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Abstract

This paper evaluates the role that sectoral comovement plays in the propagation of 

monetary policy shocks on the stock market. In doing so, we introduce a factor-augmented 

vector autoregressive model with heterogeneous regime-switching factor loadings, denoted 

as MS2-FAVAR, that allows us to jointly assess (i) potential changes in the degree of 

comovement between each sector-specifi c stock return and the aggregate stock market 

as well as (ii) the propagation of monetary policy shocks taking into account such changes 

in comovement. We fi nd that the efects of monetary policy shocks on stock returns are 

substantially amplied when industries experience a stronger degree of comovement, 

suggesting that a more interconnected stock market is more prone to the propagation of 

monetary policy shocks. The MS2-FAVAR model is also well-suited to perform a network 

analysis to characterize linkages in large datasets.

Keywords: stock market, monetary policy, markov-switching, factor model, network analysis.

JEL classifi cation: E44, C32, G12.



Resumen

En este artículo se evalúa el papel que desempeña el movimiento conjunto sectorial en la 

propagación de choques de política monetaria hacia el mercado de valores. En particular, 

se propone un modelo de vectores autorregresivos aumentado con factores, el cual permite 

cambios heterogéneos de régimen en la carga de los factores. El modelo, denominado 

MS2-FAVAR, permite evaluar de manera conjunta dos aspectos. Primero, los cambios 

potenciales en el grado de movimiento común entre los retornos asociados a un sector 

económico específi co y los retornos asociados a la bolsa de valores, de manera agregada. 

Segundo, la propagación de choques de política monetaria, una vez que se han tomado 

en cuenta dichos cambios en el grado de movimiento común. Los resultados muestran 

que el efecto de choques de política monetaria sobre los retornos de la bolsa de valores 

es amplifi cado sustancialmente cuando los sectores experimentan un mayor grado de 

movimiento común entre ellos. Esto sugiere que un mercado de valores en el cual los 

sectores económicos se encuentran altamente interconectados es más sensitivo a la 

propagación de choques de política monetaria.

Palabras clave: bolsa de valores, política monetaria, regímenes markovianos, modelo

de factores, análisis de redes.

Códigos JEL: E44, C32, G12.
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1 Introduction

The stock market represents an important element in the transmission mechanism of mon-

etary policy to the real economy. Changes in asset returns influence economic decisions by

firms and households that will ultimately affect inflation and output. Moreover, the degree

of comovement in the stock market may significantly vary over time, representing a central

feature in asset pricing. Changes in the comovement between asset prices from different

sectors of the economy are thereby likely to affect the responses of the overall stock market

to monetary policy shocks. Therefore, understanding the interactions between monetary

policy, stock returns and sectoral comovement is likely to provide important insights about

the propagation of monetary policy shocks throughout financial markets.

The conventional view is that unexpected monetary policy tightening episodes are asso-

ciated with a negative response of share prices. For example, in a seminal paper, Bernanke

and Kuttner (2005) using an event study estimate that a 100 basis point surprise increase

in the policy rate is associated with a roughly 4 per cent decline in aggregate stock returns.

Challenging this view, based on a VAR impulse response analysis, Gaĺı and Gambetti (2015)

find evidence in favor of protracted episodes in which stock prices respond positively to

a surprise tightening in monetary policy, most notably since the 1980’s.1 However, the

vast majority of the literature finds that a surprise tightening in monetary policy leads to

declines in aggregate stock returns.

From a disaggregated perspective, the literature has documented a significant hetero-

geneity about the effects of U.S. monetary policy on stock returns across industries. For

example, Ehrmann and Fratzscher (2004) find that stock returns associated with cycli-

cal sectors, such as technology, communications and cyclical consumer goods react two to

three times more to monetary policy shocks than less cyclical sectors (e.g., utilities and

non-cyclical consumer goods sectors). Recently, Ozdagli and Weber (2016) study whether

the sectoral linkages of the economy represent an important propagation mechanism of

monetary policy shocks on stock market returns, finding that about two thirds of the over-

all reaction can be attributed to indirect effects, which are based on the structure of the

production network.2 Their analysis is based on constant sectoral linkages. In a financial

1Gaĺı (2014) developed a general equilibrium model where increases in interest rates lead to an increase

in the bubble component of stock prices. As a result, if the bubble component of stock prices is predominant

relative to their fundamental component, observed stock prices can react positively to surprise increases in

the policy rate.
2Acemoglu et al. (2012) also find that intersectoral relations are a conduit through which sector-level

shocks transmit throughout the economy.
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context, however, this is likely to be a too restrictive assumption. For example, Diebold

and Yilmaz (2016) show that the comovement among asset returns varies substantially

over time. The implications of changes in stock market comovement on the propagation of

monetary policy shocks is something that has remained unexplored and this constitutes a

focal point of our paper.

The first contribution of this paper is therefore to study whether changes in the in-

terrelation between industry-specific stock returns affect the propagation mechanism of

monetary policy shocks. In particular, we study the linkages between monetary policy and

the stock market in periods when stock returns tend to move together and periods when

stock returns follow more idiosyncratic dynamics. This is an important issue to investigate,

since our analysis allows us to identify circumstances in which monetary policy decisions

are the most potent on financial markets. A key aspect of our analysis is that we study

the response of stock returns to monetary policy shocks at the level of an industry. The

rationale for doing so is that industries with different expected dividends and perceived

riskiness (i.e., risk premium) on stocks may well react differently to unanticipated changes

in monetary policy. Hence, it is important to study the effects of monetary policy surprises

on the stock market at a detailed industry-level, since it permits us to assess the sectors

of the economy acting as main conduits in the propagation of monetary policy shocks

throughout financial markets.

Our analysis is based on a novel econometric framework used to study the interactions

between monetary policy, stock market and sectoral comovement. In particular, we sum-

marize the cross-sectional information contained in monthly industry-specific stock returns

using factor analysis and jointly relates that summarized information to macroeconomic

fundamentals; that is, we estimate a factor-augmented vector autoregressive (FAVAR)

model. To jointly evaluate the extent to which the responses to monetary policy shocks

differ depending on the degree of comovement of a specific industry with the rest of the

stock market, we endogenously model nonlinearities in the factor loadings, introducing a

new model well-suited to our analysis.

