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ABSTRACT 

Artificial animal cell culture was successfully developed by Ross Harrison in 1907. 

But it was not until the 1940’s and 1950’s that several developments occurred, which 

expedited the cell culturing in-vitro (C-Vitro) to be a consistent and reproducible 

technique to study isolated living-cells in a controlled environment. Currently, C-

Vitro is one of the major tools in cellular and molecular biology both in the academia 

and industry. They are extensively utilised to study the cellular 

physiology/biochemistry, to screen drugs/therapeutic compounds, to understand 

the effects of drugs/toxic compounds and also to identify the pathways of 

carcinogenesis/mutagenesis. It is also used in large scale manufacturing of vaccines 

and therapeutic proteins. In any experimental setup, it is important that the C-Vitro 

model should represent the physiological phenomena of interest with reasonable 

accuracy so that all experimental results are statistically consistent and reproducible. 

In this direction, sensors and measurement systems play important roles in in-situ 

detection and/or control/manipulation of cells/tissues/environment. This thesis 

aimed to develop new technology for tailored cell culturing and integrated 

measurements. Firstly, design and assembly of a portable Invert-upright microscope 

interchangeable modular cell culturing platform (iuCMP) was envisioned. In contrast 

to conventional methods, micro-scaled systems mimic the cells' natural 

microenvironment more precisely, facilitating accurate and tractable models. The 

iuCMP integrates modular measurement schemes with a mini culture chamber using 

biocompatible cell-friendly materials, automated environment-control (temperature 

and gas concentrations), oxygen sensing and simultaneous functional measurements 

(electrophysiological and image-based). Time lapse microscopy is very useful in cell 

biology, but integration of advanced in-vitro/device based biological systems (e.g. 

lab/organ/body-on-chips, or mini-bioreactors/microfluidic systems) into 

conventional microscopes can be challenging in several circumstances due to 

multiple reasons. But in iuCMP the main advantage is, the microscope can be 

switched either as an inverted or as an upright system and therefore can 

accommodate virtually any in-vitro device. It can capture images from regions that 

are otherwise inaccessible by conventional microscopes, for example, cells cultured 

on physical or biochemical sensor systems. The modular design also allows 
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accommodating more sensor or measurement systems quite freely. We have 

demonstrated the system for video-based beating analysis of cardiomyocytes, cell 

orientation analysis on nanocellulose, and simultaneous long-term in-situ microscopy 

with oxygen and temperature sensing in hypoxia.  

In an example application, the system was utilised for long-term temperature 

stressing and simultaneous mechanobiological analysis of human induced 

pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). For this the iuCMP 

together with a temperature sensor plate (TSP) and a novel non-invasive beating 

analysis software (CMaN—cardiomyocyte function analysis tool, scripted as a sub-

part of this thesis), was applied for automated temperature response studies in 

hiPSC-CM cultures. In-situ temperature sensing is usually challenging with bulky 

external sensors, but TSPs solved this issue. In the temperature response study, we 

showed that the relationship between hiPSC-CM beating frequency and temperature 

is non-linear and measured the Q10 temperature coefficients. Moreover, we observed 

the hiPSC-CM contractile networking, including propagation of the action potential 

signal between dissociated clusters and their non-invasive measurements. It was the 

first case where these events were reported in hiPSC-CM clusters and their non-

invasive measurements by image processing.  

The software CMaN comes with a user-friendly interface and, is equipped with 

features for batch processing, movement centre detection and cluster finding.  It can 

extract six different signals of the contractile motion of cardiomyocytes (clusters or 

single cells) per processing.  This ensures a minimum of one useful beating signal 

even in the cases of complex beating videos. On the processing end, compared to 

similar tools, CMaN is faster, more sensitive, and computationally less expensive and 

allows ROI based processing. In the case of healthy cells, the waveform of the signal 

from the CMaN resembles an ECG signal with positive and negative segments, 

allowing the computation of contraction and relaxation features separately.  

In addition to iuCMP, a Modular optical pH measurement system (MO-pH) for 

24/7 non-contact cell culture measurements was also developed. The MO-pH 

incorporates modular sterilisable optical parts and is used in phenol-red medium cell 

cultures. The modular assembly of MO-pH cassettes is unique and reusable. 

Measurements are carried out in a closed flow system without wasting any culture 

medium and requires no special manual attention or recalibrations during culture. 

Furthermore, a new absorption correction model was put forward that minimised 

errors caused e.g. by biolayers in spectrometric pH measurement, which improved 

the pH measurement accuracy. MO-pH has been applied in long-term human 

adipose stem cells (hASC) expansion cultures in CO2 dependent and independent 



v 

 

media. Additionally, the MO-pH was also utilised to comprehend the behaviour of 

pH, temperature and humidity in water jacked incubators as well as to record the pH 

response as a function of temperature in the presence and absence of CO2 in the 

context of stem cell cultures. The resulting plots clearly showed the interplay 

between measured parameters indicating a few stress sources present all through the 

culture. Additionally, it provided an overall picture of behaviour of critical control 

parameters in an incubator and pointed out the need for bioprocess systems with 

automatic process monitoring and smart control for maximum yield, optimal growth 

and maintenance of the cells. Besides, we also integrated MO-pH into flasks with re-

closable lids (RL-F) and tested its applicability in stem cell cultures. A standalone 

system around an RL-F flask was built by combining the cell culture, medium 

perfusion and optical measurements. The developed RL-F system has been 

successfully tested in ASC-differentiation cultures.  

Finally, a few trial experiments for image-based pH estimation aimed for iuCMP 

have also been carried out. This includes tests with LCD illumination, optical 

projection tomography, and webcam systems. In reality, the pH is not distributed 

uniformly in tissues, and has shown a gradient of up to 1.0 pH unit within 1 cm 

distance. Therefore, producing reliable pH maps also in in-vitro can be important in 

understanding various common pathologies and location of lesions. A reliable and 

adequately developed long-term pH mapping method will be an important addition 

into the iuCMP.  
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1. INTRODUCTION 

This thesis was aimed to develop new technology for tailored cell culturing and 

integrated measurements. Design and assembly of a portable in-vitro cell culturing 

platform with a novel interchangeable microscopy architecture was envisioned. In 

addition, the development of an optical pH measurement system with sterilisable-

modular parts for 24/7 non-contact pH monitoring was also envisaged.  

1.1. Motivation 

Cell culturing in-vitro (C-Vitro) is a widely accepted technique both in academia and 

industry to study biological mechanisms and responses related to human health and 

disease. One major advantage of C-Vitro is its consistency and reproducibility. 

Culturing systems can vary from simple dishes/slides to more complex and 

advanced device-based systems such as cells/tissues/organs on chips. Even though 

a complete abolishment of animal models has not yet been achieved, the systems 

based on reprogrammed cells, for example, human induced pluripotent stem cell 

(hiPSC) have generated significant enthusiasm in various fields of life sciences. This 

is mainly because the hiPSCs can be engineered into other cell types and can 

overcome the limitations of animal models due to their human origin. 

Conventionally, hiPSCs and most mammalian cells are cultured in incubators 

where the environment is usually set to 37 oC, 5 % CO2 and 19 % O2 for the 

successful growth of the cells. In addition, the relative humidity is maintained 

nearly at > 95 % to minimise the medium evaporation. These conditions, in 

principle, should be very stable and not be a source of experimental variations [1]. 

Correct parameters for the culture medium, in particular, the levels of oxygen 

(dissolved) and pH are very important in successful cell studies. Oxygen is vital not 

only for the cell’s energy metabolism but is also critical in regulating the cell function 

and differentiation [2]. Further, with 5 % CO2, the acid-base homeostatic mechanism 

(bicarbonate buffering system) in the medium regulates the pH to 7.2-7.4. 

Fluctuations in pH can have a huge impact, for instance, even 0.1-0.2 pH unit 
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variation from the setpoint can affect cell growth, function and metabolism. 

Moreover, as the cells constantly consume oxygen and release wastes (pyruvic acid, 

lactic acid and CO2), the pH of the medium may drop further without an appropriate 

CO2 control [2]–[5]. Besides, this thermoregulation in cell culture is also very 

important, for instance, temperature fluctuations (< 2 oC) have shown to alter the 

cardiomyocytes (CM) beating properties and modulate the firing rate in the cortical 

networks during up states [6]. Temperature can also alter the medium viscosity, 

density and soften the cells and slower the functions. Lack of proper 

thermoregulation, apparently, is one of the main reasons in biological variability in 

cell cultures. Other factors such as pressure and mechanical load are also known to 

have influence on cell cultures [7].  

Measurements have shown that maintaining a uniform environment for each 

culture container in a conventional incubator is nearly impossible. Cells may also 

experience intermittent environmental fluctuations at various time points during the 

culture [8]–[10] Prolonged or repeated environmental fluctuations can have an 

unhealthy impact, for example, it can affect the cell attachment [11] or trigger stress 

reactions[12]. If the stress reactions are triggered, cells, depending on the cell type, 

nature and duration of the stress, respond in various ways ranging from the 

activation of survival pathways to the initiation of cell death [11]–[14]. The interplay 

between environmental factors, for instance, the effect of temperature on pH and 

medium evaporation can also adversely affect the culture output. However, recent 

developments in microfabrication techniques, microfluidic devices and 3D printers 

have provided solutions to tackle these problems by devising micro-scaled systems, 

for instance, microphysiological vessels or microbioreactors. These systems can 

maintain the culture conditions more precisely and mimic the cell natural 

environment more accurately. And most importantly, the micro-scaled systems are 

faster and cheaper to produce, require less electrical power, working volume and 

supplementary reagents. All these factors, in effect, will enable long-term cost 

effective and successful cell culturing. Furthermore, the efficient representation of a 

cell’s natural environment can facilitate highly accurate and tractable cell models for 

advanced studies. 

In cell culturing, measurements, including in-situ imaging have important roles in 

activity monitoring, optimization as well as for process control. Reliable 

measurement systems with good feedback can not only improve the quality of cell 

culturing but also enhance productivity and reproducibility. But, although cells have 

been kept alive in-vitro and researched for more than a century, the monitoring 

methods are lagging behind the progress in cell culture techniques[15], [16]. It is an 
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important issue that needs to be addressed. Not only that, even though several 

miniaturized bioreactors and device-based biological systems are constantly 

reported, integration of physiological or chemical sensing systems into them can be 

challenging in many cases. This can be due to concerns in mechanical incompatibility 

and practical issues with connectivity (optical, electrical, fluid flow). In this context, 

we have conceptualised an Invert-upright microscope interchangeable modular cell 

culturing platform (iuCMP) with a PDMS mini-incubator, a compact digital 

microscope and an automated environmental control (temperature, oxygen and 

other gas concentrations). Furthermore, the platform has integrated sensors 

(fluorometric pO2 sensor and micro temperature sensor), a microelectrode array 

amplifier (MEA) and a video-based cardiomyocytes (CM) function analysis software 

(CMaN-CM function analysis tool). The platform can be used for long-term tabletop 

cell culturing, cellular response studies and simultaneous functionality assessment 

(electrophysiological analysis and non-invasive video-based mechanobiological 

analysis). In addition to the iuCMP, a non-contact modular optical pH measurement 

system (MO-pH) using sterilisable parts for phenol red (phenolsulfonphthalein) cell 

culturing medium for 24/7 real-time spectroscopic pH monitoring is also 

envisioned.  

An ideal modular culture platform will be a multifunctional platform that 

integrates independently created plug and play modules, such as perfusion module, 

sensor modules, imaging module (3D, fluorescent), MEA module, control module 

(gas exchange, temperature, pH), stimulation module etc. with the option that the 

modules can be configured-reconfigured with minimum effort for different 

biological studies. In addition, it is expected to accommodate various miniaturized 

in-vitro constructs and monitoring devices quite freely. Cultured cells have 

applications in many areas, for example, in tissue engineering (repair, enhance, or 

replace biological tissues), in the pharmaceutical industry (drug-dosage screening, 

side effects-toxicity testing) and in the cosmetic industry (product validation). 

Furthermore, they are widely used in immunology (antibody, vaccine and therapeutic 

protein production) and in life sciences’ research (future regenerative medicine, 

cytotoxicity, tissue and organ development). Integrating smart features into culturing 

systems, for instance, real-time automated image analysis, decision making, tracking, 

intelligent medium exchange etc. are not typically possible with traditional culture 

systems without costly, specialised arrangements [17]–[23]. But those can be 

materialised with modular culturing systems. However, smart systems even with 

their high potential, are still in the developmental phase, lacking standardised 

techniques and having still many hurdles to overcome. The research in this area is 
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fascinating because successful developments can not only boost the academic 

science but also impact the society, for instance, contribute to reducing the cost of 

drugs, provide more mechanistic insight into diseases (carcinogenesis, mutagenesis 

and cancer) and diseases pathogenesis (cardiovascular, epileptic seizures). 

As a side note:- Since the focus of this thesis is on methods/technical 

development with more leverage to engineering aspects, the issues related to 

intracellular functions, cell-to-cell interactions and stimulation (by chemical, 

mechanical, optical, and electrical factors) are not considered in detail here.  

1.2. Objectives and Research Questions 

This thesis has two goals. The first goal is to develop a standalone digital imaging 

module (compact microscope) for unstained live-cell microscopy together with 

iuCMP and the CM functionality analysis software CMaN. The iuCMP is intended 

to enable a highly stable, cell-friendly environment for long-term cellular studies and, 

if desired, to generate timely environment control to study biological responses. 

Multiple monitoring and measurement schemes are integrated into iuCMP. The 

second goal is to develop a non-contact spectroscopic pH measurement system with 

sterilisable - modular parts. Both the intended goals have been accomplished, and 

the developed hardware and software are continually being used in different 

experimental studies. The details of the automated temperature stressing 

experiments with hiPSC cardiomyocytes (hiPSC-CMs), are also presented in this 

thesis.  To summarise, this work combines 3D modelling and design, ray optics 

simulations, instrumental assembly and cellular experiments (demonstrative and 

applied). The specific research questions of the thesis are defined as follows:  

1. How can measurement systems with minimal disturbance to cells and 

suitable for long-term studies outside a traditional incubator be 

created? 

 

2. Can a mini phase contrast microscope with invert-upright 

convertibility be developed for good quality imaging of unstained live-

cells in-vitro? 

 

3. Can affine-optical flow be used to reliably analyse multiple beating 

signals from cardiomyocyte beating videos? If so, does the waveform, 
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speed and sensitivity allow the computation of relaxation and 

contraction features separately? Can it be applied for movement 

centre detection, batch mode processing and real-time analysis? 

 

4. Can we carry out long-term automated assessments of the hiPSC-CM 

contractions to temperature stimuli outside a conventional incubator? 

 

5. Can we reliably measure pH, based simply on non-contact optical 

methods during long-term observations? 

1.3. Thesis Organisation 

This thesis comprises of four scientific papers and is divided into five chapters. 

Chapter 1 presents the motivation, objectives and research questions, and provides 

a summary of main results.  Chapter 2 explains the relevant background for the study 

and highlights current challenges on the two measurement systems that this thesis 

aims to develop. Chapter 3 and Chapter 4 present the research work related to this 

thesis. Chapter 3 details the Measurement system1: Compact digital 

microscope, iuCMP and CMaN. Optical simulations, 3D system design, digital 

imaging schemes, invert-upright interchangeable system and the theory related to 

CMaN are outlined in this chapter. The Measurement system1 was applied to 

multiple studies and four application examples are also included in Chapter 3. 

Chapter 4 presents the Measurement System 2: the non-contact optical pH 

measurement system, MO-pH. The MO-pH is based on two colour pH 

measurement whose theory,  temperature compensation and absorption correction 

scheme, as well as the summary of hardware design, are presented in Chapter 4. 

Measurement results from long term stem cell culture measurements are provided 

in the Results and discussion section in Chapter 4. Further, a novel pH measurement 

method using re-closable lid flasks and preliminary ideas for a few image-based pH 

estimation schemes are also included in Chapter 4. Finally, Chapter 5 concludes the 

thesis with summarising the results, providing answers to the research questions and 

discussing the limitations of the study. 
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2. BACKGROUND 

In this chapter, a short overview and the significance of the research in relation to 

the current knowledge is provided. The purpose is to recall previous studies in the 

context of the author’s work, specifically in the areas of C-Vitro in-situ imaging, 

compact microscopy, iuCMP, CMaN and MO-pH.  

2.1. Cell Culturing In-vitro and In-situ Imaging 

Cell culturing in-vitro is a well-known technique where the cells are transferred from 

an organism and placed in a fluid in an artificial in-vitro construct/system. Under 

appropriate conditions, the cells can live, grow, divide (mitosis) or even differentiate 

into other cell types. Today, cell culturing is widely used in biotechnology, clinical 

diagnostics, tissue engineering as well as in various areas in life sciences to develop 

cell and disease models, drug screening, cell-based manufacturing and toxicity 

testing. Small-scale upstream cell culturing traditionally occurs often in Petri dishes, 

culture flasks or multi-well plates stored in an incubator. Advances in technology 

and organotypic cell/tissues models have facilitated microphysiological in-vitro 

systems that can mimic human physiology with great precision [24]–[26]. An in-vitro 

system is usually more complex with a 2D or 3D platform with substrates, fluids 

(with essential nutrients, growth factors), thermoregulation and usually with an acid-

base homeostatic mechanism (eg. by CO2-bicarbonate buffering). A functional 

micro-scaled system, compared to conventional methods, emulates the cells’ natural 

environment more exactly where the cells function analogous to their tissues or 

organs in the whole organism. A broad list of advantages of various in-vitro cell 

techniques have been extensively described elsewhere [27]–[31], but in all cases, it is 

important that the in-vitro model should represent the physiological phenomena of 

interest with reasonable accuracy so that all experimental results are statistically 

consistent and reproducible [32]. Sensors and actuators have great potential in in-

vitro systems for in-situ detection and/or manipulation of relevant cells or tissues [33]. 

Biomarker quantification or methods such as viability assays are frequently used to 

assess cellular functionalities or cytotoxicity but usually, they are performed off-the-
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chip in an endpoint manner. On the other hand, real-time sensing would allow one 

to avail of the complete advantage of in-vitro systems, for example, for efficient 

control and manipulation. Integrating sensors into in-vitro systems usually enables 

higher sensitivity, temporal and even spatial resolution via integration. Continuous 

24/7 real-time measurements have invaluable potential for recapitulating various 

aspects of human physiology and makes more accurate and tractable models for 

advanced studies. This can also enhance the efficiency of experiments in human 

disease modelling, molecular signalling, gene expression and cell-based 

manufacturing. Besides, this may also help to improve the culturing systems and its 

environment regulation schemes more effectively. Most importantly, it can further 

aid in developing miniaturized non-conventional cell culturing systems such as 

microfluidics cell chips, microphysiological scaffolds and organ/body-on-chips. 

However, integration of sensors to a culturing systems may not always be easy due 

to various reasons including issues with sensor physical dimensions (and 

connectivity), measurement volume requirements, sterilisability, biocompatibility, 

signal drift and long-term stability. Therefore, not all commercially available sensors 

can be directly useful for cell culturing applications and development of totally new 

sensor/measurement systems may be the only alternative in numerous cases. In 

addition, the measurement location, whether it is for onsite (at the area where the 

cells grow) or offsite (slightly away from the cell location) monitoring also needs to 

be sorted out. For offsite measurements, a sampling/flow system may be 

unavoidable. To sum up, integration of sensors into in-vitro systems, in general, 

requires critical planning, careful studies, including biocompatible tests, and 

iterations.   

For real-time cell culture monitoring, one commonly applied technique is time-

lapse microscopy (TLM) which can enable both qualitative and quantitative analyses 

of important biological information. A TLM system meant for live-cell microscopy 

is usually equipped with an environment chamber, and utilises a contrast 

enhancement scheme, for example, differential interference contrast (DIC) or 

Hoffman modulation contrast (HMC) or phase contrast or fluorescence (by staining) 

[34]–[37]. The state-of-the-art TLM frameworks such as confocal and super-

resolution systems have overcome the barriers of Abbe’s classical diffraction-limited 

resolution, and its novel developments address the problem of photo-cyto toxicity 

of those techniques [38] and produce high quality-high contrast images. But, it comes 

with a price; high costs, fairly complicated hardware settings and high upkeep [39]–

[43].  High throughput observations can also be difficult with them [44].  Several of 

today’s device based biological systems (e.g. reaction chambers, bioreactors, 
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microfluidic culture systems, lab/organ/body-on-chips), also require TLM in-situ. 

But integrating them into an off-the-shelf TLM system can be tricky and challenging 

in many cases due to a multitude of reasons [45]–[54]. Several of recently developed 

sensor systems [55]–[57] are efficient candidates for accurate process monitoring and 

environment regulation, however, most of them, unfortunately, are not directly 

compatible for a conventional TLM system. Research for better/achievable spatial 

resolution in microscopy is definitely important, but concurrently, the demand for 

miniaturised case-specific live-cell microscopes with good imaging quality is also 

constantly increasing. Compact microscopes instead of high-end, large-form-factor 

systems, are inevitable for obvious reasons, for example, for in-situ TLM in a 

conventional incubator. Several compact microscopes have been reported over the 

last few years from both academic and commercial endeavours [58], [59]. As new 

microscope modalities emerge, a trend to miniaturise them can also be seen. For 

example, the on-chip bright field - fluorescent microscopes offer high resolution, 

large field-of-view (FOV) and incubator compatibility, but inherently the cells need 

to be plated on the imaging chip, which makes them somewhat inconvenient for 

conventional cell culturing workflow [60]–[63].  On the contrary, compact 

microscopes based on digital holographic microscopy (DHM) facilitate lensless and 

widefield 2D or 3D imaging.  But since it is computational microscopy, numerical 

image reconstruction from the diffraction pattern of the specimen is inevitable which 

restricts the immediate visualisation (live-view) of the cells [64]–[68]. On the other 

hand, Optical projection tomography (OPT), an interesting imaging modality which 

progressed notably in the last decade can produce 3D cell images, but the cells must 

be immobilised, which can be problematic for live-cell imaging of certain cell types. 

The light guide microscopy, for instance, fibre optic endoscopic microscope [69]–

[71] has notable advantages, but fibre integration into the cell chamber can be 

oftentimes cumbersome, in addition to their calibration difficulties [72]–[77].  

Alongside the miniaturisation of aforementioned and other emerging microscope 

modalities, case-specific miniaturisation of conventional modalities can be very 

useful, especially when they are equipped with features like smart phone 

compatibility, wireless connectivity, web interfacing, decision making and cloud 

integration. They can have applications in remote cell microscopy, mobile healthcare, 

e-health and on-field medical diagnosis [78], [79]. To this end, several mini cost-

effective microscopes have been reported recently, but most of them, except for a 

few employ basic bright-field or fluorescent imaging schemes [60]–[63], [78]–[80]. 

As live-cells are naturally very transparent for visible wavelengths, the imaging 

contrast can be a problem in basic bright-field schemes. The contrast is better in 
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fluorescent systems, but it comes at the cost of fluorescent staining and related 

photo-toxic limitations in long-term TLM. In some systems, chromatic aberration is 

noticeable [44]. The webcam-based systems are inexpensive but their lossy image 

compression schemes and default auto settings limit their applicability in analytical 

quantifications [44], [81], [82]. Further, the typical webcam frame rates (20-30 frames 

per second (fps)) are insufficient for certain dynamic studies. To that end, we have 

also tested two USB 2 microscopes which had several useful features such as a large 

adjustable magnification, portability and easy computer connectivity [83], [84]. They 

produced good images of dry surfaces and electrodes, but the performance was not 

acceptable for wet and transparent samples. In the end, we realised that we need to 

depend on a microscopy with a contrast enhancement scheme for live-cell imaging 

in our intended system. The DIC and phase contrast ones were the top priorities, 

but we were not able to find their miniaturised versions suitable for our systems 

from any commercial vendor. At this stage, we decided to develop a compact and 

flexible digital imaging unit suitable for our in-vitro systems. The details of the 

developed system are discussed in Chapter 3. The cost of the system including the 

invert-upright optomechanics can be around 600-800 Euros.   

2.2. Invert-Upright Interchangeable System for In-vitro 
Studies 

Recently reported miniaturised microscopes have been developed for a specific 

application or a system and not necessarily modular or multipurpose for extended 

applications. They have been explicitly designed to be used either as an inverted or 

upright system and are mutually exclusive. For most in-situ studies, a standard 

inverted TLM works fine, but in some instances, the room under the cell-substrate 

may be reserved by other measurement systems (e.g.  pH/pO2 opto-chemical 

sensors, glucose/lactate biosensors, electrochemical ion sensors), therefore a 

simultaneous inverted TLM becomes impossible. So after our compact microscope 

was successfully materialised, we extended the research to devising an invert-upright 

microscope interchangeable architecture. This lead to the development of the 

iuCMP. In iuCMP, the microscope can be easily swapped between invert-upright 

configurations, therefore it is very flexible to integrate additional measurement 

systems. The iuCMP details and its four possible convertible options (Figure 9) are 

provided in Chapter 3.3. 
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While we were designing the iuCMP, no similar system was commercially 

available. However, a commercial hybrid invert-upright system (Revolve 3/Revolve 

4, Echo Laboratories) is currently available [85].  This system has a touch interface, 

app connectivity as well as accelerometer controlled anti-shake control.  But as the 

commercial one is solely a microscope, the cell culturing incubator chamber, heater 

stage etc. need to be separately built in order for them to be applied in long-term 

TLM applications. In addition, a system titled ‘The Flexiscope’ has been reported 

very recently in Biorxiv (not peer-reviewed) with multiple claims [86]. The Flexiscope 

appears to be an interesting system for advanced neurobiology experiments with 

features for multi-channel fluorescent imaging, 3D scanning and oblique infrared 

illumination. The system, however, is not very compact or portable due to a large 

number of optical and opto-mechanical components. But in any case, these recent 

developments indicate, there is an ever-growing interest in engineering flexible, 

modular and multipurpose systems to meet diverse needs and the arising new 

challenges [87]–[94].  

The microscopy schemes in iuCMP are not solely for qualitative TLM but also 

for image-based quantification of cell functionalities, for example, online or offline 

movement analysis of cardiomyocytes. Image-based or spectroscopic techniques can 

be implemented as a non-invasive measurement method which is advantageous over 

traditional invasive analytical methods such as patch-clamp, voltage-sensitive dyes, 

and Ca transient/sarcomere length profiling [95]–[98]. When traditional methods 

can be laborious, and occasionally suffer from chemical crosstalk (interplay), the 

image-based measurements can facilitate label-free, highly localised as well as 

multipoint measurements.  

2.3. Video-Based Cardiomyocyte Non-invasive Contractile 
Function Analysis 

For cardiomyocytes function analysis, methods, such as electrophysiology, 

fluorescent labelling, Ca2+ transient or impedance measurements or sarcomere 

length profiling [98] are conventionally used. Advances in digital imaging and image 

processing methods have facilitated new methods for function analysis. Video-based 

function analysis is one among them which can be implemented as a fully non-

invasive method when the stream of images have enough spatial resolution, 

magnification and sufficient frame rate matching the CM’s contractile timing for 

lossless movement capture. A number of video-based function analysis software 
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have recently been reported [99]–[104] with various features. To this end, we have 

developed an advanced movement analysis software CMaN for offline and online 

video-based beating analysis. Basic properties of several similar software programs 

have been compared elsewhere [105]. CMaN was tested against three important 

programs ([103], [104], [106]) and has been found to have several notable advantages 

which are summarised in the last paragraph of Chapter 3.4.1. CMaN is an easy-to-

use robust tool and available for download with the Publication II. The working 

principle and algorithm implementations are provided in detail in Chapter 3.4.1.   

2.4. Cardiomyocytes and Temperature   

Primary CMs are difficult to obtain but the hiPSC-CMs can be produced in 

laboratories by the differentiation of human iPSC cells. As hiPSC-CM can overcome 

the limitations of animal models due to their human origin [107], they have been 

increasingly used in heart research, disease modelling, regenerative medicine, cardiac 

drug discovery and toxicology [108], [109]. In all these applications, precise control 

of the experimental environment of O2, CO2, pH, osmolarity, temperature are 

highly important in order to maintain normal cell function and to avoid unexpected 

experimental variations [1], [56], [110].  In the case of temperature, it can have a mild 

to acute effect on the cell function. The effect of temperature on cardiomyocyte 

function is briefly discussed in Publication II. Unfortunately, a complete picture of 

the underlying mechanism of temperature-induced abnormalities in hiPSC-CM 

function is still elusive [111]. So it is important to recognise the stress response of 

hiPSC-CMs to temperature stimuli and quantitatively evaluate it.  The acute effect 

of temperature on hiPSC-CM function has previously been reported, but an 

automated systematic temperature stressing study has not been reported before. We 

utilized iuCMP and CMaN together with calibrated temperature sensor plates (TSP, 

[112]) for this purpose. Measuring temperature from the location where cells grow 

is usually challenging with traditional methods. But the TSPs have microfabricated 

meander-type temperature sensors on its surface, so when the CMs are cultured 

directly on the TSP, the temperature from the exact cell area can be measured 

precisely. The introduction part of Publication II briefly describes the relevance of 

hiPSC-CM temperature response study. Our study aimed to precisely understand 

how the mechanobiology parameters such as, the beating frequency, relaxation time, 

contraction time, and the beating amplitude respond to temperature stimuli in long-

term measurements. Additionally, we reported the Q10 temperature coefficients and 
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the novel results of action potential signal propagation between dissociated hiPSC-

CM clusters in Publication II. 

