
Jin Gong

WHITE MATTER
HYPERINTENSITY AND

MULTI-REGION BRAIN MRI
SEGMENTATION USING

CONVOLUTIONAL NEURAL
NETWORK

Faculty of Information Technology and Communication Sciences (ITC)
Master’s thesis

April 2020

Abstract
Jin Gong: WHITE MATTER HYPERINTENSITY ANDMULTI-REGION BRAIN
MRI SEGMENTATION USING CONVOLUTIONAL NEURAL NETWORK
Master’s thesis
Tampere University
Master’s Degree Programme in Computational Big Data Analytics
April 2020

Accurate segmentation of WMH (white matter hyperintensity) from the magnetic
resonance image is a prerequisite for many precise medical procedures, especially
for the diagnosis of vascular dementia. Brain segmentation has important re-
search significance and clinical application prospects especially for early detection of
Alzheimer’s disease. In order to effectively perform accurate segmentation accord-
ing to the MRI characteristics of different regions of the brain, this thesis proposed
an optimized 3D u-net and used WHM segmentation as a pre-experiment to select
the good hyperparameters (i.e. network depth, image fusion method, and the im-
plementation of loss function) to construct an image feature learning network with
both long and short skip connections. Soft voting is used as the postprocessing
procedure. Our model is evaluated by a 10-fold cross validation and achieved a dice
score of 0.78 for binary segmentation (WMH segmentation) and accuracy of 0.96
for multi-class segmentation (139 regions brain segmentation), outperforming other
methods.

Keywords: 3D Image Segmentation, Magnetic Resonance Imaging, Brain Regions,
Convolutional Neural Networks.

The originality of this thesis has been checked using the Turnitin Originality Check
service.

Contents

1 Introduction . 1

2 Related Work . 3
2.1 Traditional segmentation method for grayscale pictures 3
2.2 Deep learning-based segmentation method for general pictures 4
2.3 Deep learning-based segmentation method for medical images 5

3 Background . 7
3.1 Basics of MRI . 7
3.2 Basics of neural networks . 8

3.2.1 The artificial neural networks . 8
3.2.2 The back propagation . 9
3.2.3 The activation function . 10
3.2.4 The loss function . 11
3.2.5 The optimizer . 13

3.3 Basics of Convolutional neural network 13
3.3.1 The convolutional layer . 14
3.3.2 The downsampling layer . 16
3.3.3 The upsampling layer . 17
3.3.4 The normalization layer . 18

3.4 The ResNet and U-net . 19
3.4.1 The ResNet . 20
3.4.2 The U-net . 21
3.4.3 The 3D-U-Net and V-net . 22

4 Data . 24
4.1 The binary segmentation . 24
4.2 The multi-region segmentation . 25

5 Method . 30
5.1 Preprocessing . 30
5.2 Model selection and training . 32

5.2.1 The binary segmentation . 32
5.2.2 The multi-region segmentation 35

5.3 Post-processing . 37

6 Results . 40
6.1 The binary segmentation . 40
6.2 The multi-region segmentation . 45

7 Discussion . 54

8 Conclusion . 57

References . 62

APPENDIX . 63
1 Glossary . 63

1

1 Introduction
Magnetic resonance imaging (MRI) is a medical imaging technique used in radi-
ology to form images of the anatomy and the physiological processes of the body
(McRobbie et al. 2017). An outstanding feature of MRI imaging is that it has var-
ious imaging sequences (e.g. T1, FLAIR). In T1-weighted images, there is a high
signal for fat and a low signal for water, but in T2-weighted images there is a low
signal for fat and a high signal for water. Faced to a variety of MRI images, the
traditional method is that the physician analyzes the images through rich experi-
ence and professional knowledge. However, for different physicians, and even for
the same physician in different periods of time, the division and measurement of
segmentations in the same image will be different, it makes manual segmentation
subjective. Moreover, manual segmentation is time consuming. If physicians can
evaluate the images with the help of specialized software, it will be conducive to a
more accurate diagnosis and treatment of patients.

In recent years, a large number of image segmentation methods have emerged,
including traditional segmentation methods and machine learning-based segmenta-
tion methods. Traditional segmentation methods like threshold-based segmentation
(Kurita, Otsu, and Abdelmalek 1992) and edge detection-based segmentation (Xie
and Tu 2015) are fast but sensitive to noise. Machine learning-based segmentation
methods like VGGNet (Simonyan and Zisserman 2014) is highly depend on the depth
of the network as well as the size and quality of training data. The fully convolu-
tional network (Long, Shelhamer, and Darrell 2015) is able to do pixel-wise semantic
segmentation but the results obtained are fuzzy and smooth due to upsampling, and
are not sensitive to details in the image. Until now, the algorithm widely used in
the field of medical image segmentation is still the u-net (Ronneberger, Fischer, and
Brox 2015) proposed in 2015, and its variants.

The reason why MRI segmentation is a challenging problem is that its images
have unique properties. First, MRI images are three-dimensional images and have
spatial features. If the 3D image is sliced in a certain dimension and then the
ordinary 2D segmentation method is applied, a lot of useful information will be lost.
This thesis will prove it later in Chapter 5. Therefore, it is necessary to choose
an appropriate 3D segmentation method. Another problem is the size of training
data. Once the structure of the network is determined, the generalization ability
depends on whether there is sufficient training set. If only one or two specific regions
or lesions are needed, usually they can be labelled manually by medical experts.
Furthermore, the original MRI usually has 1 channel only which means it is a gray
scale image, by combining different sequences, more channels can be added. Portrait

2

or landscape shots with a mobile phone or camera have at least 3 channels. The
images with RGB channels carry more information than gray scale images. Due to
hardware and technology limitations, the resolution of medical images is relatively
low. The final problem is the robustness and precision. Behind each medical image
there is a patient, and incorrect segmentation might lead to wrong diagnoses and
unsuitable treatment plans. In particular, brain segmentation requires an extremely
high accuracy. These reasons make brain segmentation difficult but also meaningful.

In this thesis, several experiments are performed to evaluate the performance
of the existing popular networks. Based on the results of these experiments, an
optimized 3D-U-net is developed in this thesis. It is applicable to extreme multiple
classes segmentation and extreme small area segmentation. It uses residual units,
which add the identity mapping of the input to the current convolutional layer, to
enhance the learning ability of the network. The distribution of weights is considered
in the design of each layer of the neural network, thereby enhancing the general-
ization ability of the model. Meanwhile, to do patch merging in post-processing
procedure, a new soft-vote based on probability is designed and tested as effective
to increase the overall accuracy.

This thesis is structured as follows. Chapter 2 discusses briefly the general image
segmentation methods, popular medical segmentation methods and their pros, cons
and applications. Chapter 3 introduces the key theory behind the applied method
(i.e. the basics of 2D and 3D U-net, V-net ,loss and activation functions). Chapter 4
focus on the data used in the experiments. In Chapter 5, a detailed algorithm from
pre-processing to training and post-processing is explained. A comparison between
the performance of the other models and the modified model introduced in this
thesis is shown in Chapter 6. Chapter 7 and Chapter 8 discusses the limitations of
the work and points out the potential directions of the future work and provides
conclusions. The appendix contains the glossary of the thesis.

3

2 Related Work
In this chapter, a review of previous research works related to brain MRI segmen-
tation is presented.

2.1 Traditional segmentation method for grayscale pictures

In this part, we will introduce the methods that were used to perform image seg-
mentation using digital image processing, topology, and mathematics before deep
learning became popular. Of course, with the increase of computing power and the
continuous development of deep learning, some traditional segmentation methods
can no longer be compared with deep learning-based segmentation methods, but
some genius ideas are still very worthwhile for us to learn.

The simplest method is the threshold-based segmentation (Kurita, Otsu, and
Abdelmalek 1992). The basic idea of the threshold method is to choose one or more
gray-scale values as thresholds based on the gray-scale characteristics of the image,
to compare the gray-scale value of each pixel in the image with the thresholds,
and finally to segment the image according to the classes that the pixels belong to.
Therefore, the selection of the thresholds influences the result a lot. The threshold
method is particularly suitable for the images that the gray-scale values in different
regions are significantly different. Therefore this fast method is very sensitive to
noise and is not robust.

The region-based segmentation (Chang and X. Li 1994) method is a segmentation
technique takes spacial information into concern. There are two basic forms of
region-based extraction methods with different directions: one is region growth,
which starts from one pixel and gradually merges its neighbour areas which belong
to the same region to the pixel; the other starts from the whole image and gradually
cuts the pixels that do not belongs to the target region. Watershed algorithm
(Parvati, Rao, and Mariya Das 2008) has similarities with it. These algorithms can
be seen as unsupervised or semi-supervised algorithms. This type of algorithm is
ideal for segmentation of complex scenes defined by some complex objects, or for
segmentation of certain natural scenes, and other similar images which lack sufficient
prior knowledge.

Generally, the gray-scale value of pixels on the boundaries of different regions
changes drastically. If a picture is transformed from the spatial domain to the
frequency domain by Fourier transform, the edges correspond to high-frequency
parts. This is a very simple edge detection algorithm and the segmentation method
based on this algorithm is so called edge-based segmentation method. The sim-

4

plest edge detection method is the parallel differential operator method (Bevington
and Mersereau 1987), which uses the nature of discontinuous pixel values in adja-
cent regions and uses first-order or second-order derivatives to detect edge points.
Therefore, methods based on surface fitting (Monga and Benayoun 1995), methods
based on boundary curve fitting (Kolomenkin, Shimshoni, and Tal 2009), methods
based on reaction-diffusion equations (Nomura et al. 2011)) and methods based on
deformation models (Wu and Yu 2004) have also been proposed. Edge detection
cannot guarantee edge continuity and closure. Image segmentation method based
on wavelet analysis and wavelet transform (J. Li 2003) can solve this problem. With
the help of Hilbert transform (Dibal et al. 2018), a better result is shown.

Nowadays the most widely used traditional method in medical area is atlas-based
segmentation. Atlas is a fully labeled database, for instance, the atlas of BrainWeb
(Cocosco et al. 1997) contains various brain structures in CT images labeled by
doctors. The earliest atlas-based segmentation was based on nonrigid registration,
which registered the test image with the data in atlas, and then used the label
propagation method to transfer the labels in the atlas to the test image through
the registration mapping, thereby completing the segment tasks. Obviously, the
atlas-based segmentation method is highly dependent on the accuracy of nonrigid
registration with high computational complexity.

2.2 Deep learning-based segmentation method for general
pictures

As mentioned above, VGGNet (Simonyan and Zisserman 2014) is an example of
feature encoder based segmentation method. By repeatedly stacking layers with 3
× 3 small convolution kernels and 2 × 2 maximum pooling layers, it extract image
features. It builds convolutional neural network as deep as 16 to 19 layers and
finds that deep networks have better performance comparing to the shallow ones.
VGGNet won the runner-up of the ILSVRC 2014 competition and the champion of
the positioning project. VGGNet occupies a lot of memory due to the large number
of layers and the many parameters of the last three fully connected layers.

Although new models with better performance appear every year, the improve-
ment to previous work is not so obvious. One of the important problems is that deep
learning networks are stacked. At a certain depth, the gradient disappears, which
causes the error increase effect to become worse. The gradient cannot be fed back to
the previous network layer during backward propagation, which makes it difficult to
update the parameters of the previous network layer and the training effect becomes
worse. At this time ResNet (He et al. 2016) stood out and became an important
turning point in the development process of deep learning. The core idea of ResNet

5

is to introduce identity mapping in the network, which directly transmitted the
input information to the subsequent layers. During the learning process, only the
residuals of the previous network output can be learned. The detailed algorithm of
Resnet will be introduced in Chapter 3.

The convolutional neural network will lose some detailed information when sam-
pling, so the purpose is to get more characteristic value. However, this process is
irreversible, and sometimes the resolution of the image is too low, and details are lost
during subsequent operations. Therefore, we can complete some missing information
through upsampling to obtain a more accurate segmentation boundary. The most
famous model in this area is the fully convolutional network (Long, Shelhamer, and
Darrell 2015) so called ’FCN’. In the deconvolution-upsampling structure in FCN,
the picture is first up-sampled (enlarged pixels); then convolved (weights are ob-
tained through learning). FCN has become an industry benchmark in the field of
image segmentation. Most of the segmentation methods will use FCN or part of it
more or less.

