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ABSTRACT 

This paper "tests" the performance of the approaches of Watson (1993), DeJong, Ingram 
and Whiteman (1996), Canova and De Nicolo (1995) and Ortega (1998) for evaluating stochastic 
dynamic general equilibrium models using Monte Carlo techniques. It asks: Do the different 
model evalua.tion methodologies effectively improve an informal approach as in the typical 
calibration exercise? Are they only valid under limited assumptions, for evaluating the fit over 
a particular set of statistics or a. particular model? 

The Monte Carlo experiments evaluate the ability of each methodology to accept a. model 
when it is equal to the actual DGP and to reject it when it is at odds with the actual DGP. 
In a. sense, we are treating each methodology as a. test for an economic model and compute its 
"size" and "power") respectively. We find that all four methodologies outperfrom the informal 
approach since they substantially reduce the risk of rejecting the true DGP and are able to 
discriminate more clearly between the DGP and models different to it. 





1 Introduction 

Stochastic dynamic general equilibrium (SDGE) models have become in recent years the central 
paradigm for the analysis of macroeconomic fluctuations. After the influential work of Brock 
and Mirman (1972), Lucas (1976), Sargent (1979), Lucas and Sargent (1981) and many others, 
economists started moving from using reduced form structural models to the use of stochastic 
dynamic general equilibrium models in order to formulate the economic questions of interest. 
As Gali (1995) puts it, though early applications of the latter to business cycle models (e.g., 
Kydland and Prescott (1982)) were generally restricted to model economies for which tech� 
nology shocks were the only sources of fiuctuations, and where built-in classical assumptions 
guaranteed the optimality of equilibrium alloca�ions, the flexibility of the SDGE paradigm has 
been illustrated in a number of recent papers which have developed model economies character­
ized by the presence of non-classical features (e.g., imperfect competition as in Rotemberg and 
Woodford (1991), Gali (1994) or Ubide (1995)) and/or alternative sources of fluctuations (e.g. 
shocks to government spending as in Christiano and Eichenbaum (1992) or Baxter and King 
(1993)). These efforts to enrich the basic framework have been conducted with the objective 
of improving its empirical relevance and performance. 

How to obtain and assess the quantitative implications of stochastic dynamic general equi­
librium models ga.ve rise to the development of the calibration methodology, which obtains 
quantitative predictions from a fully articulated, artificial model economy very often with the 
aim of comparing them to the particular set of observed stylized facts the model wanted to help 
explain. See Canova and Ortega (1996) for a detailed analysis of the calibration methodology. 
However, classical pieces in the calibration literature (e.g., Kydland and Prescott (1982) or 

(1991)) are typically silent on the metric one should use to evaluate the quality of the approx­
imation of the model to the actual data. The approach favored by most calibrators is to glare 
over the exact definition of the metric used and informally assess the properties of the model 
by simple comparison of selected statistics of data simulated from the model to those of actual 
data. 

Recent research in macroeconomics and time series econometrics has provided a number of 
alternative meth04ologies to formally evaluate the success of a. model in replicating the stylized 
facts it wanted to explain, and to compare the success of alternative model specifications. 
Examples are, among many others, Greg9ry and Smith (1991), Watson (1993), DeJong, Ingram 
and Whiteman (1996), Canova (1994, 1995), Canova and De Nicolo (1995), Diebold, Ohanian 
and Berkowitz (1995) and Ortega (1998). Each of these model evaluation procedures has been 
proposed. as an alternative to the common informal assessment of a SDGE model. However, 
it is a difficult task for the researcher to choose among these model evaluation methodologies. 
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Each of them summarizes the information given by the model in a different way, with a different 

set of statistics, and some of them base their assessment of the model on the distribution of 

different elements: Dejong, Ingram and Whiteman (1996) use the posterior distribution of 

the parameters as' well as that of the actual data statistics, Canova (1994, 1995) uses the 

distribution of the shocks impinging on the economy and of model parameters, Canova and 

de Nicolo (1995) use also the distribution of actual data statistics, Ortega (1998) uses the 

distribution of the spectral density matrix estimator, ... This diversity ma.kes it possible that 

alternative methodologies assess as very different the success of a model in reproducing the same 

stylized facts of the actual data. A comparison under uniform conditions of the performance 

of these new methodologies is called for. 

This paper "tests" the performance of a selection of these methodologies using Monte Carlo 

techniques. It evaluates the ability of each methodology to accept a model when it is equal to 

the actual DGP and to reject it when it is at odds with the actual DGP. In a sense, we are 

treating each methodology as a test for stochastic dynamic general equilibrium macroeconomic 

models and compute its "size" and "power", respectively. 

In the next section we describe the experimental design under which we will assess each 

methodology. We present the benchmark model we will ta.ke as the actual DGP in the Monte 

Carlo experiments as well as two alternative models. All of them are versions of the King, 

Plosser and Rebelo (1988) one-sector real business cycle model. Section 3 assesses both the 

benchmark and the two alternative models with respect to actual US data informally as it has 

been done in standard calibration exercises, i.e. based on a simple look at summary statistics 

from both actual and model data. We try to capture with a simple rule the overall measure of 

fit of a model under this "informal approach". 

How do the different evaluation methodologies suggest to improve the informal evaluation 

of a model? And, more importantly, do they effectively lead to more accurate model evaluation 

than the informal approach? Are they only valid under limited assumptions, for evaluating a 

particular set of statistics or a particular model? Sections 4 to 7 answer these questions for 

four different methodologies: Watson (1993), Dejong, Ingram and Whitemann (1996), Canova 

and De Nicolo (1995) and Ortega (1998). For each of them we answer the first question 

explaining briefly what do they exactly consist on and illustrating them with the assessment 

of the benchmark and alternative models with respect to actual US data. for 1964QI-1995Q3. 

The fit of the three models is similar under all methodologies. We also find that results are 

sensitive to whether model parameters are allowed to vary or not. 

The main contribution of this paper is the answer to the last two questions. For each of the 

four methodologies studied, as well as for the informal approach's rule, we conduct perform a. 

Monte Carlo experiment which "tests" their performance as model evaluation methodologies 
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under uniform conditions. 

We find that the rule we define for the informal approach risks of not accepting even the 

true DGP and, at best, is only able to reject those models that remarkably differ from the true 

DCP if the subjective degree of divergence between model and actual data the naive calibrator 

is willing to tolerate is not appropriately chosen. Watson's approach is found a reasonably 

accurate methodology. Using a rough measure (only exact for the spectral density distance 

approach of Ortega. (1998)) of the "size" and "power" of each methodology, Watson (1993). 

appears less accurate than Dejong, Ingram and W hiteman (1996) and Canova and De Nicolo 

(1995). Among these two approaches, the latter achieves a better "size" at the cost of a lower 

"power", which is still enough to correctly rank the models according to their discrepancy 

with the true DGP. The spectral density distance approach (i.e. that of Ortega (1998)) is the 

one which obtains the smaller size and the larger power against models very different to the 

D9P, but shows no power against real business cycle models similar to the DCP because they 

generate very similar spectral density matrices to the DGP ones at business cycle frequencies. 

We find that all four methodologies outperform the informal approach since they substantially 

reduce the risk of rejecting the true DCP and are able to discriminate more clearly between 

. the DCP and models different to it. Section 8 concludes. 

2 The experiment 

To compare different model evaluation methodologies under uniform conditions we design the 

following Monte Carlo experiment: at each replication, we simulate several times realizations 

for the shocks impinging on the SDGE model which we want to evaluate and we draw parameter 

vectors from their corresponding distribution if they are not fixed but stochastic, then compute 

the statistics of interest from the simulated series each time and assess the model by evaluating 

how close these statistics are to those generated with the actual DCP (which is known in the 

Monte Carlo experiment). Model statistics are simulated after generating DGP statistics so 

that the random numbers do not overlap. 

When model parameters are stochastic, the uncertainty the researcher associates to the 

parameters is included in the statistics of interest as in Dejong, Ingram and Whiteman (1996), 

Canova (1994)-(1995) and Canova and de Nicolo (1995) at the cost of a Monte Carlo error since 

parameters are drawn randomly from their distribution. When model parameters are fixed but 

the statistics are estimated for model series derived from a realization of the exogenous stochas­

tic disturbances (simulated from their corresponding distribution), we are introducing both a 

Monte Carlo error (in the simulation of the shock) and an estimation error with respect to 

using the theoretical statistics implied by the model. Standard calibration exercises typically 
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follow this approach and compute average model statistics across many simulations. The spec­

tral density distance approach of Ortega (1998) also simulates times series from the model and 

estimates their statistics. In all cases, errors are reduced if the fit is assessed averaging some­
how across many simulations of the model. Watson (1993) uses the theoretical values of model 

statistics with fixed parameters, in which case no repeated simulation of the model is required. 

When illustrating how each methodology works using actual US data, we will simulate 
1000 times the model economy (except for Watson's approach). But when coming to our 

Monte Carlo experiment for comparing evaluation methodologies, the cost of using such a large 
number of simulations to obtain a measure of fit of the model per replication is too highl, so 

we opt for running 100 simulations per replication. We replicate 100 times the experiment 

just described. Considering that at each replication we are computing 100 times the simulated 

statistics, 100 replications is not such a small number and increasing it would be unfeasible in 
terms of computer time for some of the methodologies compared. 

When the simulated model and the actual DGP are the same any model evaluation method­

ology should always accept the null hypothesis Ho: model = DGP, against HI: model #- DGP, 
except for a predetermined arbitrary a% of the times. The rejection frequency of Ho across 

Monte Carlo replications is the empirical "size" of the methodology. When the simulated model 
differs from the actual DGP then the methodology should reject such Ho in favor of HI in (100-

a)% of the replications. The actual percentage rejection of Ho now is the empirical "power" of 

the methodology. We would also like the methodologies to reject more those models which gen­

erate statistics that lay further away from those generated by the actual DGP, i.e. to provide 
an indication of how far a model is from the actual DGP with respect to alternative models. 

This point is particularly important for a researcher interested in discriminating between mo�­
els when none of them is likely to be exactly the actual DGP, which is very often the case for 
SDGE models. 

The first problem we have to solve is the selection of the actual DGP for the Monte Carlo 
experiments. We want a model which, on the one hand, highlights the usefulness of all the 
methodologies studied and, on the other hand, allows to derive easily alternative models that 
differ from it in different degrees so that we can measure how each methodology captures 

the degree of divergence between each alternative model and the actual DGP. Some of the 
methodologies we compare (Watson (1993), Dejong, Ingram and Whiteman (1996) and Canova 

(1994)-(1995)) are specific for assessing calibrated models, Canova (1994)-(1995), Canova and 

De Nicolo (1995), Dejong, Ingram and Whiteman (1996) and Ortega (1998) apply to simulated 

lit takes a Pentium around 8 hours to assess the fit of each of the three models we evaluate using the DeJong, 

Ingram and Whiteman (1996) methodology, not much less using Canova and De Nicolo (1995) methodology, 

and around 12 hours using the spectral density distance approach. 
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SDCE models and Ortega (1998) is constructed for assessing multivariate dynamic models 

whose solution has to be approximated. Hence, we select a calibrated SDCE model whose 

solution is not exact but approximated and which can generate simulated statistics of interest 

sufficiently different from each other when generated under alternative versions of the model. 