The results indicate that changes in the degree of comovement is an important deter-

minant of the stock market response to monetary policy shocks in that higher comovement

is associated with a stronger response of stock returns to monetary policy shocks. Accord-

ingly, when industry-specific stock returns switch from a regime of low comovement to a

regime of high comovement, the effect of a monetary policy shock is about twice stronger,

albeit there are differences across industries. Moreover, we find that there is a direct rela-

tion between how sensitive an industry is to monetary policy shocks and the ability of this
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industry to generate spillovers to the rest of industries. In particular, our results suggest

that industries that are more central in the stock market network tend to react the most to

monetary policy shocks and act as conduits through which monetary policy shocks transmit

to the rest of the stock market.

The second contribution of this paper is methodological in nature in that we show how

to easily estimate high-dimensional factor-augmented vector autoregressive models with

heterogeneous regime-switching factor loadings. Here, heterogenous refers to the fact that

we use a different Markov chain to model nonlinearities in each of the factor loadings. The

literature on Markov-switching models has so far concentrated on the estimation of small-

scale models, typically limited to vector autoregressive or factor models with less than ten

variables. Notable examples include Sims and Zha (2006) and Hubrich and Tetlow (2015),

who estimate Markov-switching VAR models to study, respectively, the changing transmis-

sion mechanism of monetary policy on the macroeconomic environment and the interaction

between financial stress events, monetary policy and the macroeconomic environment. The

techniques to estimate such models are outlined in Sims et al. (2008), but their implemen-

tation remains difficult from a computational point of view so that their use is not widely

spread.3

Our methodological contribution consists in extending the Bernanke et al. (2005) FAVAR

model to a setting where factor loadings can vary according to Markov processes. This is a

novel contribution, since the literature on time-varying factor models has concentrated on

time variation modelled through random walk type behaviours (see, e.g., Del Negro and

Otrok (2008)). However, modelling time-variation through random walks implies gradual

changes in the parameters, which is not appealing in our context since abrupt changes are

a typical feature of financial variables. Moreover, as a by-product of our model, we show

how to conduct a network analysis to analyse the synchronization of discrete regime shifts

in a high-dimensional dataset.

The key advantage of our estimation method is that there is no need to assume – for

computational simplicity – that a single or a limited number of Markov chains are driving

the pattern of regime changes in the factor loadings. Instead, we allow for each factor

loading to be driven by its own Markov chain, which helps to uncover and analyze the

3Bognanni and Herbst (2015) suggest to use the particle filter to facilitate inference on Bayesian Markov-

switching VAR models. In a classical context, Guérin et al. (2016) extend the linear three-pass regression

filter of Kelly and Pruitt (2015) to include Markov-switching parameters in high-dimensional factor models.

They show that modelling time variation in the factor loadings through Markov-switching parameters is

helpful to forecast bilateral exchange rates and key U.S. quarterly macroeconomic variables.



BANCO DE ESPAÑA 10 DOCUMENTO DE TRABAJO N.º 1731

heterogeneity in their nonlinear dynamics. The computational burden of our estimation

strategy is also limited compared with the case of the estimation of the Markov-switching

Bayesian VARs outlined in Sims and Zha (2006). Accordingly, our framework is appealing

in that it makes the estimation of FAVAR models with regime-switching factor loadings

straightforward in a high-dimensional setting, which is highly relevant in the context of

structural analyses of macroeconomic and financial dataset.

The paper is organized as follows. Section 2 presents the econometric model we intro-

duce, a FAVAR model with regime-switching factor loadings, including the details of the

estimation algorithm. This section also outlines how to analyse the network structure of

high-dimensional datasets. Section 3 present our empirical results. Section 4 concludes.

2 Econometric Framework

Our information set is large, since it involves stock returns of 30 industries and a set

of macroeconomic fundamentals. To tackle the high-dimensionality of this problem in a

single econometric model, we estimate a FAVAR model that permits us to summarize the

information from the industry-specific stock returns in a few factors at most. Note that it is

important to include macroeconomic variables in the VAR system, since at a low frequency

(monthly or quarterly), monetary policy explicitly reacts to fluctuations in the macroe-

conomic environment. Moreover, to endogenously account for changes in the interrelation

between industry-level stock returns, we model time variation in the factor loadings through

Markov processes, introducing a new model well-suited to our analysis. This allows us to

perform our impulse response analysis conditional on high and low comovement regimes

between industry-level stock returns and the aggregate stock market.

2.1 The MS2-FAVAR Model

We start by describing the Multi-State Markov-Switching Factor Augmented Vector

Autoregressive model we use, which is denoted as MS2-FAVAR model. The estimation of

such a model is a contribution in itself in that, to the best of our knowledge, this paper

is the first one to describe and show how to estimate relatively easily a high-dimensional

factor-augmented VAR model with Markov-switching factor loadings. Note that the ma-

jority of the empirical literature concentrates on the estimation of a linear FAVAR model

as originally described in Bernanke et al. (2005). Time variation in FAVAR models has
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predominantly been introduced through random walk type behaviours (see, e.g., Korobilis

(2013)), which implies gradual changes in the parameters of the model that are typically rel-

evant for macroeconomic applications.4 However, gradual changes in parameter estimates

may not be relevant to model financial variables, since there is ample evidence suggesting

that financial markets are subject to abrupt regime changes (see, e.g., Ang and Timmer-

mann (2012)). Therefore, we use regime-switching dynamics to model time variation in

the factor loadings. The model is described by the following measurement and transition

equations

[
Yt

Xt

]
=

[
I 0

ΛY ΛF
St

][
Yt

Ft

]
+

[
0

eFt

]
, (1)

[
Yt

Ft

]
= Φ0 + Φ(L)

[
Yt−1
Ft−1

]
+

[
uY
t

uF
t

]
, (2)

where Yt collects n observed fundamentals, Ft is a vector of q unobserved components

driving a large set of m variables Xt, e
F
t ∼ N(0,Ω), with Ω being diagonal, and ut =

(uY
t , u

F
t )
′ the VAR innovations such that ut ∼ N(0,Σ). Equation (1) is the measurement

equation (or factor equation) of the state-space system and equation (2) is its transition

equation. For the case of one factor, q = 1, we define it as ft = Ft. The matrices of factor

loadings are given by ΛY = (λY
1 , λ

Y
2 , ..., λ

Y
m)
′ and ΛF

St
= (λF

1,S1,t
, λF

2,S2,t
, ..., λF

m,Sm,t
)′ and the

dynamics of the loadings connecting the industry-level stock returns and the factor are

given by

λF
i,Si,t

= λF
i,0 + λF

i,1Si,t, (3)

for i = 1, 2, ...,m. Notice that each factor loading is a function of its own latent state

variable, Si,t as opposed to assuming that a single Markov chain is driving regime changes

for all m variables collected in Xt. This is important since this allows us to account for the

potential heterogeneity in the regimes of comovement between industry-level stock returns

and aggregate stock market.