2.3 Deep learning-based segmentation method for medical
images

DeepMedic (Kamnitsas, Ledig, et al. 2017) is a 3D multi-scale CNN with two parallel
paths. The upper path extracts small area features, and then performs residual
block convolution and downsampling. The lower path extracts large area features.
Such a dual architecture can ensure that good detail information (local information)
can be extracted in the normal resolution channel, and good high-level information
(relatively large range information) can be maintained in the low resolution channel.
Therefore, the segmentation information and positioning information are accurate.
It is wildly used to segment brain tumors (Kamnitsas, Bai, et al. 2017).

Another method called U-net (Ronneberger, Fischer, and Brox 2015) is also
widely used in the area of medical images segmentation. The original U-net is
made for 2D images of cells. It is very similar to the FCN mentioned before. In the
encoding part, a new scale is constructed each time it passes through a pooling layer,
repeated for 5 times. The decoding part is fused at the same scale as the number
of channels corresponding to the feature extraction part each time it is sampled. In
this way, richer context information is obtained. In the process of decoding, detailed
information is enriched through multi-scale fusion, and the accuracy of segmentation
is improved. Afterwards, the same authors proposed a 3D U-net (Çiçek et al. 2016)
and another group of researchers proposed the V-net (Milletari, Navab, and Ahmadi
2016) with the similar idea. They separately segmented the kidney of xenopus and
the prostate volume in MRI, and achieved good results. However, only a very limited

6

number of multi-class segmentation can be done by these methods by doing binary
segmentation several times.

With the great success of deep learning in the field of computer vision, the
image semantic segmentation method based on convolutional neural networks has
made breakthrough progress, taking image segmentation to a new height. How to
continue to improve the accuracy of the segmentation algorithm and reduce the
complexity of the segmentation algorithm are issues worthy of further research.
Consequently, a better multi-class (over 100 classes) segmentation method for 3D
medical images is needed.

7

3 Background
This part of the thesis introduces some basic knowledge of medical images, neural
network and image processing. These concepts will be helpful for readers to under-
stand the architecture of the algorithm in Chapter 5. Three networks whose ideas
are used in the algorithm in Chapter 5 are analyzed here as well.

3.1 Basics of MRI

Medical imaging has a variety of image modalities, such as MRI, computed tomog-
raphy (CT), positron emission tomography (PET), ultrasound imaging, and so on.
Imaging can obtain images that reflect the physiological and physical characteris-
tics of the human body in two and three-dimensional areas. The content of this
thesis mainly focuses on the characteristics of MR imaging. Each element in the
two-dimensional image is called a pixel, and each element in the three-dimensional
area is called a voxel. In some cases, the three-dimensional image can be repre-
sented as a series of two-dimensional slices for observation. The advantage is that
the calculation complexity is low and requires less memory.

Magnetic resonance imaging (MRI) is the most widely used technique in the
field of radiography. As a dynamic and flexible technology, MRI can achieve vari-
able image contrast. This process is achieved by using different pulse sequences
and changing imaging parameters corresponding to the longitudinal relaxation time
(T1) and lateral relaxation time (T2). T1 and T2-weighted imaging signal strength
is related to the characteristics of specific tissues (Shenton et al. 2001). Imaging
parameters used in the dataset of this thesis is listed as Table 3.1. The 3D images
used in this study are rebuilt from a number of 2D slices in the axial direction.

Table 3.1 Imaging parameters of the dataset.

Parameters FLAIR T1
Echo time 100-140 ms 4-7 ms
Repetition time 6000-10000 ms 10-25 ms
Inversion time 2000-2400 ms
Flip angle 15◦ − 30◦

Voxel size 0.4− 1× 0.4− 1× 5− 7.5mm3 0.5− 1× 0.5− 1× 1− 1.5mm3

Number of slices 15-38 256

MRI has a good imaging ability for soft tissues, very high resolution, and a
high signal-to-noise ratio. Different pulse sequences can be used to obtain multi-
channel images with varying contrasts, which can be used for target segmentation
and classification of different anatomical structures (Vandenberghe and Marsden

8

2015). However, there are many artifacts in MRI, such as the partial volume effect,
random field noise, intensity non-uniformity, gradient artefacts, motion artefacts,
etc (Sharma and Aggarwal 2010). In addition, the acquisition of MRI takes a
considerable time, and it is often difficult to obtain uniform image quality under
normal conditions.

3.2 Basics of neural networks

Before we talk more about neural networks, let us understand some terms. Strictly
speaking, the neural network to be created is called an artificial neural network
(ANN), to distinguish it from the real neural network in the human brain (a network
of brain cells connected). We may also see neural networks to appear under some
names, such as connected machines (also known as connectionism in this field),
parallel decentralized processors (PDP), thinking machines, etc., but we will use the
term ”neural network”. It is used to refer to ”artificial neural networks”.

3.2.1 The artificial neural networks

A typical neural network consists of several, hundreds, or thousands of artificial
neurons called ”units”. They are arranged in a series of layers, and each layer is
connected to each other. Some of these neurons are called ”input units” and are
used to receive a variety of information from the outside world. Neural networks use
this information to learn, recognize patterns, or perform other processing. There
are also some neurons on the other side of the neural network, which are opposite
to the ”input unit”. They show the learning status of the neural network. These
neurons are called ”output units”. Between the ”input unit” and the ”output” unit
there are also one or more layers composed of ”hidden units”, which together with
the ”input layer” and ”output layer” form a neural network. Figure 3.1 presents an
example of a four-layer simple fully connected neural network.

Fully connected means that for all the layers that is not the input layer, each
neuron inside is connected to all the neurons in the preceding layer. The connection
is the ”weight”, which can be positive (when one unit fires another) or negative
(when one unit suppresses another). The higher the weight value, the greater the
influence of one unit on the other unit (this is the same principle that human brain
cells stimulate each other through synapses). Figure 3.2 contains an example of a
perceptron in the ith hidden layer. Activation computation of one neuron is repre-
sented mathematically as:

y = f(
n∑

j=1

wij × xj + bi), (3.1)

9

Figure 3.1 An example of neural network with an input layer, 2 hidden layers and an
output layer.

Figure 3.2 An example of a perceptron of the ith layer.

where y is the output of this neuron, f(x) is the activation function and bi is the
bias. Bias can help to improve the flexibility of neural networks. wij is the weight
between the neuron before and the current neuron.

3.2.2 The back propagation

Information is moved through neural networks in two ways, forward and backward.
When the neural network is in training period or predicting period, the information

10

travels from the input units and go through all the hidden units and finally reaches
the output units. A neural network of this design is called a ”feed-forward network”.
Not all units are always ”active”. Each neuron receives input from the preceding
neuron except the input neurons, and the input is multiplied by the corresponding
weights. In this way, each unit sums all the input information it receives and compare
to a threshold. If the result is greater, the unit will become ”activate” and excite
the unit connected to it.

The neural network learns using a feedback mechanism called ”back propagation”
(Werbos 1974), which consists of both the forward propagation process and the
back propagation process. In the forward propagation process, if the final output
is different from the optimal value, then the sum of the square of the difference
is computed and transfer to back propagation, and the partial derivative of the
objective function on the weight of each neuron is found layer by layer to form the
target. The ladder of the function’s weight vector is used as the basis for modifying
the weight. The learning of the neural network is completed in the process of
modifying the weight. When the error (the sum of the square of the difference)
reaches the expected small enough value, the process ends.

3.2.3 The activation function

In neural networks, there is a functional relationship between the inputs and outputs
of the hidden and output layer nodes. This function is the activation function. If
there is no activation function, the input and output have a linear relationship, but
in reality many models are non-linear. The introduction of the activation function
can increase the non-linearity of the model. The activation functions used in the
network in Chapter 5 are ReLU (Bishop et al. 1995), sigmoid (Cybenko 1989) and
softmax (Bishop et al. 1995).

Sigmoid function is also called Logistic function, which has a very important
position in the field of machine learning. First, Sigmoid’s equation is

Sigmoid(x) =
1

1 + e−x
. (3.2)

Its domain is (∞,+∞) and range is (0, 1). The function is continuous and
smooth in the domain and has derivative everywhere (Cybenko 1989). In most cases,
there is no way to know the form of the probability distribution of unknown events,
and when it is not known, the normal distribution is the best choice because it is the
most likely form of expression of all probability distributions. After assuming that
the probability distribution of an event conforms to the law of normal distribution,
to analyze its possible probability, it depends on its integral form. The format
of the integral of the Sigmoid function is very similar to the normal distribution

11

function. Because of the simple equation and very small calculation of Sigmoid, it
is selected as a substitute function. Sigmoid functions are generally used to solve
binary classification problems.

When the Sigmoid function is used as the activation function and the gradient
is less than 1 in the deep model, the learning ability will be attenuated layer by
layer. This phenomenon is particularly obvious and will cause the model to stagnate
called vanishing gradient problem (Hochreiter et al. 2001). For non-linear functions,
rectified linear unit (ReLU) has no gradient disappearance problem because the
gradient of the non-negative interval is constant. The equation of ReLU is shown
below,

ReLU(x) = max(0, x). (3.3)

For linear functions, ReLU is more expressive, especially in deep networks. The
model implemented by ReLU can better mine related features and fit the training
data. In deep learning, we generally use ReLU as the activation function of interme-
diate hidden neurons. In AlexNet (Krizhevsky, Sutskever, and G. E. Hinton 2012)
it is proposed that using ReLU to replace the traditional activation function is a
major advance in deep learning.

Softmax (Bishop et al. 1995) is used in the multi-classification process. It maps
the output of multiple neurons into the (0,1) interval with the function

Softmax(x)i =
exp(xi)∑
j exp(xj))

. (3.4)

Suppose we have an array, xi representing the i-th element in the array. Then
the Softmax value of this element is the exponent of the element, divided by the
sum of the exponents of all elements.

3.2.4 The loss function

In the calculation of neural networks, we often need to calculate the difference
between the score S1 calculated according to the feed forward propagation of the
neural network and the score S2 calculated according to the correct labeling, and
to calculate loss before applying back propagation. Loss is usually defined as cross
entropy. The loss function guides the direction of model optimization.

It is very easy to calculate the cross entropy loss through out the softmax value.
Cross entropy measures the difference between the true sample label and the pre-
dicted probability. For binary classification problem, the loss function called binary
cross entropy is applied. For multiple classification problem, the categorical cross
entropy is applied. Equation 3.5 shows the basic form of cross entropy for an array

12

containing n elements.

H(p, q) = −
n∑

i=1

p(xi)log(q(xi)), (3.5)

where p is the true probability of the sample, q is the probability predicted by
the model. Note that the labels in multiple classification task should be changed
to one-hot vector before training. One hot coding is the process of transforming
categorical variables into a form that machine learning algorithms can easily use. It
uses the bit status register to encode each state. Each state has only one bit that is
valid and all the other bits are 0. Figure 3.3 is an example of how to change normal
sequential label to one hot label and calculate the cross entropy.

Figure 3.3 An example of one-hot coding a 3-class case. Including the one-hot embedding
and loss calculation

The dice loss is proposed in V-net (Milletari, Navab, and Ahmadi 2016). One of
the reasons is that the anatomical structure of interest only occupies a very small
area of the scan, so that the learning process falls into the local minimum of the
loss function. Therefore, we must increase the weight of the prospects. Dice can
be understood as the degree of similarity between the two contour areas, which is
defined as:

Dice_score(A,B) =
2× |A ∩B|
|A ∪B|

, (3.6)

where A and B are used to represent the point set contained in the two contour
areas.

Dice can also be expressed as:

Dice_score = 2× TP

2× TP + FP + FN
, (3.7)

where TP, FP, and FN are the number of true positives, false positives, and

13

false negatives, respectively. To prevent the denominator from being zero, a Laplace
smoother can be added to the dice score:

Dice_score = 2× TP + 1

2× TP + FP + FN + 1
. (3.8)

The dice loss is the opposite to dice score. Here we use 1−dicescore to represent
dice loss:

Dice_loss = 1− 2× TP + 1

2× TP + FP + FN + 1
. (3.9)

3.2.5 The optimizer

Deep learning can be reduced to an optimization problem, which minimizes the
objective function J(θ) ; in the optimization process, first the gradient ∇J(θ) of the
objective function is solved and then the parameter θ is updated to the negative
gradient direction, θt = θt−1 − η∇J(θ) where η is the learning rate, which indicates
the step size of the gradient update. The algorithm that the optimization process
depends on is called an optimizer. It can be seen that the two cores of the deep
learning optimizer are the gradient and the learning rate. The former determines
the direction of parameter update and the latter determines the degree of parameter
update. The reason why the deep learning optimizer uses gradients is that for
higher-dimensional functions, the higher-order derivative has a large computational
complexity and is not practical for the optimization of deep learning. There are
many types of deep learning optimizers, and research in the academic world has
also been very active. Adam (Kingma and Ba 2014) is mainly used in the network
proposed in this thesis.