2.5. Cell Culturing Environment and pH Measurement 

A successful human cell culturing requires a sterile, biocompatible, cell-friendly 

medium chamber and well regulated gaseous environment. The cell culturing fluid, 

throughout the culture, should also supply nutrients (e.g. glucose, vitamins, amino 

acids and hormones), maintain the acid-base homeostatic balance and remove the 

metabolic waste. Reliable monitoring of culturing environment and metabolic 

parameters can ensure reproducibility and also give insight into the transient nature 

of several intra and extracellular processes researched. To this end, there is growing 

interest in multi-parameter sensing for faster, cheaper, more efficient and less labour-

intensive [15], [33], [113], [114] process monitoring.  Of all the sensors/monitoring 

schemes reported, the pH, temperature and dissolved oxygen are the most frequently 

monitored parameters where the growing interest is perhaps best evidenced by the 

dramatic increase in the number of papers reported in the last decade. We have also 

realised how critical these parameters are in our cell culturing applications and 

therefore quite regularly look for still better sensors. Our own Sensor Technology 

and Bio-measurement research team actively work for developing various in-vitro 

sensor/measurement systems [115]–[120]. In this context, one of the main focuses 

of this thesis was to develop the optical pH measurement system the MO-pH.  

Being a critical control parameter, pH can have a crucial impact on cell 

metabolism and proliferation unless it is maintained in a specific narrow range. 

Tissue functions in-vivo and cell viability are a strong function of pH, and a similar 

pH dependence has been observed in in-vitro cell cultures [3], [121], [122]. Most 

mammalian cells grow at the very narrow range, pH 7.2-7.4 [4], [5], [123], [124]. As 

cells proliferate and metabolise nutrients during culture, the secreted byproducts (e.g. 

CO2, pyruvic acid, lactic acid) tend to lower the pH [3]–[5].  But, the bicarbonate 

acid-base homeostatic mechanism (bicarbonate- CO2 buffering system), counteracts 

to nullify the pH fluctuations. However, the buffering action may not be perfect, 

especially in prolonged cultures due to reasons including cell confluence (extremely 

dense/sparse plating), evaporation, environmental fluctuations and lack of periodic 

medium exchange [125]–[127]. A real-time reliable pH monitoring can probe these 

changes, as well as provide valuable information on metabolic processes, cell 

functions and the overall growth[3], [121], [122], [128]. A detailed comparison of 
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various pH sensors are available elsewhere [129] but of all available systems, the 

electrochemical and pH-FET (field-effect transistor) sensors [121], [125], [129], [130] 

are the most commonly applied ones for reliable pH sensing. Both of them are 

excellent candidates for pH sensing but require frequent calibration, sample physical 

contact and are prone to significant signal drift in long-term operations[125], [129], 

[131]–[134]. Frequent sensor calibration always challenges the sterility and increases 

the risk of contamination. Moreover, they, like any other chemical/biosensors,  are 

extremely difficult to be sterilised [135].  Furthermore, the biofouling and membrane 

cell clogging are also problematic unless the sensors are coated with antifouling 

biocompatible materials. In contrast to electrochemical sensors, there is a growing 

interest in optical pH sensors because they can enable non-contact measurements 

with very good resolution and accuracy. Moreover, they exhibit very little calibration 

drift and require minimum maintenance[136]–[140]. Some optical pH sensors are 

already commercially available (e.g. iTube pH Bioreactor from PreSens, Wavepod 

II-pHOPT from GE Healthcare, TruFluor®pH from Finesse and OptiSens pH 

from Sartorius), and a few of them have already been tested in cell cultures.   

2.6. Spectroscopic pH Measurements 

Optical pH sensors can be of two types, contact sensors and non-contact sensors. A 

contact sensor, basically, is an optode that consists typically of three components; a 

chemical transducer (pH dye), a polymer matrix (to embed the dye molecules) and 

the instrumentation (waveguide such as optical fibre or micropatterned glass plate, 

light source, detector and measurement electronics). With physical liquid contact, 

the H+ ions modify the dye’s molecular structure or then the orbital energy levels. 

This change can be measured spectroscopically, for instance by measuring the light 

absorption/reflection/luminescence/fluorescence [129][139][140]. A contact 

optical sensor can measure the pH from extremely small volumes, but the sample 

physical contact is inevitable. The dye decay (by photobleaching/leaching), 

associated signal drifts and cytotoxicity/phototoxicity are also other concerns [129], 

[140]–[142]. On the other hand, a non-contact pH sensor avoids the sample physical 

contact (partially/fully) with a semi/fully detached chemical transducer and an 

appropriate optical measurement scheme. One good example is a reflective pH 

sensor (IDIL non-intrusive sensor from Fibres Optiques and REFLECT-PH-KIT 

from Ocean optics) that utilises ion-permeable pH membranes. The Smart pH 

cuvettes (PMMA/quartz, Ocean optics) is another attractive choice, where the inner 
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walls of the cuvette are sol gel coated with a sensor material (bromocresol green). 

Smart cuvettes are excellent candidates for many applications but intended for clear-

non-turbid media and require a specific spectrometer for pH calibration and 

measurement. Another interesting possibility is dissolving a biocompatible dye, for 

instance, a calorimetric pH dye, at a given concentration in a medium of interest and 

measuring the colour changes qualitatively or quantitatively using a spectroscope or 

a colour camera [129].  Qualitative pH assessment is very common in cell biology, 

therefore a wide variety of culture media with phenol red (phenolsulfonphthalein, 

pH dye) is commercially available these days. Culture medium with phenol red 

exhibits a gradual colour transition from yellow to red when the pH changes from 

6.8 to 8.2. The colour change intrinsically is driven by molecular changes, which is 

measurable also by spectroscopic means, enabling a quantitative pH estimation. In 

spectral measurements, phenol red attributes to two characteristic pH-dependent 

absorptions. This, with appropriate calibration, can be translated into absolute pH 

[143]. Hence, technically a standalone pH sensor becomes possible by measuring 

light intensity at one of the characteristic absorption wavelengths and at a neutral 

(reference) wavelength. This way a true non-contact pH sensor can be materialised, 

and a few schemes have already been tested elsewhere [121], [136], [138], [141], [144]. 

However, adapting the previously reported schemes directly into device-based 

biological systems have some challenges from the hardware integration and 

calibration perspective. Further, the formulations in previous approaches lack 

parameters to compensate for the effect of biofouling (biolayer). Also the effect of 

temperature needed to be corrected in real-time. In this context, we devised the non-

contact pH measurement system MO-pH, using 3D printed sterilisable-modular 

components.  For MO-pH, an improvised pH translational model was also 

developed that accounted for the effect of temperature and non-specific absorptions 

(eg. by biolayers), resultantly, the measurement accuracy improved notably.  
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3. PORTABLE SYSTEM FOR CONTROLLING AND 

MONITORING IN-VITRO CULTIVATION 

ENVIRONMENT AND IMAGE-BASED 

FUNCTIONALITY MEASUREMENTS 

The design details of the compact digital microscope, iuCMP and CMaN (as an-add 

on tool for iuCMP) are briefly described in this chapter. The imaging module was 

constructed for both the conventional TLM and image-based analytical 

measurements.  Although this may appear a simple task, our preliminary studies 

showed, for good quality in-vitro live-cell microscopy, the chosen imaging modality 

and its implementation are important. Otherwise, the imaging contrast and spatial 

resolution may not be acceptable especially for analytical computations.  

Our experiments started with a couple of commercially available portable USB 2 

microscopes [83], [84].These devices were rated for their broad adjustable 

magnification and easy computer connectivity. But, their performance was found 

not to be sufficient for live-cells and transparent specimens. So we started testing 

custom microscopy schemes, and at first, tested simple bright-field and dark-field 

strategies using inexpensive short focal length lenses (ACC-01-4000:4003, f=4 mm:8 

mm, M12 microlens) and bare white LED lighting. See Figure 1a-c, for example 

images of hASCs and hiPSC-CMs, where one can see that the imaging quality and 

contrast are extremely poor compared to the reference images (AxioCam MRc5). 

Though these schemes are easy to implement, their performance with live-cells was 

not adequate mainly because the live-cells are highly transparent and absorb/scatter 

very little light.  

In the next stage, we tested a few custom compact microscopy options, and three 

feasible digital microscopy schemes are provided in Figure 2.  
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Figure 1. Basic bright and dark-field cell images using inexpensive short focal length lenses, machine 
vision camera and white LED lighting. (a-b) Human adipose stem cells (c) hiPSC 
cardiomyocytes. (d) Reference image with a standard microscope (AxioCam MRc 5). Here 
one can see the image quality and contrast in (a-c) are extremely poor, compared to (d). 

 

Figure 2. Three compact digital imaging schemes tested. (a) The most compact option (for live-cells) 
tested so far using an inverted fixed short focal length lens. (b) The option with a 
conventional objective lens and an extension tube. (c) A further miniaturised scheme using 
a mirror cube.  

Each scheme in Figure 2 has inherent advantages and disadvantages. Figure 2a shows 

the most compact scheme tested so far that utilises a fixed short focal length lens 

(e.g. Lyx1.19, Lyxoptics, f=1.19 mm, M12 megapixel fisheye lens) in an inverted 

manner mounted to a machine vision camera (PointGray, BFLY-U3-13S2M-CS, 1.3 

MP, pixel size =3.75 µm in 1/3" sensor) using a 3D printed adapter. Figure 2b shows 

the option of using a good quality conventional microscope objective lens and 

extension tubes. An advanced version of this scheme using a mirror cube is shown 

in Figure 2c.  Scheme 1 doesn’t allow changing the magnification (or FOV) plus the 

working distance is very short (4.2 -7.75 mm/EFL=1.19-2.1 mm). But in scheme 2 
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and 3, the magnification can be adjusted up to a certain extent using various 

extension tubes. Scheme 3 is the final approved and validated scheme for the iuCMP 

(Figure 9). In Scheme 3, the objective lens and the camera are implemented at 900 to 

each other through a mirror cube (CCM1-E02/M, Thorlabs). This makes the overall 

system very compact and, further, facilitates the possibility for installation of 

additional optics without unmounting the objective lens. Particulars of the Scheme 

3 design, as well as results from microscopy characterisation, validation and long-

term stability measurements, were presented in Publication I. An illustration together 

with the required illumination-scheme is shown in Figure 3.  

 

Figure 3. Anatomy of the digital imaging module used in Publication I. Section view of (a) camera 
module, (b) illumination module.  The illumination module has a variable NA of 0.08 - 0.27. 
In the system, the magnification can be adjusted by changing objectives and/or with 
extension tubes. 

3.1. Optical Simulations and 3D Design.  

For the scheme shown in Figure 3, a 3D ray-tracing simulation has also been carried 

out, mainly to understand the magnifications limits, aberrations and to fine-tune the 

required illumination and its components. The simulations were solved using Ray 

optics module [ROM] in COMSOL Multiphysics (Version 4.3b, COMSOL, Inc., 

Burlington, MA, USA). For the 3D design and assembly, the SolidWorks (Version 

2017) computer-aided design (CAD) platform was solely used. Once the suitable 

optical parts (commercially available) were identified, their 3D models were 

imported into the SolidWorks assembly and all additional parts were custom 

designed. The COMSOL-SolidWorks LiveLink delivers efficient interconnectivity 

for the design, ray-tracing simulations and optimisation. The ROM simulation allows 

modelling the electromagnetic wave propagation in finite element model (FEM) if 

the geometry is large compared to ray wavelength. In FEM solving, COMSOL 
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subdivides the large geometry into smaller parts (finite elements) and partial 

differential equations (PDE) describing optical propagations (e.g. reflection, 

refraction and absorption at boundaries) are solved on the generic element using a 

numerical solver (linear/nonlinear, stationary/time-dependent). PDE can have 

multiple solutions, so boundary conditions are necessary to constrain the solution. 

The results from generic elements are then combined to model the whole geometry. 

ROM-FEM model, therefore, can be used to optimise the geometry for a specific 

optical application. However, as the model usually represents just a simplified picture 

of the system, the results should be carefully considered as guidelines to evaluate the 

effect of multiple parameters [145]. A more meaningful model can be accomplished 

with appropriate validation typically through experimental investigation. Figure 4a 

shows the simulated ray trajectories of the digital imaging scheme (Figure 3) with a 

10X equivalent objective lens. Here, a total of 2500 unpolarised rays per release were 

used in the ray tracing, but only just 5 % of them are displayed. The camera position 

(0-80 mm through the extension tube) is emulated by eight screens (cut planes) in 

the yz plane. Poincare maps at three selected positions; 1) at the condenser annulus, 

2) the specimen and 3) camera locations (0, 40 and 80 mm) are shown in the Figure 

4b, c, d. The magnifications simulated as well as experimentally measured (Table 1, 

Publication I) for a selected objective (10X) are given in Figure 5. The reason the 

measured and simulated values slightly differ could mainly be due to the difference 

in the lens train in the model and the actual objective. 

In the final assembly, we use machine vision cameras (C or CS mount) and highly 

corrected objectives (Nikon CFI Achromat ADL 10XF, 20XF and 40XF) to 

produce good quality live-cell images with a negligibly little halo. The whole optical 

train is built around Ø1" optics and for a given objective, the FOV is a function of 

the extension tube length. The microscopy technical specifications are detailed in 

(Table 1, Publication I). Typical imaging when infinity corrected objectives are used 

requires the specimen to be at the exact focal point, which sets the image distance 

to infinity and a tube lens is used to produce the image at the camera. We avoid the 

tube lens to keep the system very compact but the trade-off is a small reduction in 

the working distance as the specimen then needs to be placed slightly closer to the 

objective lens in our arrangement. Figure 6 shows a few example images of various 

cells (hiPSC neurons, hiPSC-CMs, hASCs, MEFs and Giemsa stained human blood 

smear) imaged with our digital microscope. A few additional cell images captured in 

different in-vitro studies can be seen [55], [112], [146], [147]. See also some example 

videos captured with our device in Publication I (Supplementary Video 1 and 2) and 

Publication II (Supplementary material 2 and 3).  
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Figure 4. Digital microscope ray tracing simulation. (a) The simulated ray trajectories. Just 5 % of the 
total rays are displayed here. The camera positions (0-80 mm through the extension tube) 
are emulated by eight cut planes in the yz plane. The Poincare maps at (a) at the 
condenser annulus (b) at the specimen position and (c) at three camera positions (0, 40 
and 80 mm).  

 

 

Figure 5. Simulated and experimentally measured magnifications with 10X objective as a function of 
extension tube length. 
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Figure 6. Cell images captured with the modular digital microscope in the iuCMP. (a-d) Various live-
cells in the PDMS mini-incubator. 
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3.2. Digital Imaging Schemes with Programmable 
Magnifications 

In addition to the three schemes presented in Figure 2, two advanced options (see 

Figure 7) with programmable (via software) magnifications have also been tested. In 

option 1 (Figure 7a) an inverted motorised varifocal lens (QM-D14-02812IR(3MP)-

C-EE, Quanmin) with variable focus, f = 2.8-12 mm is utilised. This lens has two 

integrated micro-stepper motors to control respectively the focal length and iris. For 

this lens, the magnification as a function of the focal length measured in the iuCMP 

is shown in Figure 7c. Here, since the varifocal lens is implemented in an inverted 

manner, the back focal length (7.1 to 13.6 mm) determines the ultimate NA and 

spatial resolution. These type of lenses are very compact, customisable and highly 

cost-effective. Further, the motorised iris can be used to control the amount of light 

transmitted, thereby the fine focusing.  However, tests showed the cell images 

produced with this lens is somewhat soft (less sharp edges). The second option 

(Figure 7b) utilises an electrically tunable lens (E-TL, EL-16-40-TC-VIS-5D-1-C-

Optotune, f=-50:33 cm, response time = 5 ms) which allows very fast adjustments 

of the focal length. In its very basic implementation, the magnification measured in 

our system as a function of E-TL current is shown in Figure 7d. Here, the total 

change in magnification is not huge, but compared to the varifocal lens scheme, the 

E-TL can change the magnification very rapidly, hence it can be a good candidate, 

for example, for high-speed z-stack acquisition, automated focal drift correction and 

maybe also for CM force characterisation studies. We plan to integrate the E-TL lens 

(with additional optics), as a standalone module in the near future.   

For most in-vitro cell experiments, the traditional spatio-temporal inverted TLM 

is sufficient. But when upright microscopy is to be applied, a long-working distance 

objective is essential as the cells need to be imaged, for example, from the top of the 

mini-incubator (7-12 mm tall). For highly corrected optics (e.g. plan fluorite, plan 

apochromatic), typically, long working distances are seen only with low 

magnification (and NA) objectives. So for the upright imaging in iuCMP, a low 

magnification objective is utilised, but, the magnification can be further improved 

using extension tubes as shown in Table 1, Publication I. The interchangeable 

architecture in the system enables easy switching between the invert and upright 

schemes. This is briefly described in the next chapter.  
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Figure 7. Compact digital microscopes with programmable magnification. (a) The option of using an 
inverted varifocal lens. (b) A better option of using an electrically tunable (E-TL) polymer 
lens. (c) Measured magnification against the varifocal lens focal length. (d) Measured 
magnification versus the driver current in the E-TL scheme.  

3.3. Invert-upright Interchangeable Modular System 

A brief summary (adapted from Publication I) of iuCMP interchangeability with four 

convertible options are given in Figure 9. The assembly mainly consists of a narrow 

motorised translation stage (960-0050, Eksma Optics, z= 50 mm, resolution ≤ 1.25 

µm, focusing speed= 5 mm/s) with dovetail heads (rail and carrier). The camera and 

illumination modules are connected to the carrier heads using custom holders. 

Additional parts include, a manual xyz-stage (MAXYZ-40R, Optics-focus, x,y = 

±6.5mm, z = 10mm, resolution = 10 µm), an ITO (Indium Tin Oxide) stage heater 

(k-frame, Okolab, H401/in-house-made heater  [112]) and a PDMS mini-incubator 

(Figure 8, see Publication I for specific details)[148]. In addition,  gas bottles (with 

solenoid valves), MEA amplifier (MEA2100-Lite-System, Multi-channel systems) 
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and the pO2 sensor [55] are also integrated.  The modularity allows the system to be 

arranged, for example, in an inverted configuration (Figure 9a), an upright 

configuration (Figure 9b), an upright configuration with pO2 sensor (Figure 9c), and 

an upright configuration with pO2 sensor and the MEA amplifier (Figure 9d). After 

the system assembly, its long-term mechanical performance (from the focal drift 

point of view) has been measured and the experimental plots are provided in 

Publication I (Figure 7). These measurements showed that the system works 

relatively well and is acceptable for TLM.  

In iuCMP, a custom GUI (Figure 10 a-c) is implemented for enabling all the 

connections (microscope, illumination, pO2 sensor, MEA, TSP, motorised focusing, 

ITO heater and its pt100 sensor). The initialisation (LED, camera, live-view, focus 

and magnification) and the data logging (sensors, camera and TLM) controls can be 

seen in Figure 10b-c. The LED intensity (0-100% via PWM, resolution 8-bit) and 

the focusing (Adafruit motor shield V2) are interfaced using ATmega328 (Atmel) 

based microcontroller (Arduino Uno R2).  The GUI shows the plurality of several 

functions and is constantly being upgraded in line with hardware developments. For 

example, the integration of automated beating analysis (the modified version of 

CMaN) is a very recent addition for almost real-time CM functionality analysis.  This 

was developed as part of a subproject (See Chapter: 3.4.4. Real-Time Closed-Loop 

Control of hiPSC-CM Beating Frequency). 

 

 

Figure 8. PDMS mini-incubator and its components. See Publication I for the technical details 
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Figure 9. The iuCMP and its Interchangeable architecture. The system configured for (a) inverted 
microscopy, (b) upright microscopy, (c) upright microscopy with simultaneous pO2 sensing 
and (d) upright microscopy with pO2  sensing and electrophysiological recording 
(MEA1060-Up amplifier, Multichannel Systems). (e) An original photograph and the final 
system build. 
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Figure 10. The GUI for iuCMP control. Windows for (a) hardware connections, (b) system initialisation 
and (c) data logging. 

3.4. Results and Discussion 

The main results with the iuCMP and CMaN are provided in the following 

subchapters. Brief discussions are included with each subchapter instead of a 

common discussion covering all the subchapters in the end.  
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3.4.1. CMaN - A New Software for Cardiomyocyte Non-invasive 
Function Analysis 

CMaN was scripted (as a GUI software), evaluated and released as part of 

Publication II. Initially, it was developed as an offline tool, but lately, has been 

further scripted for almost real-time automated analysis. Figure 11 (adapted from 

Publication II) shows the user interface of the software.   Figure 11b shows the best 

beating signal automatically selected out of the six signals extracted from a 

representative single cell cardiomyocyte. The table (Figure 11c) shows the estimated 

mechanobiological parameters: beating frequency, relaxation time, contraction time, 

relaxation amplitude, contraction amplitude and beat-to-beat interval. The software 

details are discussed below. 

 

Figure 11. An advanced cardiomyocyte movement analysis software-CMaN. (a) Software user 
interface. The green rectangle (ROI) shows the region selected around a single cell 
cardiomyocyte for the beating movement analysis. (b) The best beating signal 
automatically detected out the six beating signals extracted. (c) The mechanobiological 
parameters estimated. See also Figure 14. 

3.4.1.1. Optical Flow and Affine Optical Flow  

In CMaN,  the contractile movement is analysed by computing the affine optical 

flow (AFOF) which is an advanced version of the classical optical flow (OF) [149], 

[150]. The OF describes the pattern of apparent physical movement of objects in a 
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scene (eg. digital image) relative to an observer. In the OF computation, the 

movement is quantified in terms of apparent pixel velocities (magnitude and 

direction). Computationally, the OF relies on first-order spatiotemporal derivatives 

of image intensities, as long as the intensity spatial gradient is not too small and varies 

from point to point [149]. The velocity in OF is parameterised by a two-dimensional 

flow vector Vx and Vy, representing the translations of image features in x, y 

directions. The theoretical formulations of OF are based on the ‘brightness 

constancy assumption’ [149]. This assumes the local intensity structure of a time-

varying image feature is approximately constant for at least a short duration. This is 

a reasonable assumption in good fps imaging and the mathematical formulations are 

discussed below  [149].  

Let’s assume 𝐼 is the intensity of a pixel at a given location (x,y) of a feature in an 

image captured at time t,  

 𝐼(𝑥, 𝑦, 𝑡) (1) 

If the feature moves dx (along the x-axis) and dy (along the y-axis) in the next frame 

captured at t+dt, the new intensity can be written as,  

 𝐼(𝑥 + ∆𝑥, 𝑦 + ∆𝑦, 𝑡 + ∆𝑡) (2) 

If the movement is not very huge and the frames are taken at a very short time apart 

(e.g. 10 ms in a 100 fps video), with the ‘brightness constancy assumption’ these two 

intensities can be treated to be the same, i.e.  

 𝐼(𝑥, 𝑦, 𝑡) = 𝐼(𝑥 + ∆𝑥, 𝑦 + ∆𝑦, 𝑡 + ∆𝑡) (3) 

By applying Taylor series expansion to the right hand side, the Equation (3) can be 

rewritten as,   

 
𝐼(𝑥, 𝑦, 𝑡) = 𝐼(𝑥, 𝑦, 𝑡) +

𝜕𝐼

𝜕𝑥
∆𝑥 +

𝜕𝐼

𝜕𝑦
∆𝑦 +

𝜕𝐼

𝜕𝑡
∆𝑡 + 𝐻. 𝑂. 𝑇. 

(4) 

If H.O.T are neglected, the above equation can be rearranged as,  
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 𝜕𝐼

𝜕𝑥
∆𝑥 +

𝜕𝐼

𝜕𝑦
∆𝑦 +

𝜕𝐼

𝜕𝑡
∆𝑡 = 0 

(5) 

Now differentiating Equation (5) with respect to dt,  

 𝜕𝐼

𝜕𝑥

∆𝑥

∆𝑡
+

𝜕𝐼

𝜕𝑦

∆𝑦

∆𝑡
+

𝜕𝐼

𝜕𝑡

∆𝑡

∆𝑡
= 0 

(6) 

 
        

𝜕𝐼

𝜕𝑥
𝑉𝑥 +

𝜕𝐼

𝜕𝑦
𝑉𝑦 +

𝜕𝐼

𝜕𝑡
= 0 

 

(7) 

Where Vx and Vy are termed as the optical flow in x and y directions.  

If substituting for intensity and temporal derivatives as, 

𝜕𝐼

𝜕𝑥
= 𝐼𝑥 ,

𝜕𝐼

𝜕𝑦
= 𝐼𝑦    𝑎𝑛𝑑       

𝜕𝐼

𝜕𝑡
= 𝐼𝑡 

Now Equation (7) can be rearranged as 

𝐼𝑥𝑉𝑥 + 𝐼𝑦𝑉𝑦 = −𝐼𝑡 (8) 

Equation (8) is the optical flow constraint equation (OFEq). If we have two images 

taken at a short time apart, the image x-y derivatives (Ix and Iy) and temporal derivative 

(It) can be computed for each pixel. Still, the flow vectors Vx and Vy cannot be 

solved from Equation (8) since it is under-constrained, i.e. one equation with two 

unknowns (see Figure 12, the Vx and Vy can be anywhere on the constraint line). 

 

Figure 12. A graphical representation of optical flow constrained equation (Equation (8). The flow 
vectors Vx and Vy can be anywhere on the constraint line. 
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Therefore, we need more constraints to solve it and one good approach is 

considering several pixels in a local neighbourhood (window). For example, with a 

9-pixel window (3x3 grid), assuming the OF is the same in this window, 9 separate 

OFEq equations can be written as, 

  𝐼𝑥1𝑉𝑥 + 𝐼𝑦1𝑉𝑦 = −𝐼𝑡1    

𝐼𝑥2𝑉𝑥 + 𝐼𝑦2𝑉𝑦 = −𝐼𝑡2 

…. 

…. 

𝐼𝑥9𝑉𝑥 + 𝐼𝑦9𝑉𝑦 = −𝐼𝑡9 

 

 

 

 

(9) 

Now we have 9 equations and 2 unknowns which is over-constrained and 

mathematically solvable. In matrix form, we can write Equation (9) as 

 

  

[
 
 
 
 
𝐼𝑥1    𝐼𝑦1

𝐼𝑥2    𝐼𝑦2

.          .

.          .
𝐼𝑥9    𝐼𝑦9]

 
 
 
 

[
𝑉𝑥
𝑉𝑦

] =

[
 
 
 
 

 

  

−𝐼𝑡1
−𝐼𝑡2
    .    
    .   
−𝐼𝑡9 ]

 
 
 
 

 

 

 

 

 𝐴𝑉 = 𝐼𝑡 (10) 

But since A is not a square matrix, the method of pseudo inverse (multiply both sides 

with transpose of A) is applied first to convert it into a square matrix as, 

 𝐴𝑇𝐴𝑉 = 𝐴𝑇𝐼𝑡 

Now 𝑉 = (𝐴𝑇𝐴)−1𝐴𝑇𝐼𝑡 

 

  (11) 

Equation (11) can be solved by applying the least square error method by means of 

minimal  

square [𝑚𝑖𝑛 ∑ (𝐼𝑥𝑖𝑉𝑥 + 𝐼𝑦𝑖𝑉𝑦 + 𝐼𝑡)
2 

𝑖
] .  
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So when we have two images taken a short time apart, the Vx and Vy can be solved 

from the 𝐼x, 𝐼y and 𝐼t, computed over a window of several pixels. However this basic 

OF solution provides only the basic translation of features in x,y. For more 

parameters, we applied the method of AFOF computation.  

Theoretically, AFOF is based on the affine transformations (see Figure 13) where 

the flow field need not be constant in the local neighbourhood window. It can be 

locally affine. The flow is parameterised by a six-dimensional vector to model the 

image translation (Vx, Vy), dilation-d (rate of expansion/shrinking), rotation-r (rate 

around z axis) and shears-s1, s2 (rates along x and diagonal axes) [151]–[153].  

 

Figure 13. Affine transformations (modified based on [154], [155]). The transformations are modelled 
by image translation, scaling, rotation and shearing. In all the given plots, the (x,y) and 
(x’,y’) are the co-ordinates before and after the transformation. Other constants: a,b –
horizontal and vertical translation constants,  mx, my, -scaling constants along x and y 
axes; s1, s2, -shear constants along x and y; θ - angle of rotation about the x axis.    

All the transformations in Figure 13 can be collectively written as, 

 𝑥′ = 𝑚𝑥𝑥 + 𝑝𝑦 + 𝑎 

y’ = 𝑚𝑦𝑥 + 𝑞𝑦 + 𝑏 

 

(12) 

where p and q are combined transformation constants.  

Using the previously discussed brightness constancy assumption (Equation (8)), we 

can now express,  

                         𝐼𝑥(𝑚𝑥𝑥 + 𝑝𝑦 + 𝑎) + 𝐼𝑦(𝑚𝑦𝑥 + 𝑞𝑦 + 𝑏) = −𝐼𝑡            (13) 
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With a first-order expansion around a point (𝑥0, 𝑦0) with flow (𝑉𝑥0, 𝑉𝑦0 ), the affine 

model can then be expressed [153] as 

 𝑉𝑥 = 𝑢𝑥𝑥 + 𝑢𝑦𝑦 + 𝑉𝑥0 

𝑉𝑦 = 𝑣𝑥𝑥 + 𝑣𝑦𝑦 + 𝑉𝑦0                                

 

(14) 

where 𝑢𝑥 , 𝑢𝑦 (respectively 𝑣𝑥 , 𝑣𝑦)  are x and y derivative of 𝑢 (respectively 𝑣 ). 