The information contained in the first factor, ft, can be interpreted as summarizing the

performance of the aggregate stock market. Therefore, in periods when the stock returns

of a specific industry i tends to move in the same direction of the aggregate stock market,

Si,t = 1 and its degree of comovement is given by (λF
i,0+λF

i,1); whereas during periods when

industry i follows a more independent pattern (i.e., Si,t = 0), the degree of comovement is

given by λF
i,0.

4Del Negro and Otrok (2008) being the early contribution for dynamic factor models – without a VAR

setting – with time-varying parameters modelled through random walk type behaviours.
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Each state variable follows the dynamics of a two-state first-order Markov chain. We

assume that the transition probabilities governing each Markov chain are constant over

time,

p(Si,t = li|Si,t−1 = ki) = pi,lk, (4)

for i = 1, 2, ...,m and for l, k = 0, 1. For simplicity of the notation and in relation to

our empirical application, we assume that the Markov chains can take only two regimes.

However, the framework we present is general enough to accommodate more than two

regimes.

We collect the set of transition probabilities in the matrix P = (p1,lk, p2,lk, ..., pm,lk)
′.

The state variables are assumed to be independent from each other, but note that this

specification is nesting the case of correlated state variables. We proceed this way for

computational tractability, but also because we want to impose as little structure as possible

on the Markov chains. As a result, thanks to its generality, the MS2-FAVAR approach offers

a flexible framework to model regime changes in high-dimensional settings.

A couple of additional comments are required. First, we only consider regime switching

parameters in the factor loadings; the other parameters of the model are held constant.

The reason for doing so is that we concentrate our impulse response analysis on the effects

of monetary policy shocks on industry-level stock returns across different regimes of co-

movement between industry-level stock returns and the aggregate stock market. Modelling

regime changes in the VAR parameters (i.e., in equation (2)) would allow one to study

changes in the transmission mechanism of monetary policy (if time variation is modelled in

the autoregressive parameters of the VAR) or the changing nature of the shocks hitting the

economy (if time variation is modelled in the elements of the variance-covariance matrix of

the VAR innovations). This is not the focus of this paper, since we are interested in eval-

uating to what extent the effects of monetary policy on the stock market vary depending

on the degree of comovement of the stock market.

Second, the MS2-FAVAR model assumes that the innovations Ω in equation (1) have

a diagonal covariance matrix, which rules out the propagation of sector-specific shocks

across industries. Foerster et al. (2011) perform a structural factor analysis, modelling in-

tersectoral linkages using data from the Bureau of Economic Analysis’ Input-Output table,

which allows them to overcome the issue of zero off-diagonal elements in the innovation

matrix of the measurement equation of the FAVAR model. However, assumptions about

the functional form of the propagation mechanism of the intersectoral linkages need to

be made. This is not appealing in our empirical application, since we want to impose as

little structure as possible on the propagation mechanism of sectoral shocks. Instead, we

are interested in using the information from the estimated factor loadings to provide an

assessment about the propagation of shocks across sectors.
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2.2 Estimation

Given that the measurement equation of the state-space representation (see equation

(1)) depends on the configuration of the realizations of the vector St = (S1,t, S2,t, ..., Sm,t)
′,

and since there are two possible states for each i-th state variable, Si,t = {0, 1}, there
are 2m possible states at time t of the measurement equation (1). Moreover, since the

Kalman filter operates by relating information between time t and t − 1, there will be

a total of 2(2m) possible states involved at every iteration. In our empirical application,

we use the 30-industry portfolio of the Fama French database.5 Therefore, with m = 30,

there are 260 possible states, which makes it infeasible to estimate the model by maximum

likelihood. Therefore, we rely on Bayesian methods to estimate the proposed MS2-FAVAR

model detailed previously.

The approach to estimate the vector of parameters, θ, along with the factors, Ft, relies

on a multi-move Gibbs-sampling procedure. In this setting, (i) the parameters of the model

θ = {P,ΛY ,ΛF
0 ,Λ

F
1 ,Ω,Φ,Σ}, (ii) the Markov-switching variables S̃T = {St}T1 , and (iii) the

factors F̃T = {Ft}T1 , are treated as random variables given the data in ỹT = {Yt, Xt}T1 .
The purpose of this Markov chain Monte Carlo simulation method is to approximate the

joint and marginal distributions of these random variables by sampling from conditional

distributions.

2.2.1 Algorithm

The model is fully estimated in a Bayesian fashion using a Gibbs sampler estimation

procedure, which is described by the following steps:

Step 1: Generate S̃T conditional on the data ỹT , F̃T and θ.

Step 2: Generate P conditional on S̃T .

Step 3: Generate ΛF
0 , Λ

F
1 conditional on ΛY , Ω, S̃T , F̃T and ỹT .

Step 4: Generate ΛY conditional on ΛF
0 , Λ

F
1 , Ω, S̃T , F̃T and ỹT .

5The 30-industry Fama French portfolio data are available online at http://mba.tuck.dartmouth.

edu/pages/faculty/ken.french/data_library.html.

Step 5: Generate Ω conditional on ΛY , ΛF
0 , Λ

F
1 , S̃T , F̃T and ỹT .

Step 6: Generate Φ conditional on Σ, F̃T and ỹT .

Step 7: Generate Σ conditional on Φ, F̃T and ỹT .

Step 8: Generate F̃T conditional on θ, S̃T and ỹT .
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Steps 1 through 8 can be iterated L+M times, where L is large enough to ensure that

the Gibbs sampler has converged. Thus, the marginal distributions of the state variables,

synchronization variable and the parameters of the model can be approximated by the

empirical distribution of the M simulated values. For our empirical application, we use

a burn-in period of L = 15000 iterations to converge to the ergodic distribution, and run

M = 5000 additional iterations. To assess convergence, we examine the recursive means of

the retained draws. Recursive means are relatively constant, suggesting evidence in favor

of convergence. Sequential runs of the algorithm led to similar results, providing additional

evidence in favour of convergence.6

Notice that since the variance-covariance matrix of the transition equation of the state

space representation, Ω, is assumed to be diagonal, steps 1 to 5 can be straightforwardly

performed by sampling, equation by equation, draws of the parameters associated to uni-

variate Markov-switching regressions following the approach of Kim and Nelson (1999),

conditional on the information about the factors, F̃T . This is a critical feature of the

algorithm, since it greatly simplifies the estimation of the model by dealing with the pro-

liferation of states in a straightforward manner.