Adam combines the advantages of two optimization algorithms, AdaGrad (Duchi,
Hazan, and Singer 2011) and RMSProp (Tieleman and G. Hinton 2012). Adam is
simple to implement, computationally efficient, and requires less memory comparing
to AdaGrad and RMSProp. It is very suitable for large-scale data and parameter
scenarios.

3.3 Basics of Convolutional neural network

Convolutional neural network (Bouvrie 2006) makes the image go through a series
of convolutional layers, non-linear layers, pooling (downsampling) layers and fully
connected layers, and finally get the output. Figure 3.4 represents an example of
a 2D CNN with 2 convolutional layers, a maxpooling layer and 2 fully connected
layers. The output can be the probability of an individual classification or a group of
classifications that best describe the image content. The challenge is understanding
how each of these layers works.

14

Figure 3.4 A 2D CNN example. The input is a 32× 32 3-channel RGB image.

3.3.1 The convolutional layer

The first layer of a CNN is usually a convolutional layer. As the example shown in
Figure 3.4 ,the input is an array of 32 × 32 × 3 pixel values. Imagine that there
is a 5 × 5 sized frame on the upper left corner of the image. In machine learning
terms, this frame is called a filter (kernel), and the area inside the frame is called a
receptive field. The depth of the filter must be the same as the depth of the input (to
ensure that mathematical operations can be performed), under gray-scale condition
the depth is 1 and under RGB condition the depth is 3, so the filter size is 5×5×3.
The frame can slide on the image freely and on each position it can do a convolution
operation, that is, the value in the filter is multiplied(dot product) by the original
pixel value in the image. The sum (sum of 75 products in this case) indicates the
convolution result of the current position of the frame. The process is repeated at
every position on the input. (The next step is to move the filter 1 unit to the right,
then 1 unit to the right, and so on.) Each specific position on the input produces a
number. After the filter slides through all the positions, we will get an array of 28 x
28 x 1, which we call activation map or feature map. The reason for a 28× 28 array
is that a 5×5 filter can cover 784 different positions on a 32×32 input image. These
784 positions can be mapped into a 28 x 28 array. Figure 3.5 shows an example of
a 10× 10 sized images and a 5× 5 sized filter. Note that there is only one kernel in
this example and if there are 3 kernels the output would change to 3 6× 6 matrices.
The more filters used, the better the spatial dimensions are preserved.

For two-dimensional convolution, the convolution kernel performs sliding window
operations on the spatial dimensions of the input image (that is, (height, width) two
dimensions). Each group of values in the sliding window are convolved to the value
of a pixel (or a voxel in 3D cases) in the output image. The difference in Figure
3.6 between 3D and 2D convolution is that the input image has one more depth
dimension and the convolution kernel has one more dimension, so the convolution

15

Figure 3.5 An 2D convolutional layer example. The input is a 10×10 1-channel grayscale
image.

kernel performs sliding window operation on the spatial dimensions (height and
width) and depth dimensions of the input 3D image. Each sliding window performs
related operations with the values in the window to obtain a value in the output 3D
image (see Figure 3.6(b)).

(a) 2D example. (b) 3D example.

Figure 3.6 One channel case for both 2D and 3D convolution.

To change the behavior of the convolutional layer, there are two main parameters
that we can adjust. Padding and stride can influence the convolutional layer by
changing the number of steps that the filter moves which will lead to different results.

The stride influences the number of convolution operations. In the previous
example, the filter convolved the input by moving one unit at a time. The stride is
the number of pixels or voxels that the filter moves at a time. In that example, the
stride is set to 1 by default. The stride is usually set to ensure that the output is an
integer and not a fraction. Figure 3.7 shows a 7× 7 input image and a 3× 3 filter
(without considering the third dimension for simplicity) with strides of 1 and 2.

In the Figure 3.5, it is easily found that the output has a different size comparing
to the input. The size of the image is shrinking rapidly dur to the information loss
happened at the boarder area. In the early layers of the network, we wanted to

16

(a) The stride is 1. (b) The stride is 2.

Figure 3.7 An example of different strides for a 7 × 7 input and a 3 × 3 kernel, the
outputs are different with different strides.

retain as much information as possible about the original input so that we could
extract those low-level features. By adding zero padding of sized 2 with the same
filter and stride, the size of the output can be kept as 10× 10. Figure 3.8 shows an
example that the output remains the same size as the input.

Figure 3.8 A zero-padding example. The input is a 6× 6 1-channel grayscale image and
the output remains the same size.

3.3.2 The downsampling layer

In Figure 3.4 there is a downsampling layer. There are also several methods to
choose from in this category, the most popular of which is max-pooling. It basically
uses a filter (usually 2x2) and a stride of the same length. The input image is
divided in to several sub-regions and the size of each sub-region is equals to the
size of the filter. Each value of a pixel or voxel in the output is the maximum

17

value in a sub-region. There are other options for the pooling layer, such as average
pooling (M. Lin, Q. Chen, and S. Yan 2013) (see Figure 3.9) and L2-norm pooling
(Carreira et al. 2012). The intuitive reasoning behind this layer is that once we
know a particular feature in the original input (which will have a high activation
value here), its relative position to other features is more important than its absolute
position. It is conceivable that this layer greatly reduces the spatial dimension of the
input volume (the length and width have changed, but the depth has not changed).
This serves two main purposes. The first is that the number of weight parameters
is reduced, thus reducing the computational cost. The second is that it can control
overfitting. Overfitting refers to a model that matches the training sample so much
that it does not produce good results when used in validation and testing groups.

Figure 3.9 Two downsampling examples. The left one is the max-pooling and the right
one is the average-pooling.

In Figure 3.4 there are also two dropout layers. The dropout layer (Srivastava et
al. 2014) will ”drop out” a random activation parameter set in this layer, that is, set
these activation parameter sets to 0 in the forward pass. In a way, this mechanism
forces the network to become more redundant. What this means is that the network
will be able to provide a suitable classification or output for a particular sample,
even if some activation parameters are discarded. This mechanism will ensure that
the neural network will not ”over-match” the training samples, which will help to
alleviate the problem of overfitting.

3.3.3 The upsampling layer

In the field of deep learning applied in computer vision, the size of the output
tends to become smaller after the features of the input image are extracted by a
convolutional neural network (CNN), and sometimes we need to restore the image
to its original size for further calculations (e.g. semantic segmentation of images).

18

Upsampling is an operation that expands the image size and to realize the mapping
of the image from small resolution to large resolution.

There are three common methods for upsampling: bilinear interpolation (M. C.
Seiler and F. A. Seiler 1989), Transposed Convolution (Radford, Metz, and Chintala
2015), and Unpooling (Turchenko, Chalmers, and Luczak 2017). Only the decon-
volution (also called as transposed convolution) is used in this thesis. It is not a
complete inverse process of forward convolution. Deconvolution is a special type of
forward convolution. First, it expands the input by adding 0 according to a certain
proportion, then rotates the convolution kernel, and finally performs the forward
convolution. The following Figure 3.10 depicts an example of a deconvolution
process.

Figure 3.10 The image size changes from 3× 3 to 5× 5 after deconvolution.

3.3.4 The normalization layer

When passing the images to the neural network, the images should be normal-
ized beforehand. Normalization is to transform the original image to be processed
into a corresponding unique standard form through a series of transformations (the
standard form image has invariant characteristics for affine transformations such as
translation, rotation, and scaling). That is, the invariant moment of the image is
used to find a set of parameters so that it can eliminate the impact of other trans-
formation functions on the image transformation. Normalization accelerates the
speed of gradient descent to find the optimal solution. The most common method is
the zero-mean normalization. The processed data conforms to the standard normal
distribution, that is, the mean is 0, the standard deviation is 1, and its conversion
function is

19

f(x) =
x− µ

σ
, (3.10)

where µ is the mean of all pixels (voxels) and σ is the standard deviation of all
data.

The method used in this thesis is the Min-max normalization. This algorithm is
a linear transformation of the original data so that the result falls into the interval
[0,1]. The conversion function is as follows:

f(x) =
x−min(X)

max(X)−min(X)
, (3.11)

where min(X) is the minimum value of all pixels (voxels) and max(X) is the
maximum.

Normalization happens not only before the network, but also along the network.
As the training progresses, the parameters in the network are continuously updated
with gradient descent. On the one hand, when the parameters in the underlying
network change slightly, these weak changes are amplified as the number of network
layers deepens due to the linear transformation and non-linear activation mapping
in each layer (similar to the butterfly effect). The change of parameters causes the
input distribution of each layer to change, and the upper-layer network needs to
constantly adapt to these distribution changes, making our model training difficult.
This phenomenon is called Internal Covariate Shift (Ioffe and Szegedy 2015). Be-
cause of the internal covariate shift the network needs to be constantly adjusted
to adapt to changes in the input data distribution, resulting in a decrease in the
network learning speed. Meanwhile, the network training process is easy to fall into
the gradient saturation region, which slows down the network convergence speed.

For each hidden layer neuron, the input distribution that gradually maps to the
non-linear function and moves closer to the limit saturation zone of the value interval
is forced to return to a relatively standard normal distribution with a mean of 0 and
a variance of 1, so that the input value of the non-linear transformation function is
in a more sensitive area to avoid the problem of gradient disappearance. This is the
idea of batch normalization (Ioffe and Szegedy 2015).

3.4 The ResNet and U-net

The network designed in this thesis contains the main idea of the ResNet and the
U-net. The networks and their variants are briefly introduced in this section.

20

3.4.1 The ResNet

From experience, the depth of the network is critical to the performance of the
model. When the number of network layers is increased, the network can extract
more complex feature patterns, so theoretically better results can be obtained when
the model is deeper. In fact, in addition to the problem of gradient disappearance
or explosion, there is also the problem of degradation of deep networks which refers
to the phenomenon that deep neural network is sensitive to the small changes and
make it very difficult to converge (Duvenaud et al. 2014).

Kaiming He (He et al. 2016) proposed residual learning to solve the degradation
problem. For a stacked layer structure (stacked by several layers), when the input
is x, its learned features are recorded as H(x). Now we hope that it can learn the
residual F (x) = H(x)−x. In fact, the original learning characteristics are F (x)+x.
For example, in the division of 13 by 5 we have 13 = 2× 5 + 3, 3 is the remainder.
The 2 × 5 can be seen as the learned feature, 13 is the input and 2 × 5 − 13 = −3

is the residual. However, in the division of 13 by 5 and 14 by 5 gives the same
quotient(learned feature), the way that they differ from each other is the different
residuals. Residual learning is easier than direct learning of original features. The
structure of residual learning is shown in Figure 3.11. This is similar to a ”short
circuit” in a circuit, so it is called a short-cut connection.

Figure 3.11 The schematic diagram of a short-cut unit.

21

3.4.2 The U-net

U-Net (Ronneberger, Fischer, and Brox 2015) is one of the earliest algorithms for se-
mantic segmentation using fully convolutional networks. The symmetric U-shaped
structure containing compression paths and expansion paths was very innovative at
the time and affected some of the later designs of the networks for image segmen-
tation. The name of the network is also derived from its U-shape.

U-Net’s U-shaped structure is shown in Figure 3.12. The network is a classic
fully convolutional network (that is, there is no fully connected operation in the
network). The input of the network is an 572× 572 input image tile with a mirror
operation on the edges. The left side of the network (red line) is a series of down-
sampling operations consisting of convolution and max-pooling. This part is called
contracting path. The compression path is composed of 4 blocks. Each block uses 3
effective convolutions and 1 Max Pooling downsampling. After each downsampling,
the number of feature maps is multiplied by 2, so we have the feature map size
changed as shown in the figure. The result is a feature map with the size 32× 32.

Figure 3.12 The architecture of the U-net1.

The right part of the network (green line) is called the expansion path in the
paper. It also consists of 4 blocks. Before the start of each block, the size of the

1https://lmb.informatik.uni-freiburg.de/people/ronneber/u-net/

22

feature map is multiplied by 2 and the number is halved at the same time (the last
layer is slightly different). Then the feature map concatenates with the feature map
of the symmetrical compression path on the left. Because the size of the feature
map on the left compression path and the right expansion path are not the same,
U-Net is normalized by cutting the feature map of the compression path to the
feature map of the same size as the expansion path. The convolution operation of
the extended path still uses the effective convolution operation, and the size of the
resulting feature map is 388×388. Since this task is a binary classification task, the
network has two output feature maps. Valid padding increases the difficulty and
universality of model design, so U-Net uses a loss function with boundary weights.
This thesis will not go into details here.