In matrix form, Equation (14) can be arranged as, 

 
[
𝑉𝑥 
𝑉𝑦

] = [
𝑥 
𝑦

 

] [
𝑢𝑥      𝑢𝑦 
 𝑣𝑥     𝑣𝑦

] + [
𝑉𝑥0 
𝑉𝑦0

] (15) 

This can be equivalently rewritten as, 

 
            [

𝑉𝑥 
𝑉𝑦

] = [
𝑥 
𝑦

 

] [
𝑑 + 𝑠1    − 𝑟 + 𝑠2 
𝑟 + 𝑠2         𝑑 − 𝑠1 

] + [
𝑉𝑥0 
𝑉𝑦0

]                                  
 

(16) 

where d-dilation = (ux+vy)/2; r-rotation= (-vy+vx)/2; s1=shear along x = (ux-vy)/2, 

s2=shear along y = (uy+vx)/2. 

Equation (15) and Equation (16) are implemented in CMaN for the contractile 

movement analysis. Equation (15) has one linear constraint in six unknowns, 

therefore a minimum of six pixels will be necessary to solve it. When an ROI (region 

of interest) in a video is chosen, the AFOF equations (for all the pixels in the ROI) 

form a system of linear equations, whose solution yields the six AFOM signals (Vx, 

Vy, d, r, s1 and s2). But usually, as ROI contains a large number of pixels 

(overdetermined), it is not necessary to calculate the gradients for every pixel. So the 

ROI may be resampled for fast AFOF processing. See Publication II for the software 

download link. The image pair extraction and the algorithm flow are schematised in 

Figure 14a. The six signals extracted from a representative single cell cardiomyocyte 

video is shown in Figure 14b. The movement centre detection and cluster finding 

schemes are also illustrated in Figure 14a, which will be discussed in detail in the next 

chapter.  
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Figure 14. A schematic overview of the CMaN algorithm flow. (a) Extraction of successive image pairs 
from a beating movie and the principle of affine optical flow computation. The schemes of 
optional features (movement centre detection and cluster finding) are also shown. (b) The 
six contractile signal components extracted from a representative single cell beating video. 

3.4.1.2. Movement Centre Detection and Cluster Finding 

In CMaN, the movement centre detection (MCD) feature identifies the locations of 

the most energetic movement area by detecting the regions of the highest affine flow 

amplitude. The process steps are illustrated in Figure 15. Firstly, the AFOF beating 

signal is analysed from a selected ROI. Secondly, a small portion of the analysed 

signal containing at least one contraction-relaxation region is selected (see Figure 

15a) for the MCD. For processing, the ROI is divided into M-by-N tiles as shown 

in Figure 15b-c. Then the AFOF signal is computed sequentially in all the tiles and 

the tile with the highest signal amplitude (movement centre) is identified. Once the 

movement centre is identified, a better beating signal can be re-analysed by defining 

a new ROI around it. This feature is illustrated in Figure 16 where the signal from 

the ROI, and separately from the identified movement centre and its neighbourhood 

are shown. Here one can see the signal from the region of movement centre is 

distinctively better than one from its surroundings.   
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Figure 15. Movement centre detection (MCD) in CMaN. (a) The AFOF-Vy signal and a portion of the 
signal selected (with the draggable lines) for the MCD. (b-c) The ROI and segmented M-
by-N tiles. The identified movement centre is marked with the blue rectangle. 

 

Figure 16. Beating signals at different locations of a contracting hiPSC-CM. (a) The ROI and the 
segmented tiles for MCD. The AFOF signal (b) from the ROI and (c) from the identified 
movement centre and in its neighbourhood.  

Another added feature is the automated cluster finding (ACF) which is useful 

especially when the CM movement analysis is implemented with the online 
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microscopy where the analysis needs to start automatically without human 

intervention. The ACF is based on identifying the locations of the highest textures 

(high-frequency components), allowing one to recognise the CM clusters from its 

surroundings [156].  Usually, the cluster regions (imaged with a good microscope) 

have textures of high-frequency contents differing from its surrounding. The ACF 

in two example cases is shown in Figure 17 and Figure 18. After the initial processing 

(gamma enhancement, smoothing and absolute difference computation to reveal the 

cluster borders), an image convolution with a template is applied to identify the 

potential clusters (possible movement area). The histogram plots in Figure 17 and 

Figure 18 describe the image transformations in each stage. In Figure 17, there are 

only 3 clusters which are identified correctly with a 50 x 50 pixel template in a 3 stage 

convolution. But in Figure 18, with a similar 50 x 50 pixel template, an 8 stage 

convolution was needed to successfully identify all the clusters. But here one can see 

that instead of six clusters, eight locations (see the red cross marks) were identified. 

One of the located points (the top most-right hand side blue box) is not actually a 

cluster but possibly cell debris which happens to be moving with the CM. However, 

the signals from similar unwanted regions can be discarded later. In short, the ACF 

feature can be helpful in tracking the clusters for automated analysis even if they 

would have moved across the FOV during long-term TLM.  

CMaN was tested against a tool based on digital image correlation [106] in the 

development phase, but later was critically tested against [103] and [104]. Table 2 and 

Figure 19, both adapted from Publication II, show the test summaries. In addition, 

a comparison of RGB and grayscale video processing times at three ROI sizes is 

provided in Table 1 . The robustness of automated signal analysis was measured with 

114 consecutive TLM videos and found to be 99.12 % successful where 0.88 % 

failure was due to movement of the cluster outside the ROI (measurement area) over 

~ 45 hours of TLM acquisition. See also the software instruction file in Publication 

II (Supplementary material 1). Based on these tests, CMaN has the following 

capabilities and notable advantages;   

1. Several times faster, more sensitive, computationally less expensive and 

allows ROI selection. 

2. Extracts six separate signal components of contractile motion per 

processing. This yields a minimum of one useful beating signal even in cases 

of complex beating videos. 

3. Signals correspond to the contractile phenomena more exactly like an ECG 

signal with both positive (upstroke) and negative (downstroke) segments, 
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allowing one to compute not only the beating frequency but also the 

contraction and relaxation features separately.  

4. Can detect the movement centre (region of the largest contractile motion) 

and the cluster locations (the movement area). 

5. Suitable for independent or batch wise analysis cardiomyocyte 

(clusters/single cells) videos.  

 

Figure 17. Automated cluster finding, A 3 cluster case: A 50 x 50 pixel template and a 3 stage 
convolution identified all the three clusters successfully. 
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Figure 18. Automated cluster finding, A 6 cluster case: A 50 x 50 pixel template and an 8 stage 
convolution with 8 movement locations identified out of which 2 are erroneous. Here, 
certain regions (e.g. the top most-right hand side blue box, bottom plot) are wrongly 
identified as clusters. This is possibly cell debris that happens to be moving with the host 
cluster. 
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Figure 19. CMaN measurement sensitivity. The 1st column shows the screenshots of 5 videos. Here 
the original video (1st one) was spatially downsized 1/8, 1/64, 1/128 and 1/256 times to 
produce subsequent videos with reduced movement area. The next two columns show the 
signals (normalised, referenced to original signal, ROI: full frame) from corresponding 
movies using CMaN and MUSCLEMOTION. CMaN displayed better sensitivity. 

 

Table 1. Testing grayscale and RGB video processing times in CMaN 

 

 
Bit 

depth 

F 
p 
s 

Duration 
(s), 
total 
frames 

 Measurement area (pixels) 

640 x 512 300 x 300 100 x 100 

Comp
uter 1 

Comp
uter 2 

Comp
uter 1 

Comp
uter 2 

Comp
uter 1 

Comp
uter 2 

16 / 8 bit 
(Grayscale)  

6
0 

30 s, 1800 Processing  
time (s) 

50 62 20 23 17 18 

32 bit (RGB) 6
0 

30 s, 1800 Processing  
time (s) 

58 80 28 33 21 25 
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Table 2. CMaN performance comparison against MUSCLEMOTION and SarcTrack using two 
computers (Computer 1: 2.6 GHz processor and 32 GB RAM, Computer 2: 2.7 GHz 

processor and 8GB RAM).  ✝30 s long avi (60 fps, 640 x 512 pixels, 32 bit RGB, 1.64 

GB size on SSD hard drive).  󠆼*20 avi files (33 GB size on external SSD drive) 

 

3.4.2. Response of hiPSC-CM to Temperature Stimuli  

In hiPSC-CM studies, accurate control of the environment, including the 

experimental temperature is very important to maintain normal cardiac activity and 

to avoid stress responses such as hyper/hypothermia shock reactions [157]–[161]. 

We utilised iuCMP and CMaN together with a TSP (glass plate, several micro-

patterned resistive sensors) to study the temperature response in hiPSC-CM cultures. 

Automated temperature stressing and measurements were conducted and the results 

were reported in Publication II. For the measurements, the CMs were directly 

cultured on the TSP. This way, accurate temperature sensing from the exact location 

of cells, which is usually challenging with traditional bulky sensors, became possible. 

The TSP is coated with 250 nm of Si3N4 [112] which is the same insulator material 

on the commercial MEAs, so the surface properties of a finished TSP guarantees 

cell viability and harmless measurements. The experimental arrangement is shown 

in Figure 20 (adapted from Publication II).  

 
MUSCLEMOTION SarcTrack CMaN 

Platform Image J MATLAB MATLAB 

Algorithm principle pixel intensity 
difference 

fluorescent tag 
tracking 

affine flow 

User defined ROI   no no yes 

Minimum ROI (pixels) NA NA 78 x 78 

Number of signals per 
processing 

1 1 6 

Sensitivity see Figure 19 NA see Figure 19 

 Computer 1 Computer 1 Computer 1 Computer 2 

1 movie✝ processing time  

(~minutes) 

3 (6 in dynamic 
mode) 

350 1 1.3 

Batch* of movies 
processing time (~ minutes) 

129 7390 25 28 
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Figure 20. Setup for hiPSC-CM temperature stressing experiments in the iuCMP. (a) The PDMS mini-
incubator. (b) Temperature sensor plates (TSP, two different types). (c) Beating clusters 
on one of the temperature sensors on the TSP. 

The twelve spontaneously beating hiPSC-CM clusters used in this study are shown 

in Figure 21a-e. The middle image (Figure 21e) shows a snapshot from a movie 

(adapted from Publication II, Supplementary material 2) illustrating the effect of 

temperature on the hiPSC-CM function. Here one can see how the temperature 

affects the beating frequency, contraction and relaxation times. The measurements 

also showed the temperature dependency on the hiPSC-CM beating frequency was 

non-linear and the hiPSC-CM Q10 temperature coefficients were larger than 2. 

Furthermore, we also observed the signal propagation between dissociated clusters 

and reported their non-invasive measurements by image processing. Figure 21f 

shows the signals from six clusters (shown in Figure 21d) at different temperatures. 

The time delay between the signals indicated there is a clear delay in the signal 

propagation between the dissociated clusters. This was also made visually observable 

in the original beating movie by image processing; See Supplementary material 3 in 

Publication II for an example movie. Detailed measurement results including the 

calculated propagation velocities are presented in Publication II.  
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Figure 21. Effect of temperature on hiPSC-CM function. (a-e) Twelve spontaneously beating CM 
clusters used in the temperature response study. (b) Snapshot from a video displaying the 
beating signals of a cluster on corresponding movies at three selected temperatures. See 
Supplementary material 2 in Publication II for the full video. (c) The signals from six 
clusters (shown in (d)) at different temperatures. Here, the time delay between the signals 
clearly shows there is a delay in signal propagation between the dissociated clusters.  
Publication II, shows the computed propagation velocities and an example signal 
propagation video (made by image processing). 

3.4.3. Oxygen Sensing in In-vitro Cell Models  

Cellular oxygen is highly regulated in mammalian tissues [162]. A similar oxygen level 

is critical also in C-Vitro for the cells to have the same physiological functions as in 

the human body. A modern in-vitro system, ideally, should maintain a stable pO2 

tension similar to that in the corresponding tissue in-vivo, and, if needed, generate 

timely changes to study biological responses. For the pO2 management in the 

iuCMP, we have adapted a phase fluorometric sensor as described in [163].  The 

sensor comprises of an oxygen-sensitive fluorescent dye (platinum(II) 

octaethylporphyrinketone) embedded in a thin polystyrene film and a fluorescent 

lifetime readout using a parabolic lens (tailor-made, polystyrene). The oxygen sensor 

has been applied for the pO2 control of beating cardiomyocytes cultures to study the 
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hypoxia responses [55].  In this study, for the microscopy, we used the upright 

configuration with the Nikon 10x objective. For the special microscopy illumination, 

a green LED (532 nm) and 3 × 3 x 1 mm glass diffuser were mounted inside the 

pO2 sensor head, on the optical axis, just under the parabolic lens. The oxygen levels 

around the CMs were periodically adjusted by switching the gas flow(5 mL/min) 

between normoxia (19% of O2, 5% CO2, and 76% of N2) and hypoxia (1 % of O2, 

5% CO2, and 94% of N2) and the temperature, pO2 and beating videos (40 fps, 

PointGrey FL3-U3-13E4M-C) were recorded. The results showed there is an overall 

correlation between the hiPSC-CM beating frequency (video analysed) and the 

oxygen levels. The details can be seen in [55]. However, this study was preliminary, 

and currently, an improved oxygen sensor (more biocompatible) with better 

electronics and optics is being utilised in a continued hypoxia project. This project 

is aimed to model the cardiac ischemia with hiPSC-CMs. Cardiovascular diseases are 

the leading cause of death worldwide, of which ischemic heart disease (IHD) is the 

most common one. In IHD, the blood flow to myocardium is blocked (or reduced), 

causing oxygen and nutrient deprivation and accumulation of metabolic waste. This 

would damage the myocardial cells (including CMs) and the heart contractions. Since 

pathophysiology of IHD is not fully understood, new models are needed where the 

iuCMP is expected to play an important role [164], [165]. Understanding the exact 

role of pressure and mechanical stress on cardiac ischemia is also important to the 

study of myocardial infarction [7], [166], [167]. On the experimental side (see Figure 

22), automated protocols are enabled for controlling the oxygen levels, simultaneous 

sensing (pO2, temperature) and for the functionality measurements (single cell MEA 

signal [168], video-microscopy and beating signal analysis). The pressure inside the 

PDMS mini-incubator (on top of single cell MEA) is controlled (1 mbar hydrostatic 

pressure + ~2-5mbar gas flow pressure). Changing the gas supply (e.g. O2 from 19 

% to 1% for hypoxia screening) does not change the overall pressure but it changes 

the pO2 in the medium. With induced hypoxia, the cellular and molecular-level 

changes in cell functionality, morphology, viability as well as in gene and protein 

expressions will be studied. According to the preliminary results, hypoxia clearly 

affects both the hiPSC-CM functionality and the gene expression profiles.  Detailed 

study results are expected to be reported in the near future. The oxygen 

concentrations used in [55] was mainly to validate the oxygen sensor in hiPSC-CM 

cultures. Incubators conventionally maintain ~19 % of oxygen level. But for most 

cells and tissues, this does not provide appropriate physioxia (tissue specific pO2 in 

in-vivo) for their normal functioning and proliferation. Our group is developing 

microphysiological systems to control the oxygen in tissue-specific levels for various 
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cell types including hiPSC-CM. So in the future, the dynamics of physioxia to 

hypoxia/hyperoxia transfer or the controversial “inhibitory” role of high ( ~20 %) 

oxygen levels in CM proliferation etc. can be studied in more detail [169]–[171].  

 

Figure 22. Cardiac ischemia on-a-chip: Experimental arrangement for the timely (automated) 
regulation of hypoxia, oxygen sensing and hiPSC-CM function (biomechanical and 
electrophysiological) measurements. 

3.4.4. Real-Time Closed-Loop Control of hiPSC-CM Beating 
Frequency 

The temperature response experiments with hiPSC-CM have shown that the beating 

frequency is clearly a function of the culture temperature [147]. This lead to an 

engineering question as to whether the beating frequency can be controlled at a 

required level by precise localised temperature adjustments. For this purpose, AJ 

Mäki [32] is testing a fuzzy controller based beating frequency control scheme 

(BPMFuzzy) with the iuCMP and the CMaN (real-time analysis version). See Figure 

23 for a flow chart illustrating the BPMFuzzy data flow. In short, the BPMFuzzy 

records first a few (1 to 3) reference beating videos, analyses them (from the manually 

selected ROI) and stores the measured beating frequency as the reference. 

Afterwards, in long-term automated TLM, the BPMFuzzy works as a real-time 
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closed-loop controller which records videos, analyses them and compares the 

beating frequency with the reference. If there is a frequency variation, the controller 

then modulates the cell area temperature in order to adjust the beating frequency, 

with the frequency difference as a perturbing factor to the controller. For this 

purpose, we have completed the software editing and preliminary trials (without 

cells). Technically, BPMFuzzy works nicely but the studies with cells are yet to be 

scheduled.  

3.4.5. Orientation of Fibroblasts on Nano Cellulose Surface 

For demonstration purposes, iuCMP has been tested for the orientation analysis of 

mouse embryonic fibroblasts (MEF, obtained from Hannover medical school, 

Hannover, Germany) on cationic cellulose nanofibres (c-CNF on glass plate, [172]). 

The experimental details are presented in Publication I. The expansion of MEF (in 

DMEM high glucose medium) on the c-CNF surface was imaged in iuCMP for 

several days to study their orientation outside a traditional incubator. In the captured 

images, both the cells and cellulose fibres were equally visible with clear cell 

boundaries which confirmed the applicability of iuCMP also for relatively complex 

imaging requirements. Later, the degree of MEF orientation (alignment) was 

computed from TLM images using an orientation analysis tool (CytoSpectre, [173]). 

Resulting plots exhibited isotropy, indicating a good alignment of all oriented 

structures along a single line. See Publication I (also Supplementary Video 1 in it) for 

more details. 
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Figure 23. Flow chart illustrating the fuzzy controller based closed-loop control scheme for hiPSC-CM 
beating frequency. 
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4. NON-CONTACT OPTICAL pH MEASUREMENT 

SYSTEM WITH STERILISABLE, MODULAR PARTS 

Our pH measurement system, MO-pH quantifies the pH changes of the phenol red 

(phenolsulfonphthalein -C19H14O5S, CAS number 34487-61-1, ~8 mg/L) culture 

medium using a novel modular read-out scheme. The details of the system and a few 

application examples are presented in Publication III. This chapter briefly describes 

the working principle and main components of the MO-pH. 

4.1. Two Colour pH Measurement System. Working Principle 
and Hardware Assembly  

Phenol red medium responds to changes in the pH from 6.8 to 8.2 (~ 1.5 pH units) 

by displaying a gradual colour transition from yellow to red. Spectroscopically, these 

changes are measurable with absorption spectra (See Figure 1a in Publication III). 

In the absorption spectrum, an isosbestic point (~470 nm) and two characteristic 

absorption peaks: one at ~430 nm and the other one at ~560 nm, are visible. The 

characteristic peaks are due to structural isomerism accounting for the existence of 

phenol red in two forms: the acidic ([HIn] – yellow) and alkaline ([In-]- red) forms. 

Consequently, the colour of the bulk medium (at a given temperature) is decided by 

the [In-]/ [HIn] concentration ratio. This ratio can be translated into the absolute 

pH using the Henderson–Hasselbalch equation[174] as follows, 

 
𝑝𝐻 = 𝑝𝐾𝑎𝐼𝑛 + 𝑙𝑜𝑔10(

[𝐼𝑛−]

[𝐻𝐼𝑛]
) 

(17) 

where pKaIn - phenol red dissociation constant [175][176] .  

In Equation 17, pH will linearly change with concentration ratio, 𝑙𝑜𝑔10(
[𝐼𝑛−]

[𝐻𝐼𝑛]
) 

Using Beer-Lambert’s law, Equation 17  can be rewritten as,  
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 𝑝𝐻 = 𝑝𝐾𝑎𝐼𝑛 + 𝑙𝑜𝑔10(
𝛆𝐻𝐼𝑛  A560

𝛆𝐼𝑛  A430
)

(18) 

where εHIn, εIn – phenol red molar absorptivity in acidic and alkaline forms.  A560, 

A430 – light absorptions at 560 and 430 nm. At a given pH of the solution, the total 

phenol red concentration (Ct), is the sum of the acidic and alkaline forms,  

C𝑡 = [𝐼𝑛−] + [𝐻𝐼𝑛] (19) 

In highly acidic solutions, phenol red naturally stays exclusively in the acidic form ie.  

Ct = [HIn]. Similarly in highly alkaline solutions, Ct = [In-]. With this conviction, 

Equation 18  can be further simplified as,  

𝑝𝐻 = 𝑝𝐾𝑎𝐼𝑛 + log10 (
𝐴560

𝐴𝑚𝑥−𝐴560
) 

(20) 

where Amx is the maximum absorption at 560 nm of the highly alkaline state 

[176][177]. Figure 24 shows an experimental (for DMEM/F-12) plot of A560 as a 

function of pH where one can see the measurement of light intensity at 560 nm can 

be used for pH sensing with appropriate calibration. We adapted this idea to the 

MO-pH, but instead of 560 nm, we utilised 545 nm light measurements because 560 

nm LEDs with acceptable luminous intensity was not available at the time of 

system assembly. Figure 24 shows a comparison of absorption at 560 nm and 

545 nm as a function of pH where the shift in absorptions is seemingly of static 

(offset) nature which can be compensated in actual measurements, for example via 

an appropriate calibration. So in the MO-pH the final pH is estimated using,  

𝑝𝐻 = 𝑝𝐾𝑎𝐼𝑛 + log10 (
𝐴545

𝐴𝑀𝑥−𝐴545
) 

(21) 

where AMx is the maximum absorption at 545 nm. 

Equation 21 can be applied for pH estimation with acceptable accuracy if phenol 

red is used in its purified form [178]. If not purified, the indicator impurities may 

cause errors so the Equation 21 without further modifications will not be valid [178]. 
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Figure 24. DMEM/F12 absorptions as a function of pH at 545 nm and 560 nm.  

Technically, our original idea was to integrate a flow cell (e.g. quartz cuvette) into the 

in-vitro medium circulation tube/channel (e.g. in the perfusion outlet) and monitor 

the pH in real-time all through the cell cultures. With this aim, we first developed a 

measurement system suitable for a conventional incubator for long-term cell culture 

measurements. But in any case, opto-analytical measurements inside the incubator’s 

highly humid environment has some challenges, including sterilisation difficulties, 

which are briefly discussed in the introduction chapter of the Publication III. As a 

robust solution, we developed an incubator compatible pH measurement system 

MO-pH using mostly 3D printed parts. Most importantly, the MO-pH can be 

sterilised, requires no special sample treatment or sample extraction outside of the 

incubator. Figure 25 illustrates the MO-pH working principle and shows its major 

components.   

 

Figure 25. The modular pH measurement system MO-pH. (a) Illustration of measurement principle. 
(b) The airtight MO-pH casing with holders for LED cassette, sensor cassette and the flow-
through cuvette. 
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The main components are two transparent sterilisable cassettes (custom-built, LED 

cassette and sensor cassette), a flow-through cuvette (Suprasil® quartz, 10×10 mm 

pathlength), a closed-loop flow pump (modified peristaltic pump - ISM596D - 

Ismatec REGLO Digital) and two integrated sensors (for temperature and 

humidity). The LED cassette comprises of a green LED (545 nm) and a reference 

red LED (680 nm). The sensor cassette comprises of two photodiodes (with green 

and red filters for separate green and red light measurements) and integrated 

transimpedance amplifiers. The measured optical performance of both the cassettes 

as well as the plots of their long-term performance are given in Figure 2 in 

Publication III. The cassettes are hermetically sealed, sealing efficacy tested and 

sterilisable (with 90% ethanol). The measurement medium circulates constantly 

through the flow-through cuvette via silicone tubing at a very stable rate (5 mL/min) 

all through the culture. More exact details of all the components can be seen in the 

Publication III.  

Once the system was assembled, the initial pH measurements showed the system 

works well technically but a few issues were noticed. One immediate observation 

was Equation 21 solely cannot compensate for the effect of temperature in the pH. 

Secondly, the biofouling (deposition of proteins or cell debris), on the inner walls of 

the flow cell in long-term measurements seemingly affect the measurement accuracy. 

So its influence at the measurement wavelengths need to be carefully studied and a 

possible compensation scheme has to be figured out. In addition, the system also 

required a hassle-free calibration scheme reliable enough for several days of 

unattended pH measurements.  

4.2. Temperature Compensation, Calibration and Humidity 
Monitoring 

We figured out the effect of temperature can be compensated by adjusting the 

dissociation constant (pKaIn) in equation 21. Therefore, a good quality temperature 

sensor (TSic™ 506F/ IST-AG and W-EYK 6 PT100 Platinum temperature sensor, 

Heraeus Nexensos) was added into the MO-pH and the pKaIn was adjusted in real-

time using the Van't Hoff’s correction (equilibrium constant correction) formulation 

as,    

 
𝑝𝐾𝑎𝑇2

𝐼𝑛 = 𝑝𝐾𝑎𝑇1

𝐼𝑛 + 𝑙𝑜𝑔 [𝑒
−7.5(

1
𝑇2

−
1
𝑇1

)
] (22) 
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where T1 - is the calibration temperature, T2 – the new temperature. Figure 26 shows 

that the pKa (Equation (22)) as a function of temperatures for CO2 buffered 

DMEM/F12 medium. In reality, the effect of temperature can be much higher in 

the absence of CO2, which will be discussed in the Results and Discussion chapter.   

So the temperature compensation is important for accurate opto-analytical pH 

estimations. Further, the humidity was also constantly monitored mainly to 

understand/follow its fluctuations in long-term cultures. Humidity sensor (HIH-

5031, pre-calibrated,) with a hydrophobic filter was used for condensation-free 

measurements in the incubator’s highly humid environment.  

 

Figure 26. pKaIn versus temperature. The continuous line is the pKa estimated using Equation (22).  
Two randomly measured pHs (at T1=25 oC and T2=37 oC ) are also shown.  

4.3. Absorption Correction Model 

Equation 21 together with equation 23 is sufficient to estimate the pH when the cell 

density (confluence) is not very high. But when the cell density is high and/or in 

long-term continuous cultures biofouling is usually produced. Fouling can be by 

passivation of the flow cells’ inner walls by lipids, proteins and cell debris 

[122][144][179]. Figure 29a shows an example case of biofouling imaged in ASC 

culture. Unfortunately, all the biofouling pathways are not yet clearly known. Our 

tests showed, it is not unambiguously clear how the biofouling affects the pH mainly 

because of its randomness (spatial and temporal) and consequent light loses (via 

scattering and absorption). But in any case, it can cause an error in absorption-based 

pH estimation (in Equation 21). As a reasonable fix, we developed an approximate 
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absorption compensation model (hereafter named GR model) for the specific 

instances of biofouling. In the GR model, the core idea is to include the absorptions 

at 680 nm (A680) also into equation 21 with certain approximations. The hypothesis 

of the model was that even though A680 is not sensitive to the pH and should be 

constant, its fluctuations if any during the culture, would correspond the non-specific 

absorptions, for example, by the biofouling. The GR model was presented in the 

Publication III, but is discussed in detail below.  

Optical absorption is an additive phenomenon. So in a mixture/multilayer system 

with N components, the total absorption, 

 
𝐴𝑡𝑜𝑡𝑎𝑙 = ∑𝐴𝑖

𝑁

𝑖

 
 

(23) 

Therefore, the total absorptions at 545 nm and 680 nm can be individually written 

as   

 𝐴𝑡𝑜𝑡𝑎𝑙
545 = 𝐴𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟

545 + 𝐴𝑑𝑚
545 + 𝑡545 𝑘545 (24) 

 𝐴𝑡𝑜𝑡𝑎𝑙
680 = 𝐴𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟

680 + 𝐴𝑑𝑚
680 + 𝑡680 𝑘680 (25) 

where Aindicator – phenol red absorption. dmA – absorption by the fouling layer of 

thickness t. k – a constant to account for the light loss by the fouling layer. 

In Equation (25), since phenol red molecules do not absorb light at 680 nm, 

 𝐴𝑡𝑜𝑡𝑎𝑙
680 = 0 (26) 

         Also  𝐴𝑑𝑚
680 = 𝒃𝑥[𝑑𝑚]𝜺680 (27) 

where bx – path length. [dm] and ε – assumed concentration and molar absorptivity 

of the biofouling layer.  