Moreover, conditional on the factor, F̃T , steps 6 and 7 can be performed using a standard

Gibbs sampling approach to estimate small-scale linear VAR models. The challenge in the

estimation of the MS2-FAVAR model lies in step 8, which is the estimation step of the factor

F̃T that represents the element connecting the measurement equation with the transition

equation. We present next the details for the last step of the algorithm.

6Note also that to avoid label switching, we impose constraints on the draws to ensure that the second

regime is a high comovement regime while the first regime is a low comovement regime. In practice, this

is achieved by only retaining draws for which λF
i,1 is positive.

2.2.2 Drawing the State Vector

For ease of exposition, we simplify notation and express compactly the model described

in equations (1) and (2) as follows

Zt = HStWt + vt, vt ∼ N(0,Θ) (5)

Wt = G0 +GWt−1 + ut, ut ∼ N(0,Σ), (6)
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G =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Φ1 Φ2 · · · ΦL−1 ΦL

Iκ 0 · · · 0 0

0 Iκ · · · 0 0
...

...
. . .

...
...

0 0 · · · Iκ 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, G0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Φ0

0

0
...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

where κ = n+ q. Notice that from step 1, at every iteration, the state variables contained

in St are known, being interpreted as a set of observed dummy variables. Therefore, in

the case of two regimes that is relevant for our empirical application, the measurement

equation (5) can be expressed as

Zt = (H0 � (1− ι′ ⊗ S∗t ) +H1 � (ι′ ⊗ S∗t ))�Wt + vt, (7)

where ι is a (n + q) vector of ones, S∗t = (0,St)
′ with 0 being a (n × 1) zero vector, 1

is a (n +m) × (n + q) matrix of ones, and � represents the Hadamard product, while ⊗
represents the Kronecker product. In our empirical application, we focus on the case of a

one-factor model; i.e., q = 1, for ease of interpretation. Accordingly, the matrices of factor

loadings for each regime can be defined as

H0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

[In]
...

0

λY
1,1 λY

1,2 · · · λY
1,n λF

1,0

λY
2,1 λY

2,2 · · · λY
2,n λF

2,0
...

...
. . .

...
...

λY
m,1 λY

m,2 · · · λY
m,n λF

m,0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, H1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

[In]
...

0

λY
1,1 λY

1,2 · · · λY
1,n (λF

1,0 + λF
1,1)

λY
2,1 λY

2,2 · · · λY
2,n (λF

2,0 + λF
2,1)

...
...

. . .
...

...

λY
m,1 λY

m,2 · · · λY
m,n (λF

m,0 + λF
m,1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Therefore, conditional on the configuration of states the model becomes a linear state-

space model and the Carter and Kohn (1994) algorithm can be readily applied to conduct

inference on the state vector Wt, as shown in Kim and Nelson (1999).

where Zt = (Yt, Xt)
′, Wt = (Yt, Ft)

′, vt = (0, eFt )
′, and

2.2.3 Priors

We need to define the hyperparameters associated with each of the elements in the

vector of parameter θ = {P,ΛY ,ΛF
0 ,Λ

F
1 ,Ω,Φ,Σ}. For identification purposes about the

changes in the degree of comovement, we set different mean hyperparameters for each

regime; that is, for the regime-switching factor loadings, we use a Normal prior distribution,

λF
i ∼ N(λF , V λF ), with λF = (0, 1)′, V λF = 20× I2.

7 For the constant factor loadings, we

also use a Normal prior distribution, λY
i ∼ N(λY , V λY ), with λY = (0, ..., 0)′, V λY = 20×In.
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We use an inverse Gamma distribution as prior for the variances in Ω =diag(σ1, σ2, ..., σm);

i.e., σ ∼ IG(s, v), with s = 0.01 and v = 0.01.

For the VAR coefficients matrix and variance-covariance matrix, Φ and Σ, the indepen-

dent Normal-Wishart prior distribution is used

p(Φ,Σ−1) = p(Φ)p(Σ−1),

where Φ ∼ N(Φ, V Φ), with Φ = 0 and V Φ = I, and Σ−1 ∼ W (S−1, υ), with S−1 = I and

υ = 0. For the case of constant transition probabilities associated to the i-th state variable,

pi,00, pi,11, we use Beta distributions as conjugate priors

pi,00 ∼ Be(ui,11, ui,10), pi,11 ∼ Be(ui,00, ui,01),

where the hyperparameters are given by ui,01 = 2, ui,00 = 8, ui,10 = 1 and ui,11 = 9, for

i = 1, 2, ...,m.

2.2.4 Empirical Issues

Data

The vector Yt includes the following monthly variables: industrial production (first

difference of the log-level), consumer price index (first difference of the log-level), real

dividend series (first difference of the log-level), the World Bank (non-energy) commodity

price index (first difference of the log-level), and the short-term interest rate (in level). The

short-term interest rate is the Federal Funds rate until December 2008, but we use the Wu

and Xia (2015) shadow interest rate from January 2009 onwards to circumvent the zero

lower bound problem. Unlike the observed short-term interest rate, the shadow rate is not

bounded below by 0 percent.8 The choice of the variables included in Yt directly derives

from the modelling choice in Gaĺı and Gambetti (2015). The variables in Xt consist of

(monthly) industry-level stock returns for each of the 30 industries of the Fama French

portfolio, the data are taken in real terms, as in Gaĺı and Gambetti (2015) for the S&P

500 returns. A description of the industry portfolio data is reported in Table 1. We also

standardize the industry-level stock returns prior the estimation of the model. The full

sample size extends from January 1960 to December 2014.

7As a robustness check, we also estimated the model with equal mean hyperparameters for each regime.

The results with such a specification were robust to our original conclusions.
8The shadow rate is assumed to be a linear function of three latent variables called factors of a Nelson-

Siegel-Svensson yield curve. The latent factors and the shadow rate are estimated with an extended Kalman

filter.
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Number of Factors

We rely on Bai and Ng (2007) to determine the number of factors that are more suitable

to explain the comovement among the 30 industry-specific returns. This approach allows

us to estimate the number of dynamic factors without having to actually estimate them.