The merge operation in the U-net is to concatenate two matrices in the last
dimension. It can be seen as a long skip connection. The merge operation in
the ResNet is a simple add operation, it adds the corresponding elements in two
matrices. It can be seen as a short skip connection. It is proved that both short
and long skip connections (Drozdzal et al. 2016) are important in biomedical image
segmentation.

3.4.3 The 3D-U-Net and V-net

3D U-Net (Çiçek et al. 2016) is based on the previous U-Net structure. The dif-
ference is that all 2D operations are changed to 3D operations. At the same time,
batch normalization is used in order to speed up convergence and avoid training
bottlenecks. During training, it is normalized and standardized according to the
current batch information. At the same time, compared with U-Net, a weighted
softmax loss function is used, and the weight of unlabeled pixels is set to zero, and
only the labeled pixels can be learned. The weight in the softmax loss expression of
the background is reduced, and the weight of the foreground is increased.

The entire network of V-net (Milletari, Navab, and Ahmadi 2016) is divided into
compression paths and uncompression paths, that is, feature maps are reduced and
expanded as Figure 3.13. Each stage reduces features by half, and residual learning
is added to each stage to accelerate convergence.

The circle and cross in Figure 3.13 represent a convolution with a convolution
kernel of 5 × 5 × 5 and a stride of 1. It can be seen that padding 2 × 2 × 2 can
keep the feature size unchanged. At the end of each stage, a convolution kernel
of 2 × 2 × 2 and a stride of 2 are used. The feature size is reduced by half (the
advantage is that there is no need to save pooling switches, so the smaller memory
footprint). The entire network uses the PReLU (He et al. 2015) nonlinear unit. A
1 × 1 × 1 convolution is added to the end of the network,the data is processed as
the same size as the input and finally a softmax function is applied.

23

Figure 3.13 The architecture of the V-net (Milletari, Navab, and Ahmadi 2016).

The network learns the idea of U-Net, and sends the underlying features of the
reduced end to the corresponding positions of the enlarged end to help reconstruct
high-quality images and accelerate model convergence. It uses the dice loss instead of
the loss used by the U-net. The 3D-U-Net and V-Net shows two different directions
of development in 3D image processing. The U-Net kept the original architecture
and optimized the distribution in each layer as well as the training method. While
the V-Net changed the architecture by adding to new components (residual units).

24

4 Data
In this chapter, the sources and types of the datasets used in this thesis are intro-
duced. According to the purpose of usage, the datasets can be divided into two
parts. A set of images is used for doing binary segmentation and a group of images
is used to do multi-class segmentation.

4.1 The binary segmentation

The dataset is a part of the Leukoaraiosis And DISability (LADIS) Study (Waldemar
2002). The study followed patients for three years and took their MRI images (T1-
, T2-, proton density-weighted and FLAIR (Fluid-Attenuated Inversion Recovery)
pulse sequences) as well as their physical indicators. In this thesis, FLAIR images
from 606 patients and the images of manually segmented white matter hyperintensity
area are used. Below there are two examples of a slice of the images.

(a) FLAIR image example. (b) White Matter Hyperintensity
example.

Figure 4.1 An example of the FLAIR image and the manual segmentation of white
matter hyper-intensities from the corresponding axial slice.

The Figure 4.1(a) is an axial slice of the FLAIR image. The original FLAIR
images contain not only the brain tissues but also the non-brain areas. The non-
brain areas do not contribute to the brain segmentation. They are irrelevant features
or noise features, Especially in T1 images, the intensity of eyes is similar to some
brain tissues. The non-brain areas will extend the total training time, decrease the
model accuracy and increase the risk of overfit. A brain mask (Lötjönen, Robin

25

Wolz, Koikkalainen, Julkunen, et al. 2011) can be generated by atlas-based method
from T1 images. It is a 3D image with values 0 and 1 only. Value 0 stands for non-
brain area and value 1 stands for brain area. Use the brain mask on all the FLAIR
images and T1 images, this process is called skull-stripping. Originally, the thickness
of one FLAIR slice is about 6mm. Processed so that all the images are spatial
normalization to same space with 1 mm isotropic space with size of 180× 256× 256

and values are z-score normalized with zero mean and standard deviation equals to
1. The manually labeled images have the same size as the FLAIR images. In the
manually segmented images, all the WMH areas are labeled as 1 and the background
is labeled as 0. Table 4.1 compared the two images after pre-processing.

Table 4.1 Binary segmentation training data and testing data.

FLAIR images label images
quantity 606 606
size 180*256*256*1 180*256*256*1
value range mean=0, std=1 {0,1}
type gray-scale gray-scale
use training data ground truth

feature WMH is brighter than
normal white matter

label 0 is the background
label 1 is the WMH

4.2 The multi-region segmentation

It is extremely time consuming to generate large number of training samples with
different brain regions segmented manually. Consequently, an alternative approach
was selected in this thesis. A dataset of 1151 MRI images is generated by utilized an
atlas-based segmentation method (Lötjönen, Robin Wolz, Koikkalainen, Thurfjell,
et al. 2010). This method segments automatically the T1 images into 139 brain
regions. The T1-weighted images were used as training set and the automatic seg-
mentations as the ground truth. Figure 4.2 shows a T1 image from a patient and
its segmentation. Different colors in Figure 4.2(b) stand for different brain regions.

The automatically generated dataset contains segmentation errors. In order to
test the performance of the network on manually segmented data, we prepared 80
T1-weighted images and the manually labeled results made by medical experts.

In addition to producing accurate segmentation, it is important that the au-
tomatically generated segmentations are consistent. Therefore, a dataset from 20
patients that had two T1 images acquired during the same time was used. Also, the
manual segmentations were available for both images. The difference between the
results from one person shows the consistency of the model. The two sets of slices
in Figure 4.3 are nearly the same except some system errors and random errors.

26

(a) T1 image example. (b) Segmentation from atlas-based seg-
mentation.

Figure 4.2 An example of T1 image and its atlas-based segmentation result.

Figure 4.3 The two T1 images from one patient from the consistency dataset.

A brief summary of the data used in the multi-region segmentation is listed in
the Table 4.2.

In the ground truth from both manual data (data segmented by expert) and
automatic data (data segmented by atlas-based method) the value range is a set of
140 values from 0 to 139. Index 0 stands for the background and all the rest 139
numbers are the indexes of brain regions. Most brain regions appear both in the
left brain and the right brain, so the area on the left and right is marked with two
indexes separately. Some regions like cerebellum are located in the middle of the
brain, so only one index is given to the region like this. The Table 4.3 shows the
position and index of each region.

27

Table 4.2 The summary of the three datasets.

Atlas-based
segmentation dataset

Manual segmentation
dataset

Consistency
dataset

quantity
(T1, GT) 1151 ,1151 80, 80 40, 40

size 180*256*256*1 180*256*256*1 180*256*256*1
value range
(T1, GT) [0,1], {0,1...139} [0,1], {0,1...139} [0,1], {0,1...139}

type gray-scale gray-scale gray-scale
use training and validating training and validating consistency testing

source the GT is generated
by atlas-based method the ground truth is manually labeled

feature
In the ground truth, the area with

label 0 is the background and
label 1-139 are different brain regions.

the two images from
one patient should

have the same result

Table 4.3 The indexes, positions, and names of the 139 brain regions.

position name left right

Ventricles

3rd ventricle 1
4th ventricle 2
5th ventricle 3

Inferior lateral ventricle 23 22
Lateral ventricle 25 24

Deep gray matter

Accumbens area 5 4
Caudate 10 9
Pallidum 27 26
Putamen 29 28

Thalamus proper 31 30

Temporal Lobe

Amygdala 7 6
Hippocampus 21 20

Entorhinal area 57 56
Fusiform gyrus 63 62

Inferior temporal gyrus 69 68
Middle temporal gyrus 91 90
Parahippocampal gyrus 105 104

Planum polare 115 114
Planum temporale 119 118

Superior temporal gyrus 133 132
Temporal pole 135 134

Transverse temporal gyrus 139 138

28

Miscellaneous

Brain stem 8
Cerebral exterior 16 15

Cerebral white matter 18 17
CSFnm 19

Ventral diencephalon 33 32
Vessel 35 34

Optic chiasm 36

Occipital Lobe

Calcarine cortex 51 50
Cuneus 55 54

Inferior occipital gyrus 67 66
Lingual gyrus 71 70

Middle occipital gyrus 81 80
Occipital pole 93 92

Occipital fusiform gyrus 95 94
Superior occipital gyrus 129 128

Cerebellum

Cerebellum exterior 12 11
Cerebellum white matter 14 13

Cerebellar vermal lobules I-V 37
Cerebellar vermal lobules VI-VII 38
Cerebellar vermal lobules VIII-X 39

Frontal Lobe

Basal forebrain 41 40
Anterior cingulate gyrus 43 42

Anterior insula 45 44
Anterior orbital gyrus 47 46

Central operculum 53 52
Frontal operculum 59 58

Frontal pole 61 60
Gyrus rectus 65 64

Lateral orbital gyrus 73 72
Middle cingulate gyrus 75 74
Medial frontal cortex 77 76
Middle frontal gyrus 79 78
Medial orbital gyrus 83 82

Precentral gyrus medial segment 87 86
Superior frontal gyrus medial segment 89 88

Opercular part of the inferior frontal gyrus 97 96
Orbital part of the inferior frontal gyrus 99 98

Posterior orbital gyrus 113 112

29

Precentral gyrus 117 116
Subcallosal area 121 120

Superior frontal gyrus 123 122
Supplementary motor cortex 125 124

Triangular part of the inferior frontal gyrus 137 136

Parietal Lobe

Angular gyrus 49 48
Postcentral gyrus medial segment 85 84

Posterior cingulate gyrus 101 100
Precuneus 103 102

Posterior insula 107 106
Parietal operculum 109 108
Postcentral gyrus 111 110

Supramarginal gyrus 127 126
Superior parietal Lobule 131 130

30

5 Method
The work flows for both binary segmentation and multi-region segmentation are
roughly the same. In general, it contains three parts: image pre-processing, model
training and result post-processing. In this chapter, the methods of performing
segmentation on different types of datasets are proposed.

5.1 Preprocessing

The preprocessing procedures for FLAIR images and T1 images are slightly different.
The work flows are listed in the Figure 5.1 below.

(a) Preprocessing of FLAIR. (b) Preprocessing of T1.

Figure 5.1 Preprocessing work flows.

Factors such as the patient location in the scanner, the scanner itself, and many
unknown issues can cause differences in brightness on the MR image. In other words,
the intensity value (from black to white) can vary within the same tissue. This is
called a bias field. Bias fields cause non-uniformities in the magnetic field of the
MRI machine. If the offset field is not corrected, all imaging processing algorithms
will output incorrect results. Before segmentation or classification, a pre-processing

31

step is required to correct the effect of the bias field. An N4 bias field correction
tool(Avants, Tustison, and Song 2009) is applied to all the images.

The min-max normalization method (Equation 3.11) is applied to the FLAIR
images. Hence, all the values in images are in interval [0,1]. No need to normalize
the values in T1 images because they falls in the [0, 1] interval naturally. For the
label images of T1 images, The label is changed to one-hot vectors, so the dimension
is changed from 180× 256× 256× 1 to 180× 256× 256× 140. The last dimension of
the ground truth images indicates the class that a voxel belongs to. In the matrix,
only voxels that belong to class i are labeled as 1 and 0 otherwise. Class 0 is the
background and classes 1, 2, ... 139 are different brain regions shown in Table 4.3.

Class imbalance of data is often encountered in machine learning, also known
as class skew. It also happened in the images used in this thesis. For instance,
in binary segmentation, the number of voxels of WMH is 20000 in average. The
total number of voxels in a FLAIR images is over 107. If the system predicts all the
voxels as background, that is it wrong predicts all the true cases, the accuracy is
still over 99%. Therefore, it is meaningless to measure a model with its accuracy.
The most straightforward method to solve the imbalance problem is to make the
data balanced. The border containing background only is discarded. Then the size
of the image shrinks to 160× 192× 160. The data is more balanced than before but
it is still far from half to half.