Substituting equation 26 and equation 27  in equation 25 and rearranging it for [dm] 

yields, 
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[𝑑𝑚] =

𝐴𝑡𝑜𝑡𝑎𝑙
680

𝑏𝛆680
−

𝑡680 𝑘680

𝑏𝛆680
 

    (28) 

    Also 𝐴𝑑𝑚
545 = 𝑏[𝑑𝑚]𝛆545 

 

    (29) 

Substituting Equation (28) and Equation (29) in Equation (24) yields, 

𝐴𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟
545 = 𝐴𝑡𝑜𝑡𝑎𝑙

545 −
𝛆545

𝛆680
𝐴𝑡𝑜𝑡𝑎𝑙

680 − [𝑡545 𝑘545 −
𝛆545

𝛆680
𝑡680 𝑘680] 

(30) 

Equation (30) describes the true phenol red absorption in terms of total measured 

absorption by avoiding biofouling absorptions. However, since all the terms in this 

equation cannot be experimentally measured in the context of long-term cultures, a 

perfect error-free pH measurement is virtually impossible. Nevertheless, 

mathematically one way to tackle this is by using two approximations (constants) as, 

       
ε545

ε680
=  𝑘𝑑𝑚   (absolute constant) (31) 

                   [𝑡545  𝑘545 −
𝛆545

𝛆680
𝑡680  𝑘680] ≈  𝑘𝑏𝑙  (32) 

With these approximations, equation (30) can be simplified into an empirical 

equation as, 

 𝐴𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟
545 = 𝐴𝑡𝑜𝑡𝑎𝑙

545 −  𝑘𝑑𝑚𝐴𝑡𝑜𝑡𝑎𝑙
680 −  𝑘𝑏𝑙      (33) 

In cell culture, endpoint reference measurements (with a traditional pH meter at the 

beginning, end and at times of medium exchange during culture) can be used with 

equation 21 and equation 33 to extract approximate values of  dmk  and blk  by 

means of non-linear least square fitting. This is just an approximate compensation, 

but apparently very straight forward and practically possible.   
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4.4. Results and Discussion 

4.4.1. System Calibration and Real Time pH Measurements 

The LED timings (on-off cycles), and data acquisitions (16 bit, @ 500Hz sampling 

rate, 5 second average once in every 60 s) are controlled with a microcontroller 

(Arduino Uno-R2, a custom GUI). A screenshot of the GUI is shown in Figure 27 

where the raw signals and the real-time pH plot can be seen. The ’Direct Green(nA)’ 

and ‘Direct Red(nA)’ are the measured photocurrents corresponding to the 

absorptions in the 545 nm and 680 nm channels. Additionally, an extra sensor 

cassette is also included to measure the light scattered at 90o with respect to incident 

light. The purpose of this measurement was to test whether the scattered light 

intensity can be used to estimate (roughly) the detached components (cells, debris, 

and particles). The signals from the 90o channels are labelled as ‘Scatter Green (nA)’ 

and ‘Scatter Red (nA)’). The results from these channels are inconclusive and not 

covered in the scope of this thesis.  

 

Figure 27. Screenshot of GUI of MO-pH system. The signals marked with ‘Direct’ are the absorption 
signals while the ones marked with ‘Scatter’ are the scatter signals measured at 90o C of 
the incident light. The real-time pH plot is shown in the bottom axis.  
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Like any other pH sensor, the MO-pH requires pH calibration for accurate pH 

prediction. The points/options considered for the calibration are,  

 

Option1:  A three-point calibration at the beginning of the culture using 

custom buffers. 

Option2: Option 1 plus supplementary re-calibrations with additional pH 

samples (the ones removed at times of medium exchange and at the end of 

the culture).  

Option3:  Without any calibration with pH buffers. An option to just to 

follow the pH changes instead of absolute pH. In theory, at a given 

temperature, pH ∝ phenol red absorption, A=[ε*b]*C=constant*C. So a basic 

absorption measurement can also follow the pH changes roughly.  

 

Figure 28b shows an example calibration curve with three-point calibration. The 

pH of several samples (Figure 28a) measured with the calibrated system is shown in 

Figure 28c. On the other hand, when we take into account the biofouling issues and 

the availability of used-up medium (via medium exchange), the option 2 with re-

calibrations improves the measurement accuracy notably. We use this option in long-

term cultures and two example plots from hASC expansion cultures (in CO2 

dependent and CO2 independent medium) can be seen in Figure 4 in Publication III. 

There, the inset figure shows the error bars with the calibration option 1 (labelled as 

‘Textbook equation’) and option 2(labelled as ‘GR model’). Also, original pictures of 

example biofouling films imaged (Objective 20X, Phase contrast) at the end of a cell 

culture together with their intensity profiles (horizontal and vertical) are provided in 

Figure 29a-b. Besides, an additional ~21 days of pH measurement plot in the 

osteogenic differentiation of adipose stem cells is provided in Figure 4 in Publication 

IV. All the reference pHs were measured with a glass electrode pH meter (WTW 

Multi 340i with SenTix 41-3 electrode, Weilheim, Germany) or an ISFET pH probe 

(Sentron SI600). 
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Figure 28. Optical pH measurements. (a) DMEM samples at various pH levels. (b) A three-point pH 
calibration curve. (c) Optical pH measurements with the calibrated MO-pH. 

 

Figure 29. Biofouling in cell culture. (a-b) Original images of biolayer films on the inner wall of the 
flow-through cuvette after long-term adipose stem cell expansion cultures. The right-hand 
side images are the horizontal and vertical intensity profiles of the film across the green 
and blue lines on the left images.  



55 

 

Furthermore, we have also utilised the MO-pH to comprehend the behaviour of pH, 

temperature and humidity in water jacked incubators as well as to record the pH 

response as a function of temperature in the presence and absence (supply cut off) 

of CO2 in the context of stem cell cultures in it.  See Figure 2 in Publication IV for 

the experimental plots. Here the CO2 levels were measured with a commercial CO2 

sensor (GC-0016-COZIR/ Factory calibrated). The measurements showed the pH 

drops ~0.2 and ~1.0 pH units in the absence of CO2 (in fact it is 0.0995%) and in 

its presence (5%) respectively when the temperature drops ~ 10oC.  

4.4.2. Re-closable Lid System 

Cell flasks, conventionally, play a vital role in life science research for the successful 

growth of cell lines. A wide variety of non-treated and treated (with synthetic or 

biological surfaces) flasks are commercially available these days for various 

applications [180], [181]. Out of all, the most commonly applied are the flat-sided 

flasks, Erlenmeyer flasks and the spinner flasks[182][183]. Some recent advances in 

the flask technology include, multi-layer flasks (for faster and easier scale-up of the 

culture), revised flask shaping (to access all corners with a pipette or scraper) and 

sophisticated flasks (e.g. flasks with sensor spots, rotating wall vessels, spinner flasks 

with impeller). Another notable technology in recent years is the flasks with re-

closable lids (RL-F) and with the peel-off foils [184]. These are very unique flasks 

with the advantage that they can be opened and re-closed (liquid-tight), allowing total 

access from above, still without hindering the slip-free multi-flask stacking. Most 

importantly, they are re-usable with appropriate sterilisation. We have tested the 

applicability of RL-F flasks in our cell culture research. Then built (re-constructed) a 

standalone system around an RL-F flask, combining the cell culture, medium 

perfusion and optical measurements. Figure 30 illustrates the developed system with 

flow (air and liquid tight) connectors. All the flow fixtures (panel mountable, Qosina 

OEM) are rated for medical grade and carefully assembled and sterilised with 

spraying 75% alcohol. 

After the assembly and testing, the reconstructed RL-F has been applied in real-

time cell culture experiments. Figure 31 shows an example case from the osteogenic 

differentiation (> 20 days) of hASC and simultaneous pH measurements (Figure 31a, 

using MO-pH). In Figure 31a, the sharp peaks are at times of medium change, due 

to sudden temperature and CO2 drop and addition of fresh medium. Figure 31 b,c 
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shows the microscope images (captured at the end of differentiation) of hASC in the 

reconstructed RL-F flask and in a control flask.   

 

Figure 30. The new type of culture flasks. (a) Culture flask with re-closable lid (RL-F, [184] ). (b)  A 
novel standalone system that we constructed around the RL-F, combing the culture, 
medium perfusion and concurrent optical measurements. 

At the end of differentiation, the Alizarin red staining successfully confirmed the 

mineralisation of cellular extracellular matrices and the formation of bone cell 

precursors in the reconstructed RL-F system. In the next stage, we plan to integrate 

simultaneous TLM and an ion sensor into this system.  

 

Figure 31. Application of reconstructed RL-F in osteogenic differentiation and simultaneous pH 
measurements. (a) Real-time pH plot (with MO-pH) during the entire duration of an hASC 
differentiation. Microscope images of hASC at the end of differentiations, (b) in the 
reconstructed RL-F flask and (c) in a control flask. Alizarin red staining with RL-F flask 
sample confirmed the characteristic mineralisation and formation of bone cell precursors. 
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4.5. Discussion on Spectroscopic pH Measurements 

Estimation of pH spectroscopically by measuring the phenol red concentration in 

cell cultures has previously been utilised. But most of the reported methods have 

had practical concerns in our measurement requirements. So we developed the MO-

pH with a modular and sterilisable architecture. At the moment MO-pH includes 

also a sample flow scheme (modified peristaltic pump) in order to circulate the 

medium through a flow-through cuvette (for optical readout). But in due course, the 

optical readout alone is intended to be added into the inlet/outlet of the perfusion 

system that would then be a part of the iuCMP.  

In practice, compared to fluorescence based pH indicators, phenol red 

measurements are very stable, non-toxic, and exhibit fast chemical-equilibration, 

allowing one to achieve good measurement accuracy and short response time. The 

MO-pH utilises a pH-sensitive 545 nm measurement channel (with 680 nm 

reference), avoids auxiliary optical components (e.g. lenses and collimators) but still 

can provide a resolution down to 0.1 pH units.  The non in-situ pH measurement has 

some limitations, but on the other hand, it improves cell viability by minimizing the 

instances of photo-cyto toxicity [185]. If required, pulsed illumination can also be 

utilised in the MO-pH to reduce the light exposure.  In our design, we utilised 3D 

printed parts for the modular cassettes, casing and the support holders (for cuvette, 

cassettes and pump rotary mechanism) and demonstrated they can be successfully 

applied in incubator measurements. Initially, the modular cassettes were 

encapsulated (and sealed) in transparent cuvettes (Polystyrene, SE-202295, 

Spectrecology), but later were replaced by more robust quartz cuvettes. Quartz 

cuvettes are more durable, scratch-resistant and sterilisable by multiple means. Also 

the effect of sterilisation on the cleaned quartz surface is practically none, but if it 

happens by any chance, it will be compensated in the calibration. The support 

structures and cassette parts are 3D printed (TAZ 3/LulzBot) PLA (Polylactic acid)). 

The cassettes are sealed with hot melt glue and the sealing quality is tested in DI 

water bath for around 50 h at 38° C. The cassettes can be sterilised with ethanol 

spray before placing in the incubator. During pH measurement, no sample extraction 

from the incubator or any special sample treatment is needed and the medium is 

constantly circulating through peristaltic pump silicone tubing which is 

biocompatible and suited for life science applications. An integrated temperature 

sensor (with Van't Hoff’s model) compensates the effect of temperature in the pH 

in real-time. Integrating also a CO2 sensor in the future could be even better. A new 

absorption correction model has also been developed and applied in order to 
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minimise the errors caused by biofouling in long-term cell cultures. Nevertheless, 

the colorimetric pH measurements, in general, are also prone to salt error (mild 

displacement of indicator equilibrium by ionic strength, [175], [178]), protein error 

(by indicator-protein binding [186], [187]) and alcohol error (equilibrium shift in 

methanolic/ethanolic aqueous system, [188], [189]). But as the concentration of 

neutral salts in typical stem cell cultures is fairly low (< 150 mM), the salt error 

correction is unnecessary if it is below 2000 mM. Also, alcohol error is not a concern 

in an alcohol-free culture.  But, the protein error (depending on the type and quantity 

of proteins present) may have some effect on the measurements. In general, the 

simpler the protein structure the lesser the error can be [190]. But it can be difficult 

to address directly in long-term cultures but our absorption correction model 

indirectly addresses it reasonably well. Needless to say, contamination and microbial 

growth, for example, bacterial or yeast colonies, can produce huge measurement 

errors as they usually make the medium very turbid and cause erroneous absorptions 

[191].  

As a future perspective, the possibility of measurement of turbidity without using 

complex illumination (e.g. laser diodes) is also being considered. With this focus, an 

additional sensor cassette for 90o scatter measurements at two wavelengths is in 

operation but the results so far are inconclusive. Another future direction is applying 

a good quality camera for both turbidity imaging as well as for 2D pH mapping. In 

this direction, a few image-based schemes have been tested which will be briefly 

discussed in the next chapter.  

4.6. Image Based pH Estimation: Experimental Trials  

4.6.1. Measurements with Liquid Crystal Display (LCD) 
Illumination, Optical Projection Tomography (OPT) and 
Webcam Arrangement 

The distribution of pH in tissue in-vivo is not always constant and a pH gradient of 

up to 1.0 pH unit within 1 cm distance have been verified with MRI images [192]. 

Static pH measurements can point out systemic problems, but on the other hand, a 

multipoint pH measurement (e.g. 2D pH map) can pinpoint, for example, the 

location of a lesion in a tissue or the magnitude of excursion from the normal pH 

[192]. 2D pH maps can also be helpful to understand a variety of common 
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pathologies, including COPD, ischemia, renal failure and certain cancers. Therefore 

various pH mapping methods are constantly being reported for both in-vivo and in-

vitro applications. We have also been testing whether the spectroscopic pH 

formulations can be applied with imaging sensors for spatial pH maps. With this 

focus, we have tested three imaging schemes mainly to explore the pros and cons in 

their implementations in the context of in-vitro pH sensing in the iuCMP. The tested 

schemes are respectively based on 1) a flat illumination, 2) OPT system and 3) a 

double webcam arrangement which are shown in Figure 32, Figure 33 and Figure 

34.  

In the flat illumination scheme, several pH samples were placed carefully in-front 

of an LCD screen   (Lenovo P 50) as shown in Figure 32 and RAW images were 

captured with a colour SLR camera (Nikon D3200, 6016 x 4000 pixels, Exposure 

1/8 second).  

 

Figure 32. Testing flat illumination for pH imaging. (a) An LCD screen as an illumination source for the 
pH samples. (b) Images of 10 pH samples and a reference sample (DI water). (c) The 
computed transmission values in red, green and blue channels versus the reference pH 
(measured with the glass electrode). (d) Reference pH and the pH predicted using the 
RGB regression model. 
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A tiny thermocouple was also attached onto the LCD screen near the cuvettes for 

the temperature data. The main goal in LCD based imaging was to understand how 

well the RGB levels with a flat (uniform) background illumination would correspond 

to the pH changes. Figure 32b shows images of the 10 pH samples (650 x 250 pixels 

each) and a reference sample (cuvette with DI water, for transmission reference). 

The computed transmission values in red, green and blue channels are shown in 

Figure 32c where one can see that the transmissions especially in the green and blue 

channel change quite proportionally with the pH. Nevertheless, the transmission 

changes in the red channel were unexpected. A linear regression RGB model with 

the transmission values from all the three colour channels was applied to predict the 

pH. Figure 32d shows the pH reference (measured with the glass electrode) and the 

pH predicted of all the 10 samples with the RGB model. 

The second imaging scheme was tested as part of a sophisticated OPT instrument 

(Figure 33a) with the objective of 2D/3D pH imaging in 3D scaffolds.  

 

Figure 33. Testing pH imaging in an optical tomographic system. (a) The OPT arrangement. (b) OPT 
captured images of 10 pH samples and 2 reference samples (empty, DI water) in green, 
red and blue illuminations. (c) The computed optical transmissions in the three 
illuminations: Here one can see the green and blue channels show a clear pH 
dependence. 

The OPT instrument comprises of, mainly a monochrome camera (2048 x 2048 

pixels, FOV 3 x 3 mm), a telecentric illumination and a small sample holder (typically 
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a hollow transparent plastic tube) in a water bath. For our pH tests, the OTP’s light 

source was replaced with specific LEDs: green (525 nm-LC503FPG1-15Q-A3, 

Cree), blue (LED435nm-12-30, Roithner LaserTechnik) and red (630 nm-HLMP-

EG1B-Z10DD - Avago). In Figure 33b, the OPT images of 10 pH samples and two 

reference samples (empty, DI water filled) with green, red and blue illuminations are 

provided.  The computed transmission plots are shown in Figure 33c. As expected, 

the transmissions with green and blue channels show a clear pH dependence while 

the red illumination remained insensitive to the pH changes. 

The third scheme tested was a direct culture flask imaging scheme with two 

cameras. In Figure 34a, the constructed arrangement for a T25 type culture flask is 

shown.  

 

Figure 34. Testing a double webcam system for pH imaging. (a) The imaging arrangement for a T25 
type culture flask with two cameras: one for sideway imaging the other one for inverted 
imaging. A 3D printed closable casing (painted white inside) blocks the background light. 
For illumination, a LED array with a diffuser glass was used. (b) Images of four pH 
samples captured with the side camera. (c) Computed mean intensities in red, green and 
blue channels in the captured images. 
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There, two cameras (Logitech C920, for vertical-inverted imaging, and for horizontal 

imaging) and a 3D printed closable lid (painted white inside) can be seen. Example 

images captured with both the cameras and the research questions under this study 

are shown in Figure 34a. For the illumination, a LED array (5x5 white LEDs) and a 

diffuser (DG05-1500-MD, Thorlabs) were mounted on the lid-inside-ceiling for 

vertically downward illumination. With this type of arrangement, the bottom camera 

(with selected microscopy lens, e.g. Figure 2a) can capture images of cells and also 

enable transmission-based pH measurements. The side camera, on the other hand, 

can image the medium colour more accurately and measure the liquid height (for 

exact transmission computation). Images (640 x 110 pixels cropped) of four pH 

samples captured with the side camera and their computed mean intensity levels are 

shown in Figure 34b and Figure 34c. This scheme too displayed pH-dependent 

intensity changes as expected in the green and blue channels. With this scheme, the 

possibility of imaging the turbidity (of culture medium) was also considered. 

4.6.2. Discussion on Image-Based pH Measurements 

The purpose of our pH imaging trials was to check whether simple-compact 

schemes in the context of in-vitro systems can be applied for pH estimation with 

acceptable accuracy. For this, we have tested schemes with both colour and 

monochrome cameras. The webcam schemes, even though are cheap and constantly 

being tested (by others), may not be the best candidate for the pH imaging. One 

reason is that their image sensors are too integrated and outputs only the processed 

images (typically with jpg compression). So the analytical computations based on 

them might not be very accurate and reliable. Accessing the settings of the webcam 

sensor for better imaging control is not always straight forward and oftentimes their 

auto-setting features adjust the scene settings automatically according to the lighting 

conditions. Further, the webcam lenses are usually basic plastic lenses and not 

corrected for various aberrations [193]–[195]. The webcam maximum frame rates 

and the true-pixel-resolution (may differ from the webcam’s specifications) can also 

be limiting factors for certain biological measurements. On the other hand, using a 

system with a good quality colour camera that outputs RAW images, the colour 

changes of a colorimetric/fluorescent indicator can be correctly imaged for 

quantitative analytical measurements.  For pH estimation, either RGB models or for 

better accuracy advance spectroscopic formulations can be applied. For accurate pH 

estimation, a system with a monochrome machine vision camera and an appropriate 
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colour illumination may be the best choice. The machine vision cameras permit 

manual control of all the camera settings which is very important in accurate image 

based quantitative analyses. In any pH imaging system, the implementation of a 

proper illumination scheme is very critical. We have tested single LEDs, LED arrays 

and LCD illumination. An interesting illumination option can be with a mini-LED-

projector where the intensity, colour and spatial distribution can be adjusted in 

numerous combinations. In practical real-time pH imaging, controlling 

(optically/electronically) the background illumination as well as concurrent 

temperature monitoring are also essential. If multi-camera systems are appropriately 

developed for in-vitro tabletop systems, it can incorporate TLM (including fluorescent 

microscopy), as well as, maybe advanced features such as multi-parameter sensing, 

quantitative phase recovery and movement-free 3D video microscopy.  

The pH imaging results presented here are preliminary and the experiments serve 

as examples highlighting a few possible practical options. More measurements, 

repetitions, and further equipment development are needed for achieving rigorous 

results. But the experiments showed non-fluorescent and cost-effective pH imaging 

schemes could be developed and integrated into portable in-vitro systems for pH 

monitoring and control.  In any long-term cell experiments, two challenges any 

imaging system might face are the medium evaporation (and related issues) and 

bubble formation. Both of them can hinder accurate imaging, colour capture and 

transmission measurements. See Figure 35 for a real case of bubble formation in a 

TLM of MEF experiment and its effect on the pH prediction (Figure 35b).   

 

Figure 35. How do bubbles hinder optical measurements? (a) A real case of an air bubble expansion 
(the black region) during the TLM of an MEF experiment. (b) The computed absorptions 
and pH from the four spatial locations marked as Loc1:4 at the left image. Here one can 
see that the bubble in the FOV causes a huge error in the computations.  
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In Figure 35b, the computed absorptions (and the pH) at four spatial locations 

(Loc:1, 2, 3 and 4) during the TLM of  ~ 2500 minutes are shown. A large bubble 

gradually blocks the FOV and the light transmission, causing a huge error in the 

absorption (and the pH commutation). In Figure 35b, the pH estimated are 

erroneous just from the appearance of bubble onwards. As a matter of fact, a 50 % 

change in light transmission would report more than 1.0 unit of pH change falsely. 

Therefore the medium evaporation and bubble formations need to be carefully 

controlled for accurate in-vitro image-based computations unless other ingenious 

compensation techniques are available.  
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5. CONCLUSIONS 

This chapter summarises the main results, provides answers to the research 

questions listed in the Chapter 1.2 and discusses the limitations of the study. 

5.1. Main Results 

The main results and scientific contributions of this thesis are listed below 

1. Constructed a good quality compact digital microscope for unstained live-

cell imaging. The imaging quality was validated using both stained 

physiological samples (blood smear, skin section hair follicle and hard-

bone grinding section) and live-cells (cardiomyocytes, neurons, human 

adipose stem cells (hASC) and mouse embryonic fibroblasts (MEF)). 

 

2. Designed and assembled the interchangeable modular cell culturing 

platform- iuCMP. A graphical user interface (GUI) software for the 

iuCMP control and data acquisition was also scripted.  

 

3. Scripted the beating signal analysis software CMaN with the following 

specifications,  

a) Extracts six separate signals of CM contractile motion in a single 

processing. 

b) Have features for movement centre (region of largest contractile 

motion) detection and automated cluster finding. 

c) Individual/batch wise processing of CM single cell or cluster 

videos.  

d) Offline and almost real-time automated video analysis. 
e) Compared to similar tools, it is several times faster, more 

sensitive, computationally less expensive and allows ROI 
selection. 

f) The signal waveform resembles an ECG waveform, 
corresponding to the contractile phenomena more exactly and 



66 

 

allows computation of contraction and relaxation features 
separately.  

 

4. The iuCMP and CMaN have been used in a few studies/projects. 

Currently, they are used in experiments to model ischemia with hiPSC-

CMs. The results are expected to provide more insight into ischemic heart 

disease (IHD). 

 

5. Conducted detailed automated temperature stressing experiments with 

hiPSC-CMs. In data analysis, we showed that the relationship between 

hiPSC-CM beating frequency and temperature is nonlinear and 

subsequently computed the Q10 temperature coefficients. Further, we 

reported the novel results of signal propagation between dissociated 

clusters and their non-invasive measurements.  

 

6. Constructed the optical non-contact pH measurement system MO-pH 

using 3D printed parts and assemblies. The system is waterproof, 

modular, sterilisable and suitable for real-time long-term 24/7pH 

monitoring.   

a. Developed a new absorption correction model to compensate for 

the effect of biofouling.  

b. Constructed also a new flow-through measurement and perfusion 

arrangement as part of flasks with re-closable lids (RL-F).  

5.2. Answering the Research Questions 

Cell culture process monitoring is important to understand the cell functions, 

metabolic properties as well as to improve the productivity and reproducibility. 

Monitoring can be helpful not only for physiochemical or metabolite 

measurements but also for a routine inspection of the substrates, electrodes, 

contamination and biodegradation. Accurate process monitoring becomes 

inevitable also for standardisation and regulatory agencies [196]. In many instances, 

a suitable existing monitoring technology can directly be adopted. But sometimes 

it becomes apparent the need to develop new methods to meet the specific 

requirements. Currently, new monitoring technologies, both from the technology-
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driven and biology-driven aspects are being developed at an ever-increasing speed. 

This thesis is also in the direction of developing new technologies for cell culturing.  

In a nutshell, there were two specific goals for this thesis. The first goal was to 

develop an imaging module as part of/together with a tabletop modular cell culturing 

system for cell experiments outside a traditional incubator. A portable multipurpose 

system was envisioned. The second goal was to develop a 24/7 non-contact pH 

measurement system for stem cell cultures. These two goals were pillared on five 

specific research questions (see Section 1.2). In the following paragraphs, these 

research questions and the details of how those questions were addressed are 

discussed.   

The first two research questions were  

How can measurement systems with minimal disturbance to cells and 

suitable for long-term studies outside a traditional incubator be created? 

Can a mini phase contrast microscope with invert-upright convertibility be 

developed for good quality imaging of unstained live-cells in-vitro? 

To this direction, we conceptualised a tabletop, incubator-free ‘Invert-upright 

microscope interchangeable modular cell culturing platform’-iuCMP with a mini-

bioreactor, digital microscope, cell-friendly monitoring systems (optical pO2 sensor, 

MEA amplifier, TSP sensor) and with a cardiomyocytes functionality analysis 

software. The iuCMP was first designed and optimised in SolidWorks’ 3D CAD 

platform. The assembled system has been applied in various short-term and long-

term cell studies. The details of iuCMP together with the compact microscope design 

was presented in Publication I. The 3D CAD design files were also published (as 

Supplementary material) with this publication. In the Publication I, we demonstrated 

incorporating biocompatible cell-friendly materials, good quality live-cell imaging, a 

novel convertible microscopy architecture and measurement systems.   The 

convertible architecture enabled the system to be equally useful for both the 

conventional inverted and upright (for imaging areas otherwise not accessible by 

conventional microscopes) TLM applications. The imaging quality was validated 

with histological specimens and with live-cell imaging of neurons, beating hiPSC-

CMs, MEFs and hASCs. The suitability of the system for long-term applications has 

been verified with the orientation analysis of MEF on cellulose fibres and 

cardiomyocytes imaging and beating signal analysis.  
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The iuCMP, in fact, is not intended to be a stiff device, but a flexible system that can 

accommodate various components (in-vitro culture constructs, tailored sensor or 

stimulation units) quite freely. The applications can be but are not limited to cell 

characterisation, differentiation, chemical sensing, drug screening, 

electrophysiological recordings, and cell stimulation. See [55], [112] for other 

published work where the iuCMP was applied for cell experiments. At the moment, 

two other studies are also in progress. In the first study, the system is used for the 

experiments to model ischemia with hiPSC-CMs. For this, automated environment 

control (temperature, oxygen levels) and simultaneous monitoring (oxygen, 

temperature) and functionality measurements (MEA signals as well as video-

microscopy CMaN analysis) are incorporated. The system induces controlled 

hypoxia and the cellular and molecular-level changes in cell functionality, 

morphology, viability as well as gene and protein expression are studied. The results 

are expected to provide more insight into ischemic heart disease. In the second study, 

the hiPSC-CM beating rate control with localised temperature adjustments by fuzzy 

control schemes (BPMFuzzy) is being explored.  

The third research question was 

Can affine-optical flow be used to reliably analyse multiple beating signals 

from cardiomyocyte beating videos? If so, does the waveform, speed and 

sensitivity allow the computation of relaxation and contraction features 

separately? Can it be applied for movement centre detection, batch mode 

processing and real-time analysis? 

The contractile movement analysis of cardiomyocytes videos with the AFOF was 

tested in detail and subsequently the beating analysis software - CMaN was scripted, 

validated and reported in Publication II. CMaN is a robust and easy-to-use software 

(with a GUI) and equipped with features for automated cluster finding and batch 

processing of single cells and large CM clusters. Importantly, it has features for 

movement centre detection and the ability to extract six different contractile signals 

in a single processing. The six signal components are translation velocities-Vx, Vy 

(along x and y directions), dilation-d (rate of expansion/shrinking), rotation-r (rate 

around z-axis) and shears-s1, s2 (rates along x and diagonal axes). This way, CMaN 

could provide a minimum of one clear beating signal even when the movement is 

relatively weak or the frames are moderately over exposed or gamma imbalanced. In 

contrast to similar tools, CMaN is faster, more sensitive, and computationally less 
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expensive and supports ROI selection. In addition the ECG like signal waveform 

from CMaN allows the computation of contraction and relaxation features 

independently. CMaN has been used in analysing the videos recorded in hiPSC-CM 

temperature stressing studies reported in this thesis. Additionally, CMaN has also 

been used: 1) In a project : designing gold nanoparticle crosslinked conductive 

hyaluronan and chondroitin sulfate hydrogels for culturing embryonic stem cells 

derived human cardiomyocytes (Hanna Kemppi, details not open). 2) In the ischemia 

project (ongoing) and 3) in the BPMFuzzy (waiting for the cell trials).  

The fourth research question was  

Can we carry out long-term automated assessments of the hiPSC-CM 

contractions to temperature stimuli outside a conventional incubator? 

This research question was formulated as a demonstrative application of iuCMP and 

CMAaN. In the experimental side, the iuCMP was applied for automated 

temperature stressing of hiPSC-CMs. A programmable ITO heater, a TSP and the 

CMaN worked together in the iuCMP for automated temperature adjustments, 

concurrent TLM and beating signal analysis. The results were presented in 

Publication II. Since the cells were directly cultured on the TSP, the temperature that 

the cells experience was measured precisely from the cell area. In the data analysis, 

we showed that the relationship between hiPSC-CM beating frequency and the 

temperature was nonlinear and measured the Q10 temperature coefficients. Most 

importantly, the novel results of hiPSC-CM contractile networking (the signal 

propagation between dissociated clusters) and its non-invasive measurements by 

means of image processing were also reported in Publication II. Additionally, the 

software was published as a supplementary material with the same publication.  