The results indicate that one dynamic factor best summarizes the comovements among the

30 industries. Also, the use of a single factor is useful for ease of interpretation, since the

factor estimate closely mimics the fluctuations in a broad stock market index (the S&P500

index).

Model selection

In Bayesian econometrics, calculating the marginal likelihood of a model is a standard

way to perform model selection. We used the modified harmonic mean estimator of Geweke

(1999) to evaluate the marginal likelihood. However, these marginal likelihood estimates

were sensitive to outliers, which led to excessive variability of the estimator. This is not

unusual in the context of non-linear large-scale models (see, e.g., Dahlhaus (2016)). Hence,

we refrain from reporting estimates for the marginal likelihood across different model spec-

ifications. Our benchmark results are based on a model with three lags and two regimes,

but the impulse response analysis is very much robust to the use of additional lags for the

VAR. The rationale for choosing a model with two regimes is twofold. First, the use of two

regimes eases the interpretation of the results in that we obtain a low comovement regime

and a high comovement regime (as opposed to a model with a larger number of regimes

that are not necessarily easily interpretable). Second, as mentioned previously, excessive

variability in the marginal likelihood estimates prevented us from selecting the number of

regimes based on marginal likelihood estimates. Moreover, for models with three or four

regimes, we often encountered situations where regimes had zero occurrences, which makes

estimation too challenging and suggests evidence in favor of a more parsimonious model in

terms of number of regimes, see Droumaguet et al. (2016).

Normalization

It is important to specify the restrictions necessary to uniquely identify the factors and

factor loadings so as to identify the factors against any rotations. In practice, this is done

by restricting the upper q × q block of Λf to an identity matrix and the upper q × n

block of Λy to zero. As such, these identification restrictions imply that the Yt’s do not

affect contemporaneously the first q variables in Xt; hence, these variables do not react

contemporaneously to innovations in Yt. These restrictions are akin to those imposed by

Bernanke et al. (2005).

Identification

Finally, the model is identified with a recursive (Cholesky) structure. We adopt the

following ordering for the variables: industrial production, consumer price index, dividend
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2.3 Network analysis

Network-based measures have become increasingly popular to study interactions be-

tween economic agents, especially in financial markets following the 2008-2009 financial

crisis. From a theoretical standpoint, Elliott et al. (2014) and Silva et al. (2017) study

which network structure is the most sensitive to financial contagions, concentrating their

analysis on the diversification and dependence of a network. Acemoglu et al. (2012) find

that sectoral interconnections play an important role as a source of macroeconomic fluctu-

ations. Also, Camacho and Leiva-Leon (2016) study the linkages that propagate industry-

specific business cycle shocks throughout the economy, finding a sequential transmission

of the sectoral shocks to the macroeconomic environment. Ahern (2014) investigates to

what extent the degree of centrality matters for the cross section of stock returns. He finds

that industries that are at the center of the network are characterized by higher industries’

market “betas” (i.e., they covary more closely with market returns). He also estimates that

series for the S&P 500, the World Bank commodity price index, the short-term interest

rate and the factor extracted from industry-specific stock returns. This is consistent with

an ordering from slow-moving to fast-moving (i.e., financial) variables, which is common

in this type of application. As such, this identification structure rules out the possibility

of a contemporaneous response of the monetary policy authorities to stock market fluctu-

ations, a feature that is not necessarily undesirable from an empirical point of view (see,

e.g., Furlanetto (2011) or Gaĺı and Gambetti (2015)). Alternative identification schemes

include the use of high-frequency data (see, e.g., Faust et al. (2004) and D’Amico and Farka

(2011)) or the heteroskedastic feature of financial data (see, e.g., Rigobon and Sack (2003))

to allow for a simultaneous response of monetary policy to asset prices. However, based

on a formal statistical analysis that allows for a contemporaneous response of monetary

authorities to stock prices, Lütkepohl and Netsunajev (2014) find that the short-term in-

terest rate does not respond significantly to stock returns shocks. As such, this supports

our baseline (recursive) identification scheme in which the short-term interest rate does

not react contemporaneously to changes in stock prices. Moreover, our analysis is con-

ducted at a monthly frequency (as opposed to a quarterly frequency as it is usually done

in the literature); and the higher the frequency, the less likely it is for monetary policy

authorities to react contemporaneously to unexpected events in the stock market using

interest changes. As a result, our baseline impulse response analysis that is conducted at a

monthly frequency is less subject to the criticism of the strict time restrictions implied by

the recursive identification scheme compared with VAR analyses performed at a quarterly

frequency. However, as a robustness check to our baseline recursive identification scheme,

we perform the impulse response analysis based on an identification scheme that allows for

a contemporaneous response of monetary policy to stock market fluctuations.
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the more central industries comove more closely with future consumption growth compared

with less central industries.

Network metrics are often directly calculated from Input-Output tables as in Ozdagli

and Weber (2016). One drawback of this approach is that Input-Output tables are only

available at an annual frequency, which implies that network structures derived from Input-

Output tables exhibit little time variation. As such, in our application with financial data,

it does not seem to be an appropriate approach. Alternatively, Diebold and Yilmaz (2014)

show that standard tools for VAR analysis (i.e., forecast error variance decomposition) can

be used to calculate network metrics. In doing so, they estimate VAR models over rolling

windows to obtain dynamic measures of connectedness.

Here, we show how to analyze the endogenous structure of the network of industry-

specific stock returns derived from the proposed MS2-FAVAR model. In particular, we

characterize the interactions among industry-specific stock returns using the information

contained in the state variables driving the factor loadings; i.e., the Si,t’s, (where i =

1, 2, ...,m), which indicate the degree of comovement (high or low) between each industry

and the factor that summarizes the performance of the overall stock market. Accordingly,

our goal is to measure the relationship between the state variables associated with any pair

of industries, i,j ∀i �= j as opposed to analysing the network structure of the underlying

continuous stock return series. In doing so, we use the quadratic probability score to

construct the following statistic,

q
(l)
i,j = 1− 1

T

T∑
t=1

(
S
(l)
i,t − S

(l)
j,t

)2

, (8)

where S
(l)
i,t denotes the l-th draw of the Markovian latent variable associated to the i-th

industry at time t. Next, qi,j is estimated by computing the median of the distribution of

q
(l)
i,j .