During the CNN learning and training process, instead of processing an entire
image at a time, the image is first divided into multiple small blocks. The kernel (or
filter or feature detector) only views one block of the image at a time. The small
block is called a patch, and the filter is moved to another patch of the image, and
so on. The CNN kernel(filter) processes only one patch at a time, not the entire
image. This is because we want the filter to process small patches of the image in
order to detect features (edges, etc.) within the GPU memory limitation. This also
has a good regularization property, because the number of parameters we estimate
is small, and these parameters must be ”good” in many areas of each image (Z. Yan
et al. 2017).

For a simple CNN, the size of the patch that minimizes information loss is the
size of the receptive field. The receptive field (Dumoulin and Visin 2016) can be
briefly defined as the region in the input space that a particular CNN’s feature is
looking at. For a 2D convolutional layer with a 3× 3 filter, each pixel in the output
corresponds to a 3× 3 area in the input. Thus, the receptive field is 3× 3. In spite
of this fact, as the size of the receptive field increases with the number of neural
network layers, the size of the receptive field is close to the size of the whole image.
Under these circumstances, the size of a patch has to be smaller than the receptive
field with some information loss.

32

The methods(Figure 5.2) used in both binary segmentation and multi-region
segmentation to generate training patches are the same. In three directions x, y and
z, a 64 × 64 × 64 patch for every 32 voxels was generated. That is, when the MRI
image is a 160× 192× 160 sized big cube, there is a small window the size of which
is 64 × 64 × 64. The window can slide freely inside the big cube from a corner of
the cube. Every time the window can only slide in one direction. Every time the
window slides a length of 32 units, it generates a smaller cube that has the same
size as the window.

Figure 5.2 The MRI image with three patches generated.

It is easy to count that from each 160 × 192 × 160 sized image, a number of
4 × 5 × 4 = 80 patches can be produced. Over-sampling can help to make the
data more balanced. There are other 20 patches randomly generated from the inner
area of the image which is labeled red in Figure 5.3. The size of the inner area is
96× 128× 96. The WMH is more likely to appear in this area, so the proportion of
true cases is higher than in the whole image.

5.2 Model selection and training

5.2.1 The binary segmentation

A 3D image can be seen either as a simple 3D image or as a set of 2D images. For
instance, a 3D image with the size of 160× 192× 160 can be seen as 160 192× 160

2D images, each 2D image is a slice on the z axis. Figure 5.4 explains the process.

33

Figure 5.3 The red area shows the region from where the random patched are generated.

Figure 5.4 The 3D to 2D process.

As the inputs are 2D images rather than 3D images, the network contains 2D
convolution layers and 2D deconvolution layers only. It saves training time, simplifies
the computation and reduces the memory usage. To compare the performance of
2D inputs and 3D inputs, a simple encoder and decoder network without patching
is built.

Note that when the 3D image is transformed to a group of 2D images, the 2D
images in a group are ordered. So as to let the network learn about the sequential
information, the images in the group should not be shuffled and the size of the batch
should be set as the quantity of the images from one 3D image. This sacrifices some
generalization performance of the model, but learns more information from each
group of images.

The model as simple as the one in Figure 5.5 is not sufficient to learn all the
features, but a deeper network is needed. With the inspire of the U-net, a 3D U-

34

(a) One-layer network with 2D input.

(b) One-layer network with 3D input.

Figure 5.5 The one-layer models.

net with long connection only and batch normalization but still without patching is
created (Figure 5.6).

The network in Figure 5.6 has four compressing layers and four decompressing
layers. In each compressing layer, the convolution is done twice with batch normal-
ization and activation. Two compressing layers are connected with a max-pooling
operation. After the max-pooling, the length, width and depth in each feature map
are halved. In each decompressing layer, a transposed convolutional layer doubles
the length, width and depth in each feature map but halves the quantity of feature
maps. Then the feature maps are concatenated to the feature maps with the same
dimensions that were generated from the compressing layers. Afterwards, the above
steps (two convolutional layers) in the compressing layers are repeated in decom-
pressing layers. Finally, Sigmoid activation method is used to give the output.

Instead of using long skip connection only, merging the network in Figure 5.6
with the short cut in Figure 3.11 will give a different network shown in Figure 5.7(a)
and Figure 5.7(b). Giving different inputs (use patching or not) the necessary of
patching can be tested.

In the networks shown in Figure 5.7(a) and Figure 5.7(b), the only difference
is the size of each feature map. They contain four compressing layers and four

35

Figure 5.6 The basic 3D U-net with no patching.

decompressing layers as well but the operations in each layers are different from the
layers in Figure 5.6. In the first three compressing layers, there are two convolutional
layers with kernels size of 3× 3 and 1× 1 that are used to extract the features from
the image. Then we normalize both results and sum the two results together. The
result from 3× 3 kernel is the learned feature and the result from 1× 1 kernel can
be seen as the residual. The sum of two results is activated by ReLU and passed
to the next layer. In the last compressing layer and the first three decompressing
layers, after the two results from kernels size of 3× 3 and 1× 1 are added together
and activated. Finally a dropout layer with the dropping rate of 0.5 is added at the
end. While in the last decompressing layer there is no dropout layer, the operation
is the same as the first four compressing layers, except the 1× 1 convolutional layer
with a Sigmoid activation layer to get the output.

5.2.2 The multi-region segmentation

There are only two classes in the binary segmentation and the two classes are labeled
as categorical (0 and 1) by default. Conversely, the labels are numerical in the multi-
region segmentation. After changing the labels to one-hot labels, the dimension of
the ground truth is changed from 160×192×160×1 to 160×192×160×140. Such a
big matrix is not suitable to be passed to the network entirely due to the limitation
of GPU memory and computation ability. There is no choice but to do patching.
The main structure should be very similar to the network in Figure 5.7(b). In order

36

(a) The 3D U-net with no patching but with short cut.

(b) The 3D U-net with both patching and short cut.

Figure 5.7 The models with both long and short skip connections.

37

to make the output contains 140 dimensions, the final layer should be with 140
feature maps instead of one and the activation function should be Softmax instead
of Sigmoid.

In the paper of Inception V3 (Szegedy et al. 2016), the authors introduced four
general design principles in network designing. The second one says that the number
of feature maps should increase gently. The increment of feature maps from 8 to
140 is so sharp that may cause information loss. In this thesis, a test of setting the
initial number of filters as 8, 16 and 32 is designed. Figure 5.8 is the schematic
diagram of the multi-region segmentation network with 32 filters initially.

Figure 5.8 The 3D U-net for the multi-region segmentation.

5.3 Post-processing

For the networks with whole images as input, there is no further post-processing
procedure needed. However, for the networks with patches as input, the patches
should be merged into a whole image. In order to save time, the testing images are
split into non-overlapping patches.

The image on the left side in Figure 5.9 has a size of 160 × 192 and it can be
changed to nine 64 × 64 patches. The side with length of 192 can be divided by
64 easily but the other side can be divided to 2.5 patches only. The network only
accepts full sized patches. To solve this problem, the image will be divided into 9
patches (6 red ones and 3 green ones), the red ones can be merged together while for
the green ones, only the right half of each patch participates the merging process.

38

Figure 5.9 The non-overlapping patching method.

An 160× 192× 160 sized image can be changed to 27 64× 64× 64 patches with the
same mechanism. This method can be used in the binary segmentation but not in
the multi-region segmentation.

The mechanism above assumed that the location of a voxel in a patch does
not influence the predicting accuracy, that is, a voxel can be included in several
different patches and the prediction result for this voxel in all the patches should
be the same. This is a wrong assumption. Due to the zero-padding applied to
the convolutional layers and transformed convolutional layers, the probability of a
prediction is the maximum value in the softmax result. The probability can be seen
as a 3-variate normal distribution in a 3D patch. Anyway the probability is not a
uniform distribution.

Figure 5.10 A non-quantitative overlapping patching example.

Figure 5.10 shows two overlapping patches, the probability for the selected pixel
in patch 1 is 0.7 and the certainty in patch 2 is 0.3. The probabilities for pixels are

39

not the same in a patch. Here it is assumed that the patch is more certain about
the darker area and less certain about the lighter area. For the selected pixel in the
overlapping area, it is contained by both patches. The table above is the softmax
result from patch 1 and the table below is the softmax result from patch 2. The
result from patch 1 shows that this pixel has the probability of 0.07 to be classified
as class 1, 0.12 as class 2 and so on. The highest probability is 0.7 for class 4 ,so
the patch will predict the pixel as class 4. In patch 2, the highest probability is 0.3
for class 2 so the pixel will be predicted as class 2. There is no doubt that 0.7 > 0.3

which means patch 1 is more sure about the result. Therefore, the pixel will be
predicted as class 4. If this idea is used in model choosing, it is so called soft voting
in ensemble learning (H. Wang et al. 2013). Another possibility is to compute the
mean of the probabilities. However, it increases the computation especially for the
cases with more than two patches overlapping. According to the experiment, no
significant difference is shown by taking the maximum or mean.

Under 2D condition, with the patches size of 64 × 64 pixels, there can be at
most four patches overlapping and the overlapping area is 32 × 32 pixels. Under
3D condition (see Figure 5.11) each 32× 32× 32 sub-patch (the red cube) can be
surrounded by 8 64 × 64 × 64 patches at most. Those sub-patches located in the
border or the corner can only be surrounded by 1,2 or 4 patches.

Figure 5.11 A 3D overlapping patching example. Eight 3D patches overlap and the
red area is contained by all the 8 patches. For other areas, the more patches overlap, the
darker the color is.

An 160×192×160 sized image contains 4×5×4 = 80 patches size of 64×64×64.
The 80 patches as segmented as the same way as in Figure 5.2. Each voxel is
voted by the patches containing it. After then, the shape of the output is back to
160× 192× 160× 1 and can be compared with the ground truth.

40

6 Results
Tests are done separately for the binary segmentation and the multi-region segmen-
tation.

The tools and platforms used in the experiments are shown in the Table 6.1.

Table 6.1 The environment of the experiment.

name version
system Windows 10 pro 1909
CPU Intel Core i7 6700HQ
RAM 16GB
GPU NVIDIA GTX 1070
Python 3.7.4
tensorflow 1.15.0
Keras 2.3.1
numpy 1.18.1
IDE Spyder 4.0.1

6.1 The binary segmentation

First, 90% of the FLAIR images and corresponding ground truth images are used
as training data, 5% are testing data and the rest 5% are the validating data. The
data is chosen randomly.

The one-layer model (see Figure 5.5) is trained in order to compare the perfor-
mance of 2D inputs and 3D inputs. After 50 epochs with dice loss, the dice score of
2D model converges on 0.34 and the dice score of 3D model converges on 0.60. Such
a big difference means that there is no necessary to build a 2D network for WMH
segmentation. The Figure 6.1 below is an example of the 3D model with one layer
only.

By comparing the Figure 6.1(b) and the Figure 6.1(c), we can find that with
one layer only, the result is already very similar to the ground truth. However, due
to the lack of network layers, features can not be learnt completely. Therefore the
deeper network shown in Figure 5.6 is trained. After 50 epochs with dice loss, the
accuracy reaches 99.9% on the training data and 99.7% on the validation data, the
dice score reaches 0.79 on the training data and 0.71 on the validation data. The
accuracy here indicates the proportion of voxels whose predicted result (0 or 1) is
the same as the ground truth value (0 or 1) to the total number of voxels in the
ground truth image. However, the performance of this network when doing 10-fold
cross validation is not as good as expected. That is, divide all data sets into ten

41

(a) The FLAIR image slices.

(b) The ground truth image slices.

(c) The predict result image slices.

Figure 6.1 The result of the 3D one-layer model.

42

parts, take one of them as the test set, and use the other nine parts as the training
set to train the model, and then calculate the model’s dice score and accuracy on
the test set. This is repeated for ten times. The overall dice score is 0.67 which is
less than the result from training which means that the data used in training period
might be biased. Table 6.2 summarizes these results.

Table 6.2 Results from simple models

3D deep model one-layer 2D model one-layer 3D model
train val test 10f CV train val test train val test

acc 0.999 0.997 0.997 0.995 0.998 0.995 0.993 0.998 0.996 0.995
dice 0.804 0.697 0.690 0.674 0.545 0.443 0.411 0.707 0.642 0.622

In the Table 6.2, val stands for validation, acc stands for accuracy and 10f CV
is the 10-fold cross validation. In a similar way, a test to show the importance
of patching method is achieved by comparing the performances of the networks in
Figure 5.7(a) and Figure 5.7(b). By choosing different loss functions the results are
shown in the Figure 6.2.

