we partition R 
confonning to [wfI,wfJ' and R// is the upper triangular submatrix of R corresponding to 

W// in the partition, then 1 xi�n-1 XiI 1=1 RfIR// I. Thus, the detenninantal correction 

is a simple by-product of the computations in the standard additive outlier case. 

For prediction, we can use the AMSI< as in Section A.l and for interpolation, by the 

results of Section 3, once we have estimated the regression parameters, the interpolations of 

the missing observations are simply the difference between the tentative values assigned by 

the user and the estimat�rs Wi, which are the elements of w. The Mse of the interpolators 

are obtained by GLS. 

The AMSK represents a significant improvement with respect to the AKF, since the 

matrix recursion for E(t 1 t - 1) in the AKF has been replaced with a vector recursion, 

that for L(t), in the AMSK, but it can be improved still further if we pay attention to 

the covariance structure of the ARMA model (2.1). To see this, suppose the series is' 
stationary, with no missing observations and no regression parameters. Then, there is no 

need for either differencing or filling in the series and the above regression model reduces 

to x = v, where (v(t)) follows the ARMA model (2.1) and x = (z(I), . . .  , z(N))' is the 

observed series. Hence, the AMSK becomes the Kalman filtering algorithm of Morl, Sidhu 

and Kailath (1974), which is the AMSK with the vector E(t) and the matrix X(t I t - I) 

replaced with the sc�ar e(t) and the vector x(t 1 t - 1) ,  respectively. As in the Kalman 

filter, the ,(t) = z(t) - H'x(t I t - I)  are the innovations, where x(t I t - I) = E(x(t) I 

Z(8) : 1 ::; 8 ::; t - 1) and x(t) is the state vector defined in Section 2.1. The innovations 

e(t) constitute an orthogonal sequence with E(e(t)) = 0 and Var(e(t)) = R(t), as given 

by the AMSK 

We now show that if e = (e(l), . . .  , e(N))', then there exists a lower triangular matrix 

K with ones in the main diagonal such that Z = Ke and n = KDK', where Var(v) = q2n 
and D = diag (R(I), . . .  , R(N)). From the observation equation x(t + I) = H'x(t + I) and 

the relation x(t + I I t) = Fx(t I t - I) + K(t)e(t), given by the AMSK, it is obtained that 
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z(t + 1) = e(t + 1) + H'K(t)e(t). lte"bng, we have 

z(t + 1 )  =e(t + 1) + H' K(t)e(t) + H'FK(t)e(t - 1) + . . .  

+ H' F'-' K(2)e(2) + H' F'-' e(1), t 2: 1, 

with z(l) = eel).  Therefore, K is the lower triangular matrix [ H,i(1)  
K = H'FK(1) 

H'FN�'I« 1)  

1 
H'I« 2) 1 

H'K(N - 1) J 
Given the definitions of the matrices H and F, it is straightforward to check that H' K( s) 

= I<,(S), H'FK(s) = I<,(s), . . .  , H'F'-'K(s) = K.(s), where r = max{p, q + 1} and K;(s) 
is the i-th component of K(s),i = 1,  . . . , r. The elements of the matrix K satisfy certain 

relations due to the covariance str�cture of the ARMA model, which can be made explicit 

if we use the transformation of Ansley (1979). In this transformation, the new variables 

w(t) are defined by 

w(t) = { Z(t) if t = 1, . . . ,m, 
¢(B)z(t) 1f t = m + 1, . . . , N, (A.5) 

where <p(B) is the autoregressive polynomial in model 2.1 and m = max{p, q}. If w = 

(w(l), . . .  ,weN»)"� then we can write w = Jz, where J = [J;. J�J', 11 = [lm,O}. 1m is the 

identity matrix of rank m and [ ¢m 
J, = 0 

with the convention ¢i = 0 if i > p. Let L = JI\. Then, Var(w) = (J2LDL' is a band 

matrix with maximum band with m for the first m rows and q thereafter a.nd L is a lower 

triangular band matrix with ones in the main diagonal and bandwidths corresponding to 

those of Var(w); see Ansley (1979). This implies the relations 0 = cPpKq_P+1(t) + . . .  + 

¢lK,(t) + K,+h t 2: 1 if q 2: p and 1 0 = ¢p + ¢p_,K,(t) + . . .  + ¢,I<p_1(t) + I<p(t,) t 2: 1 
o � ¢p-1 + ¢p_,K,(t) + . + ¢,Kp_,(t) + Kp-1(t) , t 2: 2 

o = ¢,+, + ¢,I<, (t) + . . . + ¢, K,( t) + K,+, (t), . t 2: p - q 
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if p > q. 