The fifth research questions was 

Can we reliably measure pH, based simply on non-contact optical methods 

during long-term observations? 

The goal here was to develop a real-time optical pH measurement system for the 

phenol red cell culture medium.  Phenol red, being a colorimetric pH indicator, 

facilitates a colour transition from yellow to red when the bulk pH changes over the 

physiological range. So technically, the initial plan was to measure the colour directly, 
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for example, in the medium outlet/inlet of a perfusion channel. For the colour 

measurements, reflective, transmissive (absorptive) and transflective measurements 

can be applied. Notably, however, the spectral transmission measurements showed 

better pH measurement accuracy, repeatability and resolution. So we designed a two-

wavelength pH measurement system. The two-wavelength pH measurement 

technique has previously been applied but we constructed a novel system, MO-pH 

that is incubator compatible, sterilisable and suitable for long-term unattended 

measurements. Its modular parts (cassettes) can be sterilised with alcohol. 

Furthermore, we developed an absorption compensation model which addresses the 

effect of biofouling in optical pH measurements reasonably well. Consequently, the 

measurement accuracy improved notably. Currently, the MO-pH can provide a 

resolution down to 0.1 pH unit in physiological pH range with mean absolute error 

≤ 0.02. The MO-pH has been applied in 24/7 pH monitoring in several ASC 

expansion cultures. The details were presented in Publication III. Additional long-

term pH measurement result in ASC osteogenic differentiation was presented in 

Publication IV. The MO-pH has also been used in understanding the overall true 

environmental (temperature, humidity and pH) behaviour in a water jacked 

incubator in 2-3 weeks of continuous measurements. These results can also be seen 

in the Publication IV. These measurements clearly showed the interplay between 

measured parameters and possible instances of stress reactions at various stages in 

the stem cell culture. In Publication IV, we also reported the pH changes as a 

function of temperature in the absence and presence of CO2. All these 

measurements provided a comprehensive picture of behaviour of critical control 

parameters during long-term cell cultures, pointing out the need for bioprocess 

systems with intelligent features, precise control, and robust cell function analysis. 

These features will be crucial for maximum productivity in smart-device based 

systems as well as in future organ-on-chip approaches. 

5.3. Limitations of the Study 

The iuCMP has been applied in various TLM studies, but the microscopy focus 

drift is corrected at the moment manually once per day. Technically, z-stack imaging 

is possible but it still cannot be used for automated focal drift correction at present. 

Also the E-TL could have been tested for remote focus drift correction. As such the 

system is a single spot TLM imaging device. For automated multisite imaging, either 

require a motorised xy stage and/or multiple compact microscopes. Figure 2 
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(scheme 1 or 2) with multiple CMOS sensors (board level) may be a possible option 

for this purpose. Fluorescent imaging is important in cell studies but our system lacks 

it.  Extra optics (filters, filter cubes), more sensitive cameras and electronics are 

essential for this which may come as a separate module. There is no automated 

medium exchange to remove the waste and replenish the nutrients. Also, we have 

observed the instances of medium evaporation sometimes, but it may be tackled in 

future with better incubator geometries or heating schemes. A few times we have 

noticed the degradation/etching of micro-electrodes, likely by culture medium. In 

the hiPSC-CM temperature stressing experiments only the video-based functionality 

analysis was utilised. But since the studies were with cardiac stem cells, 

measurements of gene or protein expressions could have been incorporated. The 

phenol red-based pH measurements work only for a very narrow pH range (pH 6.8 

to 8.2). One major disadvantage of this method is if the medium is very turbid, the 

measurements may be unreliable. This scenario is usually associated with 

contamination (bacterial, yeast etc.)[197] and is highly unlikely in sterile cultures.   
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ABSTRACT Cell culture in-vitro is a well-known method to develop cell and disease models for studying
physiologically relevant mechanisms and responses for various applications in life sciences. Conventional
methods for instance, using static culture flasks or well plates, have limitations, as these cannot provide
accurate tractable models for advanced studies. However, microscale systems can overcome this since they
mimic the cells’ natural microenvironment adequately. We have developed a portable live-cell imaging
system with an invert-upright-convertible architecture and a mini-bioreactor for long-term simultaneous
cell imaging and analysis, chemical sensing and electrophysiological recording. Our system integrates
biocompatible cell-friendly materials with modular measurement schemes and precise environment control
and can be automated. High quality time-lapse cell imaging is hugely useful in cell/disease models.
However, integration of advanced in-vitro systems into benchtop microscopes for in-situ imaging is tricky
and challenging. This is especially true with device based biological systems, such as lab/organ/body-on-
chips, ormini-bioreactors/microfluidic systems. They face issues ranging from optical and physical geometry
incompatibilities to difficulties in connectivity of flow and perfusion systems. However, the novel modular
systemwe have developed either as an inverted or as an upright system can easily accommodate virtually any
in-vitro devices. Furthermore, it can accept additional sensor or measurement devices quite freely. Cell char-
acterization, differentiation, chemical sensing, drug screening, microelectrode-array-electrophysiological
recordings, and cell stimulation can be carried out with simultaneous in-situ imaging and analysis. Moreover,
our system can be configured to capture images from regions that are otherwise inaccessible by conventional
microscopes, for example, cells cultured on physical or biochemical sensor systems. We demonstrate the
system for video-based beating analysis of cardiomyocytes, cell orientation analysis on nanocellulose, and
simultaneous long-term in-situ microscopy with pO2 and temperature sensing. The compact microscope as
such is comparable to standard phase-contrast-microscopes without any detectable aberrations and is useful
practically for any in-situ microscopy demands.

INDEX TERMS Portable compact microscope, label-free long-term live-cell imaging, modular portable
microscope for in-situ in-vitro cell imaging, portable cell culture system, portable cell culture and measure-
ment system, low-cost biosensor technology.
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I. INTRODUCTION
Live-cell microscopy is a tool used commonly in various
research applications and, is instrumental in investigating
numerous intra and extra cellular dynamic processes and
their environmental interactions. Traditional approaches to
live-cell imaging are often based on short or long- term
time-lapse microscopy (TLM) using high quality biological
microscopes [1], [2]. The growing interest in this area is per-
haps best evidenced by the dramatic increase in the number
of papers reporting numerous TLM studies in life sciences.
In most TLMs, the cellular activity is imaged for durations
ranging from milliseconds to hours in a specimen chamber
with special environment control [3], [4]. A TLM system for
biological specimens is typically equipped with a contrast
enhancement technique such as, differential interference con-
trast (DIC) or Hoffman modulation contrast (HMC), or fluo-
rescence or phase contrast [1]. They can capture images at
defined time points to produce a TLM montage or movie
to unveil dynamic biological processes. High-end systems
coupled with dedicated TLM softwares often support high
frame rate movie recordings, and if desired, timely analysis
of captured images during the TLM. The State-of-the-art
TLM systems employ imaging modalities such as confocal
and super resolution procedures in order to improve the con-
trast, to reduce the photo-cytotoxicity and to capture images
at resolutions higher than Abbe’s classical diffraction-limited
resolution [5]. The quality of TLM images by these systems
is high, however, it comes with a price; high costs and often
the hardware involves fairly complicated settings with large
form factors and high upkeep [6]. These systems oftentimes
cannot satisfy the need for high throughput observations due
to their bulky volume and limited flexibility [7]. Besides,
in several device based biological systems, for example,
lab/organ/body-on-chips, reaction chambers, bioreactors, and
microfluidic culture systems, the real time processes need to
be timely imaged in in-situ. They can experience tremendous
challenges while being embedded into an off-the-shelf TLM
system, due to issues ranging from optical and physical geom-
etry incompatibility to difficulties in connectivity of flow and
perfusion systems [8]–[17]. Several recent developments in
physical, chemical and biological sensors for cell culturing
and cellular-tissue models are steadily being integrated into
systems for drug screening, regenerative medicine and stem
cell engineering [18]–[20]. These sensors are efficient can-
didates for process monitoring and environment regulation,
however, most of them, unfortunately, are not compatible
with conventional TLM hardware for synchronised imaging.
Despite various TLM systems with remarkable specifica-
tions being continually available in the market, still adapting
steadily developing technologies into them is difficult and
laborious.

Breaking the barriers of achievable spatial resolution in
microscopy is obviously important, but at the same time,
the demand for miniaturized versions of biological micro-
scopes with uncompromising imaging quality is also contin-
ually increasing. Compact microscopes instead of high-end,

large-form-factor microscopes, are unavoidable in several
instances, for obvious reasons, like following the biological
events in-situ in real time inside or outside of an incubator.
Over the last years, several compact microscopes, have been
developed and some have been commercialised [21], [22].
A number of compact systems, based on the emerging micro-
scope modalities have been reported recently. The on-chip
brightfield - fluorescent microscopes [23]–[26] have success-
fully demonstrated high resolution, large field-of-view (FOV)
and incubator compatibility. However, the cells need to be
plated on the imaging chip, making them less attractive for
conventional cell culturing workflow. On the contrary, dig-
ital holographic microscopy (DHM) is an excellent choice
for widefield lensless 2D/3D imaging, and numerous com-
pact systems have been recently reported [27]–[29]. DHM,
in general, can be implemented as a shadow or fluores-
cent imaging modality either by quantitative or qualitative
means, but in all cases, the image of the object must be
reconstructed numerically from the diffraction pattern of the
specimen recorded [30], [31]. DHM, being a computational
microscopy, thus typically lacks the immediate visualiza-
tion of the specimen, which can be cumbersome in certain
biomedical procedures [32]. Another imaging modality – the
optical projection tomography, that developed notably in the
last decade can produce 3D cell images, but apparently is not
directly suitable for live-cell imaging. On the other hand, non-
linear optical imagingmethods are suitable for live-cell imag-
ing, but the miniaturization – from the instrumentation point
of view- is tricky. On the contrary, fiber optic microscopy
has remarkable advantages, but integrating fibers into cell
chambers can be sometimes severely chaotic [33]–[38].
In addition to downsizing the newly emerging microscope
modalities, modifying existingmicroscopymodalities to con-
struct portable compact microscopes have unprecedented
potential, especially when they are equipped with features for
wireless communication, web interfacing and smart phone
compatibility. They can have widespread applications in
remote cell microscopy, mobile healthcare and on-field med-
ical diagnosis [39], [40]. Though several compact micro-
scopes have been reported, most of them, except for a
few are either bright-field or fluorescent systems [23]–[26],
[39]–[41]. As live-cells are highly transparent for visible
wavelengths, the image contrast is extremely poor in bright-
field systems. The contrast is greater in fluorescent systems,
but staining with fluorescent markers is inevitable, which
can sometimes be toxic and unacceptable. While chromatic
aberration is visible in some of the reported cost-effective
systems [7], controlling all the camera features in webcam
based systems is not straight-forward or is sometimes impos-
sible [7], [42], [43]. Besides, the maximum frame rate in
web-cam systems might be insufficient for fast dynamic
recordings.

Almost all the compact microscopes reported are intended
to be used with a specific system or for a specific purpose and
not necessarily modular for extended applications. They have
been explicitly designed to be used either in the inverted or in
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the upright configuration and are mutually exclusive. In this
context, we present a compact portable live-cell imaging
system with a novel modular architecture, configurable either
as an inverted or as an upright system, and with a mini biore-
actor for simultaneous long-term live-cell imaging, chemi-
cal sensing and electrophysiological recording. The system
consists of a digital microscope module, an illumination
module, positioning and a motorized focusing stage, mini-
incubator with biocompatible and cell-friendly materials,
fluorometric pO2 sensor and microelectrode array (MEA)
amplifier. We put forward a design where the illumination
and microscope modules can be swapped, i.e. the system
can be converted between inverted and upright configura-
tions. This architecture enables the system to be useful not
only for conventional inverted spatiotemporal cell imaging,
but also as an upright system when the room below the
cell platform is unavailable for inverted microscopy. When
sensors such as opto-chemical sensors [18], [19] need to
be integrated into cell platforms, ideally, they must oper-
ate in close proximity of the cells, i.e typically just under
the cell platform, and resultantly, simultaneous uninterrupted
inverted microscopy is practically impossible. In our design,
the system can then be switched into an upright configuration,
therefore, biochemical measurements conjointly with live-
cell imaging becomes possible. The microscope module con-
sists of mainly three optical components - a machine vision
camera, a mirror cube and a phase contrast objective. The
illumination module comprises primarily of a white LED,
a LED lens, a ground glass diffuser and a projection lens.
It provides a stable and reasonably safe illumination in bright-
field or dark-field or phase contrast schemes. The manual
xyz-stage module enables sample xy-positioning and coarse
focusing. Fine focusing is accomplished with a motorized
linear stage. The magnification can be adjusted, primarily
by changing the objective lenses and additionally by using
lensless extension tubes. We employ highly corrected
phase contrast objectives to produce high quality cell
images with minimal halo, distortion and aberration.
The bioreactor assembly comprises of a transparent ITO
cell heater, a mini-incubator with polydimethylsiloxane
(PDMS) cell chamber [44], [45] and gas supply for
CO2 buffering.

In the following, we first present a detailed construc-
tion of the developed modular microscopy system. Then the
microscopy characterization and system performance results,
based on studies with a resolution test-target and stained
histology specimens, are shown. In the live-cell microscopy
section, we study the system performance in different con-
figurations when imaging a set of unstained cells. Then
we show the results from orientation analysis of fibrob-
lasts, long term video-based beating analysis of cardiomy-
ocytes and an excerpt from simultaneous pO2 sensing and
TLM study. We complete the paper by experimenting the
z-stack capabilities of the system and, finally we discuss the
results.

FIGURE 1. Modular microscopy schematic arrangement for (a) inverted
microscopy and (b) upright microscopy with optical fluorometric oxygen
sensor and MEA amplifier.

II. MODULAR CELL CULTURING SYSTEM ASSEMBLY
The modular system is schemed in FIGURE 1. The
whole system was designed utilizing 3D computer-aided
design (CAD) in Solidworks R©. Firstly, the 3D models of
suitable commercially available opto-mechanical parts were
imported into the design, and the remaining parts were cus-
tom designed (anodised aluminium). The sub-assemblies of
the final interchangeable assembly (see FIGURE 2) are: a
camera module, an illumination module, a manual xyz-stage
module, a motorized focus stage, PDMS mini-incubator,
pO2 sensor as well as a MEA amplifier with its holder.
An original photograph of the final assembly is shown in
FIGURE 2e. The details of each module are separately
described in the following paragraphs. Check the supplemen-
tary materials section for system design CAD files.

A. CAMERA MODULE
A high quality digital microscope is constructed using
an achromat phase contrast objective, a mirror cube
(CCM1-E02/M-Thorlabs) and a machine vision camera.
The microscope assembly is illustrated in FIGURE 3a.
Two adapters (SM1A10-Thorlabs) and a coupler
(CMT2-Thorlabs) are used for coupling the parts in the
assembly. A camera with internal C or CS mount in the front
aperture is required in the design. In the experiments dis-
cussed later, monochrome (>40 frames-per-second) or colour
camera was used depending on the nature of application and
intended analysis. The machine vision camera and the objec-
tive lens are mounted perpendicular to each other through the
mirror cube. This geometry keeps the digital microscope very
compact and facilitates a fixed mounting hole for objectives
in the imaging plane. Moreover, it provides a great deal of
space perpendicular to the imaging plane for additional
optics. The mirror cube can be locked in its holder
(FIGURE 2), either in upward or downward direction, respec-
tively for inverted or upright microscopy. The cube holder’s
rail carrier head (dovetail RC2-Thorlabs, FIGURE 2a) allows
upward or downward wobble-free translation of the holder
and allows to lock it securely at any place along the length
of the corresponding dovetail rail (RLA1200-Thorlabs,
FIGURE 2a). Further, with this mechanism, the camera
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FIGURE 2. Modular system in different configurations. Microscope assembly for (a) inverted configuration and (b) upright configuration.
(c) Upright configuration with oxygen sensor. (d) Upright configuration with MEA amplifier (MEA1060-Up, Multichannel System) and
oxygen sensor. (e) Original photograph of the final assembly.

module can be easily taken out or snapped onto the rail
anywhere along its length, even without accessing the rail
ends.

B. OBJECTIVES
We utilize phase contrast objectives (Nikon CFI Achromat
ADL 10XF, 20XF and 40XF) to produce cell images with
unsurpassed details with little or negligible phase contrast
halo. These objectives, in principle, transform the differences
in the relative phase between the surround-un-deviated wave
and the diffracted wave (by the specimen) into amplitude
differences in the image [46]. An appropriate illumination
(light manipulation through an annular ring) and objective
placement (keeping the objective phase plate in conjugate
to the illumination annular ring) are essential to achieve the
maximum contrast ratio. See section ‘Illumination module’
for the details of our illumination arrangement. TABLE 1
in the experimental section shows the technical specifica-
tions (measured and formula calculated) corresponding to the
implementation of the select objectives. In addition to using
high magnification objectives, the overall system magnifica-
tion for a select objective can be improved, to a certain extent,
by mounting stackable extension tubes of varying lengths
in the light path (FIGURE 3a). Extension tubes are lensless
hollow cylinders that stay between the objective and the
camera, causing the camera sensor to move further from the

objective and focus more closely, which in turn increases
the overall magnification. The extension distance divided
by the objective lens’s focal length ultimately decides the
amount of overall magnification (see TABLE 1).

C. ILLUMINATION MODULE
The anatomy of the compact illumination module is illus-
trated in FIGURE 3b. It consists of two separate stack-
able sub-assemblies, where the bottom sub-assembly can
be stacked onto the main-assembly with or without an
appropriate annular ring suitable for dark-field or phase
contrast scheme. The optical train of the main-assembly
comprises of a LED (3w-cool white, spectrum ∼410-
750nm, LXHL-LW3C-Lumileds), a bowl-shaped PMMA-
LED collimator lens (FA10696 LN2-RS-LEDiL), a ground
glass diffuser (DG05-1500-MD-Thorlabs) and spacers (stain-
less steel retaining rings (SM1RR, SM1RRC-Thorlabs) and
3D printed ones). All components are packed in Ø1" lens tube
(SM1M20). Components can be accessed from both ends of
the lens tube. A threaded adapter (S1LEDM-Thorlabs) serves
as the LED lock at the top of the tube, and helps one to
replace the LED without disturbing other components in the
main assembly. The other sub-assembly has just two optical
components, a 3D printed condenser annular ring and a plano-
convex lens (L12224/L8080/L11388-SurplusShed) enclosed
in an adapter (AD15F-SM1-Thorlabs) in a 3D printed casing.
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TABLE 1. Modular microscope optical performance specifications, measured and estimated in air (at wavelength 550nm).

FIGURE 3. Compact microscopy parts. (a) Component assembly of the
digital microscope. (b) anatomy of the illumination module. Here,
the bottom sub-assembly is stackable onto the main assembly. This
enables easy replacement of the condenser annule while the objective
lens is changed. The S1LEDM-adapter functions as a lock for
testing or replacing of LEDs (prefer star type or 5mm through hole-LEDs).

The diffuser in the light path is critical for a highly homoge-
nous illumination for high contrast imaging. A diffuser with
1500 grits was specifically selected after several cell-imaging
trials to accomplish the greatest possible contrast. The illu-
mination module has a variable NA (0.08 - 0.27) and a
matching annule needs to be inserted into the sub-assembly
once the objective is changed. The illumination module to the
specimen distance is adjusted freely to take full advantage of
the NA.

D. STAGE MODULE AND MOTORIZED FOCUSING STAGE
A manual xyz-stage (MAXYZ-40R, Optics-focus solution,
see FIGURE 2a) with micrometer head screws, is included
in the set-up for coarse focusing and sample positioning
(x, y = ±6.5mm, z = 10mm, resolution = 10 µm).
A custom machined metallic frame with a rectangular slot is
mounted onto the xyz-stage where, a standard k-frame trans-
parent stage heater (Okolab, H401) can be loaded and locked.
Once the camera and illumination modules are appropri-
ately positioned on the dovetail rail and is coarsely focused,
the motorized fine focusing is carried out from the soft-
ware side. The narrowmotorized translation stage (960-0050,
Eksma Optics, see FIGURE 2a) enables fine focusing
(z = 50mm, resolution= 1.25µm [full steps]) at amaximum
speed of 5 mm/s. Furthermore, a specific stepper controller
(980-0045-USB-Eksmaoptics), is also capable of dividing the

full steps upto 1/256 step/div for sub-micron stack acqui-
sitions. The mechanical limit switches on the translation
stage establish reference positions with an accuracy of several
motor steps and assists emergency stopping.

E. FLUOROMETRIC pO2 SENSOR AND MEA AMPLIFIER
The pO2 sensing is based on phase-fluorimetric detection,
where oxygen sensitive dyes, such as platinum(II) octaethyl-
porphyrinketone are embedded in a thin, gas permeable poly-
mer film (polystyrene) and then the pO2 sensitive phase
difference between the fluorescence emission and excitation
signal are read [47]. For this purpose, we applied a super crit-
ical angle read-out scheme based on an in-contact parabolic
lens [18], which has a high emission collection efficiency
and, moreover, facilitates efficient total internal reflection
excitation. These features make the detection insensitive to
biofouling or other optical changes in the sensing surface
and, more importantly, greatly reduces the amount of optical
power radiated into the cell culture chamber. In addition,
the set-up leaves room for microscopy illumination in the
centre of the cell chamber.

The MEA amplifier (bandwidth: 1Hz-3 kHz, gain:
100-5000) is suitable for 49 mm × 49 mm MEA plates
with 8x8 grid configuration for multisite, parallel electro-
physiological recording. When the amplifier lid is closed,
the contact pins are pressed onto the MEA contact pads
which establishes the signal connectivity. The selected MEA
amplifier ensures very high signal-to-noise ratio since the
amplifier electronics stays very close to theMEAplate. Exter-
nal ITO heater can be avoided in MEA measurements as its
integrated heating element and temperature sensor serves the
purpose. Electrophysiological measurements combined with
morphological or chemical sensing or fluorescence readouts
and multisite stimulations can be efficiently carried out in the
modular system.

F. INTERCHANGING BETWEEN INVERT AND UPRIGHT
MICROSCOPY CONFIGURATIONS
The procedures involved in changing the microscope from
invert to upright scheme are illustrated in the FIGURE 2a-c.
Firstly, the digital microscope mirror cube is reversed in the
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FIGURE 4. Schematic of the mini incubator that consists of PDMS cell
culture chamber, transparent lid to seal the cell culture, and cover to
enclose the environment to maintain the culture conditions utilizing
dry gas supply from the side of the cover.

camera module and the illumination and camera modules
are swapped vertically on the dovetail rail. Maintaining a
gap of few mm between the objective and cell plate (or the
outer layer of a culture chamber in upright microscopy)
ensures safety and smooth motorized focusing. For upright
microscopy, long working distance objectives are often nec-
essary depending on the height of the culture chamber, which
forces one to usually opt for low magnification objectives.
In general, for most of the highly corrected series of plan
fluorite and plan apochromatic-infinity objectives, the work-
ing distance decreases as both the magnification and numer-
ical aperture increases. Therefore, out of the three objectives
selected (TABLE 1), only 10X objective is particularly useful
for upright microscopy where the cells are imaged from the
top of the mini incubator having a height of 11mm. However,
once the 10X objective is mounted, one can adjust the overall
magnification by making use of extension tubes in the light
path (TABLE 1).

III. MATERIALS AND METHODS
A. PDMS CULTURE CHAMBER (MINI INCUBATOR)
The schematic of the mini incubator is shown in FIGURE 4.
A controlled gas supply (5% CO2, 19% O2, 76% N2) during
the long-term TLM is critical to maintain the pH of the
culture medium for live and healthy specimens. The tech-
nique - providing gas supply surrounding the PDMS struc-
ture - is described previously [45] and is directly adapted
here. Briefly, the structure of the cell culture device consists
of three main parts: a cover, a lid, and a PDMS cell cul-
ture chamber. The cover and the lid were made from UV
curable acrylic plastic (Shapeways, Eindhoven, The Nether-
lands) and polycarbonate (PC) (Saloteam Oy, Salo, Finland),
respectively. The cell culture chamber was house–made and
cast from PDMS (Sylgard 184, Dow Corning, USA) using
standard soft–lithography techniques as explained in the pre-
vious study [44].

The lid seals the cell culture chamber watertight that pre-
vents evaporation. The lid is highly transparent to facilitate
a good optical path for microscopy. A small boss in the
middle of the lid is immersed into the culture medium, which
avoids empty space for water to condensate, and thus ensures
undisturbed imaging during the entire TLM. The cover with
glass window seals the environment around the cell culture
chamber. A continuous supply (5ml/min) of dry gas mixture
is provided (FIGURE 1, FIGURE 2) through the cover.

B. SOFTWARE INTERFACE AND CONTROL
Currently, a custom written Matlab (ver:R2016b)-UI (user
interface) software is implemented for controlling the
illumination, stage heater and time-lapse data logging
(image or movie, sensors). A low-cost microcontroller
(Arduino UNO R2) with a motor add-on board (Adafruit
motor shield V2) enables controlling the LED illumination
and focusing (stepper motor) translation stage. LED inten-
sity can be regulated 0-100% (at 8-bit resolution) through
a custom hardware-controlled LED dimmer using pulse-
width-modulation (PWM) signal from Arduino. Matlab’s
image acquisition tool-box in conjunction with Arduino
and PointGray third-party Matlab packages facilitate a two-
way control of Arduino and PointGray machine vision
cameras from the UI [48]–[50] During TLM, the cam-
era is configured to write directly into the PC disk,
either as independent images when slow temporal changes
are monitored or directly as an uncompressed high fps
(frames-per-second) movie when fast dynamics, for instance,
cardiomyocyte beating, is captured. Check the supplementary
materials section for an exemplaryMatlab script for illumina-
tion, camera and motorized focusing control and time-lapse
image or video acquisition.

C. CELL CULTURING
Fibroblast culture: All chemicals and supplements for fibrob-
last culture, including Dulbecco’s modified eagle medium
(DMEM) high glucose, w/o L-glutamine, w/o sodium
pyruvate (Biowest, L0101), Dulbecco’s phosphate buffered
saline (PBS) w/o calcium, w/o magnesium (Biowest,
L0615), Trypsin-EDTA 1x w/o Calcium, w/o Magnesium,
w/phenol Red (Biowest, L0930), L-Glutamine 100x,
200 mM (Biowest, X0550), Fetal bovine serum (FBS) USA
(Biowest S1520), Penicillin-streptomycin solution 100x
(Biowest L0022) were purchased from VWR and used
as received or reconstituted according to manufacturer’s
instructions. Mouse embryonic fibroblasts (MEF) originally
obtained from Wolfgang H. Ziegler (Hannover medical
school, Hannover, Germany) were cultured in DMEM high
glucose medium supplemented with 10% (v/v) fetal bovine
serum (FBS), 1% L-glutamine, 1% P/S (100 IU mL−1

penicillin, 100 µg mL−1 streptomycin) in a standard incu-
bator. Cells were harvested using trypsin-EDTA treatment
and counted using a Bruker’s chamber. For the studies of
MEF alignment on nanocellulose surfaces, cationic cellu-
lose nanofibers (c-CNF) were produced and coated on cul-

tunnus
Text Box
VOLUME X,2018                                                                                                                                                    page: x000

tunnus
Text Box
VOLUME X,2018                                                                                                                                                                                                     page: x000



D. K. Rajan et al.: Portable Live-Cell Imaging System With an Invert-Upright-Convertible Architecture and a Mini-Bioreactor

ture plates. Production, surface preparation and alignment
mechanism of c-CNF is described in more detail in [51].
Glass plates (49× 49mm) and PDMS-well culture chambers
were cleaned by several immersions in 70% ethanol before
coatings. After mounting PDMS-well culture chambers on
the sterilized plates, eight sample plates were coated with
c-CNF as described in [51] and three plates without c-CNF
were used as reference for alignment analysis. For each
well, cell suspension was seeded in a density of approxi-
mately 1.5 × 105 cells/mL. After seeding, the MEFs were
allowed to adhere in a standard cell-culturing incubator for
30 to 120 minutes before filling the PDMS-well with cul-
ture medium (1 mL). Filled PDMS-well culture plates were
either directly imaged in our system or cells were allowed
to adjust and proliferate up to 24 h in the incubator before
imaging.

iPS-CM culture: Cardiomyocytes were derived from
human iPS-cell line UTA.04602.WT as previously described
in [52]. Glass plates were first sterilized with 70% ethanol
and dried properly before the PDMS ring was applied to
the plates creating the well for the cells, subsequent to
which ăthe beating iPS-CM aggregates were plated. Plates
were hydrophilized with FBS and coated with 0.1% gelatin
type A (Sigma-Aldrich, St Louis, MO, USA). For each
plate, 3-4 beating iPS-CM aggregates were plated. The iPS-
CMs were cultured in KO-DMEM-media (Lonza, Basel,
Switzerland) with 20%FBS (Lonza), 1% non-essential amino
acids (NEAA) (Cambrex, East Rutherford, NJ), 2 mM
Glutamax (Invitrogen, Carlsbad, CA) and 50 U/ml peni-
cillin/streptomycin (Lonza). After plating, the iPS-CM
aggregates were cultured in an incubator overnight before
imaging (inverted/upright). In all prolonged cell culturing,
the medium in the PDMS culture chamber was replaced
(twice a week) by fresh medium.