A very well known prototype of such model is the basic real business cycle model explained 

in detail in King, Plosser and Rebelo (KPR) (1988): the one-sector neoclassical model of capital 

accumulation where work effort is a choice variable and economic fluctuations are initiated by 

impulses to technology. Such model has the further advantage that some of the methodologies 

we compare in this paper have been applied to versions of this model so we can have in some 

cases direct means of comparison in the literature. 

Next we have to select with respect to which particular features of the data we want to 

assess the fit of the model. We choose to focus on few multivariate statistics: the relative 

standard deviation between per capita consumption (C) and output (Y) and the contempo­

raneous correlations between C and Y, hours (H) and output, and hours and average labor 

productivity (AP). When the model evaluation methodology is performed in the frequency 

domain the standard deviation is replaced. by the power spectrum and the correlation by the 

coherence at selected frequencies. The reason for selecting these multivariate relationships is 

that they include statistics which are typically successfully captured by the different versions 

of the model (corr(Y ,C)), some others which typically are not (corr(H,AP) is typically too high 

and std(C)fstd(Y) too low in the model with respect to the actual data) and some which vary 

a lot across model specifications (corr(Y,H)). 

The rest of this section presents briefly the model used as the actual DCP in the Monte Carlo 

experiments (Model 1) and its statistical implications and two versions of this model (Model 2 
and Model 3) which will be used to check the power of the various evaluation procedures. 

2.1 The models 

Model 1 has technology shocks as the only source of economic fluctuations, is the most com­

monly studied. one-country real business cycle model and has been used in the literature for 

illustrating some of the model evaluation methodologies we are comparing in this paper (Wat­

son (1993) and Dejong, Ingram and �hiteman (1996)). Model 2 includes government spending 

shocks. The addition of this further shock alters the dynamics while keeping similarities with 

the benchmark model. Model 3 allows for government spending shocks only and generates very 

different model dynamics. In what follows, we first present the model structure that encom­

passes Modell, 2 and 3 and its solution and then we specify the parameterization for each 

model as well as their implications for our multivariate statistics. 
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The economy is populated by a large number of identical infinitely· lived agents. All variables 

are expressed in per capita terms. Preferences of the representative agent are given by: 

� fJ' u '" Eo E --C:-'v(L,) 
1=01- u 

(1) 

where Cc is private consumption of the single good by the representative agent and L, is 

leisure, fJ is the discount factor and q the coefficient of relative risk aversion. Leisure choices 

are constrained by: 

(2) 

where the total endowment of time is normalized to 1 and He represents the proportion of time 

devoted to market activities. 

The single final good is produced with a Cobb-Douglas technology with constant returns to 

scale: 

(3) 

where Kt is the ca.pital input, Q is the share of labor in GOP, and Xc is labor-augmenting 

Harrod-neutral technological progress with deterministic growth rate equal to Oz:, i.e. Xt = 
Oz:Xt_t with (}z: � 1. Xt represents permanent technical change while temporary changes in 

technolo.gy are represented by variation in total factor productivity according to 

where EAt'" N(O, ui). 

Capital goods are accumulated according to: 

(4) 

There is an output tax whose revenues are used to finance an exogenous path of per capita 

government expenditures Gt and lump sum transfers T Rt. These expenditures are assumed not 

to affect the economy's production possibilities nor the representative agent's marginal utility. 

The government budget constraint is 

GI +TR,=.Yj (5) 

where G, follows the stochastic process: 

where fGI '" N(O,ub). Innovations to total factor productivity, fAt> and to government spend­

ing, EGt, are assumed to be independently distributed. 
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The economy· wide resource constraint is given by: 

(6) 

All variables except hours and leisure are assumed to grow in the steady state at the same 

rate as the technological progress, 8%·1, so that business cycle dynamics are separated from 

growth by associating the latter to that deterministic trend common to all drifting variables. 

Technology, preferences and government behavior are restricted following King, Plosser and 

Rebelo (1990) so that the suboptimal (because of distorting taxes) competitive equilibrium 

solution is compatible with steady state growth. The equilibrium solution is characterized by the 

optimality conditions for the individual's maximization problem together with the government 

constraint. 

To characterize the local dynamics around the steady state path, i.e. what happens to the 

economy when it faces alternative sequences of exogenous shocks, we follow KPR (1990) and 

express the transformed optimality conditions in terms of detrended variables: we take ratios 

of the original per capita drifting variables with respect to the labor augmenting technological 

progress so that the economy is transformed from steady state growth to stationarity. The 

modified optimality conditions are then approximated with a log. linear expansion around the 

steady state. 

Time series for consumption (C), output (Y), hours (H) and average labor productivity 

(AP) are generated from the approximate optimality conditions, once the free parameters and 

time series for the innovations to exogenous processes of the model are given. The statistics 

of interest (standard deviations and correlations or spectra and coherences) of simulated data 

are computed after extracting from the raw simulated time series a linear trend, in the same 

fashion as actual data statistics. 

Table 1 shows the parameter values for each of the three model specifications we consider. 

They only differ in the parameterization of the exogenous processes so that Model � (the actual 

DGP in the Monte Carlo experiments) has only technology shocks, Model 2 has both technology 

and government spending shocks and Model 3 has only shocks to the exogenous government 

spending process. 

Parameter values are taken not only from KPR (1988) but also from literature related. We 

have estimated 8% as KPR (1988) do, one plus the average quarterly ra.te of growth of real per 

capita output, but with an updated data set (i964QI-1995Q3 instead of 1948QI-1986Q4). <>, 
6K and {J are taken from KPR (1988). 17=2 is the standard value calibrated models use for 

multiplicatively separable momentary utility. We impose government budget balance in the 

steady state by asswning a constant tax rate (.) equal to a constant government spending 

output share (5g) and zero transfers. We have taken a value for T and sg which lays in between 
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the one suggested by KPR (1988) of 30% and that used by Baxter and King (1993) of 20% 

for the case of steady state balanced budget (Aiyagari, Christiano and Eichenbaum (1992) 

suggest a government spending share of 17.7%). PA and eTA are the standard values used in 

the literature for the persistence of technology disturbances and the standard deviation of 

technology innovations, respectively. The persistence of government spending process (PG) and 

the standard deviation of its innovations (O'G) are from Aiyagari, Christiano and Eichenbaum 

(1992). 

The first three columns of Table 2 show the statistics of interest for each of the three models 

(see Stadler (1994) for a good summary of the basic implications of real business cycle models). 

Positive temporary technology shocks increase output and hence consumption, generating 

positive and large consumption-output contemporaneous correlation in Models 1 and 2. Con­

sumption increases to a lesser extent since agents seek to smooth it over time (50 that the 

relative standard deviation of consumption with respect to output is lesser than one in all 

three models) and this increases the capital stock. Temporary productivity shocks shift the 

production function and hence the labor demand curve. The marginal product of labor is also 

increased, but since the utility function is specified so that the income and substitution effects 

of a real wage change cancel each other, the labor supply curve does not shift. Then, under 

Modell and 2 the shift in labor demand increases real wages2 and the hours worked. Because 

of the intertemporal substitution of leisure these models generate high positive hours-output 

contemporaneous correlation and significantly positive hours-average product of labor one (this 

last observation is referred to in the literature as the "productivity puzzle"). 

Government spending does not enter directly the agent's utility function (nor the production 

function) and hence shocks to government expenditure do not have a substitution effect but only 

a wealth effect. That is the reason why when we added them to technology shocks as the sources 

of business cycle 6uctuations (Model 2) the statistics displayed in Table 2 do not change that 

much (correlations are slightly reduced). Things change, though, when government spending 

shocks are the only source of 6uctuations (Model 3). The rise in government spending financed 

by taxes results in a negative wealth effect that shifts the labor supply curve while the labor 

demand one remains unchanged. This produces an increase in h01:lrs worked (contemporaneous 

correlation with output of 1) and a decrease in real wages (contemporaneous hours-average labor 

productivity of -I). Government consumption crowds out consumption through this negative 

wealth effect, resulting in a contemporaneous consumption-output correlation of-l. 

2The Cobb-Douglas specification of the production function implies that the marginal product of labor (real 

wage in competitive equilibrium) will move quite closely with the average product of labor, or productivity. 

Therefore, the increase in real wages is translated into an increase in AP. 
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3 An informal evaluation 

Table 2 shows also the statistics of the actual data. Data is from OECD Quarterly National 
Accounts, in constant 1985 US$Bln, and from National Government OECD Series (Department 
of Labor) in thousands of people, all seasonally adjusted. The sample period is 1964QI-1995Q3. 

Y is GNP, C is personal final consumption expenditure, H is total civilian employment times 
average weekly hours of all private workers on nonfarm payrolls. Variables are transformed 
into per capita terms dividing them by civilian noninstitutional population of 16 and more 
years old excluding armed forces (source: Department of Labor, National Government OECD 
Series). AP is Y /H. To maintain a close relationship between the model and the actual data 
we linearly detrend the logs of all the series but for H (and AP is detrended by substracting 
10g(H) from the detrended 10g(Y)) before computing the four statistics we are interested in. 
The statistics differ slightly from those reported in other works for two reasons: because we 
have used an updated data set and also because the detrending method chosen has an impact 
on these statistics (see Canova (1997». 

Informal evaluation of how the three models reproduce the relationships between output, 
consumption, hours and average productivity observed for US data would consist on casual 
inspection of columns 1, 2 or 3 of Table 2 compared to the last column. The conclusion would 
be that Modell and 2 are similarly successful in reproducing the observed facts although they 
predict too little consumption variability and too much hours-productivity contemporaneous 
correlation. Instead, Model 3 would be rejected as a good explanation of the observed facts 
since it totally misses the positive high consumption-output correlation and predicts an hours­
productivity correlation of -1. 

Very often SanE models are judged successful or rejecte{ according to similar informal 
criteria. An informal evaluator would consider the model more successful than others the 
larger the number of model statistics which are similar to the actual data ones and the smaller 
the divergence between actual and simulated statistics. To put this "formally" we arbitrarily 
choose the following rule: reject a model if at least 3 out of the 4 statistics we are interested 
in explaining differ in absolute value from the observed ones by more than x%. We perform 
the Monte Carlo experiment outlined in Section 2 on this rule to evaluate how reliable such 
an informal criterium is to accept or reject a model. We compute the rejection frequencies 
of the null hypothesis Ho: Model i = DGP, against HI: Model i '# DGP, for i:=l, 2 and 3. 

At each Monte Carlo replication, we simulate 100 times time series of the usual length (127 

observations as we had for actual US data) from a model and use the informal evaluation's rule 
to compare the average (across simulations) of the 4 statistics we are interested in to the DGP 
statistics. Since Modell is taken as the DGP, DGP statistics are the theoretical statistics of 
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Modell (calculated using simulated series of 10,000 observations), which are kept fixed across 

Monte Carlo replications and across experiments. U the null hypothesis Ho: Modell = DGP is 

rejected 0% of the times and the rejection frequencies of Ho: Model 2 = DGP and of Ho: Model 

3 = DGP are 100%, the informal approach would be a perfect model evaluation methodology 

(0% size and 100% power) since it would always be able to recognise which are the correct and 

incorrect models. Obviously, these rejection frequencies will depend on the x% the informal 

evaluator is willing to consider as a significant divergence between actual and model statistics. 