If we insert these relations into the recursions of the AMSK, it is not difficult to verify 

that the following simplification in the AMSK is obtained. 

For t = 1, . . .  , p  - q use the AMSK (only if p > q). 

For t = P - q + l,p - q + 2, . . . if p > q or t = 1,2, . . . if p :S:  q 

For i = 1, . . .  , q  

Update, using the recursions of the AMSK, the elements ]{i(t), Li(t) of K(t), 

L(t), respectively, and the i-th row X;(t I t - I) of X(t I t - I). 

For i = q + l 

Compute L,+,(t) = -¢,L, (t) _ . . . - ¢, L,(t) and X,+,(t I t - 1) = -¢,v(t 

r + q) - . . .  - ¢,+Iv(t - 1) - ¢,X,(t I t - 1) - . . . - ¢,X,(t I t - 1), where 

v(s) = (u(s), x" (s), Y" (s)), r = max{p,q + I} and ¢; = 0 if i > p. 

When p > q, we could still simplify the recursions for t = 1 , .  " P - q using the above 

relations, but we have not done so for simplicity, since the gain would be marginaL How

ever) a notable improvement in the algorithm can be obtained in the case of a seasonal 

moving average process of the form z(t) = 6CB)0(B")a(t), where B is the backshift op

erator, 6(B) is a polynomial in B of degree q, 0{B"') is a polynomial in B"' of degree Q 

and s is the length of the seasonal cycle, such that q < (1/2)s. For this model, Ansley's 

transformation (A,5) is the identity transformation and Fq+l = 0, Hence, with the above 

notation, we have L = K and the elements lit of L are related to the elements Ki(t) of 

vectors K{t) by Iii = Ki_t(t), max{i - q, I} � t < i = 2, . . .  , N. This implies, by Theorem 

4.1 of Ansley (1979), Ki(t) = 0 for the two sets 

i = hs + 1 h = 0,1 ,  . . .  ; 1 =  q + 1, . . .  , s � 1, 

t = Hs + k � i  H = O, l, . . . ; k = l, . . .  , s - q. 

APPENDIX B: PROOFS OF RESULTS 

Proof of Theorem 1: The likelihood functions verify L(z) = L(zm I zo)L(zo), where 

the vertical bar denotes conditional distribution. Then, 
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where Q:o and O:ml:o are the covariance matrices, divided by q2, of L(zo) and L(zm I zo), 

respectively. Given that i = Xw + z, replacing in (B.1) z with i -Xw, it is obtained that 

(i - Xw)'Q;-l(i -X w) = (zm - E(zm I zo) - w)'n�� I ,Jzm - E(zm I zo) - w) + z�n;-.l zoo 

(B.2) 

The maximum likelihood estimator W of w on the left hand side of L(z) = L(zm I zo)L(zo) 

must be equal to the one on the right hand side. Clearly, the right hand side of (B.2) 

is minimized for W = zm - E(zm I zo). To minimize the left hand side, consider the 

regression model i = Xw + z. Then, W is as asserted, W - w = Zm - E(zm I zo) and 

Var(zm I zo) = Mse(w) = q2(X'Q;-lX)-I . 

Proof of  Theorem 2:  Define y = Zll - Bz/o and Ym = Zllm - BmZIo, Then, y, 

Yo and Ym are distributed as N(CZIm , U20,,), N(CoZIm ,U20". ) and N(CmZIm, U2Q"m)' 
respectively, where Var.(vm} = q2n"m ' because Zim is considered fixed in the definition 

of the likelihood (2.10). Therefore, the likelihood functions verify L(y) = L(Ym I Yo)L(yo) 
and the rest of the proof is similar to that of Theorem 1. 