D. CYTOSPECTRE CELL ORIENTATION ANALYSIS AND
VIDEO BASED BEATING SIGNAL ANALYSIS
A spectral orientation analysis tool (CytoSpectre1.2) [53] was
used to analyse the images and characterize the degree of
alignment of the cells on the c-CNF compared to control sur-
faces. Cytospectre analyses the orientation and wavelength
distributions by performing Fourier transform to estimate the
power spectrum of an image and, based on the spectrum, com-
putes parameter values describing, among others, the mean
orientation and anisotropy. From this, the circular variance
(CV) – the measure of the shape distribution – is computed to
describe the degree of cell orientation. The value of CV can
range from 0 (isotropy i.e. perfect alignment of all oriented
structures along a single line) to 1 (lack of isotropy).

Cardiomyocyte mechanobiological function was assessed
using video microscopy based contraction measurement [54].
It uses digital image correlation methods on consecutive
video frames to calculate a velocity vector field, based
on which a directional signal characterizing the beating is
obtained.

FIGURE 5. Microscopy characterisation. The USAF 1951 resolution
test-target (a) original photograph and (b) microscopy image (40X,
no extension tube). (c) intensity profile from three line groups ([4,7], [5,7],
[6,7]). The dotted box corresponds to group [6,7] with 2.19 µm wide lines.

FIGURE 6. Modular microscope (inverted, 20X) images of stained
histological samples. Human (a) hard bone grinding section and
(b) skin section through hair follicle imaged using modular microscope.
(c,d) reference images of the same samples with a benchtop-phase
contrast microscope (Zeiss Axio observer z1).

IV. EXPERIMENTAL RESULTS
A. MICROSCOPY CHARACTERISATION
A standard positive resolution test-target (R1DS1P-Thorlabs)
was used for measuring the resolution, FOV and true
magnification. See FIGURE 5. for the example image of
the resolution target captured with the 40x objective and
a monochrome camera (PointGray, BFLY-U3-13S2M-CS,
1.3MP, pixel size= 3.75µm in 1/3" sensor). All the technical
specifications for the three selected objectives with various
extension tube lengths are summarised in TABLE 1. Because
the objective lenses are implemented differently unlike in a
recommended bench top microscope, the NA of the objec-
tives had to be recalculated. We calculated this from the
modified working distances.

B. PERFORMANCE COMPARISON WITH STAINED
HISTOLOGICAL SAMPLES
Two stained human histological (Euromex PB.5221-Jaso Oy)
specimens, 1) hard bone grinding section and 2) human skin
section through a hair follicle were imaged with the proposed
system (FIGURE 6a,b), and with a bench top biological
phase contrast microscope for reference (FIGURE 6c,d).
Microscopy images with the proposed system are notably
comparable with the reference images, though the FOV and
true magnification are slightly different in both the cases.
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FIGURE 7. Long-term imaging performance measurements with a fixed
specimen. (a) numerical estimation of focus [56]. Trial 1: measurement in
room temperature. Trial 2: measurement at constant 37◦C with a support
pillar (inset). Ideally, a horizontal line would describe 0 focus drift. In our
system, a slight focus drift is visible in Trial 2, but it is as low as 0.2%
compared to 0.9% (Trial 1) in >12 hours period. (b, c) optical flow (overall
relative physical movement of the specimen) in xy plane in Trial 1 and
Trial 2 estimated as described in [57]. The flow vector (green line
extending from the circles) indicates the xy movements were extremely
small in Trial 2. (d) estimated flow field parameters [Note: -Vx indicates a
shift of the last frame to the left compared to the first frame. Dilation and
rotation quantify the overall expansion (or shrinking) and twisting (about
z-axis) respectively of the measurement area].

C. LONG-TERM PERFORMANCE AND STABILITY
In order to determine the focus consistency, TLM images
(16 bit, 2 images/minute, camera: FL3-U3-13E4C-C) of the
fixed specimen (FIGURE 6a) was captured for>12 hours and
the focus was numerically computed (FIGURE 7a), as previ-
ously described in [56]. In Trial 1, images were captured at
room temperature without ITO heating and the frame support
pillar (FIGURE 7a inset). In Trial 2, the frame support was
provided and the plate was set to 37◦C for the whole duration.
The mean focus drift is ∼0.9 % in Trial 1 but it is as low as
only 0.2 % in Trial 2 in over 12 hours TLM. Additionally,
the optical flow - the overall physical deformation between
the first and last images in TLM image series - was estimated
using Lucas-Kanade method based on the spatial and tem-
poral image gradients [57]. In FIGURE 7b and FIGURE 7c

FIGURE 8. Modular microscopy images of live-cells captured on different
occasions of corresponding cell culture. (a) neurons on micro electrode
array (MEA) plate. (b,c) movie snapshots of a large and small (few cells)
cluster of beating cardiomyocytes respectively on glass and MEA plate.
(d) cropped view of MEF on glass. (e) beating cardiomyocytes on
fluorescent pO2 sensing film in simultaneous hypoxia and TLM study
(upright configuration). (f) an excerpt from the corresponding pO2
measurement log [18].

the optical flow velocity vectors estimated are illustrated in
corresponding images. Here, the green circles illustrate the
points where the flow (movement) is computed, while the
green lines represent the flow vector magnitude and direction.
Additionally, the flow field parameters estimated are plotted
in FIGURE 7d. Lucas-Kanade method is efficient to track
apparent pixel translations in xy-plane which in turn helps
to numerically estimate the xy drift of the imaging system.
With a constant temperature supply and platform support,
the x,y velocity components, though not zero, are much
smaller (FIGURE 7d).

D. LIVE-CELL MICROSCOPY
Unstained living cells (neurons, fibroblasts and cardiomy-
ocytes) were imaged independently on different occasions
of cell culturing and the example snapshots are shown in
(FIGURE 8). These trials were designed to iteratively fine-
tune the optical performance of the microscopy module and,
the suitability of the system for live-cell imaging was subse-
quently confirmed. The system, in different configurations,
is reproducible and has been successfully utilized for long-
term TLM observations. For example, the inverted configura-
tion was implemented in order to study A) the alignment and
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FIGURE 9. Long-term image and video TLM (time- lapse microscopy) with
modular microscope in inverted configuration in different contexts.
(a) studying the alignment and proliferation capacity of fibroblasts (MEF)
on nanocellulose (see Video 1) (b) the spatial and temporal expansion
dynamics of fibroblast on glass at various conditions (see Video 2).
(c) extended beating monitoring of cardiomyocytes.

proliferation capacity of MEF on nanocellulose (FIGURE 9a,
Video 1), B) the spatial and temporal expansion dynamics
of fibroblast on glass at various conditions (FIGURE 9b,
Video 2) C) cardiomyocyte (CM) beating behaviour under
normal incubation (FIGURE 9c) and hypothermic stressing
conditions. The analysis results of A and C are presented in
the next two chapters. With the upright microscopy, several
simultaneous TLM and sensor logging (cell area tempera-
ture, pO2) were performed. FIGURE 8e shows an example
snapshot of a beating cluster on fluorescent pO2 sensing film
from a cardiac hypoxic stressing study. An excerpt from the
corresponding pO2 data log is shown in FIGURE 8f. See [18]
for simultaneous pO2 sensing and CM beating signal analysis
from recorded videos using the developed modular system.

1) FIBROBLAST ON CATIONIC CELLULOSE NANOFIBER
In theMEF – TLM study, images were saved in RAWor PNG
format (16 bit, camera full resolution [no binning]) and typ-
ically at a rate of two images per minute. The TLM pro-
gram keeps the Illumination off at all times except at times
of microscopy logging and during a few seconds of LED
stabilization time. The TLM snapshots were later combined
into a movie (See Video 1), which showed the temporal and
spatial evolution of cells and their alignment in line with the
structures of nanocellulose. TLM images (eg. FIGURE 10a)

FIGURE 10. Image based orientation analysis of fibroblast (MEF) on
cellulose (c-CNF) surfaces using Cytospectre (a,b) Example images of
oriented MEF on c-CNF and on control glass surface (showing no
dominant orientation). (c,d) Cell orientation plots analysed with
Cytospectre. (e) Average circular variance (CV) describing the degree of
orientation of cells on cellulose and control plate (f,g) Reference images
(20X) captured with a commercial device (Cell-IQ, CM Technologies,
Finland) comparable to our system after 24 h and 48 h incubations. With
our system, both the cells and cellulose fibres are equally visible and the
cell boundaries are comparatively well identifiable.

FIGURE 11. (a) Snapshot from the movie of the beating cardiomyocytes
on MEA. (b) a 10 s directional beating signal analysed [54] from the
region marked by the red polygon with the light blue dot showing the
point of reference. The downward peak signifies contraction velocity and
the upward peak the relaxation velocity. The inset pie chart: percentage
distribution of mechanobiological timing [ms] from the movie analysis.
[see also the Video 3 for the full beating profile].

collected at the end of the orientation procedures were
analysed with CytoSpectre. No dominating orientation was
detected on the control glass surface (FIGURE 10b), and the
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FIGURE 12. Z-stack images (upright) of MEA microelectrode array.
(a) A pseudo 3D volume visualization of the stack created with imageJ
3D viewer (b) measurement of focus in the z-stack frames. The red dotted
line position shows the best-focused plane where the gray level variance
is the highest.

average (three samples) CV computed is 0.92 (FIGURE 10d).
On the c-CNF surface (FIGURE 10a), the orientation is
clearly visible and the average (eight samples) CV is 0.49
(FIGURE 10c). A similar cell experiment was performed in
a commercial long-term live-cell imaging system providing
stable incubation at 37◦C and 5% CO2 (Cell-IQ, CM Tech-
nologies, Finland). Cells were incubated in Cell-IQ for 48±2
h, while images were recorded. Example images recorded
with Cell IQ after 24 h and 48 h are presented for comparison
in FIGURE 10f,g. On the contrary, microscopy images with
our system show cell boundaries reasonably well and the cells
and c-CNF fibres can be visualized better simultaneously.

2) CARDIOMYOCYTES AND VIDEO BASED SIGNAL ANALYSIS
Movies of the beating cardiomyocytes were recorded for
TLM durations ranging from a few hours to several days,
depending on the objective of the experimental study. Typ-
ically, 1-minute movies were recorded once per hour in an
8 bit uncompressed avi format (40-60 fps, 644x480 pix-
els) and the mechanobiological properties were analysed.
A 10-second beating signal analysed from a movie of a

CM cluster on MEA (FIGURE 11a) as part of a temper-
ature stressing experiment is shown in FIGURE 11b (see
also Video 3). The beating rate is estimated to be 84 beats
per minute with average mechanobiological timings 19 ms,
27 ms, 54 ms for contraction, relaxation and relaxed state
respectively.

E. Z-STACK ACQUISITION
The z-stack acquisition scheme is also being tested. An exam-
ple stack of microelectrode array as a pseudo 3D volume
(3D viewer/imageJ) is shown in FIGURE 12a. Around 90
frames, each in 1.25 µm step was captured with upright
configuration using the 4.1MP camera. In FIGURE 12b,
the numerically computed focus from each frame is
plotted [56]. The red dotted line indicates the frame with the
highest gray level variance corresponding to the best-focused
plane in the z search space.

V. DISCUSSION AND CONCLUSION
We present a compact portable live-cell imaging system with
a novel architecture and modular sub-assemblies for simul-
taneous long-term cell imaging, chemical sensing, multisite
electrophysiological recording and stimulation. The system
has been characterised and tested with histological (stained)
and biological live (unstained) specimens. The microscopy
performance (resolution and contrast) is comparable to that
of traditional phase contrast biological microscopes. Several
short and long-term TLM recordings have been performed
with neurons, cardiomyocytes and fibroblasts. Successfully
completed long-term TLM studies include monitoring the
alignment and proliferation of mouse embryonic fibroblasts
on nanocellulose, the beating behaviour of human based
cardiomyocytes under normal and stressed (hypothermic)
environments, and the evaluation of stability and suitability of
sensors (temperature sensitive plates, optical pO2, and pH).
Although the imaging unit was developed primarily for our
benchtop modular bioreactor, the digital microscope design
as such can be used for building custom in-situ microscopes
for various applications, where a traditional microscope is
not acceptable or affordable. The system is fully functional,
and supported with custom software allowing one to control
the camera settings and TLM parameters and save the data
as independent images or high-fps movies. Further, the soft-
ware also supports logging data from sensors (temperature,
pO2, pH etc.) connecting via USB and adjusting the ITO-
cell heater temperature in real time or in future time points.
One major attribute of our system is its invert - upright con-
vertibility, which facilitates a unique set-up for conventional
spatiotemporal cell imaging in two directions, and provides
flexibility to integrate subassemblies or systems for addi-
tional measurement tasks.

Notably, the image plane is reasonably planar without
barrel or pincushion distortions. Themicroscope does not suf-
fer from focusing issues nor display colour halos, evidently
owing to the existence of a well-defined image plane with-
out noticeable chromatic and spherical aberrations. This was
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partly expected when highly corrected objectives were cho-
sen. Nevertheless, vignetting - the peripheral image dark-
ening [58]- could be a concern, if a camera with a large
(>2/3 -inch) sensor is selected or the flange distance is too
short in the assembly. For the used cameras’, the pixel size
(3.75-5 um) is adequate (Nyquist sampling) to preserve the
spatial resolution of the objectives since the diffraction Airy
disk size of objectives are 23.54 µm (=10X × 0.61 × 546
nm/0.1415NA), 23.84µm and 43µm for 10X, 20X and 40X,
respectively. Enhancing magnification using extension tubes
is inexpensive, as it requires no extra optics. They can be
mounted without disturbing the objectives, either indepen-
dently or as a stack of several tubes to produce higher mag-
nification. However, the maximum usable magnification by
this approach has a limit, depending on the objective type and
NA, beyondwhich the image looks bigger but the contrast and
quality are poor [59]. Calibration of magnification/FOV for
each objective - extension tube combination is also necessary,
as magnification cannot be directly deduced. This is espe-
cially true if the actual scale is to be marked on the captured
images. As the objective lenses are implemented slightly
differently than in a benchtop microscope, the full advantage
of original NA of the objectives gets compromised. However,
this enhances the working distance in our system which
is advantageous in many instances. Measurements of focus
stability and optical flow suggest the system is mechanically
stable over tens of hours with a frame support pillar and with
a constant heater temperature. However, addressing the focus
drift during cell culturing even at a constant temperature is not
easy and straightforward especially when the viscosity and
refractive index of the culture medium are prone to variations
due to evaporation and biochemical changes by the growth
and expansion of cells. Currently, manual focus correction is
carried out once a day, but it could be automated in future
by including a dedicated hardware. A basic z-stack acqui-
sition scheme has been tested, but more experiments using
live specimens, and further coding of the data acquisition
program is needed for controlling the camera module in the
right increments and to synchronize the camera acquisition.
If the z-stack acquisition is implemented efficiently with the
TLM, it could also be useful for periodically correcting the
focus drift as described in [60] without using any dedicated
hardware.

Cell culture experiments with integrated MEA amplifier
for simultaneous pO2, electrophysiological recording and
TLM are scheduled for later this year. At present, the sys-
tem is not equipped with vibration mitigation measures.
Integrating a benchtop vibration isolation platform would
be certainly advantageous for reducing noise and vibrations
in high fps movie recordings. The long-term objective of
this research is to develop a versatile incubator-independent
benchtop bioreactor to automate cell-culture experiments and
simultaneously expand its range of possibilities for combined
electrical, optical and electrophysiological measurements.
Intended applications include in-vitro characterization and
differentiation of various cell types, chemical measurements

and drug screening. A high quality TLM with these stud-
ies can undeniably yield an absolute or a more holis-
tic view of the dynamic activity in complex cellular
microenvironment.

The ergonomic future-proof system design brings about
a further customizable platform for testing diverse optical
components and measurement systems. Integration of a non-
contact pH measurement module as previously described
in [19] and [61] as part of the forthcoming perfusion mod-
ule or as a completely new CMOS module for 2D pH maps is
also under consideration. We envision a widespread applica-
tion of our digital microscope assembly and portable modular
system for long-term in-vitro monitoring in various fields of
life sciences.
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ABSTRACT Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) and engineered heart 

tissues have generated great enthusiasm in heart research, the pharmaceutical industry, and future regenerative 
medicine. In hiPSC-CM experiments, the precise control of the environment, including temperature, is of the utmost 

importance. The acute effect of temperature on hiPSC-CM function has previously been studied. But we report 

long-term systematic temperature response studies of hiPSC-CM cultures outside an incubator for which we 

combined a modular cell culturing system, a temperature sensor plate (TSP) and a new beating analysis software 
(CMaN—cardiomyocyte function analysis tool). Temperature sensing at the location of cells is usually challenging 

with bulky external sensors, but a TSP solves this. Results showed that temperature affects the hiPSC-CM beating 

frequency nonlinearly and the Q10 temperature coefficient is ~2.2. Properties of both active (contraction) and 
passive (relaxation) movements are affected by temperature, while the changes in relaxation times are larger than 

the contraction times. The contraction amplitudes, however, exhibit a greater spread of variation. We also present 

novel results of the visualization of hiPSC-CM contractile networking and the non-invasive measurement of signal 
propagation between dissociated clusters 

Compared to previously report tools, CMaN is an advanced, easy-to-use robust software. It is faster, more sensitive, 

computationally less expensive and extracts six different signals of the contractile motion per processing, allowing 

at least one useful beating signal even in complex cases. Other features are: individual or batchwise processing, 
single cells/large cluster processing, ROI selection, movement center detection and cluster finding. CMaN signal 

contains both positive and negative segments like ECG, allowing one to compute not only the beating frequency 

but also the contraction and relaxation features separately. 
   
INDEX TERMS Cardiomyocytes beating analysis software, Movement center detection, Cardiomyocytes 

temperature response, Nonlinear temperature dependency, Signal propagation between clusters 

I. INTRODUCTION 

The limited availability of primary human cardiomyocytes (CM) poses challenges for basic and translational research. 

However, human induced pluripotent stem cells (hiPSC) can be differentiated into cardiomyocytes (hiPSC-CMs), providing 

an unlimited source of human cardiomyocytes from healthy individuals, as well as from patients with genetic cardiac diseases. 

The hiPSC-CMs are a promising tool to study the development of the heart and cardiomyocytes, cardiac disease modelling, 

and future regenerative medicine applications [1], [2]. Furthermore, due to their human origins, they overcome the limitations 

of animal models in drug screening and toxicology [3]. In hiPSC-CM experimental models, levels of  O2, CO2, pH, and 

osmolarity are crucial to maintain the functionalities of  CMs. Temperature-another vital parameter, needs to be regulated 

carefully for maintaining normal cardiac activity without hyper/hypothermia [4], [5]. Hypothermia, in hibernation experiments, 

has been shown to cause metabolic injuries and damage to mammalian hearts [6]. Functional and cellular injuries and field 
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potential alterations have also been reported in cultured cardiomyocytes in hypothermia [7], [8]. In hypo- or hyperthermia, 

in practice, the temperature induces stress, the cells then as a defence initiate stress reactions [9], usually by expressing cold 

or heat shock proteins, which can both adversely affect vital cell functions [10]–[12]. Hypothermia/rewarming (H/R) cycles 

are known to reduce myofilament Ca2+ sensitivity and affect cardiac action potentials (AP) and contractility [13], [14]. It has 

also been shown to affect the sarcomere length and cardiac muscle force generation in animal models [14]–[16]. H/R, in 

general, is poorly tolerated by the myocardium, and a complete picture of the underlying mechanism of H/R induced 

abnormalities is still elusive [14]. In laboratory settings, cells often experience temperature shock when moved outside the 

incubator or sometimes even inside the incubator. This can sometimes affect the cell attachment [17], the pH [18], and the 

evaporation rate, all of which can cause undesired stimulations and experimental variations [18]–[21]. In extreme cases, 

temperature shock can trigger oxidative damages [10] and initiation of cell death [22]. Therefore, it is important that the stress 

response of hiPSC-CMs to temperature is recognised and evaluated carefully.  

The temperature response can be studied in different ways, e.g. using standard electrophysiological methods, traction/atomic 

force microscopy, or video microscopy [23]. The decline in beating frequency has often been observed when CMs are taken 

from the incubator or studied at low temperatures [23]. However, the temperatures reported in earlier studies might not be the 

real temperatures that the CMs experienced mainly due to difficulties in attaching temperature sensors closely to the cells. 

Precise temperature sensing from the cell area is usually challenging with bulky external sensors [24]. Furthermore, to our 

knowledge, a systematic automated H/R temperature stressing and concurrent hiPSC-CM mechanobiological measurements 

have not been described yet. A few recent reports have described the excitation-contraction coupling in H/R and temperature-

dependent beating synchronization [14], [25]. However, these studies were not conducted using hiPSC-CMs but with animal 

CMs. In this study, a long-term automated hiPSC-CM mechanobiological response to temperature is evaluated using a 

previously reported apparatus [26] and two new add-ons: 1) a temperature sensor plate (TSP) patterned with micro temperature 

sensors and 2) novel video-based mechanobiology analysis software (CMaN - cardiomyocyte function analysis tool). By 

integrating the TSP, traditional bulky thermometers are avoided; instead, CMs are directly cultured on the TSP. This enables 

accurate temperature sensing from the exact cell area. In our experimental data analysis, we found that the temperature 

dependence on hiPSC-CM beating frequency is nonlinear, which has not been reported earlier. We also computed the Q10 

temperature coefficients [27] of hiPSC-CM. Furthermore, we observed the contractile networking and beating synchronization 

of dissociated clusters and measured the propagation of action potential (AP) signal between them. This is the first paper 

reporting these events in hiPSC-CM cultures and their non-invasive measurements by image processing. 

The new software CMaN is an easy-to-use tool and available as Supplementary material 1. Compared to conventional 

function analysis methods, such as Ca2+ transients, electrophysiology, sarcomere length profiling or AFM approaches [25], 

[28]–[31], CMaN is a non-invasive and robust tool. Properties of several similar tools have been compared elsewhere [23] and 

CMaN was tested against [32]–[34]. CMaN is faster, more sensitive, computationally less expensive and allows ROI (region 

of interest) selection.  It can process videos from single cells or large clusters individually or batchwise and compared to [32]–

[38], it extracts six different signals of the contractile motion per processing. This allows the yielding of a minimum of one 

useful beating signal even in complex cases (relatively weak movements, moderate overexposure, gamma variations by uneven 

background etc.). In addition, the signals from CMaN represent the contractile phenomena more exactly with both positive 

(upstroke) and negative (downstroke) segments, allowing one to compute not only the beating frequency but also the 

contraction and relaxation features separately.  Further, the optional features to detect the movement area (cluster location) and 

movement center (region of the largest contractile motion) are also integrated.  

II. MATERIALS AND METHODS 

A. DEVICE 

The portable cell culture system [26] and in-house microfabricated temperature sensor plate [24] are shown in FIGURE 1. 

Independently calibrated resistive micro temperature sensors, patterned with copper on glass plate, act as the sensing transducer 

for precise temperature measurements from the cell area. The culture temperature is regulated with a programmable transparent 

indium tin oxide (ITO) heater [24]. Out of two microscopy options [26], inverted microscopy was utilized for recording the 

beating movies (camera: FL3-U3-13E4C-C (PointGray-FLIR Systems). The illumination is normally off, except at times of 

movie recordings. The hiPSC-CMs were cultured in a mini incubator (FIGURE 1b,c) made of a polydimethylsiloxane (PDMS) 

cell culture chamber [35] sealed with a transparent polycarbonate lid and polypropylene outer cover [39][40]. A gas mixture 

(5 % CO2, 19 % O2, 76 % N2) supply around the PDMS chamber facilitated the stable gas environment [21]. The data flow 

and all the automated operations were controlled from a custom user interface scripted with MATLAB R2016B (MathWorks, 

Inc., Natick, MA, USA).  
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FIGURE 1. Apparatus for hiPSC-cardiomyocytes temperature response experiments. (a) The portable modular cell culture system [26]. (b) Mini incubator. 
(c) Temperature sensor plate (TSP). The mini incubator is fixed on the TSP and the ITO heater stays underneath. (d, e) A beating hiPSC-CM cluster on 
one of the resistive temperature sensors on the TSP. Beating signals were analyzed non-invasively from the recorded cell videos using CMaN software.  

B. CELL CULTURING 

The hiPSC-CMs were differentiated [41] by co-culturing iPS-cells with END-2 cells [42] from the healthy control in-house 

iPS-cell line (UTA.04602.WT). The beating hiPSC-CM clusters were mechanically excised from the differentiation cultures 

about 20–30 days after differentiation initiation and plated on the TSP. Before plating, TSPs were first sterilized with 70 % 

ethanol and dried thoroughly before the mini incubator was attached to the plate. Plates were hydrophilized with fetal bovine 

serum (FBS, Lonza) and coated with 0.1 % gelatin type A (Sigma-Aldrich). For each plate, 3–4 beating hiPSC-CM clusters 

were plated. After plating, the hiPSC-CM clusters were cultured in a conventional incubator overnight in KnockOut Dulbecco's 

Modified Eagle Medium (KO-DMEM, Lonza) with 20 % FBS, 1 % nonessential amino acids (NEAA, Cambrex), 2 mM 

Glutamax (Invitrogen), and 50 U/ml penicillin/streptomycin (Lonza) before transferring them onto the modular system. In all 

prolonged cell culturing, the exhausted culture medium was replaced by fresh medium twice a week. 

C. ANALYSIS SOFTWARE 

A new video-based contractile movement analysis software (CMaN) was scripted (in MATLAB), evaluated, and utilized in 

this study. It is available as Supplementary material 1 with this article. In CMaN, the movement analysis is based on a novel 

approach of the computation of affine optic flow, which is an improved version of the classical Lucas-Kanade optical flow 

method that estimates the velocity of objects in consecutive images [43]. In affine optic flow, the flow field is parameterized 

[44], [45] by a six-dimensional vector to describe the image x; y translation velocities (Vx, Vy); dilation (d, rate of 

expansion/shrinking); rotation (r, rate around z axis); and shears (s1, s2, rates along x and diagonal axes). These six parameters 

are estimated by computing the least squares on the spatial and temporal gray-level gradients in consecutive video frames [43], 

[44]. FIGURE 2a shows a screenshot from CMaN. The six signal components analyzed from an example single cell are shown 

in FIGURE 2c. Several mechanobiological [32], [37], [46] parameters—namely the beating frequency, relaxation time, 

contraction time, amplitude of beating, and beat-to-beat interval—can be estimated using one or more of the six signals. 

FIGURE 2b shows the table of these parameters analyzed from the single cell. Beating of both single cells and large clusters 

can be analyzed independently or batchwise. TABLE 1 summarizes the performance of CMaN in comparison with 

MUSCLEMOTION (v1-1beta.ijm) and SarcTrack (v 2019). See [47] and also FIGURE 4 for the measurement sensitivity.  

 

 

 

D. MOVEMENT CENTER DETECTION AND CLUSTER FINDING 

One novel feature of CMaN is the movement center detection which identifies the location of the most energetic movement 

area by detecting the region of the highest affine flow signal amplitude. This feature is illustrated in FIGURE 3a-b. The 
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computation is started with a short portion of the beating signal containing at least one contraction-relaxation segment. Each 

image (full frame/ROI) in the selected portion is first spatially sampled into M-by-N tiles (FIGURE 3b, M and N are even 

numbers). Then the affine flow is computed in all the tiles sequentially and the tile with the highest signal amplitude (movement 

center) is identified. In FIGURE 3a, the blue dashed rectangle shows the movement center identified over the user-selected 

ROI (green rectangle).  

 

 

FIGURE 2. An advanced video-based movement analysis software CMaN (Cardiomyocyte function analysis tool). (a) Screenshot from the software user 
interface. In the upper left corner, the blue rectangle shows the movement center of a single cell cardiomyocyte whereas the green rectangle is the user-
selected ROI. (b) The table of mechanobiology parameters estimated. (c) A schematic overview of the algorithm flow and the principle behind the *AFOF 
(affine optical flow) computation from image pairs. (d) The six signal components of the contractile motion extracted from the single cell beating video. 

One of the advantages of this feature is that once the movement center is known, the best beating signal can be extracted in a 

new analysis with an area selected around it. The other feature of the software is cluster finding which is based on identifying 

the locations of the highest textures (high frequency regions). This is illustrated in FIGURE 3c. A large number of 
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cardiomyocytes in the clusters generate high frequency textures, which can be identified from microscopy images having good 

spatial resolution. In the computation initially, procedures for gamma correction, image smoothing, and low pass filtering are 

integrated, which reveals the cluster borders to be brighter compared to the background. This is followed by an image 

convolution using a large area template on the whole frame (full frame/ROI). This way, multiple clusters can be identified, so 

essentially, this feature distinguishes the movement area/clusters from its surroundings. In FIGURE 3c, the blue rectangles 

show the three clusters identified. This feature was developed in order to use the software also as an online tool where the 

cluster detection and beating analysis should start automatically without human involvement. 

 

 

 
FIGURE 3. Movement center detection and cluster finding. (a-b) The signal portion of a contraction-relaxation region of a single cell selected for the 
movement center analysis. The frames from this portion are spatially split into M-by-N tiles for sequential affine flow processing. The detected movement 
center is marked with a dashed blue rectangle. (c) Three images (first frame, smoothed, and with identified clusters) from the cluster-finding feature. 
The blue rectangles show the identified clusters in the whole frame.  