In each of the four subplots, the yellow line is the network in Figure 5.7(b) using
the binary cross entropy (BCE) loss function. The blue line is same as the yellow line
but using dice loss. The red line and the green line are the network in Figure 5.7(a),
the red one uses dice loss while the green one uses binary cross entropy. The main
evaluation criteria should be the dice loss rather than the accuracy in the field of
medical image segmentation especially in the case that the data is so imbalanced.
From the first two subplots, it is shown that the results from patches are better
than the results from whole images. The horizontal lines are the mean values of
the lines with corresponding colors. The yellow and blue horizontal lines are always
above the red and green ones. Therefore, the binary cross entropy works better with
patching and the dice loss works better together with whole images. Actually some
other loss functions are tested as well, for example the focal loss (T.-Y. Lin et al.
2017) and the weighted cross entropy loss, but the results were unsatisfactory. In
the lower two subplots, the two results from non-patching networks are stable on
training data but fluctuate a lot on testing data. In other words, the generalization
ability of the non-patching model is not good.

To avoid some potential bias associated with head size and brain size, the WMH
volumes are converted to ICV% in Figure 6.3 and Table 6.3. The ICV is the total
intracranial volume. The ICV% is computed by dividing the volume of the region
by the ICV of the patient. Thereafter a comparison can be done with the results
from other papers. In the first two linear regression results, the patching method
is not used and the loss function is the dice loss. The predicted WMH volume is
from 10-fold cross validation and the true WMH volume is from the ground truth

43

(a) The dice score of training data. (b) The dice score of testing data.

(c) The accuracy of training data. (d) The accuracy of testing data.

Figure 6.2 The results of the 3D long and short connection models with different loss
functions and patching or not.

labeled by medical experts. The dots in the upper two subplots are more sparse
and the lower two are more concentrated to the ideal trend. Each point is the result
from a FLAIR image, the abscissa is the real WMH ICV% and the ordinate is the
predicted result. From the lower two scatter plots, we can find that binary cross
entropy works better than dice loss with patching. There are unavoidable outliers
in every results, which might come from manual mistakes when experts were doing
segmentation or the system defect.

The rightmost four columns in the Table 6.3 are from the paper (Guerrero et
al. 2018). The source of the dataset in that paper is the same LADIS dataset as
this thesis, but the author probably chose a different subset from this thesis. The
uResNet is a network proposed in that paper. Guerreroet al. compared their uRe-
sNet with some automatic segmentation tools (i.e. DeepMedic (Kamnitsas, Ledig,
et al. 2017), LPA (Schmidt 2017), LGA (Schmidt et al. 2012)) from several aspects,
including the mean and the standard deviation of the dice score, the coefficient of
determination(i.e. R2, see Equation 6.1) and the linear regression of the predicted

44

(a) The non-patching long connection only re-
sult.

(b) The non-patching long and short connection
result.

(c) The patching result with dice loss. (d) The patching result with bce loss.

Figure 6.3 The linear regression results. Horizontal and vertical coordinates are in units
of ICV%. The green line indicates the ideal trend f(x) = 1.0x+ 0.0.

Table 6.3 Mean Dice scores of WMH (standard deviation in parenthesis) and correlation
analysis between expert and automatic volumes (R2 and trend).

no-patching
dice loss

patching
dice loss

patching
bce loss

uResNet
bce loss

Deep
Medic LPA LGA

Dice
(std)

0.630
(0.243)

0.710
(0.119)

0.783
(0.118)

0.695
(0.161)

0.666
(0.167)

0.647
(0.190)

0.410
(0.229)

R2 0.352 0.886 0.964 0.951 0.943 0.855 0.687

Trend 0.93x
+0.07

0.68x
+0.13

0.98x
+0.06

0.89x
+0.07

0.91x
+0.06

0.83x
+0.28

0.51x
+0.16

volume and the real volume of WMH. For a dataset with n observation values, y1,...,
yn and n corresponding model predictions, f1, ..., fn, the coefficient of determination
is define as follows:

R2 = 1−
∑

i e
2
i∑

i(yi − ȳ)2
, (6.1)

where the ei is the residual ei = yifi. It is used to measure the explanatory

45

power of the statistical model (Carpenter 1960). The value closer to 1 shows bigger
explanatory power. The last row in the Table 6.3 is the regression line of the results
which should be f(x) = 1.0x+ 0.0 ideally.

As shown in the Table 6.3, in terms of various indicators, the third model
proposed in this thesis is better than the uResNet and all the other three matured
tools.

Figure 6.4 The scatter plot of dices and real WMH volumes.

Generally, the larger the WMH area is, the easier to segment and the Figure
6.4 proved it. The x axis is the real WMH volume and the y axis is the dice score.
Here the result from three method are shown. The yellow dots stand for the result
of uResNet (Guerrero et al. 2018). The data is collected from the paper (Nieminen
2018). The green and red dots are the results from patching with binary cross
entropy loss and dice loss. The performance of uResNet is between the two models
from this thesis. Given these points, The model with both long and short connection
with patching and binary cross entropy loss performs best.

6.2 The multi-region segmentation

The first experiment is about the number of the filters in the first and last layer.
When we double the filters in the first layer, the number of filters in all the other
layers are doubled as well simultaneously. The training time is also doubled at least.
In all the U-shaped networks, the number of filters in the first convolutional layer
is the same as the number of filters in the last deconvolutional layer. Meanwhile,
the expected output is 140 dimensional which indicates that the number of filters
in the output layer must be 140. In order to test the design principles mentioned in
the paper of Inception V3 (Szegedy et al. 2016),the quantities of the initial filters
are set to 16 and 32. The following results were obtained through experiments: the
training accuracy increased from 94% to 96% when the filters double and the testing

46

accuracy raised from 93% to 94%. It is hard to distinguish if the improvement is
caused by the principle in Inception V3 (Szegedy et al. 2016) or if more neurons can
learn more knowledge.

Another test is about the patching method, from the last section, it is a con-
sensus that patching helps to increase the accuracy. Note that the T1 images for
multi-region segmentation is not imbalanced anymore, so the accuracy makes sense.
With the non-overlapping patching method in predicting period, a T1 image can be
segmented into 27 patches and with overlapping patching method, 80 patches are
cut.

Figure 6.5 An example of the results using 27 and 80 non-overlapping patches. The left
slices are from the corresponding ground truth. The middle slices are from 27 patches and
the right slices are from 80 patches.

Figure 6.5 shows the result from the non-overlapping patching method. Inside
the red square there are some errors. The area is not the border of any brain region
but the errors seem surrounding a specific vertical line. Obviously, comparing to the
Figure 5.9 the line is the edge of patches. When the image is divided into 80 patches
so that patches can adjust the result from each other, the errors are disappeared
(Figure 6.5, the right slices) .

The final results after 10-fold cross validation of the 1151 T1 images are shown
in Figure 6.6 after grouped according to the location. Figure 6.6 shows the dice
scores when the brain regions are grouped as listed in Table 4.3. The dice score
varies in different brain regions. The bad result about Cerebellar is mainly caused by
the segmentation of Cerebellar vermal lobules I-X, especially the Cerebellar vermal
lobules I-V whose dice score is just around 0.45. The overall accuracy is above 95%.

If we directly test the network trained from automatic data (1151 T1 images)
on manual data (Figure 6.7), the difference between the distributions of two results
show the difference between the automatic dataset and the manual dataset (80
manual segmented images).

47

Figure 6.6 The dice scores in different brain regions. The results are from 1151 T1
images with 32 initial filters and 80 patches for each image.

Figure 6.7 The dice scores in different brain regions. The network is trained using
automatic dataset and tested on manual dataset.

The dice scores in Figure 6.7 are overwhelmingly lower than the corresponding
values in the Figure 6.6. First, the result of background is always in a high level,
no significant decrease is shown. The overall accuracy goes 2% downward. Consider
the brain zones, the result from ventricles, deep gray matter, temporal lobe and
miscellaneous drops slightly. On the other hand, a sharp decline happened to the
rest four zone (i.e. occipital lobe, cerebellum, frontal lobe and the parietal lobe).

Then a new network is trained with the same architecture but training data is

48

also manually labeled data. The results after 10-fold cross validation are shown in
Figure 6.8.

Figure 6.8 The dice scores in different brain regions for the manual data using cross-
validation.

The accuracy is around 94% when working on the real dataset. Comparing to the
result from cross testing (trained using automatic dataset, tested on manual dataset)
in Figure 6.7, all the dice scores except the score from occipital lobe improved more
or less. The biggest change happened to the cerebellum.

Table 6.4 summarized the dice scores of the automatic dataset and manual
dataset via 10-fold cross validation. There are 32 initial neurons in the network and
each image is divided into 80 patches.

Table 6.4 The dice scores of the automatic dataset and manual dataset. The dice scores
of the regions that are not appeared in all the images are not shown in this table.

position name automatic manual

Ventricles

3rd ventricle 0.842 0.827
4th ventricle 0.809 0.826

Inferior lateral ventricle 0.747 0.658
Lateral ventricle 0.940 0.914

Deep gray
matter

Accumbens area 0.671 0.686
Caudate 0.867 0.861
Pallidum 0.801 0.817
Putamen 0.870 0.873

Thalamus proper 0.891 0.889

49

Temporal Lobe

Amygdala 0.809 0.769
Hippocampus 0.865 0.860

Entorhinal area 0.772 0.643
Fusiform gyrus 0.818 0.711

Inferior temporal gyrus 0.782 0.662
Middle temporal gyrus 0.784 0.716
Parahippocampal gyrus 0.780 0.690

Planum polare 0.757 0.675
Planum temporale 0.716 0.623

Superior temporal gyrus 0.766 0.719
Temporal pole 0.788 0.741

Transverse temporal gyrus 0.749 0.667

Miscellaneous

Brain stem 0.931 0.928
Cerebral exterior 1 1

Cerebral white matter 0.910 0.841
CSFnm 0.698 0.770

Ventral diencephalon 0.862 0.856
Vessel 0.357 0.404

Occipital Lobe

Calcarine cortex 0.704 0.707
Cuneus 0.736 0.657

Inferior occipital gyrus 0.727 0.590
Lingual gyrus 0.796 0.713

Middle occipital gyrus 0.722 0.590
Occipital pole 0.660 0.472

Occipital fusiform gyrus 0.688 0.472
Superior occipital gyrus 0.692 0.509

Cerebellum

Cerebellum exterior 0.907 0.903
Cerebellum white matter 0.891 0.861

Cerebellar vermal lobules I-V 0.385 0.559
Cerebellar vermal lobules VI-VII 0.415 0.626
Cerebellar vermal lobules VIII-X 0.393 0.724

Frontal Lobe

Basal forebrain 0.581 0.426
Anterior cingulate gyrus 0.792 0.729

Anterior insula 0.858 0.819
Anterior orbital gyrus 0.639 0.509

Central operculum 0.794 0.713
Frontal operculum 0.733 0.644

Frontal pole 0.706 0.620

50

Gyrus rectus 0.723 0.679
Lateral orbital gyrus 0.647 0.475

Middle cingulate gyrus 0.775 0.770
Medial frontal cortex 0.688 0.571
Middle frontal gyrus 0.692 0.738
Medial orbital gyrus 0.777 0.728

Precentral gyrus medial segment 0.745 0.650
Superior frontal gyrus medial segment 0.777 0.691

Opercular part of the inferior frontal gyrus 0.712 0.622
Orbital part of the inferior frontal gyrus 0.623 0.433

Posterior orbital gyrus 0.775 0.680
Precentral gyrus 0.757 0.696
Subcallosal area 0.743 0.676

Superior frontal gyrus 0.790 0.736
Supplementary motor cortex 0.780 0.706

Triangular part of the inferior frontal gyrus 0.662 0.575

Parietal Lobe

Angular gyrus 0.735 0.606
Postcentral gyrus medial segment 0.552 0.444

Posterior cingulate gyrus 0.767 0.735
Precuneus 0.805 0.738

Posterior insula 0.833 0.780
Parietal operculum 0.749 0.656
Postcentral gyrus 0.713 0.673

Supramarginal gyrus 0.695 0.609
Superior parietal Lobule 0.749 0.659

The final study is to train a network with 1151 T1 images and segment two T1
images from one person to test the consistency. Figure 6.9 shows the segmentation
results for one patient.