Over 100 replications, we find that Modell iff rejected 0% of the times when the rule is: 

reject if the divergence exceeds 50% of the absolute value of the actual data statistic for 3 or 

more out of 4 statistics. Such a "permissive" rule leads to reject Ho: Model 2 = DGP also 0% 

of the times while rejects Ho: Model 3 = DGP 100% of the times. Being so permissive, the 

informal approach will always consider as equal to the DGP models which are not equal but 

similar to the DGP (such as Model 2). However, reducing the accepted divergence to 10% of 

the value of the actual data statistics, the rule becomes "too strict", in the sense that although 

it succeeds to reject models different to the DGP (Model 2 and Model 3) 100% of the times, it 

also rejects the true model (Modell) 100% of the times. This is because with short time series 

and using the average statistics (across simulations) induces a large enough error which makes 

some simulated statistics differ in more than 10% from the true ones 3. 

Summarizing, the rule we have defined to capture the typical informal evaluation approach 

risks of not accepting even the true DGP and, at best, is only able to reject those models that 

'The following table shows the average across Monte Carlo replications of the divergence between model 

simulated statistics (averages across 100 simulations of the model) and actual DGP statistics (theoretical statis­

tics of Modell), measured in percentage of the values of actual DGP stati!tics. We are actually computing for 
each statistic the x% divergence which, on average, should be allowed by the informal approach rule in order 
to accept the Ho: Model i = DGP. The results of the first column indicate that the divergence between the 

values of the theoretical statistics implied by Model 1 (actual DGP) and those computed averaging statistics 

f h ted also f Mod I 1 . large. rom s ort selles enera >om • 18 very 
Statistic Modell Model 2 Model 3 

,td(C)/.td(Y) 28% 21% 14% 
corr(C,Y) 4% 5% 211% 

corr(H,Y) 57% 56% 92% 
corr(R,AP) 423% 398% 135% 

An mformal evaluator With a rule not acceptmg less than 28% divergence between model and actual data 

statistics for 3 or more out of 4 cases would not be able to accept the true 
'
DG P (i.e. the decision rule would 

have a huge "size"). Whereas one would need to accept a percentage divergence as high as 92% for 3 out of 4 
statistics to accept models having very different equilibrium dynamics than the true DGP such as Model 3. It is 
important to note, however, that these percentages indicate also a high variability of the correlations involving 

labor series, especially corr(H,AP), and that another arbitrary model evaluation rule which takes into account 
the variance of the statistics would have a more acceptable performance. 
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remarkably differ from the true DGP if the subjective degree of divergence between model and 

actual data the informal evaluator is willing to tolerate is not appropriately chosen. The results 

of this experiment strongly advices SDGE modellers not to rely on averaging, across several 

simulations of the model, the values of the statistics of short simulated time series, as it is often 

found in the literature of calibrated models. 

How do more formal evaluation methodologies suggest to improve the informal evaluation? 

And, more importantly, do they effectively lead to more accurate model evaluation than the 

informal approach? Are they only valid under limited assumptions, for evaluating a particular 

set of statistics or a particular model? The following sections answer these questions in three 

steps. First, we describe briefly each methodology. Second, we illustrate how they work by 

evaluating our three models with respect to actual US data. Finally, we check their performance 

as model evaluation methodologies with the Monte Carlo experiment described, in the same 

fashion as we have done to the informal approach. 

4 Watson's measures of fit 

Watson (1993) suggests a way to evaluate calibrated models by asking how much error should be 

added to a. model generated series, x; = g(zlI'}') (where'}' are the parameters of the model and 

Zj are exogenous stochastic disturbances) so that its spectral density equals the spectral density 

of the corresponding actual data series !lj. The error u; = !It - x; includes both model error 

(Ut = YI - XI) and the error of approximating with x; the exact model solution Xt = f(z" "1) 
since it is most of the times not obtainable analytically. The choice of the spectral density 

function of !It as the set of stylized facts of the da.ta to be matched by the model has clear 

advantage over selecting relative standard deviations and correlations when we are interested 

in evaluating the business cycle properties of a model, because we can focus easily on only those 

frequencies associated with business cycle fluctuations. 

Watson provides an Rl-type measure of fit between the model and the data based on -the 

ratio of the spectral density of the error A ... (w) to that of the actual data AlI(w) for a particular 

frequency w or for a frequency range [Wl,WlJ. The size of the ratio is evaluated informally (i.e. 

whether it is greater than one, between zero and one or close to zero). This ratio is a lower 

bound: when it is large the model poorly fits the data. but when it is small it does not necessarily 

follow that the model is appropriate. No�e that in this approach, ""( and Zt are fixed, and A%. 
and All are assumed to be measured without error. 

Watson's measures of fit (for a single frequency or for a frequency range) are univariate 

but can be easily extended to a multivariate evaluation of a model in the same fashion as in 

Canova and Ortega (1996), so that we can evaluate how well our three models reproduce the 
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multivariate relationships between Y, C, H and AP observed in US data for 1964QI-1995Q3. 

Table 3 reports the results of such evaluation. All statistics reported in Table 3 are averages 

across business cycle frequencies, Le. those associated to cycles 2 to 8 years long. 

We have estimated the spectral density matrix for the linearly detrended 4-variable actual 

data set as well as that implied by each model". Spectral density matrices are estimated 

using a Bartlett window (see Priestley (1981), ch.9.5) with a sample size-dependent bandwidth 

parameter M = 1 + 3 X Tl/3 so that we capture the optimal rate of convergence of the Bartlett 

window of O(T1/l) (see Andrews (1991)). Figures 1 and 2 display spectra and coherences 

for actual US data and for the model series generated under Modell, 2 and 3, and for all 

frequencies. 

We compute Watson's measure of fit for each of our four series 

R - I.ez A.,(w)jjdw j - 1 2 3 4 
J - J...,ezAl'(wbdw I - , I , 

where Ay{w)jj and A ... (w)jj are the actual data and the error spectral densities, respectively, for 

series j and where the W frequencies included in the Z interval are business cycle frequencies. Rj 
is calculated under two different identification schemes: one which minimizes the trace of At<­
with equal weight to its 4 components, and a second one which minimizes the spectral density of 

the error associated to output (when there is only one source of fluctuations: technology shocks 

in Modell or government expenditure shocks in Model 3) or to output and hours (when there 

are two types of shocks in the model, i.e. Model 2). The measures of fit for the consumption­

output, hours-output and hours-average product of labor coherences (i.e. the frequency domain 

equivalents to corr(C,Y), corr(H,Y) and corr(H,AP), respectively) are calculated as the ratio 

between the average coherence of model series across Be frequencies and that of actual data 

coherence, since it is hard to interpret what the coherence between approximation errors means. 

Instead, our measure is expected to be closer to I when the observed coherence is explained by 

the model. Note that, by construction, such a statistics it is not affected by the identification 

scheme chosen. 

Table 3 shows, consistently with the informal inspection of the relative standard deviation 

and correlations of Table 2, that the fit of Models I and 2 is very similar and much more satisfac­

tory than that of Model 3 (only government spending shocks). It changes across identification 

4Instead of deriving the theoretical spectral density of each model as in Watson (1993), we have estimated 
it for the 4 variables simulated. using the parameter values of Table 1 and simulating the model only once. We 
have simulated time series 1000 observations long so that their estimated model spectra are sufficiently dose 
to their theo�tical values. Sensitivity analysis has been performed on the effect of the model series length, 
i.e. all the statistics in Table 3 have been computed for the case in which model spectral density is estimated 
from series 500, 200 and 100 observations long. The main result is that the measures of fit statistics increase in 
general the sborter the model series length, indicating a worse fit. 
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schemes and seems to be better when equal weights are given to all 4 approximation errors. The 
advantage of Watson '5 approach over the informal evaluation one is that it allows us to know 
the percentage of the spectral density of each actual series that the model is missing, which 
ranges from 2.7% for Y to 31% for AP in Model l (2.6% and 28% in Model 2) but from 91% 

for Y to 105% for C in Model 3. The coherence between C and Y is particularly well captured 
by Models 1 and 2 (only 5% and 2% higher than in actual US data respectively) and not that 
bad by Model 3 (27% higher in the model), while the hours-AP coherence is particularly badly 
captured in all three models. In general, Watson's measures of fit lead to prefer Model 2 to 
Modell (they have lower values) and to reject clearly Model 3 as possible explanations of the 
business cycle relationships between Y, C, H and AP observed in the US in 1964QI-1995Q3. 

4.1 Evaluating Watson's approach 

Next we face Watson's methodology with a "test" similar to the one faced by the decision 
rule we constructed to approximate the informal evaluation approach. We keep the theoretical 
spectral density matrix of the model fixed across replications but estimate the actual data 
spectral density matrix at each replication of the Monte Carlo experiment. Actual data being 
generated from the DGP (Modell), we simulate once series of a length usually found in practice 
(we actually take 127 observations as we had for the US data) using the parameter values of 
the first column in Table 1 and estimate with a Bartlett window their spectral density matrix. 
Then, the 7 measures of fit corresponding to BC frequencies are calculated minimizing the 
spectral density matrix of the approximation errors according to one of the two identification 
schemes explained above. Table 4 summarizes the empirical distribution of the 7 measures of fit 
across the 1000 replications.s for each model being evaluated and for each identification scheme, 
with the mean, the standard deviation, and the 5%, 50% and 95% percentiles. 

The median measure of fit across Monte Carlo replications indicates an error of 0.7% 

(cohe(H,Y)) to 7.4% (sp(C)) fo, Model I, when 0% should be expected. This can be con· 
sidered the "size" of Watson's model evaluation methodology according to our Monte Carlo 
experiment. As we pointed out when evaluating the naive calibrator's rule, apart from the 
obvious Monte Carlo error, this error may come mainly from the fact that we are comparing 
model spectra estimated for short time series simulated from the DGP to the theoretical model 
spectra. However, the divergence using Watson's approach is considerably smaller than that 

5We choose 1000 replications for two reasons: first, because increasing the number of replications would 

have had a big cost in terms of computing time since we are computing the Monti! Carlo distribution of the 

Watson measure of fit twice (one per identification scheme) for each of our three models and, second, because 

there cannot be less replications if we want the results to be comparable to other methodologies (for which we 

perform only 100 replications but statistics are simulated 100 times per replication). 
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we observed for the informal approach6. 
When assessing Model 2, the median measure of fit ranges from 2% (cohe(H,Y)) to 12% 

(cohe(H,AP)). This can be considered a measure of the "power" of Watson's approach versus 
models which are known to be close to the actual DGP. Such values indicate a worse fit (are 
further away from 0% for the spectra and from 100% for the coherences) .for Model 2 than for 
Model l ,  as we would expect. In both cases, the measures of fit increase when the identification 
scheme weights differently the errors (we obtain a range of median measures of fit of 0.7% to 
38% for Model 1 and of 2% to 69% for Model 2). Although the "size" gets worse, the "power" 
to discriminate between the actual DGP and other models gets better. The bottom part of 
Table 4 shows a high "power" against models very different to the DGP. The median measures 
of fit indicate an error ranging from 16% to more than 100% under both identification schemes. 