 
TABLE 1. CMaN performance comparison against MUSCLEMOTION and SarcTrack using two computers (Computer 1: 2.6 GHz processor and 32 GB 

RAM, Computer 2: 2.7 GHz processor and 8GB RAM).  ✝30 s long avi (60 fps, 640 x 512 pixels, 32 bit RGB, 1.64 GB size on SSD hard drive). ✝220 avi files 
(33 GB size on external SSD drive).  

 MUSCLEMOTION SarcTrack CMaN 

Platform Image J MATLAB MATLAB 

Algorithm principle pixel intensity difference fluorescent tag tracking affine flow 

User ROI no no yes 

Minimum ROI 

(pixels) 
NA NA 78 x 78 

Number of signals/processing 1 1 6 

Sensitivity see FIGURE 4 NA see FIGURE 4 

Processing  

time (~ minutes) 
  Computer 1 Computer 2 

       1 movie✝ 3 (6 in dynamic mode) 350 1 1.3 

 Batch✝2 of movies 129 7390 25 28 



 9 

 
FIGURE 4. CMaN analysis sensitivity. Column 1: Screenshots of 5 videos. Here the original video (1st one) was spatially downsized 1/8, 1/64, 1/128 and 
1/256 times to produce subsequent videos with reduced movement area. Columns 2 &3: Normalized signals (referenced to original signal, ROI: full frame 
which includes also black area in downsized videos) analyzed with CMaN and MUSCLEMOTION. CMaN apparently displayed better sensitivity. 
 
E. EXPERIMENTAL PROTOCOLS 

For response profile, the temperature was programmatically adjusted from 37 oC to 25 oC and back to 37 oC in 3 oC steps, and 

beating movies were recorded. Twelve CM clusters were video recorded in five separate cultures, and See TABLE 2 for the 

experimental summary. The temperature was logged in every 60 s while the movie was logged approximately every 2 hours. 

When a new temperature was set, approximately 30 minutes’ stabilizing time was provided before the movie logging. Results 

are provided in the section Automated temperature stressing. The contractile synchronization measurements were carried 

out using cultures containing dissociated clusters, and the results from a six cluster case are provided in the section Contractile 

synchronization of dissociated hiPSC-CM clusters. Further, the plots of temporal reduction in beating frequency in cases of 

two long-term cultures are provided in the section Temporal changes in beating at a constant temperature.  

The Q10 temperature coefficients were calculated using an exponential model, as (BF1/BF2)*exp(10/[T1 -T2]) where BF1 and 

BF2  are beating frequencies at temperatures T1 and T2 [27].  

Statistical analysis: Pairwise comparisons were performed by one and two sided parametric t-tests and p < 0.05 was regarded 

as statistically significant. All values are presented as mean±S.D. 
 

 

 

 
TABLE 2. Summary of temperature response experimentation 

    Number of     

  replication Logging interval 

Cluster Temperature cycles TSP Video 

code 

(range, step, 

[°C]) (code: RNo) (minutes) (hours) 

C1 37-25-37, 3 5 1 2 

C2 37-25-37, 3 5 1 2 

C3 37-25-37, 3 8 1 2 

C4 37-25-37, 3 8 1 2 

C5 37-25-37, 3 8 1 2 

C6 37-25-37, 3 8 1 2 

C7 37-25-37, 3 8 1 2 

C8 37-25-37, 3 8 1 2 

C9 37-25-37, 3 6 1 2 

C10 37-25-37, 3 6 1 2 

C11 37-25-37, 3 4 1 2 

C12 37-25-37, 3 2 1 2 

C11 constant 37 - 1 4 

C9 constant 37 - 1 18 
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III. RESULTS 

A. AUTOMATED TEMPERATURE STRESSING   

The beating signals (Vy) analyzed from a representative cluster (C12, RNo-2) at three selected temperatures (37 oC, 31 oC, and 

25 oC) as an overlay on corresponding beating movies are shown in FIGURE 5. The full movie is provided as Supplementary 

material 2. FIGURE 6a-e shows the plots of temperature response on the beating frequency (BF), contraction time (CT), 

relaxation time (RT), and amplitude of contraction of two representative clusters (C9, C10, RNo-1:4). The data shown are 

from four consecutive stressing cycles lasting for approximately 60 hours of culture. Measurements showed that hiPSC-CM 

contractility responds strongly to the temperature changes: the beating frequency (FIGURE 6b) changes, as expected, directly 

proportionally with temperatures and also declines over time (see also FIGURE 7b, C9 and C10, ~100 hours). In a single 

representative stressing cycle (FIGURE 7a, C12, RNo-1), the linear temperature dependence estimated is ≈5 BPM/oC (the 

coefficient of determination, R2=0.97). Remarkably, nonlinear functions provide better fits, for example, a 2nd degree 

polynomial and an exponential 1 function yielded R2 = 0.9999 and 0.9996 respectively. FIGURE 7c shows 

 

 
FIGURE 5. Effect of temperature on hiPSC-cardiomyocyte function.  Analyzed beating signals (C12, RNo-1) at three selected temperatures as an overlay on the 

corresponding movies. See Supplementary material 2 for the full movie. Here one can see how the temperature affects the beating frequency (BF), contraction time (CT), 

relaxation time (RT), and relaxed time (RxT-the time between relaxation and contraction) 

 

the beating frequency (C9, C10) together with their nonlinear fits for 75 hours of culture. Here, the Q10 temperature coefficients 

(see plots) are larger than 2 (up to 60 hours), implying strong temperature dependence. Here also the R2 of nonlinear fits 

(FIGURE 7d) are usually larger than that of linear (poly1) fits.  
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FIGURE 6. Temperature response plots of the two representative hiPSC-CM clusters (C9 and C10). Experimental data from approximately 60 hours of mechanobiological 

measurements where (a) Cell area temperature, (b) Beating frequency, (c) Contraction time, (d) Relaxation time, and (e) Amplitude of contraction. The temperature was 

precisely measured using the temperature sensitive plate and the plotted parameters were non-invasively analyzed with the video-based beating analysis software CMaN. 

 

 

Further, the non-linear temperature dependence was confirmed in the case of all the 12 clusters, and its significance was 

statistically verified with t-test on the R2 values. There, the nonlinear R2 > linear R2 in 0-15 hours (means 93 % and 90 %, p < 

0.05), 0-30 hours (means 91 % and 88 %, p < 0.05), however for durations > 30 hours, several clusters show a reduction in 

spontaneous contractility by factors other than temperature too, hence the statistical analysis becomes complex.  
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FIGURE 7. The hiPSC cardiomyocytes beating frequency in long-term temperature stressing experiments. The data are from automated temperature 
cycles of decreasing (37 oC to 25 oC) and increasing (25 oC to 37 oC) temperatures in 3 oC steps. (a) C12 data from a representative single stressing cycle 
(RNo-1) with linear and nonlinear (polynomial 2 and exponential 1) fits. Compared to linear fit, the nonlinear functions showed nearly perfect (R2 ≈1) fits 
here. (b) Beating frequencies of two clusters (C9 and C10, RNo-1:4) in about 60 hours of experiment. (c) Data (shown in upper right figure) rearranged 
into different time segments, with polynomial 2 and exponential 1 fits for nonlinearity check. The computed Q10 temperature coefficients are shown in 
each figure, showing a strong temperature dependence on hiPSC-CM function. However the goodness of fit drops significantly in extended cultures. 

Similarly, the contraction and relaxation times also vary, but inversely (see FIGURE 6c,d) with the temperature, so their 

magnitudes are larger at lower temperatures. The relaxation times were also often found to be larger than the contraction times. 

In TABLE 3, the relaxation and contraction times at low (T=25.0±0.1 oC) and high (T=37.1 ± 0.1 oC) temperatures are listed. 

This shows that a 12 oC decline in temperature causes a 80 % increase in the contraction time and a 115 % increase in the 

relaxation time. Likewise, the amplitude of contraction (FIGURE 6e), calculated as the geometric mean of the amplitudes of 

Vx and Vy signals also shows a strong temperature dependence similar to beating frequency. However, the beat-to-beat 

amplitude variation in the 60 s movies, especially at low temperatures, is large; so is the standard deviation.  

Further, the beating frequency from four stressing cycles of all twelve clusters (from five different cell cultures) is shown in 

FIGURE 8. The span of beating frequency varied from culture to culture, so for statistical comparison, frequencies are scaled 

between 1 and 0 using a normalization function (BF-min(BF))/(max(BF)-min(BF)), where BF is the beating frequency. Here 

the error bars correspond to large variations which also inevitably account for the biological variability.  

TABLE 3. Summary of average relaxation and contraction times at two temperatures from all clusters (C1-C12). *Comparisons with paired one tail (p < 
0.05) analyses.  

Temperature 

(oC) 

Contraction  

time (CT, ms) 

Relaxation 

time(RT, ms) 

  RT to CT  

  ratio 

37.1 ± 0.1 152 ± 21.6 177.3 ± 55.6    1.1 

25.0 ± 0.1 274.1 ± 93.4 367.0 ± 110    1.3 
*  * 
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FIGURE 8. Beating frequency of twelve spontaneously beating hiPSC-cardiomyocyte clusters in four stressing cycles. The clusters are from five different 
cell cultures where the range of frequency varied from culture to culture, so the error bars correspond to large variations which also account for the 
biological variability. 

B. CONTRACTILE SYNCHRONIZATION OF DISSOCIATED HiPSC-CM CLUSTERS   

We also quantified the electrical activation (AP propagation) between dissociated clusters by measuring the time delay between 

their beatings. FIGURE 10a shows six beating clusters (C3-C8) whose movement centers are marked with blue rectangles. 

Their beating signals are shown in FIGURE 10c, where the AP propagation time delay between contractions is clear. The 

signal propagation is also made visually detectable in the original movie by image processing; an example movie is provided 

as Supplementary material 3. FIGURE 10b shows selected frames from this movie where one can see the dynamic sequence 

(see Supplementary material 3) of cluster networking which starts at cluster 1 (FIGURE 10b(i)), passing through other 

clusters, up until cluster 6 (FIGURE 10b(vi)). Each frame here is produced as the absolute difference in intensity between the 

current frame and the first frame. Resultantly, a brighter passing halo becomes visible to describe the AP propagation delay. 

In FIGURE 10d, this time delay is plotted against the cluster distance (C8/ C7/ C6/ C5/ C4/C3- C3) and the corresponding AP 

propagation velocities (slope) calculated to be v = 3.88, 2.76, 2.34 and 1.98 mm/s at T = 37, 34, 31, and 28 oC, respectively.  

C. TEMPORAL CHANGES IN BEATING AT A CONSTANT TEMPERATURE    

It has also been observed that the contractility slowly decreases over extended periods of time even at a constant temperature. 

The beating frequency plots from two long-term measurements at constant 37 oC with 2 clusters (C11, C9) are shown in 

FIGURE 9. The slopes (dBF/dt [BPM/hrs]) measured are -0.22 and -0.74, respectively, indicating 68–85 % decline in beating 

frequency in about 70–100 hours’ time. The rate of this temporal reduction is probably multifactorial depending on the cell 

density, secretory/metabolic conditions, and medium aging (exhaustion of accessory food factors). 

 

 
FIGURE 9. Temporal reduction of beating frequency at 37 oC in two separate cultures. A 68–85 % decline in beating frequency was observed in 70–100 
hours.    
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FIGURE 10. Contractile synchronization of dissociated hiPSC-CM clusters. (a) Six beating clusters where the blue rectangles show their movement 
centers analyzed with CMaN. The action potential (AP) signal propagation between dissociated clusters became observable in the original movie by 
image processing. See Supplementary material 3 for an example movie. (b) Selected frames from Supplementary material 3, where a passing brighter 
halo displays the AP propagation. The networking dynamic sequence starts from cluster 1 and advances up to cluster 6. (c) Beating signals from the 
six clusters where the time delay between the signals is clear. (d) The time delay versus the cluster separation distance (C8/ C7/ C6/ C5/ C4/C3- C3) plots 
and the computed AP propagation velocities. 

IV. DISCUSSION 

In this paper, we have demonstrated the applicability of a previously reported modular cell culturing system [26] with two new 

add-ons: 1) temperature sensor plates [24] and 2) novel video-based mechanobiology analysis software, CMaN, to study the 

temperature response of hiPSC-cardiomyocytes. Experiments were conducted outside a conventional incubator, and to the best 

of our knowledge, this is the first report describing a systematic automated temperature stressing and concurrent hiPSC-CM 

function analysis. The measurements show that the hiPSC-CM contractile function is strongly temperature dependent with Q10 
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temperature coefficients larger than 2. Further, the beating frequency –temperature relationship was found to be better 

described by nonlinear (polynomial 2) functions. In the statistical analysis, the R2 was always higher for the nonlinear models 

than for the linear ones, and some clusters showed nearly perfect (R2 ~1) nonlinear fits. Thus, maintaining a stable temperature 

in hiPSC-CMs experiments is of utmost important in order to minimize undesired stimulation of the cells and to avoid 

experimental errors. Further, we noticed that the contractility of hiPSC-CMs decreases temporally (over time) even at fixed 

temperatures in continuous measurements, which is also an important factor to consider in experimental designs. The medium 

ageing, evaporation, and related changes in the medium composition as well as exhaustion of essential nutrients are likely 

contributing to slowing the contractile kinetics temporally [19]. The combined beating frequency plot (FIGURE 8) contains 

the data from twelve beating clusters from five different cell cultures, hence the error bars also naturally account for the 

biological variability. As the hiPSC-CMs are known to exhibit high phenotype variability, the variability of the temperature 

dependency between different myocytes/culture preparations also needs to be recognized. In contrast to beating frequency, the 

contraction and relaxation times vary inversely with temperature. The magnitudes of relaxation times are often larger than 

contraction times at almost all stressing temperatures. The amplitude of the contraction, on the other hand, displayed more 

beat-to-beat variability (standard deviation) in almost all recorded movies. Intriguingly, some clusters ceased the beating 

function occasionally, but regained the function in due course and exhibited the temperature dependence in continued stressing 

cycles.  

Biologically, the temperature dependence of the hiPSC-CMs can be multifactorial. A more general explanation is the 

prolongation of APs at lower temperatures due to slower kinetics of underlying ion channels, exchangers, and intracellular 

pumps [48]. The hiPSC-CMs, similar to their native human counterparts, have most of the basic underlying excitation-

contraction coupling components including membrane voltage regulation and signaling cascades [49]–[51]. However, reduced 

inward rectifier K+ (potassium) currents and the presence of prominent pacemaker currents collectively produce AP waveforms 

that make the hiPSC-CMs significantly different and facilitate spontaneous automaticity that is not observed in matured human 

ventricular myocytes [50]. Temperature dependence of AP prolongation has been previously studied in animal models [52], 

[53]. Guinea pig ventricular myocytes have shown 115 % prolongation of AP with a 10 oC temperature drop [53]. The acute 

effect of temperature on the relaxation time and pacemaker firing rate of Sprague-Dawley rat cardiomyocytes has also been 

reported [3]. In our study, we measured the prolongation of the hiPSC-CM relaxation (analogue to the AP repolarization) and 

contraction times systematically. Multiple voltage-gated ion channels are presumably contributing to this; however, the exact 

quantification schemes of the dependence of most of the underlying mechanisms on environmental parameters (e.g. 

temperature, pO2, pH, pCO2) are ambiguous, and accurate models have not yet been developed. 

We also measured the propagation of electrical activation between dissociated hiPSC-CM clusters non-invasively. The 

clusters, even though physically separated, are possibly connected to each other through cells (non-cardiomyocytes) 

underneath, that act as a cardiac skeleton for mechanical scaffolding. A few studies using animal cells have confirmed the 

electrophysiological coupling of fibroblasts (of cardiac origin) with cardiomyocytes to propagate contractions over finite 

distances [54]–[56]. Recently, some studies quantified the AP propagation distance and the beating synchronization of certain 

cardiomyocyte types [7], [57], [58]. In our study, we quantified the synchronization delay for hiPSC-CMs by non-invasive 

image-based measurements and measured the AP propagation velocities (v = 1.98-3.88 mm/s at 28-37 oC). The AP propagation 

velocities can obviously be a function of cell density, configuration (single cells, cell sheets, etc.), age, and maturation state.  

The software-, CMaN, is freely available and in contrast to compared software programs, it is several times faster, more 

robust and sensitive, computationally less expensive and allows easy ROI selection. ROI selection allows processing specific 

areas/cells carefully for instance when frames contain multiple cells/clusters. More importantly, CMaN extracts six 

components of contractile motion per processing, which enables a minimum of one useful beating signal even in complex 

scenarios such as weak movements, or overexposure/gamma by uneven background illumination. Signal from CMaN is 

analogues to ECG with both positive (upstroke) and negative (downstroke) segments to represent the contractile phenomena 

more exactly. This helps to compute the beating frequency and times and amplitudes of contraction and relaxation phenomena 

separately. Additionally, CMaN has supplemental features for cluster finding and movement center detection. One limitation 

of the CMaN is that it can currently only process avi files. If the input comes as a sequence of images, those have to be 

converted first into an avi file (for example using ImageJ or the script provided in the CMaN user manual). Currently the 

mechanobiological analysis is carried out in two stages; first stage is the automatic signal extraction, and in the second stage, 

a fine tuning (adjusting thresholds with the sliders in the GUI) may be required in case of heavily noisy or complex beating 

cases. The software is an offline tool, but the basic script for the affine flow computation is provided (see CMaN user manual) 

which can be edited for online automated beating analysis or other extended applications. One future direction is the 

measurement of contractile forces with beating signals by integrating a micro-displacement actuator (e.g. fluorescent 

beads/magnetic beads/micro-cantilevers). We are also developing cell and disease models where the platform described in this 

paper is directly applied.   
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V. CONCLUSIONS 

We describe a system and software that allows the assessment of hiPSC derived cardiomyocyte contractions with changing 

temperatures. The highlights of the paper are the first time reporting of 1) the nonlinear temperature dependence on the beating 

frequency of hiPSC-CM; 2) the visualization of hiPSC-CM contractile networking and the non-invasive measurement of signal 

propagation between dissociated clusters; In addition, we release an advanced and robust software that tracks multiple signals 

from cardiomyocyte beating movies. The system and software are useful additions in assay development and organ-on-chip 
experimentations. 
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a b s t r a c t

A non-contact real time pH measurement using fully modular optical parts is described for phenol-red
medium cell cultures. The modular parts can be sterilized, and once the measurement is started at the
beginning of culture, no recalibration or maintenance is needed till the end of the culture. Measurements
can be carried out without any special manual attention. The modular assembly of LED and sensor
cassettes is unique, robust, reusable and reproducible.

pH is measured in an intact closed flow system, without wasting any culture medium. A special pump
encapsulation enables the system to be effortlessly functional in extremely humid incubator environ-
ments. This avoids lengthy sample tubings in and out of the incubator, associated large temperature
changes and CO2 buffering issues.

A new correction model to compensate errors caused e.g. by biolayers in spectrometric pH mea-
surement is put-forward, which improves the accuracy of pH estimation significantly. The method
provides resolution down to 0.1 pH unit in physiological pH range with mean absolute error 0.02.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

pH monitoring in adult stem cell culture provides valuable in-
formation on cell metabolic processes and overall growth en-
vironment [1]. Cell viability and tissue functions in vivo are
strongly correlated to pH. Changes in extracellular pH from opti-
mal can have substantial impact on cell metabolism and pro-
liferation [2,3]. Most mammalian cells typically grow at pH 7.0–7.5
[4,5]. For example, a fully prepared medium for human adipose
stem cells is typically at E7.2 pH at 37 °C with sodium bicarbo-
nate buffering. However, when cells proliferate and metabolize
nutrients in the culture medium, they secrete CO2 and acid pro-
ducts (lactic, carbonic etc.), causing the pH to invariably decrease
over time [1,4,5]. Extremely dense versus sparse plating con-
fluency and rate of evaporation can also affect pH levels [6]. For
monitoring cellular environment, it is therefore important to have
an accurate, rapid pH monitoring in real time. Conventionally, to
measure pH reliably, electrochemical sensors or field effect

transistor (ISFET) sensors are used [2,6–8]. Electrochemical sensors
are precise, fast and reversible, but bulky, require large sample
volume and physical contact [4,8]. ISFETs, having non-metallic
gates with pH selective membranes, can provide precise mea-
surements for small volumes, but still requires physical contact
[7,9]. Moreover, both of them show significant signal drift in long
term continuous operation and require periodic recalibration and
maintenance which restricts them as good candidates mainly for
short term applications [6,8,10–13]. A pH sensor in cell culture has
to be operated in an extreme sterile condition where the increased
risk of contamination by periodic recalibration and maintenance,
biolayer formation, and glass membrane cell clogging are all pro-
blematic. In contrast to the aforementioned sensors, optical pH
sensors have received widespread attention during the last decade
in cell culture applications [14–18]. A few optical pH sensors are
commercially available as of Wavepod II-pHOPT from GE Health-
care, iTube pH Bioreactor from PreSens, TruFluorspH from Finesse
and OptiSens pH from Sartorius. Optical pH sensors, in general, are
based on indicator dyes, typically immobilized on a planar light
guide or on an optical fiber, forming an optode. Hþ ions induce
changes in the molecular structure or orbital energy levels of op-
todes, which are translated into changes in spectroscopic phe-
nomena such as absorption or reflectance or luminescence or
fluorescence [8,17,18]. Most of these sensors require sample
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physical contact. Signal drift due to immobilized indicator decay
(photobleaching/leaching) is also a concern [8,18–20]. Therefore,
non-contact, real time pH monitoring is desired in several areas
including cell therapy experiments. A true non-contact pH mea-
surement is made possible, for example, when a pH indicator is
dissolved in the culture medium, whose spectral changes by Hþ

ions are measured by spectroscopic means [8]. pH sensitive smart
cuvette (Ocean optics) is an attractive option, but it is designed to
be used with a spectrometer, normally not cost effective. Most of
the standard stem cell culture media contain phenol red, a stable
biocompatible pH indicator, allowing the quick visual inspection of
pH changes. Changes in the characteristic absorptions of phenol
red medium in accordance with pH can also be exploited for
quantitative spectroscopic non-contact pH estimation. This tech-
nique has been tested also in pH measurements in some cell cul-
tures [2,14,16,19,21]. In phenol red systems, the core idea is to
measure light intensities at two wavelengths, one at the pH sen-
sitive wavelength and other at a neutral reference wavelength.
However, there are a few practical issues for adapting the reported
methods to stem cell cultures. Sample extraction from culture
dishes is inevitable though keeping the flow pump or the mea-
surement cell out of the incubator with sample tubings in and out
of the incubator is somewhat unappealing. Lengthy sample tub-
ings, associated large temperature changes, need for large sample
volume and more culture supplements, and extra tubing for buf-
fering CO2 are all challenging. Lengthy tubings also impose ster-
ilization issues and necessitate to use a high flow rate for the fast
response, which in turn can be uncomfortable for stem cells.
When two beams of dissimilar wavelengths operate in close
proximity, the possible light cross talk due to the scattering of light
by detached cells or debris is also to be addressed electronically or
optically. Moreover, the formulations that translate absorption
ratios into pH, lack parameters to account the effect of tempera-
ture and biolayer formations in continuous long term cell culture.
In an effort to overcome the above challenges, we have tested a
robust, reusable non-contact pH measurement system. Almost all
parts are 3D printed, fully modular, can be sterilized and placed
inside the incubator. No sample extraction from the incubator or
any special sample treatment is needed. Temperature de-
pendencies are continuously compensated. A new absorption
correction model to compensate non-specific absorptions (eg. by
biolayer in continuous long term culture) is proposed and tested
which improves the pH accuracy significantly.

2. Materials and methods

2.1. Theory

Indicator Phenol red (8.1 mg/L, CAS number 34487-61-1) re-
sponds to pH by changing the colour from red to yellow as the
culture medium pH changes from 8.2 to 6.8 (�1.5 pH units). Ab-
sorption spectra (Fig. 1a, measured with Ocean optics’ JAZ spec-
trometer) of fully prepared cell culture medium (Dulbecco mod-
ified Eagle medium, DMEM/F-12 1:1; Life Technologies, Gibco,
Carlsbad, CA, USA), show characteristic peaks at 434 nm and
558 nm with an isosbestic point at 470 nm. Characteristic peaks
are due to structural isomerism, meaning the existence of phenol
red molecules either in its acidic ([HIn] – yellow) or alkaline
([In�]- red) forms. Consequently, at a given temperature and
acidity (or basicity), the concentration ratio [In�]/[HIn] de-
termines the bulk colour of the host medium. Spectroscopically,
Henderson–Hasselbalch equation connects the concentration ratio
and host medium pH as,

= + [ ]
[ ] ( )

−⎛
⎝⎜

⎞
⎠⎟pH pKa

In
HIn

log 10
1

In

where pKaIn – indicator dissociation constant [22,23].
By applying Beer-Lambert's law, Eq. (1) can be approximated in

terms of absorption ratio as,

ε
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where εHIn, εIn - molar absorptivity of indicator acidic and alkaline
forms, A560, A430 – absorptions at 560 and 430 nm.

At any pH, the bulk indicator concentration (Ct), is a constant as
the sum of acid and alkaline concentrations,

= + ( )−⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦C In HIn 3t

In highly acidic solutions, essentially the whole indicator is in
the acidic form, meaning, Ct¼[HIn] conversely, Ct¼[In�] in highly
alkaline solutions. With this concept Eq. (2) can be simplified into,

Fig. 1. a) Absorption spectra of DMEM/-F12 based BM measured with spectrometer
(JAZ, Ocean optics) at different pHs. Figure inset: Absorption at 545 nm and 680 nm
as a function of pH. Continuous line: Textbook equation (Eq. (4)) fitted at 545 nm.
b) Modular non-contact pH unit with modules of LED cassette, sensor cassette,
sample holder and peristaltic pump. LED cassette: Green and red LEDs (545-03,
680–02 AU/Roithner Laser Technik) with PLA support inside a transparent cuvette
(PS, SE-202295, Spectrecology). Sensor cassette: Two photodiodes (VTB8441BH/
Excelitas-tech) with filters green (dielectric shortpass FES0600/Thorlabs) and red
(Dichroic red 647 nm LWP/Opticalfiltershop). Flow through cuvette: 10 mm quartz
cuvette (Z804983/Sigma Aldrich), Pump: ISM 596/REGLO Digital MS-2/12/IDEX).
Additional: Silicon sensors (TSic™ 506F/ IST-AG and HiH-5031/Honeywell) to
monitor humidity and temperature in the proximity of cuvette and pump enclosure
throughout the culture.
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where Amx is the maximum absorption of highly alkaline state at
560 nm [23,24].

Absorption as a function of pH at 545 nm (suitable LED nearest
to 558 nmwavelength) at ambient temperature is shown in Fig. 1a
inset. For fresh medium without any cells Eq. (4) is found to be
accurate enough. However, it was not accurate enough for real
time pH estimation in active cell culture. This is mainly due to the
formation of proteins in the medium and protein coating or bio-
layer on the cuvette wall leading to non-specific scattering and
absorption losses, which in turn induce error in A545. Conse-
quently, an integrated reference transmission measurement at a
pH insensitive wavelength (eg. 680 nm, see Fig. 1) became in-
evitable, for compensating the contributions of other species than
the indicator molecules in the light path. We put forward an ab-
sorption correction model (hereafter GR model) where the re-
ference channel data is also included in the pH computation with
certain approximations, so that the accuracy of pH estimation
improved radically. The core objective of the GR model is to se-
parate indicator absorption unequivocally from all other non-
specific contributions arising out of detached entities (cells/cell
debris/particles), biolayer, and protein binding in progressing
culture [3,21,25]. Since absorption in a multicomponent system is
cumulative in nature, the total absorption measured by 545 nm
and 680 nm sensors can be expressed as

= + + ( )A A A t k 5total indicator dm
545 545 545

545 545

= + + ( )A A A t k 6total indicator dm
680 680 680

680 680

where Adm – absorption due to detached non-indicator molecules
in the medium, t, k – biolayer thickness and light loss constant in
coated biolayer.

Since indicator molecules do not absorb light at 680 nm,

= ( )A 0 7indicator
680

ε= ( )
⎡⎣ ⎤⎦A b dmAlso 8dm

680
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Eqs. (7) and (8) in Eq. (6) yields [ ]dm . Additionally

ε= [ ] ( )A b dm 9dm
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Now Eq. (5) can be reconstructed as,

ε
ε

ε
ε

= − − −
( )

⎡
⎣⎢

⎤
⎦⎥A A A t k t k

10
indicator total total
545 545 545

680

680
545 545

545

680
680 680

Eq. (10) represents the explicit indicator absorption in terms of
measured total absorptions and all other artifacts. However, since
many of the artifact terms are practically immeasurable in the
context of cell culture, a perfect artifact free measurement is vir-
tually impossible. Nevertheless, the situation can be handled
mathematically, with these approximations,
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Now Eq. (10) can be simplified into an empirical formula as,

= − − ( )A A k A k 13indicator total dm total bl
545 545 680

The glass electrode reference pH data at times of start, medium

change and end days of culture, can be used with Eqs. (4) and (13)
to extract approximate values of kdm and kbl by means of non-
linear least square fit. The approach seems to be straight forward
and has been effectively applied for real time pH measurements in
4 long term cell cultures.