For each pair of T1 images (I1,I2) from one patient, a image registration function
f(I) is defined so that I1 can map to I2 via Equation 6.2.

f(I1) = I2 f−1(I2) = I1 (6.2)

Subsequently, a dice score of the two results can be calculated in order to measure
the similarity of the two segmentations. Here we calculated the dice score of each
brain region separately. The same consistency is repeated three times using different
segmentation methods. The result is shown in Table 6.5. The values shown are the
mean dice scores of the 20 pairs of images. The ’manual’ column is the result from

51

Figure 6.9 The segmentation result of two T1 images from one patient.

medical experts. For each pair of images, they are segmented by the same expert.
The CNN refers to the 3D U-shaped CNN model proposed in this thesis. The last
column shows the results from a mature medical tool named cMRI (Lötjönen, Robin
Wolz, Koikkalainen, Thurfjell, et al. 2010) which can do brain image segmentation
with atlas based method.

Table 6.5 The dice scores of the consistency test. The dice scores of the regions that are
not appeared in all the 20 pairs of images are not shown in this table.

position name manual CNN atlas

Ventricles

3rd ventricle 0.706 0.812 0.875
4th ventricle 0.817 0.890 0.917

Inferior lateral ventricle 0.573 0.691 0.804
Lateral ventricle 0.863 0.925 0.946

Deep gray
matter

Accumbens area 0.757 0.868 0.915
Caudate 0.865 0.932 0.953
Pallidum 0.832 0.923 0.950
Putamen 0.873 0.940 0.962

Thalamus proper 0.902 0.956 0.969

Temporal Lobe

Amygdala 0.784 0.864 0.924
Hippocampus 0.840 0.925 0.944

Entorhinal area 0.778 0.805 0.903
Fusiform gyrus 0.795 0.885 0.913

Inferior temporal gyrus 0.802 0.850 0.904

52

Middle temporal gyrus 0.816 0.877 0.906
Parahippocampal gyrus 0.753 0.871 0.904

Planum polare 0.743 0.841 0.886
Planum temporale 0.701 0.830 0.882

Superior temporal gyrus 0.797 0.867 0.900
Temporal pole 0.852 0.897 0.917

Transverse temporal gyrus 0.727 0.867 0.892

Miscellaneous

Brain stem 0.923 0.958 0.972
Cerebral exterior 0.918 0.948 0.961

Cerebral white matter 0.855 0.928 0.952
CSFnm 0.802 0.860 0.914

Ventral diencephalon 0.869 0.936 0.953
Vessel 0.362 0.373 0.715

Occipital Lobe

Calcarine cortex 0.806 0.877 0.905
Cuneus 0.725 0.830 0.897

Inferior occipital gyrus 0.763 0.816 0.874
Lingual gyrus 0.788 0.887 0.911

Middle occipital gyrus 0.763 0.828 0.869
Occipital pole 0.769 0.711 0.877

Occipital fusiform gyrus 0.730 0.815 0.870
Superior occipital gyrus 0.698 0.782 0.860

Cerebellum

Cerebellum white matter 0.916 0.912 0.960
Cerebellar vermal lobules I-V 0.690 0.950

Cerebellar vermal lobules VI-VII 0.157 0.934
Cerebellar vermal lobules VIII-X 0.173 0.952

Frontal Lobe

Basal forebrain 0.777 0.830
Anterior cingulate gyrus 0.812 0.897 0.900

Anterior insula 0.822 0.916 0.932
Anterior orbital gyrus 0.714 0.826 0.866

Central operculum 0.777 0.882 0.906
Frontal operculum 0.725 0.865 0.898

Frontal pole 0.785 0.811 0.872
Gyrus rectus 0.760 0.806 0.859

Lateral orbital gyrus 0.700 0.822 0.866
Middle cingulate gyrus 0.806 0.899 0.899
Medial frontal cortex 0.741 0.827 0.860
Middle frontal gyrus 0.834 0.900 0.916
Medial orbital gyrus 0.782 0.856 0.896

Precentral gyrus medial segment 0.760 0.865 0.894

53

Superior frontal gyrus medial segment 0.807 0.878 0.896
Opercular part of the inferior frontal gyrus 0.777 0.867 0.899

Orbital part of the inferior frontal gyrus 0.699 0.795 0.865
Posterior orbital gyrus 0.745 0.861 0.902

Precentral gyrus 0.823 0.872 0.918
Subcallosal area 0.629 0.792 0.849

Superior frontal gyrus 0.816 0.887 0.909
Supplementary motor cortex 0.786 0.886 0.899

Triangular part of the inferior frontal gyrus 0.765 0.850 0.878

Parietal Lobe

Angular gyrus 0.785 0.840 0.886
Postcentral gyrus medial segment 0.664 0.698 0.848

Posterior cingulate gyrus 0.765 0.889 0.902
Precuneus 0.763 0.871 0.900

Posterior insula 0.800 0.891 0.915
Parietal operculum 0.730 0.854 0.887
Postcentral gyrus 0.794 0.842 0.899

Supramarginal gyrus 0.785 0.831 0.894
Superior parietal Lobule 0.784 0.836 0.895

54

7 Discussion
In this work we proposed a fully covolutional network design, including the hyper-
parameter adjustment and a soft-vote based patch-wise post processing method. The
combination was tested on 2D and 3D datasets with multiple performance indicators.
This method provides a new idea for solving medical image segmentation problems
with limited computing power.

Different from the previous networks, after upgrading all neural network layers
from 2D to 3D, a residual unit is added to all the convolutional layers. Dropout
layers and batch-normalization layers are added to some layers and at the cost of
a small increase in computational cost, the time required for convergence is greatly
reduced and the accuracy of the prediction is improved. The traditional U-Net keeps
discarding the borders of the images during the compressing path which helps to
get rid of the influence of the padding. On the other hand, it makes the network
constantly change the size of layers to adapt to irregular changes in image size caused
by cropped edges. In the network proposed in this thesis, zero-padding is added to
each layer, which simplifies the network design. The loss of accuracy caused by
zero-padding can be compensated by subsequent soft-voting.

The soft-voting in the ensemble learning area usually refers to combine multiple
weakly supervised models to get a better and more comprehensive strong supervised
model. In other words, several networks with different architectures are trained and
the final result is a weighted average of the outputs from these networks. Together
with the accuracy improvement brought by the model-wise soft-voting method, the
training time and memory required are also growing linearly. Instead, patch-wise
soft-voting proposed in this thesis does not require any extra training cost, but can
optimize the performance as well.

As the results in Table 6.3 show the network proposed in this thesis reached
higher dice score and lower standard deviation comparing to the uResNet (Guerrero
et al. 2018) and some other automatic tools in binary segmentation. In multi-region
segmentation, the consistency of our model is better than manual segmentation while
the cMRI tool with atlas-based model is still better. The biggest advantage of the
machine learning model comparing to the traditional atlas based model is the high
efficiency. The cMRI tool takes around 20 minutes to do multi-region segmentation
on an image while the neural network takes only 1-2 minutes.

By comparing Figure 6.6 and Figure 6.7, it is clearly shown that the model
generalized from automatic dataset is unfit to the manual dataset. The reason
might be the man-made mistakes when labeled by human, different weight should
be chosen to manual data and automatic data or the imperfection of the atlas-based

55

model used to create the 1151 images.
In the diagnostics of the AD, not all the regions in the brain are equally impor-

tant. Hippocampus is one of the most important region. The ultimate goal of the
automatic segmentations is to achieve the accuracy of two manual segmentations.
Table 7.1 shows the consistency results of two manual segmentations of hippocam-
pus from other studies. It shows that there are unavoidable errors even in manual
segmentations. Therefore, when we usually use the manual segmentation as the
ground truth, the perfect match cannot be expected. The final aim is not to train a
neural network which is able to segment images exactly the same as human, but to
let the consistency of the automatic segmentation at the same level as the manual
segmentation. Because if there is perfect match, then if we take another manual
segmentation as the ground truth, there will be some differences. The results show
that the consistency of the CNN model in this thesis is not inferior to some man-
ual segmentations. In this thesis, the consistency result from the neural network is
higher than from the two manual segmentations.

Table 7.1 The results for the inter-rater variability of the manual segmentation as well
as the automatic segmentation proposed in this thesis of hippocampus. N stands for the
number of sample image pairs. The last column is the correlation coefficient between the
volumes of two manual segmentations.

HIPPOCAMPUS from MRI dice score correlation coefficient
Morra et al. 2009, NeuroImage (N=21) 0.85 0.71
Lijn et al. 2008, NeuroImage (N=20) 0.86 0.83
Niemann et al. 2000, Psych. Res (N=20) - 0.93
Leung et al. 2010, NeuroImage (N=15) 0.93 0.95
This thesis, two CNN segs(N=20) 0.93 0.96
This thesis, two manual segs(N=20) 0.84 0.87

In the future, the network together with the atlas-based segmentation method
which is used to produce training data for multi-region segmentation task can form
the prototype of a generative adversarial network (Goodfellow et al. 2014). The
neural network model and atlas-based model can be iteratively optimized in the
future work. This means that atlas-based model is used to generate data and the
neural network is used to evaluate the data quality. Besides that, attention units
(F. Wang et al. 2017) and model-wise patching method can be added to the network
as well.

Moreover, there are some limitations in this network, for instance, the catas-
trophic forgetting (French 1999). After learning new information, the network
almost completely forgot what it learned before. Unluckily, it happened to the
multi-region segmentation. For instance, with a training dataset containing 1000
T1 images, we could generate 1000 × 100 = 105 patches to train the network. But

56

in practise, there is no significant difference between training the network with 103

patches or 105 patches after 50 epochs except the training time. It shows that in
the training period the number of patches that the network can remember does not
exceed 1000. There are also some data-related limitations. The slice thickness of
the original FLAIR image is 5 − 7.5mm3 which is too thick. The ideal thickness
should be 1mm3. Besides that, the size of manual segmentation dataset should be
increased.

57

8 Conclusion
This research work has proposed a deep-learning based brain MRI segmentation
architecture. Several tests were designed. First, the contrast of the result from 2D
sequential images and 3D images was shown. Then the experiments presents how the
depth, width and the weight distribution in layers of a neural network influence the
performance. Third, we discussed the importance of data balance and balanced the
data by resizing and patching. Finally, a soft-vote based patch-wise post-processing
is proved effective.

The final result shows that the designed network can do both binary segmen-
tation and multi-region segmentation precisely. The dice score reached 0.783 in
binary segmentation and accuracy reached 96% in multi-region segmentation. The
network also passed the consistency test with high score. By comparing to some
atlas-based models, the CNN based models could be an alternative choice in the
medical segmentation area in the near future.

The segmentation algorithm proposed in this paper has great value in clinical
and scientific research fields. It provides a fast and accurate method to quantify
medical imaging data, for example, for diagnostics, treatment planning, and follow-
up of disease progression. The multi-region MRI segmentation can be generalized
to the multi-class semantic segmentation of complex images in real life. It also has
great development potential in the field of image information collection.

58

References
Avants, Brian B, Nick Tustison, and Gang Song (2009). “Advanced normalization

tools (ANTS)”. In: Insight Journal 2.365, pp. 1–35.
Bevington, J and R Mersereau (1987). “Differential operator based edge and line

detection”. In: ICASSP’87. IEEE International Conference on Acoustics, Speech,
and Signal Processing. Vol. 12. IEEE, pp. 249–252.

Bishop, Christopher M et al. (1995). Neural networks for pattern recognition. Oxford
University Press, p. 198.

Bouvrie, Jake (2006). Notes on convolutional neural networks. English. url: http:
//cogprints.org/5869/1/cnn_tutorial.pdf.

Carpenter, RG (1960). “Principles and procedures of statistics, with special reference
to the biological sciences”. In: The Eugenics Review 52.3, p. 172.

Carreira, Joao et al. (2012). “Semantic segmentation with second-order pooling”. In:
European Conference on Computer Vision. Springer, pp. 430–443.

Chang, Yian-Leng and Xiaobo Li (1994). “Adaptive image region-growing”. In: IEEE
transactions on image processing 3.6, pp. 868–872.

Çiçek, Özgün et al. (2016). “3D U-Net: learning dense volumetric segmentation from
sparse annotation”. In: International Conference on Medical Image Computing
and Computer-assisted Intervention. Springer, pp. 424–432.

Cocosco, Chris A et al. (1997). “Brainweb: Online interface to a 3D MRI simulated
brain database”. In: NeuroImage. Citeseer. url: http://citeseerx.ist.psu.
edu/viewdoc/summary?doi=10.1.1.51.3917.

Cybenko, George (1989). “Approximation by superpositions of a sigmoidal function”.
In: Mathematics of Control, Signals and Systems 2.4, pp. 303–314.