For comparison purposes with other evaluation criteria, we construct the following summary 
measure of the overall goodness of fit: we average across the 7 measures of fit (4 for power 
spectra and 3 for coherences at business cycle frequencies) the difference between their median 
value across Monte Carlo replications and that expected if the model was the true DGP (0% 
in the first 4 cases and 100% in the last 3). The resulting values are: 

Identification scheme: Model l Model 2 Model 3 
Equal weights 3.87% 6.13% 70.29% 
Different weights 16.97% 26.57% 73.71% 

The first column can be associated to the "size" of the Watson (1993) evaluation method­
ology for calibrated models, whereas the 2nd and 3rd are measures of its "power�. The table 
shows that, once the statistics of interest are selected, Watson's

·approach is substantially more 
accurate (better "size" and not much worse "power") when equal weights are given to all errors. 

To summarize, extending Watson ( 1993) to evaluate calibrated models along multivariate 

6We have performed a further sensitivity analysis on this issue and computed Table 4 for the case in which 
model spectral density matrices are also estimated for short time series simulated from the corresponding model 
instead of taking their theoretical values. That is, instead of simulating model series of 1000 observations, we 
have estimated the spectral density matrix from model series of length 500, 200 and 100. 

For model series of 100 observations, the range ofthe median measure of fit rises to 4% to 21% when testing 
Ho: Model l = DGP (the range is equal under both identification schemes but most values are lower when 
equal weights are taken) but is 4.3% to 8% (8% to 54% when weighting only Y and H approximation errors) 
when testing Ho: Model 2 = DGP. The error induced using statistics estimated for short simulated time series 
leads to prefer Model 2 to the true DGP which is Model l. However, the median mesures of fit when testing 
Ho: Model 3 = DGP for simulated series of 100 observations (ranging from 17% to 104%, or to 111% when 
weighting only Y errors) lead to reject Model 3 as clearly as when using the theoretical model spectral density 
matrix. 
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dimensions is a reasonably accurate evaluation methodology. Not only the error associated by 
the Watson's measures of fit to testing the correct model is reasonable (small "size"), but also 

these measures are able to evaluate "how different" from the DG P alternative models are: the 

"power" is higher the more different the spectral density of the model is from that estimated 

for the actual data (in Figure 2 the spectral density matrix of Model 3 is more different from 

Model l than that of Model 2). Using a standard 5% significance level, Watson's approach 

(with an identification scheme of equal weights) would successfully accept only the true model 
(Model l) .  It would also indicate that the error that should be added to Model 2 to match the 

DGP is less than a 10th of what Model 3 would need. 

5 DeJong, Ingram and Whiteman's approach 

Dejong, Ingram and Whiteman (DIW) (1996) propose a bayesian evaluation methodology 

for calibrated models which takes into account the uncertainty present in the statistics of both 

actual and simulated data to measure the fit of the model to the data. They suggest representing 
the actual data with a VAR and computing the distribution of the statistics of interest by 

drawing VAR parameters from their posterior distribution. In constructing distributions of 

simulated model statistics, DIW consider only parameter uncertainty, and not the stochastic 

nature of the exogenous shocks as Canova and De Nicolo (1995). They use subjectively spk:ified 
prior distributions (generally normal) for the parameters of the model whose location is set at 

the value typically calibrated in the literature while the dispersion is free. By enabling the 

specification of a sequence of increasingly diffuse priors over the parameter vector, the authors 

illustrate whether the uncertainty in the model's parameters can mitigate differences between 

the model and the actual data, so that the measure of dispersion can be used in order to 
(informally) minimize the distance between actual and simulated distributions of the statistics 

of interest. 

DIW suggest two statistics aimed at synthetically measuring the degree of overlap among 

actual and model statistics distributions. The first one is the Confidence Interval Criterion 

(CIC), which is defined as 

CIC,; = -
1

-
i
- 1' 

P;(s,)ds, (7) 
- a • 

where s;, i = 1, . . . , n, are the statistics of interest, a = � and 'b = 1 - a are the quantiles of 

D(s;}, the distribution of the statistic in the actual data, Pi(Si) is the distribution of model 
statistic where j is the diffusion index of the prior on the parameter vector and 1 - cc = 

I: D(si)ds;. For CIC close to l�O the two distributions overlap substantially. If GIG > 1, 

D(s;) is diffuse relative to Pi(S;). i.e, the data is found to be relatively uninformative regarding 
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Sj. For CIC close to Zero, the fit of the model is poor, either because the overlap is small or 
because Pj is very diffuse. The second statistics DIW propose helps distinguishing among these 
two possible interpretations. The Difference of Means statistic is analogous to a t·statistic for 
the mean of Pj(Sj) in the D(sj) distribution, i.e. 

d. _ EPj(s;) - ED(s;) 
J' - vvarD(s;) 

(8) 

Large values of dj; indicate that the location of Pj(s;) is quite different from the location of 

D(s;). 
By providing a distribution rather than a single number, DIW methodology gives a more 

comprehensive characterization of actual and �odel statistics relative to the informal approach 
and also to Watson's, although these distributions rely on the subjective priors given by the 
researcher. The two measures of fit (CIC and d) are complementary and give a good summary 
of the fit of the model, which allows for comparison across models, e.g. the smaller is the 
average d across statistics of interest the better the fit. 

The results of applying DIW methodology to assess the fit of our three models with respect 
to actual US data are summarized in Table 6. Prior distributions for parameters used for 
each model are shown in Table 5. DeJong, Ingram and Whiteman (1996) illustrate their 
methodology with the simplest version of the King, Plosser and Rebelo (1988) model, so our 
choice for the prior distributions is similar to theirs, although some parameters (especially 
the ones rela.ted to the exogenous government spending process) have been chosen using as 
reference Baxter and King ( 1993) and Aiyagari, Christiano and Eichenbaum (1992). We take 
1000 draws of the parameter vector and compute at each draw the statistics std(C)fstd(Y), 
corr(C,Y), corr(H,Y) and corr(H,AP) implied by the mode17. For each model we characterize 
the statistics' distributions with the 5%, 50%, 95% percentiles, the mean and the standard 
deviation. Actual data statistics are computed fitting a VAR to linearly detrended logs of US 

data for 1964Ql·1995Q3 and randomizing its coefficients so that the statistics are computed 
for 1000 draws from the VAR coefficients distributions. The first lines in Table 6 summarize 
the distribution of actual data statistics. 

We assess the fit of each model computing both the percentage of the simulated statistics 
laying between the 5% and 95% percentiles of the actual statistics distribution (i.e. CIC 
measure with 0: = 10%) and the stand�ized differences of means (d·statistic). The CIC and 
difference of means measures suggest a. reasonable fit for Models I and 2 but, contrary to 

7Instead of taking the theorl!:tical values of the statistics, and for consistency with the statistical treatment of 

the actual data, we simulate time series for Y, C, H and AP 10,000 observations long and compute the statistics 
for their linearly detrended logs, so that these statistics are sufficiently dose to their theoretical values. 
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Watson's measure of fit, somehow better for the former with a higher overlap of distributions 

(average CIC of 0.87 versus 0.83 in Model 2) and with simulated statistics centered closer to 

actual ones in the case of Model 1 (smaller d-statistics). Model l statistics are less volatile 

than those observed. for US data, while statistics from Model 2 and 3 are more volatile .  This 

suggests that the standard deviation of government spending shocks has been left too volatile. 

Probably, reducing the standard deviation of its distribution would improve the fit of Model 

2. The CIC and d-statistic for Model 3 clearly indicate a very bad fit. Dejong, Ingram and 

Whiteman (1996) obtain a worse fit than here for Model l.  There are two main reasons for this 

divergence. First, they evaluate 10 statistics of which std(C}/std(Y) and corr(C, Y) are the ones 

better captured by the modeL Second, their actual data statistics differ from ours (different 

time period -1959Ql to 1992Q2- and different detrending method --extracting a common time 

trend from consumption, investment and output-) especially those related to H. They measure 

H using average weekly hours of all workers instead of using per capita total hours (their 

measure of hours times employment divided by total population) as we do, following King, 

Plosser and Rebelo (1988)'. 

5.1 Evaluating Dejong, Ingram and Whiteman's approach 

To evaluate the DIW methodology we conduct the same Monte Carlo experiments we have 

used before and test the following three hypotheses Ho: Model l = DGP, Ho: Model 2 = DGP 

and Ho: Model 3 = DGP. At each replication we generate a distribution of model statistics 

using 100 draws from the corresponding prior distributions for the parameters, simulating at 

each draw long time series for Y, C, H and AP and computing the statistics of their linearly 

$This is an important difference, since we are including the evolution of both employment and hours in 

our measure of H whereas they only include that of hours worked by employees. A well known fact of the 

US economy is that about two thirds of the variation in total hours worked appears to be due to movements 

into and out of employment, while the remainder is due to adjustments in hours worked by employees. This 

fact has inspired a large number of real business cycle models which include nonconvexities in labor supply so 
that changes in total hours are brought by changing employment only (see Hansen (1985)) or changing both 
employment and hours per worker (see Cho and Cooley (1994)). The contemporaneous correlation between 

total hours and output reported in the literature for the US varies depending on the time period considered 

and tbe detrending method: using tbe Hodrick-Prescott filter Kydland and Prescott (1982) report a corr(H,Y) 
of 0.85, Hansen (1985) of 0.76, Cbo and Cooley (1995) of 0.87 while King, Plosser and Rebelo (1988) report 

a contemporaneous corr(H,Y) of 0.07 extracting a common trend from output, consumption and investment. 
However, King, Plosser and Rebelo (1988) argue that this correlation rises considerably by splitting the sample 

into subperiods: they report that it averages 0.77 across subsamples. They interpret this sensitivity to the 

sample period as a suggestion that their detrending method may not have removed a low frequency component 

in output. 
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detrended logs. The distribution of actual DGP statistics is constructed siinilarly drawing 
parameter values from Modell priors but it is kept fixed across replications and for testing all 
three hypothesis. 

Table 7 displays the median and standard deviation (across 100 Monte Carlo replications) of 
the 5%, 50% and 95% percentiles of the simulated distributions and, more importantly for eval­
uating the DIW methodology, medians and standard deviations of CIC (including the average 
CIC across statistics), d-statistic and the standarized difference of medians. For completeness, 
we have also computed the percentage of replications for which the difference of the medians 
exceeds 2 standard deviations of the actual statistic. 

The overlap of DGP and Modell distributions is almost perfect (the median CIC across 
Monte Carlo replications is almost 1 in all 4 cases) and quite good but worse for Model 2, as 
expected. The d-statistic and the standarized difference of medians suggest that the worse fit of 
Model 2 is due to the fact that the mean and median of the DGP and model distributions are 
different, although the degree of overlap is high. This is especially the case for the corr(H,AP), 
as shown by the rejection frequency for the difference of medians (40% in Model 2 versus 1% 

in Modell). That rejection frequency is 100% for all statistics but for std(C)/std(Y) under 
Ho: Model 3 = DGP. The methodology also reveals that among the four .statistics, it is the 
relative standard deviation of C to Y the one that differs less between Models 3 and 1, both in 
the degree of overlap and in the location of the distributions. But the dh:ergence is still clearly 
high. 