Any pair of industries i and j that are highly interconnected should experience similar

degrees of comovement with the factor, yielding a value of qi,j closer to 1. In contrast, if

these two industries have distinct dynamics, one would expect qi,j yielding a value close to

0. All these pairwise relationships can be collected in an adjacency matrix,

Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 q1,2 q1,3 · · · q1,m

q2,1 0 q2,3 · · · q2,m

q3,1 q3,2 0 · · · q3,m
...

...
...

. . .
...

qm,1 qm,2 qm,3 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (9)

which summarizes the synchronization pattern between industry-specific stock returns.

Notice that Q is symmetric, since qi,j = qj,i for all i, j = 1, 2, ...,m.

The adjacency matrix Q can be interpreted as a weighted network characterizing the

interrelations between the comovement regimes of industry-specific stock returns with the
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aggregate stock market. To examine the structure of the network, we rely on measures

of centrality and on multidimensional scaling (MDS) maps. The MDS technique consists

in projecting the dissimilarities among the m industries, computed as D = 1 − Q̂, into a

map in such a way that the Euclidean distances among the industries plotted in the plane

approximate the dissimilarities in D.9 In the resulting map, industries that exhibit large

(small) dissimilarities have representations in the plane that are far (close) from each other.

For further details about MDS maps, see Timm (2002).

Moreover, we examine the evolution of the degree of connectedness across industries

and over time. In doing so, we compute the following dynamic statistic,

qi,j,t = 1− 1

L

L∑
l=1

(
S
(l)
i,t − S

(l)
j,t

)2

. (10)

All these pairwise relationships can be collected in a time-varying adjacency matrix Qt, as

in equation (9). This can be used to assess changes in the importance, as measured by the

degree of centrality, of each industry over time.

9The term 1 denotes a m×m matrix of ones.

3 Monetary Policy Effects across Industries

There is a substantial literature on the effects of monetary policy surprises on the stock

market based on VAR analyses (early references include Thorbecke (1997), Rigobon and

Sack (2004) and Bjørnland and Leitemo (2009)). Our analysis contributes to this literature

along several dimensions. First, we use industry-specific stock returns to provide a detailed

picture of the effects of monetary policy on the stock market. In doing so, we use a

factor-augmented VAR model to deal with parameter proliferation. Second, the use of the

regime-switching parameter model detailed previously – the MS2-FAVAR – allows us to

account for changes in the relation between industry-level stock returns and the aggregate

stock market. Third, this feature allows us to characterize the network structure of the

comovement of disaggregated stock returns in order to identify the industries acting as main

conduits in the propagation of monetary policy shocks through the entire stock market.

3.1 Impulse response analysis

Figure 1 plots the estimated factor, which exhibits a correlation with the returns from

the S&P500 index of approximately 0.7. Notice that the factor captures major stock market

events, such as the flash crash of 1962 (or Kennedy slide), the “Black Monday” in 1987, the

Lehman Brothers collapse in 2008, among others. This implies that the estimated factor

can be interpreted as an indicator of the overall performance of the U.S. stock market.
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Also, note that the credible set for the estimated factor is very narrow, indicating that the

underlying latent factor is well identified by the model.

Figure 2 shows the responses of macroeconomic and financial variables to a surprise

100 basis point increase in the policy rate obtained with the MS2-FAVAR model. First,

the monetary policy shock temporarily increases the level of interest rates, which docu-

ments the persistence of the shock. Moreover, as expected, industrial production shows a

prolonged negative response to a surprise monetary policy tightening. Inflation, as defined

from the consumer price index, exhibits a positive hump-shaped response to a surprise

monetary policy tightening, a phenomenon referred to as the “price puzzle.” Dividends

decline following a monetary policy shock, and the posterior credible sets exclude zero.

This is consistent with the responses of output and interest rate in that a fall in output

and higher cost of borrowing are expected to be associated with lower future dividends.

Moreover, commodity prices do not react significantly to a monetary policy shock. Over-

all, these responses are very similar to those obtained from the linear model in Gaĺı and

Gambetti (2015).

We now turn our attention to the responses of industry-level stock returns to mone-

tary policy shocks, reported in Figure 3. Given that the factor loadings are allowed to

experience switches across regimes of comovement, we obtain for each industry, a regime-

specific response to a monetary policy shock (i.e., a response in the high or low comovement

regime). Again, the monetary policy shock is scaled to represent a surprise 100 basis point

increase in the policy rate and the responses of equity returns are in standard deviation

units. First, this figure shows that, for most industries, stock returns decline following a

surprise tightening in monetary policy. This typically holds true for both the high and

low comovement regimes. Second, there is a substantial degree of heterogeneity in the

responses across industries. For example, the posterior credible sets for the responses to a

monetary policy shock of specific industries (particularly energy-related industries), such

as Petroleum and Natural Gas (“Oil”), Precious Metals, Non-Metallic, and Industrial Min-

ing (“Mines”), Coal (“Coal”) and Tobacco products (“Smoke”) include zero in the low

comovement regime. To the extent that commodity-sensitive stocks have predictive power

for commodity prices, this suggests that the empirical relevance of models relating oil price

fluctuations changes in U.S. interest rates remains rather elusive. Moreover, alimentary—

Food Products (“Food”) and Beer and Liquor (“Beer”)—and utilities industries also tend

to react relatively less to monetary policy shocks compared with the other industries. These

industries have typically low market “betas,” suggesting that industries that are less sen-

sitive to monetary policy shocks tend to have returns less correlated with the aggregated

market return. Third, it is important to note that for all industries, responses to monetary

policy shocks in the high comovement regime are amplified compared with the responses in

the low comovement regime, being roughly twice larger for most industries. However, this

pattern is particularly true for Fabricated Products and Machinery (“Fabpr”) and Electri-
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cal Equipment (“Elceq”) industries where the credible sets for responses in both regimes

do not overlap over the projection horizon. A similar pattern occurs for the following in-

dustries: Construction and Construction Materials (“Cnstr”), Aircraft, Ships and Railroad

Equipment (“Carry”), Business Supplies and Shipping Containers (“Paper”), Wholesale

(“Whlsl”) and other industries (“Others”), where the most asymmetric responses are ob-

tained. Finally, it is also interesting to note that, for most industries, the maximum impact

of the monetary policy shock takes place on impact (i.e., for horizon h = 1) and that the

effects of the shock die out relatively quickly.10

As a robustness check to our baseline identification scheme, we now consider the pos-

sibility that monetary policy can react contemporaneously to stock market shocks. As

mentioned earlier, the evidence for a simultaneous response of central bank authorities to