Dibal, PY et al. (2018). “Enhanced discrete wavelet packet sub-band frequency
edge detection using Hilbert transform”. In: International Journal of Wavelets,
Multiresolution and Information Processing 16.01, p. 1850009.

Drozdzal, Michal et al. (2016). “The importance of skip connections in biomedical
image segmentation”. In: Deep Learning and Data Labeling for Medical Applica-
tions. Springer, pp. 179–187.

Duchi, John, Elad Hazan, and Yoram Singer (2011). “Adaptive subgradient methods
for online learning and stochastic optimization”. In: Journal of Machine Learning
Research 12.Jul, pp. 2121–2159.

Dumoulin, Vincent and Francesco Visin (2016). “A guide to convolution arithmetic
for deep learning”. In: arXiv preprint arXiv:1603.07285.

Duvenaud, David et al. (2014). “Avoiding pathologies in very deep networks”. In:
Artificial Intelligence and Statistics, pp. 202–210.

http://cogprints.org/5869/1/cnn_tutorial.pdf
http://cogprints.org/5869/1/cnn_tutorial.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.51.3917
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.51.3917

59

French, Robert M (1999). “Catastrophic forgetting in connectionist networks”. In:
Encyclopedia of Cognitive Science 3.4, pp. 128–135.

Goodfellow, Ian et al. (2014). “Generative adversarial nets”. In: Advances in neural
information processing systems, pp. 2672–2680.

Guerrero, R et al. (2018). “White matter hyperintensity and stroke lesion segmen-
tation and differentiation using convolutional neural networks”. In: NeuroImage:
Clinical 17, pp. 918–934.

He, Kaiming et al. (2015). “Delving deep into rectifiers: Surpassing human-level per-
formance on imagenet classification”. In: Proceedings of the IEEE International
Conference on Computer Vision, pp. 1026–1034.

— (2016). “Deep residual learning for image recognition”. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778.

Hochreiter, Sepp et al. (2001). Gradient flow in recurrent nets: the difficulty of
learning long-term dependencies.

Ioffe, Sergey and Christian Szegedy (2015). “Batch normalization: Accelerating deep
network training by reducing internal covariate shift”. In: arXiv preprint arXiv:
1502.03167.

Kamnitsas, Konstantinos, Wenjia Bai, et al. (2017). “Ensembles of multiple mod-
els and architectures for robust brain tumour segmentation”. In: International
MICCAI Brainlesion Workshop. Springer, pp. 450–462.

Kamnitsas, Konstantinos, Christian Ledig, et al. (2017). “Efficient multi-scale 3D
CNN with fully connected CRF for accurate brain lesion segmentation”. In: Med-
ical Image Analysis 36, pp. 61–78.

Kingma, Diederik P and Jimmy Ba (2014). “Adam: A method for stochastic opti-
mization”. In: arXiv preprint arXiv:1412.6980.

Kolomenkin, Michael, Ilan Shimshoni, and Ayellet Tal (2009). “On edge detection
on surfaces”. In: 2009 IEEE Conference on Computer Vision and Pattern Recog-
nition. IEEE, pp. 2767–2774.

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E Hinton (2012). “Imagenet classi-
fication with deep convolutional neural networks”. In: Advances in neural infor-
mation processing systems, pp. 1097–1105.

Kurita, Takio, Nobuyuki Otsu, and N Abdelmalek (1992). “Maximum likelihood
thresholding based on population mixture models”. In: Pattern Recognition 25.10,
pp. 1231–1240.

Leung, Kelvin K et al. (2010). “Automated cross-sectional and longitudinal hip-
pocampal volume measurement in mild cognitive impairment and Alzheimer’s
disease”. In: Neuroimage 51.4, pp. 1345–1359.

60

Li, Jun (2003). “A wavelet approach to edge detection”. PhD thesis. Sam Houston
State University. url: http://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.89.4443&rep=rep1&type=pdf.

Lijn, Fedde van der et al. (2008). “Hippocampus segmentation in MR images using
atlas registration, voxel classification, and graph cuts”. In: Neuroimage 43.4,
pp. 708–720.

Lin, Min, Qiang Chen, and Shuicheng Yan (2013). “Network in network”. In: arXiv
preprint arXiv:1312.4400.

Lin, Tsung-Yi et al. (2017). “Focal loss for dense object detection”. In: Proceedings
of the IEEE International Conference on Computer Vision, pp. 2980–2988.

Long, Jonathan, Evan Shelhamer, and Trevor Darrell (2015). “Fully convolutional
networks for semantic segmentation”. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 3431–3440.

Lötjönen, Jyrki, Robin Wolz, Juha Koikkalainen, Valtteri Julkunen, et al. (2011).
“Fast and robust extraction of hippocampus from MR images for diagnostics of
Alzheimer’s disease”. In: Neuroimage 56.1, pp. 185–196.

Lötjönen, Jyrki, Robin Wolz, Juha Koikkalainen, Lennart Thurfjell, et al. (2010).
“Fast and robust multi-atlas segmentation of brain magnetic resonance images”.
In: Neuroimage 49.3, pp. 2352–2365.

McRobbie, Donald W et al. (2017). MRI from Picture to Proton. Cambridge Uni-
versity Press.

Milletari, Fausto, Nassir Navab, and Seyed-Ahmad Ahmadi (2016). “V-net: Fully
convolutional neural networks for volumetric medical image segmentation”. In:
2016 Fourth International Conference on 3D Vision (3DV). IEEE, pp. 565–571.

Monga, Olivier and Serge Benayoun (1995). “Using partial derivatives of 3D images
to extract typical surface features”. In: Computer Vision and Image Understand-
ing 61.2, pp. 171–189.

Morra, Jonathan H et al. (2009). “Automated mapping of hippocampal atrophy in 1-
year repeat MRI data from 490 subjects with Alzheimer’s disease, mild cognitive
impairment, and elderly controls”. In: Neuroimage 45.1, S3–S15.

Niemann, Klaus et al. (2000). “Evidence of a smaller left hippocampus and left tem-
poral horn in both patients with first episode schizophrenia and normal control
subjects”. In: Psychiatry Research: Neuroimaging 99.2, pp. 93–110.

Nieminen, Tuomas J. (2018). “Deep learning in quantifying vascular burden from
brain images”. MA thesis. Tampere University. url: http://urn.fi/URN:NBN:
fi:tty-201804261565.

Nomura, Atsushi et al. (2011). “Edge detection algorithm inspired by pattern for-
mation processes of reaction-diffusion systems”. In: International Journal of Cir-
cuits, Systems and Signal Processing 5.2, pp. 105–115.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.89.4443&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.89.4443&rep=rep1&type=pdf
http://urn.fi/URN:NBN:fi:tty-201804261565
http://urn.fi/URN:NBN:fi:tty-201804261565

61

Parvati, K, Prakasa Rao, and M Mariya Das (2008). “Image segmentation using
gray-scale morphology and marker-controlled watershed transformation”. In: Dis-
crete Dynamics in Nature and Society 2008, Article ID 384346.

Radford, Alec, Luke Metz, and Soumith Chintala (2015). “Unsupervised representa-
tion learning with deep convolutional generative adversarial networks”. In: arXiv
preprint arXiv:1511.06434.

Ronneberger, Olaf, Philipp Fischer, and Thomas Brox (2015). “U-net: Convolu-
tional networks for biomedical image segmentation”. In: International Confer-
ence on Medical Image Computing and Computer-assisted Intervention. Springer,
pp. 234–241.

Schmidt, Paul (2017). “Bayesian inference for structured additive regression mod-
els for large-scale problems with applications to medical imaging”. PhD thesis.
Ludwig Maximilian University.

Schmidt, Paul et al. (2012). “An automated tool for detection of FLAIR-hyperintense
white-matter lesions in multiple sclerosis”. In: Neuroimage 59.4, pp. 3774–3783.

Seiler, Mary C and Fritz A Seiler (1989). “Numerical recipes in C: the art of scientific
computing”. In: Risk Analysis 9.3, pp. 415–416.

Sharma, Neeraj and Lalit M Aggarwal (2010). “Automated medical image segmen-
tation techniques”. In: Journal of Medical Physics/Association of Medical Physi-
cists of India 35.1, p. 3.

Shenton, Martha E et al. (2001). “A review of MRI findings in schizophrenia”. In:
Schizophrenia Research 49.1-2, pp. 1–52.

Simonyan, Karen and Andrew Zisserman (2014). “Very deep convolutional networks
for large-scale image recognition”. In: arXiv preprint arXiv:1409.1556.

Srivastava, Nitish et al. (2014). “Dropout: a simple way to prevent neural networks
from overfitting”. In: The Journal of Machine Learning Research 15.1, pp. 1929–
1958.

Szegedy, Christian et al. (2016). “Rethinking the inception architecture for computer
vision”. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 2818–2826.

Tieleman, Tijmen and Geoffrey Hinton (2012). “Lecture 6.5-rmsprop: Divide the
gradient by a running average of its recent magnitude”. In: COURSERA: Neural
networks for machine learning 4.2, pp. 26–31.

Turchenko, Volodymyr, Eric Chalmers, and Artur Luczak (2017). “A deep convo-
lutional auto-encoder with pooling-unpooling layers in caffe”. In: arXiv preprint
arXiv:1701.04949.

Vandenberghe, Stefaan and Paul K Marsden (2015). “PET-MRI: a review of chal-
lenges and solutions in the development of integrated multimodality imaging”.
In: Physics in Medicine & Biology 60.4, R115.

62

Waldemar, G (2002). “Age-related white matter changes as a predictor of disability
in the elderly: the LADIS (Leukoaraiosis and DISability) project”. In: European
Journal of Neurology 9.suppl 2, p. 41.

Wang, Fei et al. (2017). “Residual attention network for image classification”. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-
tion, pp. 3156–3164.

Wang, Haishen et al. (2013). “Soft-voting clustering ensemble”. In: International
Workshop on Multiple Classifier Systems. Springer, pp. 307–318.

Werbos, Paul (1974). “Beyond regression:” new tools for prediction and analysis in
the behavioral sciences”. In: Ph. D. dissertation, Harvard University.

Wu, Qing and Yizhou Yu (2004). “Feature matching and deformation for texture
synthesis”. In: ACM Transactions on Graphics (TOG) 23.3, pp. 364–367.

Xie, Saining and Zhuowen Tu (2015). “Holistically-nested edge detection”. In: Pro-
ceedings of the IEEE International Conference on Computer Vision, pp. 1395–
1403.

Yan, Zhennan et al. (2017). “Multi-instance multi-stage deep learning for medi-
cal image recognition”. In: Deep Learning for Medical Image Analysis. Elsevier,
pp. 83–104.

63

APPENDIX

1 Glossary

2D two-dimensional. 1

3D three-dimensional. 1

ANN artificial neural network. 8

BCE binary cross entropy. 42

CNN convolutional neural network. 13

CSF cerebrospinal fluid. 28, 49, 52

CV cross validation. 42

FCN fully convolutional network. 5

FN false negative. 12

FP false positive. 12

GPU Graphics Processing Unit. 31

GT ground truth. 27

ICV Total Intracranial Volume. 42

IDE Integrated Development Environment. 40

ILSVRC ImageNet Large Scale Visual Recognition Challenge. 4

LADIS eukoaraiosis And DISability. 24

LPA The lesion prediction algorithm. 44

MRI magnetic resonance imaging. 1

PDP parallel decentralized processors. 8

PReLU Parametric Rectified Linear Unit. 22

ReLU Rectified Linear Unit. 10

64

ResNet residual network. 4

RGB red, green, blue. 2

T2 T2-weighted image. 24

TP true positive. 12

VGGNet Very Deep Convolutional Network. 1

	Introduction
	Related Work
	Traditional segmentation method for grayscale pictures
	Deep learning-based segmentation method for general pictures
	Deep learning-based segmentation method for medical images

	Background
	Basics of MRI
	Basics of neural networks
	The artificial neural networks
	The back propagation
	The activation function
	The loss function
	The optimizer

	Basics of Convolutional neural network
	The convolutional layer
	The downsampling layer
	The upsampling layer
	The normalization layer

	The ResNet and U-net
	The ResNet
	The U-net
	The 3D-U-Net and V-net

	Data
	The binary segmentation
	The multi-region segmentation

	Method
	Preprocessing
	Model selection and training
	The binary segmentation
	The multi-region segmentation

	Post-processing

	Results
	The binary segmentation
	The multi-region segmentation

	Discussion
	Conclusion
	References
	APPENDIX
	Glossary