Repeating what we have done with Watson's methodology, we construct a summary measure 
of the degree of rejection of a particular hypothesis, a measure which roughly captures the 
"size" and the "power" of the DIW methodology. For this purpose we choose the average of 
the differences between the four median CICs and their corresponding expected value if the 
model was the true DGP, i.e. equal to 1. It does not make much sense to include the difference 
between the d-statistic or standarized difference of medians and their expected values since they 
are measured in standard deviations of the actual mean or median, and hence not comparable. 
The values of the summary measure are: 

Model I Model 2 Model 3 

1.25% 9% 90.5% 

According to this ad-hoc summary measure, the DIW methodology seems to be much more 
accurate as a model evaluation methodology than Watson's, showing a. smaller "size" (1.25%) 

and higher "power" especially against Model 3. 
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6 Canova and De Nicolo approach 

Canova and De Nicolo (1995) extend Canova (1994)-{1995) model evaluation methodology to 

a multivariate framework and compute measures of overlap of actual and model statistics in 

the same spirit as DIW but with some differences9. 

Canova (1994)-(1995) takes the actual data statistics as fixed numbers and uses the uncer­

tainty of simulated data. to provide a measure of fit for the model. In addition to allowing the 

realization of the exogenous disturbance to vary, he also allows for parameter variability in mea­

suring the dispersion of simulated statistics. As in DIW, parameters are considered. uncertain 

not so much because of sample variability, but because there are many estimates of the same 

parameter obtained. in the literature since estimation techniques, samples and frequency of the 

data tend to differ. Canova proposes to calibrate the parameter vector to an interval selected 

on the basis of these estimates, rather than to a particular value or than centering an arbitrarily 

diffuse prior normal to a particular value, as in DIW. Once the empirical distribution of the 

statistics of interest is constructed (simulating the model repeatedly by drawing parameter vec­

tors from the postulated distribution and by drawing realizations of the exogenous stochastic 

process from some given distribution), one can then compute either the size of calibration tests 

(using the actual statistic as a critical value for the simulated distribution) or the percentiles 

where the actual statistic lies. 

Canova and De Nicolo (CDN) (1995) consider as DIW the uncertainty present in the statis­

tics of both actual and model simulated data to measure the fit of the model to the data. CON 

use a parametric bootstrap algorithm to construct distributions for the statistics of the actual 

data. In constructing distributions of simulated statistics, CON take into account both the 

uncertainty in exogenous processes and parameters following Canova (1994)-(1995), while DIW 

only consider parameter uncertainty. To assess the degree of overlap of the two distributions, 

CON choose a particular contour pr!>bability for one of the two distributions and ask how much 

of the other distribution is inside the contour. In other words, the fit of the model is examined 

very much in the style of the Monte Carlo literature: a good fit is indicated by a high proba­

bility covering of the two regions. To describe the features of the two distributions, they also 

repeat the exercise varying the chosen contour probability, say, from 50% to 75%, 90%, 95% and 

· 99%. As in the OIW approach, actual data and simulated data are used symmetrically, in the 

sense that in the CON approach one can either ask whether the actual data could be generated 

by the model, or viceversa, whether simulated data are consistent with the distribution of the 

observed sample. As the OIW approach, CON provides a. more comprehensive evaluation of a 

calibrated model than Watson's or than the informal approach. 

'See Canova and Ortega (1996) for a detailed explanation and comparison of these approaches. 
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We have evaluated our three models with respect to US data using the CDN approach in 

Tables 9 and 10. For consistency with the analysis of other methodologies, we have computed 

separately the distributions of each statistic as in Canova (1994)-(1995) but considered distri­

butions of both actual and model simulated statistics as in Canova and De Nicolo (1995). The 

distribution of actual data statistics has been constructed bootstrapping 1000 times the VAR 

fitted for the same US data used in previous sections (1964Ql-1995Q3). Statistics describing 

the bootstrap distribution of actual moments (5%, 50%, and 95% percentiles) are displayed in 

the top part of Table 9. The distribution is similar to that obtained using DIW (see Table 

6) although std(C)fstd(Y) is smaller and less volatile while corr(H,AP) is higher and more 

volatile. For each of the three models, we have simulated time series of the same sample size 

of actual data from the model 1000 times taking each time a draw from the parameters' prior 

distributions described in Table 8 and a different random realization for the exogenous dis­

turbances. These distributions are constructed just as the empirical based distributions used. 

to evaluate Baxter and Crucini (1993) in Canova and Ortega (1996). We have used existing 

estimates of these parameters in the literature or, when there are none, we have chosen a..--priori 

an interval on the basis of theoretical considerations and imposed a uniform distribution on 

it. In comparison with the DIW approach, we drop the Normality assumption in many cases. 

At each draw we compute the 4 statistics for the simulated series, instead of taking their the­

oretical counterparts as in DIW. We are introducing two new 8Qurces of error with respect to 

DIW: a Monte Carlo error for the fact of taking random realizations of the shocks series and an 

estimation error for computing the simulated statistics from short time series for Y, C, H and 

AP. Once the two distributions are constructed, we report the following measures of overlap: 

percentage of the distribution of simulated statistics into the 50%, 90% and 95% one-sided, 

90% and 95% two-sided confidence intervals of the bootstrap distribution of actual statistics, 

and viceversa. 

Model l statistics are smaller than actual US data ones (except fOl" corr(H,AP)) but more 

volatile. They Jay substantially inside the actual distributions but the distributions are not 

equally centered (a lower percentage of the simulated distributions lay inside the two-sided 

actual distributions) whereas the actual statistics, being higher in values, lay in higher per­

centage inside the two-sided confidence intervals of simulated statistics which include higher 

values than the one-sided confidence intervals. The introduction 9f government spending shocks 

makes simulated statistics of Model 2 even more volatile and their media.ns even lower than 

Model l ones (except for corr(H,Y)) so that the percentage of simulated statistics inside the 

two-sided confidence intervals of actual statistics gets smaller and the other way around for 

actual statistics into simulated distributions. In sum I the two distributions lay further apart 

while the coverage is still high overall. Model 3 statistics are less volatile than those of Model 
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1 or Model 2 (the volatility allowed in Table 8 for government spending shocks is smaller than 

that of technology shocks) but their median values lay so far from the actual ones that the 

two distributions hardly overlap when considering two-sided confidence intervals. For example, 

100% of the actual corr(H,Y) are smaller than the median value of 0.99 implied by Model 3, 
and 100% of simulated corr(C,Y) and corr(H,AP) are smaller than the actual ones (the median 

values implied by the model are -0.94 and -0.97, respectively). 

Overall, the CDN methodology conducts an even more thorough analysis of the model and 

actual statistics distributions than the DIW approach. It discriminates better between the first 

two models, even though it gives a similar picture of the fit: Model 1 appears preferable to 

Model 2 as whith the OIW methodology. This is because Model 2 statistics are more volatile 

and centered further away from the actual on�. Nevertheless, the fit of Model 2 remains fair. 

As it happens with other model evaluation criteria, the CON approach gives a bad fit to Model 

3. 

6.1 Evaluating Canova and De Nicolo approach 

The results of the Monte Carlo experiment evaluating the performance of CON are summarized 

in Table 11. As with the DIW approach, we keep the distribution of actual DCP moments fixed 

across replications and for evaluating all three models. Such distribution has been generated 

simulating 100 times the DCP (Model l) using a single realization of the technology shock 

process and one draw of the parameter vector from the prior distributions reported in column 

1 of Table 8 at each iteration, and computing the statistics each time. At each replication, dis­

tributions of model statistics have been constructed by simulating 100 times the corresponding 

model, and one-sided and two-sided measures of overlap between actual and simulated distri­

butions of each statistic have been computed. Table 11 displays their medians and standard 

deviations across the 100 Monte Carlo replications performed. 

The last column of Table 11 presents the theoretical value of each measure of overlap which 

should be found if the model was the true DCP. The difference between the empirical values 

and the theoretical ones is an indication of the "size" of the CON methodology when testing 

Ho: Model l = DCP, and of its "power" when testing Ho: Model 2 = DCP or Ho: Model 3 = 

DCP. Finally, we· define a summary measure of the percentage rejection of each Ho averaging 

across the 40 measures of overlap the difference between their median values across replications 

and their expected true values. These summary measures are tbe following: 

Model 1 Model 2 Model 3 

0.55% 7.8% 53.4% 
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It is remarkable how accurately the CDN methodology recognises the true DGP: all 40 

statistics presented in Table 11 for Model 1 are almost equal to their theoretical values. In fact 
the "size" measure is lower than using· Watson or DIW methodologies. And this is particularly 
remarkable with respect to DIW, since as explained above we are introducing both a Monte 
Carlo and an' estimation error when computing simulated statistics. This better "size" comes 
at one cott: the "power" against alternative models is in fact reduced. However, we still find 
that Model 3 is clearly rejected while the rejection of Model 2 is somewhat marginal, i.e. CDN 
manages to correctly rank the alternative models different to the DGP. 

7 Spectral density distance approach 

The last approach we evaluate is the one presented in Ortega (1998), where an asymptotic 
test is derived for the hypothesis that the quadratic standarized distance between the spectral 
density matrices of simulated and actual data is zero or less than an arbitrary prespecified 
bound. It is especially suitable for assessing the performance of models at a certain frequency 
range, such as business cycle models. 

The test statistic proposed explicitly acknowledges that the solution paths generated by the 
model for the variables of interest are only approximations to the true model solution. Watson 
(1993) also recognises that there is an approximation error but, contrary to his approach, 
Ortega (1998) takes it into account to derive a formal test of the distance between the model 
and the observed data. Diebold, Ohanian and Berkowitz (1995) propose a measure of distance 
to evaluate how well the model matches the spectral density matrix of the actual data, too, 
but they assume that model spectra can be obtained without error. On the contrary, Ortega 
(1998) compares actual to simulated data by treating them as samples from an unknown DGP 
and hence both spectral density matrices are estimated with error (the former because of 
sampling error, and the latter because of the approximation error). As in the DIW and CDN 
methodologies, the test proposed treats symmetrically actual and simulated data by taking 
into account the uncertainty existing in both data sets. While not excluding the possibility of 
stochastic parameters in the model, the uncertainty considered in the model derives from the 
fact that there exists an approximation error. The main differences between this methodology 
and that of DIW and CDN are, first, that both sets of statistics are estimated in a classical 
instead of a Bayesian way and, second, that model and actual data are compared using test 
statistics with known asymptotic distributions. 

More specifically, the assessment of the fit of a model over a particular set of frequencies 
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(e.g. business cycle frequencies (WhWlJ) is based on testing the following null hypothesis 

Ho , /\D(w; ,) = 0 , 'Iw E Iw"",,1 

where A is a selection matrix which weights the elements in the measure of distance D(w; I)· 
D(w; ,) is defined as 

(9) 

where I(w; ,) is the spectral density matrix of the vector [Yt Xt(')',Zt)J. Yt and Xt are the lxN 
vectors of actual and simulated data, respectively. Xt depends on the model parameter vector 
"f and the exogenous shocks series Zt. IY(w) and r(w;"f) are the upper left and lower right 
submatrices of I(w; I). To test Ho, the following test statistic is proposed 

(10) 

where ED(w; ,) is the covariance matrix of D(w; ,) and D(W i ,) is the estimated distanc�. 
The asymptotic distribution and properties of D(w; ,) are derived from th�e of the spectral 
density matrix estimator j(W i I). Appropriately choosing the spectral window function and the 
bandwidth parameter (see Ortega (1998)) we can derive the following asymptotic distribution 
of the fit test statistic for each frequency under Ho 

(Il) 

where Q is the number of zero elements in the diagonal of A. Therefore, 

where L is the number of frequencies included in [Wl,W2]. 
The main advantage of this methodology relative to others is that it can reject or accept a 

model in a strict statistic sense, because such a statement is made by comparing a test statistic 
to a known asymptotic distribution. On the other hand, it provides only one measure of fit per 
frequency, while Watson's approach provides one per statistic (as the informal approach) ,  and 
CDN and DIW provide a. wider variety of measures of fit. 