10Our impulse response analysis is robust to including additional lags in the VAR system.

the stock market seems to be mixed and related to few specific events. However, Furlanetto

(2011) suggests that the evidence for such a central bank response is apparent in the data

only for the stock market crash of 1987. We follow Gaĺı and Gambetti (2015) and calibrate

the coefficient corresponding to the simultaneous response of the central bank to stock mar-

ket shocks at 0.2, which implies that a one standard deviation unexpected increase in the

stock market (as captured by the factor) leads to a 20 basis point increase in the short-term

interest rate. The responses of the macroeconomic variables are little changed relative to

the baseline case; hence, we do not report these results to conserve space. Figure A1 in

the Appendix shows the industry-specific responses to the monetary policy shock. These

results confirm our original conclusions. First, for all industries, the response in the high

comovement regime is more negative compared with the response in the low comovement

regime. Moreover, in many cases, the posterior credible sets do not overlap. Second, the

industries that react the most to monetary policy shocks are very much similar with this

alternative identification scheme relative to our baseline idenfication scheme. For example,

Figure A1 shows that the Business Equipment (“Buseq”) industry is the industry that re-

acts the most to a monetary policy shock in the high comovement regime, and this was also

the case in our baseline identification scheme. Third, the peak response of the monetary

policy shock no longer occurs on impact, but instead typically occurs at a 3-quarter horizon

when allowing for a simultaneous response of the central bank to stock market shocks.

Next, we evaluate whether industries that experience longer periods in the high co-

movement regime tend to be more sensitive to monetary policy shocks. Accordingly, on

the one hand, we compute the expected duration of the high comovement regime, PE
i,1 and
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the expected duration of the low comovement regime, PE
i,0, for industries i = 1, 2, ...,m

(where m is equal to 30, the total number of industries). The expected duration of regimes

can be expressed as a function of the transition probabilities

PE
i,1 =

1

1− pi,11
, PE

i,0 =
1

1− pi,00
.

On the other hand, we proxy the sensitivity of an industry to monetary policy shocks

with the corresponding factor loadings, since they are mechanically linked to the estimated

impulse responses. Formally, factor loadings capture the extent to which a specific industry

is related to aggregate stock market fluctuations, but also the degree to which an industry

reacts to a specific shock that hits the factor. Therefore, we interpret (λF
i,0 + λF

i,1) as a

measure of a high degree of responsiveness to monetary policy shocks and λF
i,0 as a measure

for a low degree of responsiveness to monetary policy shocks for industries i = 1, 2, ...,m.

Figure 4 reports scatter plots that relate the degrees of comovement and responsiveness

to monetary policy shocks for each of the 30 industries. This shows that industries that

experience longer periods in the high comovement regime tend to experience a stronger

response to monetary policy shocks, whereas industries that experience longer periods in the

low comovement regime tend to show a weaker response to monetary policy shocks. Overall,

these results indicate that higher connectedness is associated with a stronger response to

monetary policy shocks.

3.2 Characterizing the stock market network

When assessing the propagation of monetary policy shocks in a large system of economic

and financial variables using FAVAR models, previous studies have typically focused on

analyzing the responses of each variable to a specific or a few structural shocks. Beside

the usual impulse response analysis, a key advantage of the proposed MS2-FAVAR model

is to provide information about the degree of interdependence between industry-level stock

returns using the information contained in the factor loadings.

Figure 5 shows the time-varying factor loadings. This provides evidence in favor of

substantial time variation in the factor loadings, suggesting that the assumption of constant

factor loadings is unlikely to be appropriate. Moreover, notice that most industries tend

to remain in a high comovement regime for most of the time, and experience switches to

a low comovement regime less frequently. However, there are some exceptions, such as the

case of Textiles (“Txtls”) for which the most common state is the low comovement regime,

switching to a high comovement regime with few occurrences. This may represent valuable

information from the point of view of financial market participants.

Figure 6 shows the structure of the network, as defined in Equation (9), for different

strengths of the linkages between industries. In panels (a) and (b) of that figure, we
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plot significant relations among industries where the threshold for significance is such that

qi,j > c, where c is set to 0.5 and 0.9, respectively. This shows that the network of industry-

level stock returns has a core-periphery structure, with a dense core composed by most

of the industries and a sparse periphery composed by “Txtls,” Automobiles and Trucks

(“Autos”), Steel Works (“Steel”), Communication (“Tlcm”) and Restaurants, Hotels, and

Motels (“Meal”) industries.

However, since the structure of the network is likely to change over time, we compute

the time-varying centrality measures for each industry based on the information contained

in Qt and report the results in Figure 7. The estimates show substantial heterogeneity

related to the importance (i.e., centrality) of each industry over time. In the sequel, we

show that the time-varying centrality measures can be related to well-known economic and

financial events.

For example, in Panel (a) of Figure 8, we plot the time-varying centrality of the Financial

industry, which shows that its importance tends to increase sharply during most of the

recessions defined by the NBER, including the Great Recession of 2008. This can be

related to the strong linkages between financial and real sectors. Also, it rose sharply

around October 1997; that is, during the Asian crisis that triggered a turmoil in global

stock markets.

In Panel (b) of Figure 8, we show how the importance of the oil industry increased

during the late 1960s and early 1980s, when oil shocks were key drivers of the business

cycle. In particular, the centrality of the oil industry picked up during 1969 when the

U.S. congress voted to reduce the percentage depletion allowance, leading to a significant

decline in the value of oil stocks, as documented in Lyon (1989). The importance of the oil

industry also increased substantially in 1980, when the United States enacted the Crude

Oil Windfall Profit Tax as part of a compromise between the Carter Administration and

the Congress over the decontrol of crude oil prices. The embargo on Libyan oil imports,

imposed by the Reagan Administration in 1982, was also associated to an increase in the

centrality of the oil industry. A similar situation occurred in 2011, due to political turmoil

in oil exporting countries such as Libya and Egypt.

Regarding the importance of the communication industry, Panel (a) of Figure 8 shows

that the largest increase in the centrality of communication industry occurred in the early

1990s, when the internet started to be publicly commercialized. Other episode of high

importance in the communication industry as captured by the time-varying centrality oc-

curred during the dot-com bubble, in the early 2000’s, and in the wake of the merger

between AT&T and BellSouth, in December 2006, one of the largest communication merg-

ers in history.

