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ABSTRACT

Palash Halder: A robotic engine assembly Pick-place system based on machine learning
Master of Science
Tampere University
Automation and Robotics
February 2020

Industrial revolution brought humans and machines together in building a better future. Where
in one hand there is need to replace the repetitive jobs with machines to increase efficiency and
volume of production, on the other hand intelligent and autonomous machines have still a long
way to go to achieve dexterity of a human. The current scenario requires a system which can
utilise best of both the human and the machine. This thesis studies a industrial use case scenario
where human-machine combine their skills to build an autonomous pick place system.

This study takes a small step towards the human-robot consortium primarily focusing on devel-
oping a vision based system for object detection followed by a manipulator pick place operation.
This thesis can be divided into two parts : 1. Scene analysis, where a Convolutional Neural
Network (CNN) is used for object detection followed by generation of grasping points using ob-
ject edge image and an algorithm developed during this thesis. 2. Implementation, it focuses
on motion generation while taking care of external disturbances to perform successful pick-place
operation. In addition human involvement is required which includes teaching trajectory points for
the robot to follow. This trajectory is used to generate image data-set for a new object type and
thereafter generating new object detection model. The author primarily focuses on building a sys-
tem framework where the complexities related to robot programming such as generating trajectory
points and informing grasping position is not required. The system automatically detects object
and performs a pick place operation, resulting in relieving user from robot programming. The
system is composed of a depth camera and a manipulator. Camera is the only sensor available
for scene analysis and the action is performed using a Franka manipulator. The two components
work in request-response mode over ROS.

This thesis introduces a newer approaches such as, dividing an workspace image into its con-
stituent object images and performing object detection, creating training data, generating grasp
points based on object shape along length of an object. The thesis also presents a case study
where three different objects are chosen as test objects. The experiments are a demonstration of
the methods applied and efficiency attained. The case study also provides a glimpse of the future
research and development areas.

Keywords: CNN, ANN, ROI, ROS

The originality of this thesis has been checked using the Turnitin OriginalityCheck service.
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1 INTRODUCTION

1.1 Overview

Object manipulation and grasping is a capability that humans have developed over a
long period of time with evolution. With greater need of automation enabling a robot to
autonomously detect and perform grasp in cluttered or uncluttered scene is a major issue
for which we are still trying to find a feasible solution. Currently robots are either carefully
hand-programmed or scripted or they are directly controlled by a human operator. In
the current scenario grasping different objects in a factory environment would require a
complex program which will have limitation in flexibility and scalability. However, thanks
to recent development in image recognition technology and affordable computing there is
greater possibility of combining robotics and machine learning to create a system which
can detect and grasp object with minimal human involvement.

Open-source deep learning libraries like tensorflow, Pytorch & Torch, Caffe etc. have
made it possible to build neural networks as simple as joining LEGO blocks. Generally,
there are ready made data-sets with which the network can be trained and tested. In
cases where there are no ready-made data-set to train a network, user has to create its
own data-set. In addition there are image generators which can automatically create a set
of images with different characteristics from a single image to generate a larger training
data-set. In short in order to use the power of Neural network one needs an existing
training data-set and a network which can learn the features to differentiate between
different objects.

State-of-the art grasping technology such as developed by covariant.ai uses reinforce-
ment learning and special suction type grippers to perform grasping operation (Ackerman
2020). This system also uses sim2real transfer where the network is trained in simulation
in addition to real-life training. Similarly, another state-of-art grasping method invented by
open.ai utilizes reinforcement learning as the brain for grasping (Simon 2020). This sys-
tem also relies on training during simulation to generate a model which can have 100
years of experience in grasping different objects. All these technologies require higher
computation power and rely on learning from the mistakes similar to a human, as such
it is possible to generate the best model suited for a specific task. In contrast to the cur-
rent trends, the previous grasping methods relied on shape based grasp model, these
type of models were inefficient in case of an unknown object in uncluttered or cluttered
scene (Klingbeil et al. 2011), also in cases of known objects it was difficult to obtain a full
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3-d model of object and apply approaches such as friction cones (Mason and Salisbury
1985), form- and force-closure (Bicchi and Kumar 2000), pre-stored primitives (Miller et
al. 2003).