Each time h the model is simulated, an ft(w; ,) is estimated keeping Yt fixed and using 
XIII, for h = 1, ...  ,H. In practice, what we are interested in obtaining is the average across the 
H estimated distances, i.e. D(w; "f) = k E�=l DII(wj"f) = fi r:.�=l S vecjll(wi -r). Given that 
Xllt are iid, that average keeps the same distribution and theoretical mean than DIl(w;,), and 
ED(Wj ,) becomes kED(W; "f). The asymptotic distribution for lit(lwt,Wl]; "f) remains valid 
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as long as we premultiply D(w; i) by .Jii when constructing the test statistic. Then, Ho 
will be rejected and the distance between the model and the actual data found significantly 

different from zero if jit([Wt,W2];,) is greater than the critical value of a Xl(N'-Q)' for a selected 

significance level a. 

To assess the fit of our three models, we simulate 1000 times (H=1090) the model using 

the parameter vectors h) of Table 1 and compute Dh(w;,) at each simulation by estimating 

the joint spectral density matrix for linearly detrended logs of the 4 actual US series and those 

simulated (rom the model. We have used a Quadratic Spectral window function and an optimal 

spectral window parameter estimate following Andrews (1991). Then we have taken the average 

Dh across simulations and computed jit(Wl ; ,), jit(Wl;,) and jit([wl,�];,), where WI (W2) 
are the frequencies associated with cycles 8 years (2 years) long. We have given equal weights 

to the elements in the spectral density submatrices pew) and jX(Wj,) (Q=O), therefore the 

asymptotic distributions of the three fit statistics are X�6' X�6 and X�X16' respectively (the 

number of independent frequencies included in the [Wtt Wl] interval depends on the value of 

the Andrews optimal bandwidth parameter which in turD depends on the parametric model 

fitted for the actual data, and is 7 in this case). To evaluate the jit([Wl o WlJ;,) statistic, we 

have used the following Normal approximation typically used for xi distributions of k > 100 : 
,)2 xl - N(v'2k=1;I). 

Following we report the fit statistics and the 90% and 95% critical values: 

Model l Model 2 Model 3 90% C.V. 95% C.V. 

fit(w, ; ,) 7379 7614 29819 23.5 26.3 
fit(w,;,) 7264 7537 29342 23.5 26.3 
fit(iw"w,j; "Y  ) 11224 11588 45863 137.3 142.7 

It turns out that none of the models is accepted in strict statistic sense as the US data DGP: 

the values of all test statistics are clearly grater than the critical values in all cases. As pointed 

out in Ortega (1998), the sample size of the data used is too short to assume the asymptotic 

normality of D(w; ,). Its distribution may be closer to a X2 and therefore how many Dh(W; ,) 
it aggregates matters, and the small sample distribution of Jit(w;,) would also depend on H 

. (and hence, the critical values too). 

On the other hand, and consistently to other model evaluation methodologies, Model l and 

Model 2 are found to be almost equally closer to the actual data and Model 3 four times more 

distant. Just as the CDN and DIW methodologies (both allowing for random parameters in 

the models) and contrary to Watson's, Model l appears closer to the US data than Model 2. 
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7.1 Evaluating the spectral density distance approach 

We finally perform the Monte Carlo experiment on this last methodology. At each replication, 

one realization of the 4 time series from the DCP (using Model l with fixed parameters) is 

compared to one of the 4 simulated series from the corresponding model, for each of the 100 

times the model is simulated, and we compute the average estimated. distance across the 100 

simulations to calculate the jit(Wl ; ,), jit(W2 i"t} and jit([Wl1W2]i,) statistics as explained. 

above. 

Table 12 summarizes the performance of the fii test statistics in testing Ho: Model i = DGP, 

for i = 1, 2 and 3. It displays the percentage rejection of each hypothesis when comparing the 

corresponding fit test statistic to its 90% and 95% critical values, and the 5%, 50%, 90%, 95% 

percentiles and the mean and standard deviation of each of the three fit statistics computed, 

across the 100 replications of the Monte Carlo experiment. Now the number of frequencies 

included in the business cycle interval is 15 instead of 7 (because the optimal bandwidth pa­

rameter has changed since the actual data now is not the US observed data but that simulated 

from the DGP -Model 1-) and hence the critical values for the jit([Wl,W2];i) test statistic 

change. 

The first two rows of statistics reported in Table 12 for testing each hypothesis are the 

empirical �jze (for Ho: Model l = DCP) and power (for Ho: Model 2 = DCP and Ho: Model 

3 = DGP) of the spectral density distance methodology. A summary table comparable to the 

measures of the size and power we have computed for the other methodologies would be: 

Model l Model 2 Model 3 
significance level 5% 0% 0% 100% 

significance level 10% 0% 0% 100% 

The small size found (0% versus theoretical 5% or 10%), is consistent with the Monte Carlo 

experiment on the small sample properties of the fit test statistic performed in Ortega (1998). 

A superficial analysis would lead us to think that the power against models not too different 

from the DCP (Model 2) is null. The actual values of the fit statistic clearly indicate a worse 

fit for Model 2 than for Model l (as should be the case) but not bad enough to reject that the 

spectral density of Model 2 is equal tQ that of the DCP, contrary to the previous methodologies. 

Part of the reason can be in that the fit test is a single overall measure of fit, while Watson's 

approach and especially DIW and CDN approaches can capture the discrepancy between the 

model and the DC? along many dimensions (they compute several measures of fit for each 

statistic) ,  and this property is kept even when aggregating their different measures of fit into a 

summary one as we present at the end of each section. However, recall that this methodology 
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tests the distance between model and actual spectral densities. Figures 1 and 2 clear ly show 
that the fr equency domain pr operties of Modell (our DGP) and Model 2 ar e almost indistin· 
guishable at BC frequencies. When models, as it is the case for most SDGE models, are known 
to be false, we want the evaluation methodology to be able to capture how well they r eproduce 
certain particular statistics. It tur ns out that two models different but close to each other as 
Model 2 to Modell may gener ate almost the same statistics we ar e interested in, in our case the 
multivariate spectr al density matr ix for Y, C, H and AP. We interpr et the appar ent inability for 
discriminating between Modell and Model 2 shown when evaluating both of them as exactly 
equal to the DGP (0% r ejection) as the corr ect indication that both reproduce almost exactly 
the precise statistic of the DGP we want them to replicate. Hence we should be equally happy 
with both of them just as we would be equally unhappy if the DGP's spectral density differ s 
equally from both. In fact, consistently with the r esults in Or tega (1998), the fit test is very 
power ful when the alternative hypothesis imply different spectral density matr ices to the DOP 
(see Model 3 spectral pr operties in Figure 2). 

The issue arising here is an important one: before using any model evaluation methodology, 
it should be checked whether discr iminating models according to the statistics they focus on 
(in this case, the spectr al densities at par ticular frequencies) is desir able. It is highly probable 
that the spectral densities at low fr equencies (such as business cycle fr equencies) of series with 
similar autor regressive structures with high persistence par ameters will not significantly differ, 
as was shown in Or tega (1998). Many real business cycle model series follow that structure. 
On top of that, using a detrending method which does not totally remove very low frequency 
movements (as the linear detending method) concentrates r elatively less spectr al density at 
other fr equencies, making harder to discriminate models according to their spectra. at, say, the 
higher frequencies included in the business cycle range. 

Probably, the r eal business cycle models we have chosen for performing our comparison 
exer cise yield more observable differ ences between alternative models when evaluated using 
time domain statistics such as relative standar d deviations and cor relations than when using 
frequency domain statistics. A simple look at the discr epancies obser ved between the statistics 
simulated from Model l and 2 in Table 2 as compared to the difference between spectr a and 
coherencies simulated from the same two models in Figures 1 and 2 confirms this point. 
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8 Conclusions 

In this paper we compare under uniJorm conditions the performance of alternative method· 
ologies recently proposed in the literature to evaluate stochastic dynamic general equilibrium 
models. 

We have first described the approaches, emphasizing the differences among them and with 
the standard informal evaluation approach. Second, we have illustrated. the methodologies of 
Watson (1993), Dejong, Ingram and Whiteman (1996), Canova and De Nicolo (1995) and the 
one based on spectral density distance presented in Ortega (1998), using three versions of a 
simple one-sector real business cycle model from King, Plosser and Rebelo (1988). Government . 
shocks seem to add little or none explanatory power to technology shocks in a one-sector 50GE 
model for the US, and are certainly Dot enough to provide a reasonable fit when considered as 
the only source of fluctuations. 

The main contribution of this paper is to conduct a Monte Carlo experiment on the four 
methodologies to "test" them and compare their performance as evaluation procedures for dy­
namic general equilibrium models. We have encountered several difficulties in undertaking this 
task, which are mainly related to four facts. First, the comparison is made on a multivariate 
level, which complicates the effort of summarizing the overall performance of each method­
ology. Second, some methodologies are constructed in the frequency domain (Watson's and 
the spectral density distance approaches) while others are built in the time domain (DIW and 
CDN). Third, DIW and CDN define distributions for the parameters of the model in different 
ways while the two other approaches take parameters as fixed. Fourth, Watson and DIW use 
the theoretical values of model statistics (OIW also for actual data statistics) while CON and 
the spectral density distance approach estimate them. Despite of these difficulties, we have 
been able to compute rough measures of the "size" and "power" of each model evaluation 
methodology. 

Our exercise highlights that there are differences between the methodologies along many 
dimensions, but looking at the summary comparison provided by the "size" and "power" mea­
sures it is the two approaches allowing for stochastic parameters (DIW and CDN) the ones that 
seem to achieve a better performance. Probably, the real busines,s cycle models we have chosen 
for performing our comparison exercise yield more observable differences between models when 
evaluated using time domain statistics such as relative standard deviations and correlations 
than when using frequency domain statistics, A simple look at the discrepancies observed 
between the statistics simulated from Model 1 and 2 in Table 2 as compared. to the differ­
ence between spectra and coherencies simulated from the same two models in Figures 1 and 2 
confirms this point. 
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In fact, although the spectral density distance approach presented in Ortega ( 1998) is the 
one which obtains the smaller size and the larger power against models very different to the 
DGP (Model 3), it shows no power against Model 2. The spectral density matrices of Model 
1 and 2 do not differ enough for the methodology to recognise them as different models when 
comparing the fit-statistic to standard significance levels. But the actual value of the statistic 
or its p-value associated are different: that of Model 2 is further from 0 than that of Model l, 
showing their relative closeness to the DGP. Watson's approach, also in the frequency domain, 
has significantly worse size and worse power against Model 3, but captures some discrepancy 
between the spectral properties of Model l and 2. 