Another interesting example is the case of the “Steel” industry, for which its importance

in the stock market network remained at relatively low levels until the late 1990s, when
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steel prices started to increased. In particular, the steel industry experienced its highest

level of centrality during March 2002, when President Bush announced that the United

States was imposing three-year tariffs on imported steel ranging from 8% to 30%. Also,

the centrality of the “Steel” industry was subject to significant changes around the late

2000s, period that coincides with the end of the a so-called commodity super cycle.

The above examples show that, in general, the time-varying centrality measures experi-

ence dynamics that line up well with important industry-specific events. This information

can be useful for policy makers and financial market participants in order to perform a

timely assessment about the industries playing a key role in the stock market network.

4 Conclusions

This paper investigates the interactions between monetary policy and the stock market,

concentrating on the extent to which this relation is affected by the degree of comovement

– or connectedness – of the stock market. In doing so, our analysis uses industry-level stock

return data so as to provide a comprehensive assessment of the effects of monetary policy

on the stock market. Our impulse response analysis suggests that whenever an industry

is more related to the aggregate stock market, this industry tends to react relatively more

to monetary policy shocks. As such, our results provide evidence in favor of an important

role for the connectedness of the stock market in propagating monetary policy shocks.

Moreover, our analysis identifies the industries that react the most to monetary policy

shocks and thereby act as conduits through which monetary policy shocks transmit to the

rest of the stock market.

A key contribution of this paper is also methodological in that we show how to estimate

a large-scale factor-augmented vector autoregressive model with Markov-switching factor

loadings. This new framework denoted as MS2-FAVAR is well-suited to perform a network

analysis of large dimensional datasets to analyze the comovement of discrete regime shifts

in high-dimensional datasets. Moreover, it is straightforward to implement and can be

easily adapted to many applications in macroeconomics and finance when one is interested

in modelling regime switching dynamics in factor-augmented vector autoregressive models.
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Table 1: Industry portfolio

Abbreviation Description

Food Food Products

Beer Beer and Liquor

Smoke Tobacco products

Games Recreation

Books Printing and publishing

Hshld Consumer goods

Clths Apparel

Hlth Healthcare, Medical Equipment, and Pharmaceutical Products

Chems Chemicals

Txtls Textiles

Cnstr Construction and Construction Materials

Steel Steel Works Etc.

Fabpr Fabricated Products and Machinery

Elceq Electrical Equipment

Autos Automobiles and Trucks

Carry Aircraft, Ships, and Railroad Equipment

Mines Precious Metals, Non-Metallic, and Industrial Metal Mining

Coal Coal

Oil Petroleum and Natural Gas

Util Utilities

Tlcm Communication

Servs Personal and Business Services

Buseq Business Equipment

Paper Business Supplies and Shipping Containers

Trans Transportation

Whlshl Wholesale

Rtail Retail

Meals Restaurants, Hotels, and Motels

Fin Banking, Insurance, Real Estate, and Trading

Other Everything Else
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Figure 1: Factor extracted from the 30 industry Fama-French portfolio
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Note: This figure plots the dynamic factor extracted from the 30 industry-specific stock returns. The sample covers 1960:1-2014:12. Bands represent

the 16 and 84 percentile estimates of the posterior distribution. Shaded bars indicate selected financial crash episodes.
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Note: This figure plots the impulse responses to an unexpected 100 basis point increase in the policy rate

obtained from the MS2-FAVAR. The shock takes place in period 1. The solid line represents the median

estimates of the posterior distribution, the dotted lines represent the 10- and 90- percentile estimates of

the posterior distribution.

Figure 2: Estimated responses of macroeconomic variables to a monetary policy shock from the

MS2-FAVAR model
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Figure 3: Estimated responses of industry-specific stock returns to a monetary policy shock from

a MS2-FAVAR model

Note: Blue (red) lines plot the impulse responses to an unexpected 100 basis point increase in the policy rate

during regimes of low (high) comovement. The shock takes place in period 1. The solid line represents the

median estimates of the posterior distribution, the dotted lines represent the 10- and 90-percentile estimates

of the posterior distribution. There is no response for the “Food” industry in the low comovement regime,

since the factor loading in that case is restricted to be zero to identify the factor.
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Figure 4: Stock returns comovement and monetary policy responsiveness
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Note: The top left panel plots the high degree of responsiveness to monetary policy shocks, (λF
m,0 + λF

m,1)

against the expected duration of being in the high comovement regime, PE
m,1. The top right chart plots low

degrees of responsiveness to monetary policy shocks, λF
m,0 against the expected duration of being in the

high comovement regime, PE
m,1. The bottom left chart plots the high degree of responsiveness to monetary

policy shocks, (λF
m,0 + λF

m,1) versus the expected duration of being in the low comovement regime, PE
m,0.

The bottom right chart plots the low degrees of responsiveness to monetary policy shocks, λF
m,0 against the

expected duration of being in the low comovement regime, PE
m,0. For each chart, the Y-axis measures the

factor loading, whereas the X-axis represents the expected duration of being in a given regime in months.
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Figure 5: Time-varying factor loadings
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Note: This figure shows the time-varying factor loadings obtained from the MS2-FAVAR for all 30 indus-

tries.
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Figure 6: Network of industry-specific stock returns

(a) Bilateral relations with qi,j > 0.5 (b) Bilateral relations with qi,j > 0.9

(c) Zoom of bilateral relations with qi,j > 0.9

Note: The figure plots the bilateral relationships in terms of synchronization between the industry stock market returns. Each node represents an

industry i, and each line represents the link between two industries i and j.
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Figure 7: Time-varying centrality of industries in the stock market network
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Note: This shows the time-varying centrality for all industries.
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Figure 8: Time-varying centrality of selected industry-level stock markets
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Appendix

Figure A1. Estimated responses of industry-specific stock returns to a mone-

tary policy shock from a MS2-FAVAR model – Alternative identification scheme

Note: Blue (red) lines plot the impulse responses to an unexpected 100 basis point increase in the policy rate

during regimes of low (high) comovement. The solid line represents the median estimates of the posterior

distribution, the dotted lines represent the 10- and 90-percentile estimates of the posterior distribution.

The identification scheme allows for a simultaneous response of monetary policy to stock market shocks.
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