Integrated temperature measurements indicate several fluc-
tuations though the temperature is expected to be constant
throughout the culture since cells and measurement setup are in
the incubator. This can be due to inherent incubator variabilities,
heating caused by the measurement electronics and major drops
at times of incubator door openings. Door openings affect the
temperature and CO2 levels, which directly affect pH levels of the
culture medium. Effect of temperature can be compensated in Eq.
(4) with integrated temperature sensor readings by applying Van't
Hoff's equilibrium constant correction as,

( )= +
( )

− −⎡
⎣⎢

⎤
⎦⎥pKa pKa elog

14T T T T
7.5 1

2
1
1

2 1

where T1 - initial temperature, T2 - new temperature.

2.2. Apparatus

Modular system schematic is shown in Fig. 1b. It consists of LED
and sensor modules (cassettes), a sample cuvette, peristaltic
pump, and their support structure. Transmitted light from the LED
module through the sample is measured with a sensor module.
Optical filters in the sensor module eliminate measurement errors
resulting from the cross talk due to the scattering of light in cul-
ture media by detached cells and debris. Spectra of LED's emission
and filter's transmission are shown in Fig. 2a. All the support
structures are 3D printed (TAZ 3/LulzBot PLA(Polylactic acid)) and
modular cassettes are sealed using hot melt glue. Sealing efficacy
was tested by keeping them in DI water bath for around 50 h at
38° celsius. The cassettes can be sterilized with 90% ethanol quite
easily. Culture medium flows through the cuvette at a very stable
rate (5 ml/min) with the peristaltic pump. Placing commercial
peristaltic pumps inside the incubator is usually not possible due
to their size, sterilization difficulties, and incompatibility in high
humidity (490% RH). Commercial pumps are typically rated for
60–80% RH environment mainly due to associated electrical and
electronics parts. However, we separated the pump rotatory me-
chanism from its electronics and casing and encapsulated it in a
separate 3D printed PLA casing. The whole pump can now be
thoroughly sterilized with relative ease. Two short (o30 cm) si-
licone tubes (228–0704AU/VWR International) establish the flow
through the cuvette and peristaltic pump. Silicon temperature
sensor and humidity sensors continually monitor humidity and
temperature in the proximity of cuvette and pump enclosure
throughout the culture. The entire modular unit goes into an in-
cubator after sterilization. Once the measurement commences at
the start of culture, no further parts replacement, recalibration is
needed till the end of culture. Measurements are carried out
without any special manual attention or maintenance, exempting
the medium changing days.

The LEDs are powered with constant current sources and their
light output stability is mainly limited by the LEDs themselves. The
LEDs relative radiant intensity as a function of temperature is
shown in Fig. 2b. The spectral stability of LEDs emission during
long term operation measured with spectrometer is shown in
Fig. 2c. The photodiodes are reverse biased for a linear light re-
sponse and the photocurrent to voltage conversion is done with
resistors. All the sensors are powered by a regulated 5 V power
supply. LEDs, photodiodes, temperature and humidity sensors are
controlled with a microcontroller board (Arduino Uno). A 16 bit
8 channel data acquisition board of our own design is used for
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digitizing the voltage signals from the sensors. The measurement
data is sent to the PC via USB and the PC stores the received data in
Matlab’s file format. A 5 s (2500 samples) average of data in 60 s
intervals at 500 Hz sampling rate was used in real time mea-
surements. The used method stored all the measured samples. The
standard deviations based on these values was also computed and,
based on mean and standard deviation the main features of the
noise distribution were observed. In future more features of the
distribution can be computed and used to get better estimates of
the results. Some error removal and signal modeling methods are

planned. Data logging, sensor control (via microcontroller), data
processing and pH computation are carried out with Mathworks,
Matlab (vR2015b) in conjunction with Arduino Matlab support
package.

2.3. Isolation and culture of adipose stem cells and fibroblasts

The study was conducted in accordance with the ethics com-
mittee of the Pirkanmaa Hospital District, Tampere, Finland
(R03058). Adipose stem cells (ASCs) were isolated from an adipose
tissue sample obtained with written informed consent from one
female donor (age 53 years) undergoing elective surgical proce-
dures at the Department of Plastic Surgery, Tampere University
Hospital, Tampere, Finland. Human ASCs were isolated by me-
chanical and enzymatic procedure as previously described [26]. In
addition to ASCs, commercial fibroblast cell line (ATCCs CRL-
2429™; ATCC, Manassas, VA, USA) was used in the first
measurements.

Isolated ASCs and commercial fibroblasts were cultured in
DMEM/F-12 1:1 medium (CO2 independent and dependent mea-
surements) supplemented with 1% L-analyl-L-glutamine (Gluta-
MAX I; Life Technologies, Gibco), 1% antibiotics (p/s; 100 U/ml
penicillin, 0.1 mg/ml streptomycin; Lonza, BioWittaker, Verviers,
Belgium) and 5% human serum (Human Serum AB Male HIV tes-
ted; Biowest, Nuaillé, France). This medium composition is re-
ferred to as basic medium (BM) in this article. The cells were
seeded into T75 nunclon™ flasks in 40 ml of BM (the first three
measurements) or in 25 ml of BM (the fourth measurement). Cell
seeding density was sparse at the beginning of the culture but the
flasks became fully confluent during (the) two week culture per-
iod. At time of medium change, 10 ml of used BM was removed
and replaced by 10 ml of fresh BM. Medium was changed once a
week.

3. Results and discussion

3.1. pH measurements at room temperature (no cells)

pH values measured optically from several pH samples with a
calibrated sensor are shown in Fig. 3. All the reference measure-
ments were carried out with a pH glass electrode (WTW Multi
340i with SenTix 41-3 electrode, Weilheim, Germany).

3.2. Real time pH measurement during cell culture

Online measurements were carried out in two CO2 in-
dependent and two CO2 dependent culture media. Measured
Green, red and GR model absorptions throughout the culture and
glass electrode reference pHs Vs. various absorptions at times of 1)
culture start 2) medium change 3) culture end can be found in
Appendix A, Supplementary material. Optical pHs measured with
GR model continuously from 14 days culture is shown in Fig. 4. The
constants extracted for Eqs. (4) and (13) from 4 cultures are given
in Table 1. At the end of cultures, the used BM was microbial tested
but no contamination was identified. Light microscope images of
ASC culture (4th measurement) before and after the two-week
culture period are shown in Fig. 5. Cell proliferation was efficient
during the measurements and the flasks became fully confluent
during the two-week culture period.

The large spikes seen in the pH data (Fig. 4) occur mainly at
times of medium change due to drop in incubator temperature
and CO2 levels and addition of a fresh unbuffered medium (
pH�8.3). Drop in temperature and CO2 levels shoot-up the pH
within minutes, but on the other hand gaining the stable pH back
takes hours even in incubator conditions. Microscopy examination

Fig. 2. a) Emission and transmission spectra of green and red LEDs (545-03, 680-
02AU/Roithner Laser Technik) and green (Dielectric shortpass FES0600/Thorlabs)
and red (Dichroic Red 647 nm LWP/Opticalfiltershop) filter. b) Relative radiant in-
tensity as a function of the temperature for the green and red LEDs in the cassette
module. An intensity change of 70.15% and 71% need to be expected in green and
red channels respectively for 75 °C change around the incubator temperature. c)
Spectral stability of the green and red LEDs measured with a spectrometer. The
jump seen at �2200 min is when the LEDs were restarted after 2 min pause.
Nevertheless, wavelength standard deviation computed is 0.1340 nm and
0.2398 nm for green and red LED, respectively, indicating relatively stable emissive
spectral consistency over time.
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of the cuvette at the end of cell culture confirmed the existence of
biolayers on all internal walls. See Fig. 6 for the macro and micro
images of biolayer on cuvette wall after the 4th culture.

4. Conclusions

Phenol red indicator molecules are relatively stable, enabling

high degree of inherent measurement accuracy. Rapid measure-
ments are possible since the indicator chemical equilibration is
fairly fast. Change in absorption per pH (dA/dpH) at 545 nm is
3.2 times higher than that at 434 nm, therefore, together with 16-
bit data acquisition resolution down to 0.1 pH became possible. No
special optics or lenses are used, enabling reliable measurements
in a highly humid environment (490% RH) where moisture or
droplets can alter the properties of optical systems unless special
heating or hot lenses are used. A circular 5 mm light beam, instead
of a focused narrow one, delivers more area for light- liquid in-
teraction enabling enhanced responsivity/sensitivity. Furthermore,
the small particles then would not have any significant signature
in the transmission measurement. Light measurements at a small
distance from the cell growth location have limitations though it
maintains cell viability and avoids practically all instances of
phototoxicity due to the oxygen dependent reactions of free ra-
dical species by photon absorption [27]. The 3D printed modular
arrangements and pump mechanism for measurement are unique,

Fig. 3. Signal voltage and optically measured pH values for several culture medium samples at room temperature after three point calibration. Textbook equation (Eq. (4))
was used for pH computation. pKa is estimated to be 7.723 with RMS error of 0.0274. Reference pHs measured with glass electrode are also shown. Dashed box represents
the reliable pH range with indicator phenol red [pH 6.7–8.3].

Fig. 4. Optical non-contact pH in adipose stem cell culture in CO2 dependent and independent cultures. Real time 24/7 measurement for 14 days continuously with 1 min
measurement interval. A 2500 samples, 5 s worth, was averaged in every minute. The large spikes are at times of medium change predominantly due to drop in incubator
temperature and CO2 levels and addition of a fresh unbuffered medium ( pH�8.3). Figure inset: Absolute error with text book pH formula (Eq. (4)) and GR model (Eq. (13)).
Reference glass electrode pHs were collected at the days of culture start, medium change(s) and culture end.

Table 1
Values of absolute constants extracted for Eq. (4) and Eq. (13) for online pH
measurements in 4 cultures.

Culture/Type of
medium

pKa kdm kbl Mean pH
Error

Number of Cali-
bration samples

CO2 dependent 7.6272 1.3063 0.0615 0.0131 4
CO2 dependent 7.5952 1.7291 0.0870 0.0344 3
CO2 independent 7.9500 0.0109 0.0015 0.0269 3
CO2 independent 7.8556 0.0011 0.0003 �0.0101 3
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robust and reproducible. Though the sealed PS (polystyrene) cas-
sette modules work fine, careful handling is essential at the time of
sterilization and initial installation to avoid scratches. Cassettes,
using glass or scratch free transparent materials could be even
better and robuster.

Closed sample looping neither wastes nor extracts any sample
off the incubator avoiding lengthy sampling lines, drastic tem-
perature changes, and associated cell shock. Integrated tempera-
ture compensation seemed to be very important. Addition of a CO2

sensor could be even interesting to realize bicarbonate buffering
phenomena precisely in culture with CO2 dependent medium.

With Arduino, a low cost software control of LEDs, sensors, and
data acquisition is straight forward and convenient. Measurement
channels can be kept constantly ‘ON’ throughout the culture, or
programmatically evoked in predefined intervals for measure-
ment. Sensor calibration was carried out with known pH buffers
made from fresh cell culture medium. Alternatively, optical pH
buffers can be prepared with dissolving phenol red in commercial
standard pH buffers.

Effect of non-indicator absorptions and biolayer artifacts are
reasonably compensated with the GR model. This improved the
pH computation accuracy dramatically which seems to be an
adequate step in long term 24/7 real time measurements. Like-
lihood of molecular or structural heterogeneity of non-indicator
error species and possible changes in biolayer thickness during
culture is likely to correspond to non-singular values for kdm and
kbl in GR model. However, error estimation in four cultures con-
firmed unique values derived from non-linear least square fit are
sufficient enough to compute pH with high accuracy.

In addition to the aforementioned errors, other errors that
could be present in colorimetric indicator pH analysis include, salt
error (ionic strength changes), protein error (indicator-protein
binding), and alcohol error. Since the total inorganic salts in the
medium is only 142 mM, salt error is relatively insignificant. Al-
cohol error can also be fully neglected in an alcohol free culture.
But protein error (see: Fig. 6) could have some effect on our
measurements. However, addressing it specifically is practically
impossible due to complexity of the medium and the long culture

Fig. 5. Adipose stem cells images a) at the start and b) at the end of 4th measurement taken with Zeiss AXIO Vert.A1 microscope, Axio Cam ERc5s with 5� objective. Cells
showed efficient proliferation during the measurement and became fully confluent during the two week culture.

Fig. 6. Biolayer on the internal cuvette wall imaged with phase contrast microscope (Zeiss Axio observer z1-20� objective). Approximate average grain size: 8 mm. Inset:
Dry cuvette after 4th culture where difference in light transmission through measurement region and surrounding areas of the cuvette is recognizable with slightly varying
colors.
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process. Nevertheless in general, GR model performs artifact
compensation effectively. Measurement repeatability has been
tested successfully both in room temperature and incubator con-
ditions. Needless to say, catastrophic events such as contamination
(bacterial, yeast etc.) can affect the light measurement undesirably.
However, such instances can be easily identified from unexpected
signal drop (intensity loss) due to elevated absorptions by the
cloudiness of intruder colonies. Turbidity arising from particles or
cell debris in culture can have different optical effects at different
wavelengths. Together with pH, a 90° scattering measurement
channel is also to be incorporated to collect information about the
turbidity in general, and also the colour of the topic that causes the
turbidity. The plan is to approximately measure the turbidity and
to compensate the colour effects of turbidity in pH computation if
there is any.

The modular arrangement of 3D printed parts, though ex-
clusively intended for non-contact cell culture pH measurements,
the technique can have applications in many sensing situations in
analytical chemistry.
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Abstract—Cell culture in stem cell research is on the rise, not 
only for basic research but also for its potential medical and 
therapeutic applications. Monitoring culture process using sensors 
throughout the culture helps to optimize culture conditions for 
optimal growth and maximize yield from the cells. Further, the 
sensor data gives insight into developing better cell culture 
systems. Typical stem cell culture platforms, e.g. well plates or 
flasks, cannot be easily equipped with sensors and impose many 
challenges in periodic process measurements in a CO2 incubator. 
We present an incubator compatible modular measurement 
system with three sensors, to monitor pH, temperature and 
humidity continuously throughout the culture. Sensors are 
assembled around a flow through cuvette for highly sterile non-
contact measurements. No sample preparation or sample 
extraction from the incubator is needed and the measurements are 
carried out in a closed flow loop without wasting any medium.  The 
modular assembly is novel, reusable and feasible for humid 
incubator environments. The system has been tested, validated 
and used in mesenchymal stem cell expansion and differentiation, 
for periods ranging from two to three weeks.  Once the 
measurement has commenced at the beginning of culture, 
continuous measurements without sensor recalibration or special 
manual attention are carried out till the end of the culture.  
Measurement data clearly show the interplay between measured 
parameters, indicating a few stress sources present all through the 
culture.  Additionally, it gives an overall picture of behavior of 
critical control parameters in an incubator and points out the need 
for bioprocess systems with automatic process monitoring and 
smart control for maximum yield, optimal growth and 
maintenance of the cells. 

Keywords— incubator compatible sensors, cell culture incubator 
environmental monitoring, non-contact cell culture measurements, 
long-term cell culture measurements, long-term optical cell culture 
pH measurements 

I. INTRODUCTION 

 
Stem cell research is a rapidly expanding field to develop 

therapeutic agents to treat diseases as well as to study disease 
development from early stages[1–3]. Cell culture is a critical 
part in stem cell research and culture parameters need to be 
refined according to the final purpose of the culture. Monitoring 
culture parameters using sensors throughout the culture helps to 
optimize culture conditions for optimal growth and maximum 
productivity. Further, the sensor data helps to visualize 

necessary control schemes to be considered in designing 
optimized compact cell culture systems. Small-scale upstream 
cell culture for bioprocess development often occurs in flasks 
and multi-well plates kept in CO2 incubators. Incubators 
regulate temperature (~37oC), humidity (~95%RH) and 
gaseous atmosphere (CO2,/O2) around the cells, and also 
indirectly the pH of  the culture medium with a bicarbonate 
buffer system. These parameters, ideally should be constant and 
not a source of experimental variations[4]. However, variations 
do occur, which create stress, and cells can respond, depending 
on the cell type, nature and duration of the stress, in various 
ways ranging from the activation of survival pathways to the 
initiation of cell death [5]. It can also adversely affect the cell 
attachment on culture platforms [6]. There is often an interplay 
between these parameters, for instance, the pH set-point, can be 
influenced not only by CO2 levels, but also by fluctuations in 
temperature and medium evaporation. Therefore, the incubator 
door opening conditions (duration and frequency), the nature of 
the fresh medium (preheated/pre-buffered) added at times of 
medium change, are also external stressors, resulting in 
undesirable experimental variations. When cells proliferate and 
metabolize nutrients, the byproducts (CO2, pyruvic, lactic acids 
etc.) tend to lower the pH, but the active bicarbonate buffer 
system, in principle, should counteract and stabilize the pH set-
point. However our previous studies indicate a drop in pH in 
prolonged cultures which has been verified with 
electrochemical sensors as well [7]. In this study, we measured 
the pH, temperature, and humidity continuously in prolonged 
cultures in a water-jacketed incubator. Conventionally, sensor 
matrix chips or the combination of electrochemical and optical 
sensors are widely used in multi-analyte sensing, which usually 
requires large sample volume and physical contact with the 
measurand [8–16]. Electrochemical sensors, generally, are 
precise, fast and reversible, but signal drift, need for periodic 
calibration and maintenance are drawbacks in long-term 
biomedical applications. Several reported optical sensors also 
require sampling, physical contact or culture vessel 
modification  and further, signal drift by 
photobleaching/leaching is also a concern in long term 
measurements[11,16–18]. On the other hand, non-contact 
measurement techniques are highly advantageous since they 
reduce instances of sterilization, minimize the risks of 
contamination and can be implemented without wasting any 
culture medium. Non-contact, real time pH monitoring is 
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desired in several areas, including cell therapy experiments. 
When the culture medium contains phenol red, changes in its  
characteristic light absorptions as a function of pH can also be 
exploited for non-contact pH estimation[14,15,17,19,20]. One 
basic method is measuring light intensities at a pH sensitive 
wavelength and at a neutral reference wavelength. However, 
there are a few practical issues for adapting the reported 
methods directly into the stem cell culture environment. 
Extracting the culture sample to be measured out of the 
incubator using length tubings and external pumps is somewhat 
unappealing. Lengthy sampling lines in and out of the incubator 
impose large temperature differences, and demand large sample 
volume and more culture supplements. Further, it creates 
sterilization issues and necessitate high flow rates for fast 
sensor response, which in turn can be stressful for the cells. The 
cross talk between light measurement channels, when light 
beams of two wavelengths operate in close proximity, due to 
scattering of light by detached cells or debris also needs to be 
addressed electronically or optically. Moreover, the effect of 
possible biolayer (on the internal wall of the measurement cell) 
on the pH and the effect of temperature on the pH are left 
untreated [14,15,17,19,20]. In our multisensor modular 
measurement system, for pH, the previously reported optical 
non-contact pH sensor employing a dual wavelength 
measurement is utilized [7]. The system parts are 3D printed, 
robust and fully modular.  It can be easily sterilized and placed 
inside the incubator, therefore, no special sampling or sample 
extraction from the incubator is needed. Effect of temperature 
on absorption is also compensated continuously. The proposed 
absorption correction model  [7] compensates non-specific 
absorptions (eg. by biolayers) which improves the pH accuracy 
significantly. The temperature sensor which is a platinum 
resistance thermometer in a stainless steel housing is highly 
precise and suitable for medical process measurements. The 
thermoset polymer based capacitive humidity sensor is fast, 
linear and has excellent long term stability. All the sensors are 
incubator compatible, and are tightly attached to the 
measurement cuvette for continuous long term cell culture 
measurements.  

II. MATERIALS AND METHOD 
 

A) Experimental  
 

The modular measurement arrangement is shown in Fig.1. 
Mostly all support parts are 3D printed using PLA material. The 
flow through cuvette (Z804983/Sigma Aldrich) and silicon 
tubes are autoclave sterilized preceding the culture. Resistance 
thermometer (Heraeus-30500109/with stainless steel housing), 
humidity sensor (HIH-5031/Honeywell/factory calibrated), and 
pH sensor module are sterilized with 70-90% ethanol. 
Temperature and humidity sensors stay in contact with the 
external wall of the flow through cuvette. During 
measurements, medium is pumped through the flow through 
cuvette at ~ 3-5ml/min with the help of a modified peristaltic 
pump (ISM 596/REGLO/Digital MS-2/12/IDEX) encapsulated 
in a 3D printed airtight box. The measurement system is placed 
next to the culture bottle inside the incubator and the medium is 
constantly circulated through the flow through cuvette during 
the culture. No sample preparation or external sample 

extraction outside of the incubator is needed. A CO2 sensor 
(GC-0016-COZIR/ Factory calibrated) was also used for 
collecting CO2 data for short-term characterization 
measurements. A 16 bit 8 channel data acquisition board of our 
own design is used for digitizing the voltage signals from the 
sensors. The measurement data is sent to the PC via USB and, 
the PC stores the received data in Mathworks, Matlab’s file 
format. A 5 s (2500 samples) average of data in 60 s intervals 
at 500 Hz sampling rate was used in real time measurements. 
Data logging, sensor control (via microcontroller), data 
processing and pH computation are carried out with Matlab 
(vR2015b). Once the measurement has begun, no recalibration 
or maintenance is needed and measurements can be carried out 
without any special manual attention till the end of the culture.  

 
B) Cells and Culture Medium 

 
The cell expansion and osteogenic differentiation 

experiments described in this study were conducted in 
accordance with the ethics committee of the Pirkanmaa 
Hospital District, Tampere, Finland (R15161). Mesenchymal 
stem cells were isolated from adipose tissue samples (adipose 
stem cells, ASCs) obtained with written consent from donors 
undergoing elective surgical procedures at the Department of 
Plastic Surgery, Tampere University Hospital, Finland. Human 
ASCs were isolated by mechanical and enzymatic procedure as 
previously described [21]. In addition to ASCs, commercial 
fibroblast cell line (ATCC® CRL-2429™; ATCC, Manassas, 
VA, USA) was used in the initial trial measurements.  

The pH, temperature and humidity were monitored during 
cell expansion and osteogenic differentiation. For cell 

 
Fig.1. Modular incubator compatible measurement system. Check [7] for 
pH sensor module details. Measurement cuvette: 10mm Quartz flow 
through cuvette (Z804983/Sigma Aldrich). Pump: Modified peristaltic 
pump (ISM 596/REGLO Digital MS-2/12/IDEX). Temperature sensor: 
Platinum resistive thermometer (Heraeus 30500109/PT100 in stainless 
steel housing). Humidity sensor: Thermoset polymer capacitive sensor 
(HIH-5030/5031/Honeywell-factory calibrated). 
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expansion, ASCs were cultured in DMEM/F-12 1:1 medium 
supplemented with 1% l-analyl-l-glutamine (GlutaMAX I; Life 
Technologies, Gibco), 1% antibiotics (p/s; 100 U/ml penicillin, 
0.1 mg/ml streptomycin; Lonza, BioWittaker, Verviers, 
Belgium) and 5% human serum (Human Serum AB Male HIV 
tested; Biowest, Nuaillé, France). This medium composition is 
referred to as basic medium (BM) in this article. The cells were 
seeded into T75 nunclon™ flasks in 25 ml of BM in the first 
test (Fig.3). Cell seeding density was sparse at the beginning of 
the culture but the flasks became fully confluent during the two-
week culture period. At the time of medium change, 10ml of 
used BM was removed and replaced by 10 ml of fresh BM. 
Medium was changed once a week. 

For the osteogenic differentiation, cells were cultured in 
T150 flasks in osteogenic medium containing DMEM/F-12 1:1 
medium (Life Technologies, Gibco, Rockville, MD) 
supplemented with 5% human serum (Biowest), 1% 
GlutaMAX I (Life Technologies), 1% p/s (p/s; 100 U/mL 
penicillin, 0.1 mg/mL streptomycin; Lonza), 200 μM L-
ascorbic acid 2-phosphate (Sigma), 10mM beta-
glycerophosphate (Sigma) and 5 nM dexamethasone (Sigma)]. 
Medium was changed twice a week during the three weeks’ 
induction period.  

 

III. RESULTS AND DISCUSSION  
 

A) System Characterization 
 

In an effort to understand the effect of CO2 and temperature 
separately on pH, we measured the pH of the culture medium 
(without cells) as a function of temperature in the absence and 
presence of CO2. The measurement results are shown in Fig. 2a 
and Fig. 2b. The pH decreases with increase in  the temperature 
as expected [22]. A decrease of ~ 0.2 pH unit in the absence of 
CO2  and a decrease of ~1.0 pH unit in the presence of CO2 were 
observed for ~10oC temperature rise.  Culture medium with the 
bicarbonate buffer system is typically alkaline in the absence of 
CO2 due to sodium bicarbonate (NaHCO3) in the medium 
(Equation 1). Inside the incubator, CO2 dissolves in the medium 
to form carbonic acid (Equation 2). The carbonic acid to 
NaHCO3 ratio at 37oC regulates the pH (Equation 2). Since the 
NaHCO3 concentration is set by the media manufacturer, 
typically, a 5-10% CO2 environment is necessary to establish a 

stable physiological pH [6,20-21]. The stabilization of pH, both 
in the absence and presence of CO2 (Fig. 2a and Fig. 2b) is 
seemingly, not a fast process, therefore medium pre-
conditioning (pre-heating and pre-buffering) preceding the use 

of any fresh medium is recommended to reduce the pH shock 
to cells.  

 

B) Cell Culture pH Measurements.  
 

Measurement results from cell expansion and osteogenic 
differentiation are shown in Fig.3 and Fig.4 respectively. The 
sudden large transients (spikes) in the data are mainly at times 
of medium change. Addition of fresh medium and drop in 
temperature and CO2 by incubator door openings at the time of 
medium change, shifts the chemical equilibrium (Equation 
1&2) and shoots-up the pH. Further, the overall drop in solution 
H+ ionization due to drop in temperature also contributes to 
slight pH variations. Small pH changes e.g. from 7.3 to 7.2 is a 
seemingly small deviation, but it brings about actually large 

 

 
Fig. 2. pH of the culture medium (without cells) as a function of 
temperature. a) Measurement in the absence of CO2.. The CO2 sensor 
showed 0.0995% mean base value though the incubator CO2 was set to 
zero. Around ~0.2 pH unit drop is seen with around 10oC temperature rise 

b) Measurement in the presence of CO2. It took ~30 minutes to reach a 
stable 5% CO2 environment after CO2 was turned on. Relatively large pH 
drop (~1.0 pH units) is seen in the presence of CO2 over ~10oC temperature 
rise. The effect is presumably due to combined influence of temperature 
and CO2. Noticeably, the pH stabilization time is in the order of hours in 
both the cases in the studied typical culture flask arrangement in the 
incubator. 
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(~40%) changes in the H+ concentration. After the medium 
change, once the temperature and CO2 levels are re-established, 
the buffer system re-establishes the pH, in principle back to the 
set-point. As the cells constantly metabolize glucose and other 
nutrients, the waste products (pyruvic, lactic acids, CO2 etc.) 
can however, slow down the pH stabilization and decrease the 
pH over time. pH curves in Fig.3 and Fig.4 reflect the combined 
influences of CO2, temperature and cell metabolism. One 
possible reason for the clipping in humidity data (Fig.4), though 
its actual reason is unclear, is a tiny leakage through the 
incubator door sealing.  Several hours shift seen in the 
simultaneous temperature measurement also might be due to 
the same issue. The expected maximum error due to the 
temperature sensor itself and measurement inaccuracies is 
232mK with 2.3mKrms noise (averaging 625 samples/data 
acquisition). With temperature compensation, the maximum 
error of the humidity sensor is ~13.1% of RH. The mean 
absolute error in pH measurement is ~ 0.032 pH units in the 
physiological pH range. 
  

IV. CONCLUSIONS 
 

In this work, we have implemented an incubator compatible 
modular measurement system and measured the pH, 
temperature and humidity in long term mesenchymal stem cell 
expansion and differentiation. Non-invasive unattended 
measurements were carried out in a closed flow loop without 
wasting any medium.  The humidity sensor (HIH-5031) is a 
condensation-resistant, pre-calibrated sensor with a 
hydrophobic filter that allows it to be used in condensing 
environments including medical applications. However, some 
care is needed not to physically damage the filter during 
installation. Wiping it with an alcohol wetted paper instead of 
direct alcohol spray is preferred for sterilization before placing 
the system into the incubator. A sensor with a better housing 
similar to that of the temperature sensor can be better from the 
installation and handling point of view. Interplay between 
measured parameters shows a few possible stress sources 
present in cell culture in a CO2 incubator. The system provides 
a comprehensive picture of behavior of critical control 

Fig.3. Temperature, pH and humidity measured during adipose stem cell 
expansion of ~15 days. The large spikes are at times (green marker) of 
medium change, predominantly due to drop in incubator temperature 
and CO2 levels and addition of fresh medium ( pH~8.3) [7]. 

Fig.4. Temperature, pH, and  humidity measured during osteogenic 
differentiation of human adipose stem cells for ~21 days. The large spikes 
are at times (green marker) of medium change, predominantly due to drop 
in incubator temperature and CO2 levels and addition of  fresh unbuffered 
medium ( pH ~ 8.4).  
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parameters in incubator based cell culture, and points out the 
need for bioprocess systems with automatic monitoring and 
smart control for the optimal growth and maintenance of the 
cells and maximum productivity. Our continued future 
research, planned in this direction will aid this. 
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