Proof of Corollary 1 :  Put 

Zll - AZI - Xl/Wl/ = !-.4 ,IN-dJ [ (  ::1 ) - (X�I ) Wll] 
and consider that Q" = ::::0,,::::', where :::: = J:; ) ,  111 = [11, J2J and A = -::::11. Then, we 

can write 

(ill - Az/ - XllWII )'Q;) (ZII - AZI - X IlWll) = 

[U:J  - (L) WII]
' 

[-.4, IN_dj' J;n�' J, [-A , IN_d[ [U:J - (�I) 
WlI] 

Finally, I Q" I = 1 Q1I I because = has unit determinant. • 

Proof of Theorem 3: Maximizing (2.10) with respect to Z/m. we obtain the maximum 

likelihood estimator Zim = (C�Q;.ICo)-IC�Q;.lyo, whereas replacing in (2.10) ZIm with 

ZIm - WI and maximizing with respect to WI yields the maximum likelihood estimator 

WI = _(C�n;.l Co)-lC�n;.l (Yo-CoZIm) = Zim -Zlm. Given that (2.10) and (3.2) coincide, 

maximizing also (3.2) with respect to WI yields the same estimator WI, and the estimator 

WI I of Corollary 1 becomes 

, (X"'n-' X" )- ' X" 'n-' J [ '
I - XIWI ] 

wll ::::;: II ,, ·  /I • 11 ,, 1/ =/1 . 
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The estimator WIJ in Theorem 2 and Corollary 1 was obtained independently of the value 

of ZIm or, equivalently, WI, which was considered fixed. This means that w// minimizes the 

swn of squares (u· - XiIwll )'O;l(U" - Xi!w//), where u* and XiI are those of Corollary 

1 ,  with respect to WII for any fixed value of Zim or, equivalently, WI. Therefore, minimizing 

the sum of squares 

(Z - Xw)' [-A,IN-'J' J;!1�l J, [-A,IN_'[ (Z - Xw) (B.3) 

in two steps, first with respect to Wll, considering WI fixed, and then with respect to WI, is 

equivalent to minimizing it in one step with respect to both WI and WIl, or W = [w1,wIJl' . 
Finally, it is easy to verify that the estimator W that minimizes (B.3) is the GLS estimator 

of the model u = X*w + U, where u = JIIZ and Var(u) = 0-20". • 

Proof of Corolla.ry £: As stated in the text, for the stationary case, the proof is trivial. 

When the series is nonstationary, by Theorems 2 and 3 we can write 

ZIm - WI 
BmzIO + CmZlm + E[Zllm - AmZI I zllO - BmZIO - CmZImJ 
ZIJm - WH, 

where (WI' wII)' is the GLS estimator of (WI' wilY in the model 

o ] [ WI ] + J [ ZI ]  
XU W/1 JJ Z/J ' 

or, U = X·w + u. In the skipping approach, ZIm is estimated by GLS in the model 

Yo = Co ZIm + Vo (see Appendix A.l). By Theorems 2 and 3, ZIm in this model and 

(a) above coincide. Replacing ZIon by ZIm, and running the KF with initial conditions 

x(d + 1 [  d) = B. ZIO + C. 21m , E(d + 1 [ d) = =:. t(d + 1 [ d) =::, yields (b) .bove. 

Proof of Lemma 9: Suppose model (A.4) with Var(v*) = 0-2n. Let n = L L' be the 

Cholesky decomposition of n, with L lower triangular, and write 

x = [Xu 0 ] . 
o Xl ' X· = Ju X. 

The QR algorithm applied to L -1 [X*, Y*] yields an orthogonal matrix Q. such that 
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with R upper triangular. Partitioning R conforming to [wiT,w[J = w, and denoting by 

RI/ the upper triangular submatrix of R that corresponds to Wll in the partition, then 

it is straightforward to verify that minimizing the likelihood of Theorem 3 is the same as 

minimizing the nonlinear function 

where Q = [Q�, Q;J' and the partition is made conforming to R and 0 in !R', O'y. The de

terminantal correction is I R// 1 Jt.:T ,  where k is the dimension of the vector Z/m of missing 

values in Z/ and Z/ and Z/m were defined in Section 2.2. Since, under the assumptions of 

the lemma, I RI/ 1 remains constant as M -+ 00, 1 RI/ I � -+ 1. • 
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