The time domain approaches of Dejong, Ingram and Whiteman (1996) and Canova and De 
Nicolo (1995) appear more accurate than Watson's. Among this two approaches, CDN achieves 
a better "'size" at the cost of a lower "'power" , which is still enough to correctly rank the models 
according to their. discrepancy with the true DGP. 

We find that all four methodologies outperform the informal approach since they substan­
tially reduce the risk of rejecting the true DGP, are able to discriminate more clearly between 
the DGP and models very distant from it and all but the spectral density distance approach (for 
the reasons explained above) also have power against models whose DGP is slightly different 
to the true DGP. 
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Table 1: Baseline parameter values 

Model l:  Model 2:  
Parameter Only At shocks A! and Gt shocks 
Share of Labor in Output (0) 0.58 0.58 
Growth rate (0.) 1.0036 1.0036 
Depreciation Rate of Capital (15K) 0.025 0.025 
Discount Factor (13) 0.9875 0.9875 
Steady State hours (H) 0.20 0.20 
Risk A version ((1) 2 2 
Share of Government 

Spending in Output (sg) 0.25 0.25 
Tax Rate (T) 0.25 0.25 
Persistence of Technology 

Disturbances (PA) 0.9 0.9 
Persistence of Government 

Spending Disturbances (PG) 0 0.97 
Standard Deviation of 

Technology Innovations ((1 A) 0.00852 0.00852 
Standard Deviation of Government 

Spending Innovations ((1G) 0 0.0036 

Table 2: Actual data and simulated moments 

Model l,  
Statistic Only At shocks 
std(C)fstd(Y) .667 (.088) 
con(C,Y) .S69 (.03S) 
con(H,Y) .776 (.097) 
con(H,AP) .374 (.171) 

Model 2, 
A! and Gt shocks 

.671 (.094) 
.859 (.044) 
.765 (.IOS) 
.344 (.IS2) 

Model 3, 
Only Gt shocks 

.717 (.006) 
-.999 (.0003) 

.999 (0) 
-.999 (.0001) 

Model 3, 
Only Gf shocks 

0.58 
1.0036 
0.025 
0.9875 
0.20 

2 

0.25 
0.25 

0 

0.97 

0 

0.0036 

Actual 
Data 
.S26 

.S63 (.133) 

.S07 (.157) 
-.065 (.265) 

Notes. Moments of both model Simulated sefles and actual data are computed after linearly de­

trending: the series. 

Actual data are logs of US per capita real variables in SMln and for the period 1964Ql-

1995Q3. Newey and West (1987) consistent S.E. are reported for the correlation coefficients. 

Simulated statistics are average (std) across 100 simulations of the corresponding model 

where at each simulation different random series are used for the exogenous shocks and 

time series for Y, C, H and AP are generated of sample size equal to the actual data (127 
observations). The random number generator is seeded at 0 before simulating each model. 

When persistence parameters Of S.D. of innovations are 0, model simulations are run using 

lxlO-IO instead to avoid non-full rank matrix problems. 
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Table 3: Watson's measures of fit. Averages across Be frequencies 

sp(Y) sp(C) sp(H) sp(AP) cohe(C,Y) cohe(H,Y) cohe(H,AP) 
Actual data 
statistics .0004 .0003 .0002 .0001 .79 .64 .04 

Model l 
statistics .0004 .0001 .0001 .0001 .83 .87 .52 

Measures of Fit for Model l (only At shocks) 
Equal Weight .027 .22 .18 .31 1.05 1.35 13.12 
Min error(Y) .012 .46 .50 1 1.05 1.35 13.12 

Model 2 
statistics .0004 .0001 .0001 .0001 .80 .85 .46 

Measures of Fit for Model 2 (both At and Gt shocks) 
Equal Weight .026 .22 .16 .28 1.02 1.31 11 .64 
Min errors(Y,H) .13 .82 .26 1.61 1.02 1.31 1 1.64 

Model 3 
statistics .00002 .00001 .00004 .00001 .997 .999 .998 

Measures of Fit for Model 3 (only 01 shocks) 
Equal Weight .91 1.05 .74 .97 1.27 1.55 25.21 
Min error(Y) .87 1.11 .78 1.10 1.27 1.55 25.21 

See text for explanation 
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Table 4: Monte Carlo on Watson's measures of fit 

Summary sp(Y) sp(C) sp(H) sp(AP) cohe(C,Y) cohe(H,Y) cohe(H,AP) 
statistics 

Testing Ho: Model ·) DGP 
Identification: equal weights 

mean .07 .15 .09 .15 1.005 1.05 1.16 
std .10 .23 .09 .23 .07 .15 .53 
5%perc .008 .023 .024 .023 .90 .91 .67 
median .034 .074 .062 .074 .99 1.007 .99 
95%perc .24 .55 .27 .55 1.14 1.34 2.13 

Identification: min error(Y) 
mean .065 .48 .44 .48 1.005 1.05 1.16 
std .10 .30 .20 .30 .07 .15 .53 
5%perc .006 .26 .22 .26 .90 .91 .67 
median .031 .38 .37 .38 .99 1.007 .99 
95%perc .24 1.04 .82 1.04 1.14 1.34 2.13 

Testing Ho: Model 2 - DGP 
Identification: equal weights 

mean .07 .15 .10 .15 .97 1.03 1.03 
std .10 .24 .11 .24 .07 .15 .47 
5%perc .009 .023 .027 .023 .87 .89 .59 
median .035 .073 .068 .073 .96 .98 .88 
95%perc .25 .57 .32 .57 1 .11  1.31 1.89 

Identification: min error(Y) and error(H) 
mean .12 .79 .25 .79 .97 1.03 1.03 
std .11 .37 .15 .37 .07 .15 .47 
5%perc .05 .46 .12 .46 .87 .89 .59 
median .09 .69 .21 .69 .96 .98 .88 
95%perc .31 1.48 .53 1.48 1.11 1.31 1.89 

Testing Ho! Model 3 - DG P 
Identification: equal weights 

mean .90 1.06 .63 1.06 1.21 1.22 2.22 
std .03 .06 .05 .06 .09 .18 1.02 
5%perc .85 .98 .54 .98 1.09 1.05 1.28 
median .90 1.05 .64 1.05 1.20 1.16 1.92 
95%perc .95 1.17 .72 1.17 1.38 1.55 4.10 

Identification: min error(Y) 
mean .86 1.17 .70 1.17 1.21 1.22 2.22 
std .02 .05 .06 .05 .09 .18 1.02 
5%perc .81 1.10 .59 1.10 1.09 1.05 1.28 
median .86 1.16 .70 1.16 1.20 1.16 1.92 
95%perc .90 1.28 .79 1.28 1.38 1.55 4.10 

, Empirical distribution of Watson's Measures of Fit. at business cycle frequencies over 1000 replica­
tions. Measures of Fit at each replication are conlpuUd as in Table 3. 
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Table 5: Parameter distributions for the DIW" methodology 

Model l,  Model 2, Model 3, 
Parameter Only Aj shocks Aj and Gt shocks Only Gt shocks 
Share of Labor in Output (0:) N(0.58,0.05) N(0.58,0.05) N(0.58,0.05) 
Growth rate (8,) 1.0036 1.0036 1.0036 
Depr. Rate of Capital (IiK) N(0.025,0.004) N(0.025,0.004) N(0.025,0.004) 
Discount Factor (P) N(0.988,0.001) N(0.988,0.001) N(0.988,0.001) 
Steady Slate hours (ff) N(0.20,0.02) N(0.20,0.02) N(0.20,0.02) 
Risk A version ((J') N(2,1) N(2,1) N{2,1) 
Share of Government 

Spending in Output (sy) N(0.25,0.05) N(0.25,0.05) N(0.25,0.05) 
Persistence of Technology 

Disturbances (PA) N(0.9,0.25) N(0.9,0.25) 0 
Persistence of Government 

Spending Disturbances (po) 0 N(0.97,0.02) N(0.97,0.02) 
SI.D. of Tecllnology 

Innovations (0" A) N(0.00852,0.004) N(0.OO852,0.004) 0 
5t.D. of Government 

Spending Innovations (0"0) 0 N(0.0036,0.002) N(0.0036,0.002) 
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Table 6: DeJong, Ingram and Whiteman methodology 

I std(C)/std(Y) corr(C,Y) corr(H,Y) corr(H,AP) 
US Data, 1964QI-1995Q3 

5% perc .72 .77 .82 -.16 
median .85 .87 .89 .12 
95% perc 1 . 1 1  .96 .96 .60 
mean .89 .81 .85 .09 
std .46 .29 .16 .39 

Simulated statistics, Model 1 
5% perc .71 .78 .004 -.40 
median .87 .89 .50 .04 
95% perc 1.07 .95 .73 .33 
mean .88 .88 .45 .01 
sId . 11  .06 .23 .22 

Evaluating Model 1 
CIC 1.07 1.07 0.26 1.09 
Average(CIC) .87 
d-statistic -.03 .33 -2.48 -.23 

Simulated statistics, Model 2 
5% perc .67 .07 .13 -.01 
median .87 .87 .53 -.15 
95% perc 1.25 .95 .99 -.45 
mean 1.41 .79 .51 -.03 
sId 3.07 .23 .26 .23 

Evaluating Model 2 
CIC .99 .98 .27 1.09 
Aver.ge(CIC) .83 
d-statistic 1.12 -.10 -2.13 -.33 

Simulated statistics, Model 3 
5% perc .20 -.20 .76 .10 
median .74 -.90 .99 -.97 
95% perc 2.02 -.99 I -.99 
mean 1.36 -.75 .95 -.84 
sId 3.11 .35 . 1 1  .37 

Evaluating Model 3 
CIC .45 .006 .22 .097 
Aver.ge(CIC) .19 
d-statistic 1.03 -7.85 .63 -2.38 

Notes: Actual data statlStlcs are computed fittmg a VAR to linearly detrended logs of US data 
for 1964Ql-I995Q3 and randomizing its coefficients 50 that the statistics are comput.ed. for 
1000 draws from the VAR coefficients distributions. 
Simulated statistics are computed for series of 10,000 observations simulated from each 
model 1000 times, using at each simulation a different draw from the prior distributions of 
the parameters in Table 5. 
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Table 7: Monte Carlo on DIW methodology 

I std(C)fstd(Y} con(C,Y) con(H,Y) corr(H,AP) 
Testing Ho: Model l DGP 

Simulated statistics, Model l 
5% perc .71 (.02) .77 (.04) .02 (.ll) -.41 (.08) 
median .87 (.01) .89 (.006) .50 (.02) .03 (.03) 
95% perc 1.06 (.03) .95 (.007) .72 (.02) .30 (.07) 

Evaluating Model I 
CIC 1.01 (.03) .99 (.04) 1.01 (.03) 1.02 (.03) 
Average(CIC) 1.003 (.02) 
d·statistic .001 (.09) .0009 (.ll) .071 (.09) -.058 (.08) 
Diff.Medians -.04 (.ll) -.06 (.09) .02 (.10) -.05 (.13) 
Rej. freq 
of Diff.Medians 0% 0% 0% 1% 

Testing Ho: Model 2 DGP 
Simulated statistics, Model 2 

5% perc .65 (.03) .12 (.25) .14 (.10) .001 (.015) 
median .86 (.01) .86 (.009) .54 (.02) .13 (.15) 
95% perc 1.15 (2.69) .94 (.008) .99 (.06) .32 (.46) 

Evaluating Model 2 
CIC .91 (.05) .82 (.04) .93 (.04) .98 (.04) 
Average(CIC) .91 (.03) 
d-statistic -.004 (.ll) -.54 (.27) .28 (.ll) .25 (.13) 
Diff.Medians -.10 (.12) -.42 (.14) .16 (.09) .52 (.66) 
Rej. freq 
of Diff.Medians 0% 0% 0% 40% 

Testing Ho: Model 3 _ DGP 
Simulated statistics, Model 3 

5% perc .18 (.07) .07 (.18) .72 (.09) .024 (.06) 
median .73 (.06) -.90 (.02) .99 (.002) -.97 (.006) 
95% perc 1.89 (2.55) -.999 (.0003) I (0) -.999 (.001) 

Evaluating Model 3 
CIC .25 (.05) o (.003) .06 (.02) .07 (.02) 
Average(CIC) .097 (.014) 
d-statistic .64 (.15) -19 (.17) 2.14 (.05) -5 (.04) 
Diff.Medians -1.25 (.56) -27.36 (.36) 2.ll (.008) -4.52 (.03) 
Rej. freq 
of Diff.Medians 54% 100% 100% 100% 

Medians (standard deViatIOns) across 100 Monte Carlo repilcatlons of summary statistiCS of the 

simulated distributions and of DlW model evaluation statistics (CIC. d-statistic and related). � 
text. 
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Table 8: Parameter distributions for the CDN methodology 

Model l: Model 2: Model 3, 
Parameter Only A, shocl<s At and Gt shocks Only Gt shocks 
Share of Labor (,,) U[0.5,O.75) U[0.5,O.75) U[0.5,O.75) 
Growth rate (6",) N(1.0036,O.001) N(1.0036,O.001) N(1.0036,O.001) 
Depreciation Rate 

of Capital (OK) U[0.02,O.D3) U[0.02,O.03) U[0.02,O.03) 
Discount Fa.ctor (13) TruncN[0.9855,l.002) TruncN[0.9855,l.002) TruncN[0.9855,1.002) 
St.St. Hours (H) U[0.2,O.35) U[0.2,O.35) U[0.2,O.35) 
Risk A version (fl) TruncX'(2)[O,IO) Truncx'(2)[O,lO) TruncX'(2)[O,IO) 
Share of G (39) U[0.2,O.3) U[0.2,O.3) U[0.2,O.3) 
Persistence of Tech. 

Disturbances (PA) N(0.9,O.2) N(0.9,O.2) 0 
Persistence of G 

Disturbances (PG) 0 U[0.95,O.9999) U[0.95,O.9999) 
Std of Technology 

Innovations (fl A) Truncx'( I) [0,0.0202) TruncX'( 1 )[0,0.0202) 0 
Std of G 

Innova.tions (flG) 0 TruncX'( 1 )[0,0.01) TruncX'( 1 )[0,0.01) 
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Table 9: Canova and De Nicolo methodology 

I std(C)/std(Y) corr(C,Y) corr(H,Y) corr(H,AP) 

US Data 
5'10 perc .60 .72 .83 -.33 
median .76 .89 .93 .15 
95% perc .98 .96 .97 .57 

Simulated statistics, Model 1 
5% perc .47 .48 .47 -.38 
median .65 .82 .79 .29 
95% perc .91 .94 .95 .72 

Evaluating Model 1 
% of simulated statistics into actual distributions' 

50% one-sided C.1. 77 77 94 35 
90% one-sided C.1. 96 96 99 75 
95% one-sided C.1. 98 98 99 83 
90% two-sided C.1. 63 78 40 76 
95% two-sided C.1. 74 84 47 85 

% of actual statist.ics into simulated distributions' 
50% one-sided. C.1. 13 22 2 69 
90% one-sided C.1. 78 74 35 98 
95% one-sided C.1. 89 86 55 99 
90% two-sided. C.1. 89 85 55 96 
95% two-sided. C.1. 93 93 65 98 
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Table 10: Canova and De Nicolo methodology (cont.) 

I std(C)/std(Y) corr(C,Y). corr(H,Y) corr(H,AP) 

Simulated statistics, Model 2 
5% perc .39 -.87 .50 -.94 
median .63 .76 .82 .11 
95% perc .93 .93 .98 .67 

Evaluating Model 2 
% of simulated statistics into actual distributions' 

50% one-sided C.1. 78 84 84 53 
90% one-sided C.1. 95 98 91 82 
95% one-sided C.1. 97 99 92 87 
90% two-sided C.1. 55 56 40 65 
95% two-sided C.1. 66 62 47 74 

% of actual statistics into simulated distributions' 
5?� one-sided C.1. 9 8 4 44 
90% one-sided C.1. 78 61 83 96 
95% one·sided C.1. 91 79 99 98 
.90% two-sided. C.l. 90 79 99 "98 
95% two-sided C.1. 95 87 100 99 

Simulated statistics, Model 3 
5% perc .28 -.99 .96 -.99 
median .54 -.94 .99 -.98 
95% perc .96 -.71 I -.86 

Evaluating Model 3 
% of simulated statistics into actual distributions' 

50% one-sided C.1. 81 100 2 100 
90% one-sided C.1. 92 100 6 100 
95% one-sided C.1. 96 100 8 100 
90% two-sided C.1. 37 0 8 0 
95% two-sided C.1. 45 0 12 0 

% of actual statistics into simulated distributions' 
50% one-sided C.1. I 0 \00 0 
90% one-sided C.1. 84 0 100 0 
95% one-sided C.I. 94 0 100 0.1 
90% two-sided C.1. 94 0 14 0.1 
95% two-sided C.1. 96 0 31 0.1 
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Table 11:  Monte Carlo on the CDN methodology 

, , , I std{C)fstd{Y) con{e Y) conCH Y) conCH AP) I 
Testing Ho: Model l - DGP 

% of simulated statistics into actual distributions' 
50% one-sided C.I. 51 (5.1) 50 (5) 50 (5.1) 50 (5) 50 
90% one-sided C.1. 90 (3.1) 91 (2.8) 90 (3.1) 90 (3) 90 
95% one-sided C.1. 94 (2.4) 96 (2) 95 (2) 95 (2) 95 
90% two-sided C.1. 88 (3.3) 91 (2.8) 90 (3) 90 (3) 90 
95% two-sided C.1. 94 (2.5) 96 (2) 94 (2) 95 (2.2) 95 

% of actual statistics into simulated distributions' 
50% one-sided C.I. 49 (5.4) 50 (5) 50.5(5.2) 50 (4.8) 50 
90% one-sided C.I. 90 (3.7) 88.5(3.3) 90.5(2.7) 90 (3) 90 
95% one-sided C.I. 96 (2.5) 95 (2.3) 95 (2.1) 94 (2) 95 
90% two-sided C.1 .  91 (3) 88 (3) 90 (3) 89 (3) 90 
95% two-sided C.1. 95 (2.1) 94 (2.6) 95 (2.2) 94 (2.3) 95 

Testing Ho! Model 2 _ DGP 
% of simulated statistics into actual distributions' 

50% one-sided C.1. 55 (5) 66 (4.8) 42 (4.9) 64 (4.7) 50 
90% one-sided C.l. 89 (3.1) 94 (2.2) 79 (3.9) 93 (2.6) 90 
95% one-sided C.1. 93 (2.5) 97 (1.7) 85 (3.5) 97 (1.7) 95 
90% two-sided C.1. 81 (3.9) 73 (4.5) 81 (3.9) 75 (4.3) 90 
95% two-sided C.1. 88 (3.2) 79 (4.1) 85 (3.6) 80 (3.9) 95 

% of actual statistics into simulated distributions' 
50% one-sided C.1. 44 (6) 28 (5) 58 (5) 33 (5.2) 50 
90% one-sided C.1. 91 (4) 83 (3.3) 99 (1.7) 85 (4) 90 
95% one-sided C.1. 97 (2) 92(2.3) 100(.4) 93 (3) 95 
90% two-sided C.1. 95.5(2.4) 92 (3) 93.4(3.2) 93 (3.1) 90 
95% two-sided C.1. 98 (1.3) 95.5(2.6) 97.3(2.2) 95.5{2.2) 95 

Testing Ho! Model 3 _ DGP 
% of simulated statistics into actual distributions' 

50% one-sided C.1. 66.5(5) 100 (0) o (.3) 100 CO) 50 
90% one-sided C.1. 89 (3) 100 (0) 1 (.9) 100 (0) 90 
95% one-sided C.1. 93 (2.6) 100 CO) I ( 1 .2) 100 (0) 95 
90% two-sided C.1. 55 (5.1) o CO) 1 (1.2) o (.1) 90 
95% two-sided C.1. 63 (5) 0 ( .04) 2 (1.5) o (.2) 95 

% of actual statistics into simulated distributions' 
50% one-sided C.1. 17 (7.6) 0 (0) 100 (0) o (0) 50 
90% one-sided C.1. 92 (4) o CO) 100 CO) o (0) 90 
95% one-sided C.1. 97 (2) o CO) 100 CO) o (.01) 95 
90% two-sided C.1. 97 (2) o CO) 0.9(0.9) o (.01) 90 
95% two-sided C.1. 98.7(1.2) o CO) 2 (4) o (.08) 95 

Medians (S.D.) acr06S 100 Monte Carlo replicatIOns of the CON measures of percentage overlap 

between the distributions of actual and model st�stics. 
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Table 12: Monte Carlo on the spectral density distance methodology 

I Jit(wn) Jit(w,· ,) Jit([w, w,h) II , , , , 
Testing Ho' Model l _ DGP 

I � rejection (90% C.I.) 0% 0% 0% 
% "jectio. (95% C.I.) 0% 0% 0% 
5% perc 1.55 1.47 31.45 
median 3.42 3.29 52.8 
90% perc 7.19 5.3 73.79 
95% perc 7.56 5.43 91.72 
mean 3.84 3.50 53.61 
S.D. 1.99 1.48 17.73 
90'10 C.V 23.5 23.5 172.63 
95% C.V. 26.3 26.3 178.6 

Testing Ho: Model 2 - DGP 
% rejection (90% C.I.) 0% 0% 0% 
% "jectio. (95% C.I.) 0% 0% 0% 
5% perc 2.23 2.67 49.09 
median 5.8 5.16 76.7 
90% perc 9.1 7.4 117.5 
95% perc 10.6 8.13 123.78 
mean 6.09 5.18 81.26 
S.D. 2.76 1.96 26.6 
90% C.V 23.5 23.5 172.63 
95% C.V. 26.3 26.3 178.6 

Testing Ho' Model 3 _ DGP 
% "jectio. (90% C.l.) 100% 100% 1()()% 
% rejection (95% C.l.) 100% 100% 100% 
5% perc 338.3 407.4 5721.1 
median 351.5 418.3 5836.2 
90% perc 364 428 5908 
95% perc 367.7 430 5921 
mean 352 418.6 5834 
S.D. 9.84 7.17 61.08 
90% C.V 23.5 23.5 172.63 
95% C.V. 26.3 26.3 178.6 

Summary statistics of the empmcal dlstnbutIon across 100 Monte (.;arlo repitcatlOns of the fil test 
statistics for frequencies associated to cycles 8 years long (wd, 2 years long (1.1,) and for averages 
across business cycle frequencies ([WIoW21 interval). 
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