In this thesis the emphasis is to build an autonomous robotic system which can pick
and place different parts of an engine. This starts with creating a training data-set of
the engine parts followed by creating a Convolutional Neural Network (CNN) to learn
features of different image parts. Together with work done for object detection the thesis
also presents an algorithm to identify the finger positions and wrist orientation for a two-
fingered robot gripper.

1.2 Objective and Approach

The overall objective of this thesis is to fabricate an autonomous robotic pick and place
system with the following requirements:

1. Efficient object detection.

2. Generate grasp positions.

3. Scalability.

Here, item 1 suggests that the developed classifier should be able to identify and locate
the object in 2D workspace. Using an intel real-sense camera the object location is
determined w.r.t the robot base-frame. The next item 2 states grasping position should
be such that the robot can grip and pick the object up, the object should not fall during
motion between pick up location to drop location. The last requirement 3 means user
can add newer object to the system, in order to add newer object user has to create a
image data-set and add it to the existing data-set. The network should be trained again
to perform efficient object detection. In this thesis three different component of an engine
were chosen as test case as shown in figure 5.1.

The approach implemented in this thesis can be explained by figure 1.1.

In stage 1 the robot sets itself in start position overlooking the work-space. The Intel
real-sense camera mounted on gripper takes an image of work-space and finds different
objects present in work-space.

If the object specified by user is found in the work-space then the grasping algorithm tries
to find an optimum grasping position in stage 2.

On request from robot, the grasping position in camera coordinates is sent to robot which
is converted to robot base frame coordinates and the robot controller initiates the grasp
thread in stage 3.
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Figure 1.1. Research Methodology

1.3 Research questions

All the three requirements mentioned in section 1.2 of the system will be discussed in
terms of the techniques of fabrication, methodology, designs, and the results will be dis-
cussed in this thesis. However, the specific objective of the thesis is to create a framework
which is self reliable and scalable enough to perform robotic pick and place in a cluttered
environment with minimal human interference. As such the thesis aims at answering the
following research questions:

1. What features a machine learning framework to have for an industrial pick-place
application?

2. How to select grasp positions?

3. What kind of robot controller to use?

1.4 Limitations and Challenges

The following limitations and challenges were met during the development of this thesis.
Limitations:

• The thesis is based on using a two fingered gripper - although these grippers are
easy to manufacture and use, three fingered grippers are suitable to pick delicate
objects with precision and strength (ennomotive 2018).

• It is assumed that the object color and the background color is different such that
object shape can be detected from the background - edge detection is successful if
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there exists a gradient in the pixel value on both side of the edge. In cases where
there is no such gradient we may get false edges or no edges at all.

• The gripper is perpendicular to the work-space plane at the time of grasping - grasp
is performed with a top-down motion, the grasp algorithm checks for the points
along the side of the object. The force exerted by the gripper is along the plane of
surface. Other gripping positions are neglected in this thesis.

• Grasp are performed at the outer edges to the object - with the current algorithm if
we had to grasp a tea cup, it will grip the cup at the edges rather than gripping the
handle of the cup.

• With increase in number of object types modification in CNN will be required - the
simple CNN developed is not adequate for greater number of object types.

Challenges:

• No ready made image set present - since the engine components are unique and
there are no ready-made image data-set available from the manufacturer, the data-
set needed to be generated. The image data-set generation is explained in section
3.1.

• Object types are part of an engine, thus uncommon - there is not one solution to
pick objects of these types, e.g. a cup should be grasped at the handle. Here from
a set of grasp position, the one placed centrally were chosen.

• Effect of shadows on detecting object shape - shadows created false edges, the
effect can be reduced by changing the parameters of the edge detector.

• Ready made packages for path planning and grasping were unsuitable in this case -
3rd-party motion planner caused limit violation for the robot on collision with surface.
A motion planner based on trapezoidal velocity profile was developed to compen-
sate for collision during pick and place of the objects as explained in algorithm 1.

• Separate computers for vision and robot controllers - Real-time kernel is required
in robot controlling PC. With real-time kernel it is not possible to use Nvidia Card.
Hence, two separate computers were used one for object detection and the other
for robot control.

1.5 Outline

This section provided an overall structure of thesis. The thesis is structured as follows.
The first chapter introduced with the issues this thesis tries to solve. This is followed by
the second Chapter introducing the underlying concepts and theories which formulated
this thesis. Chapter 3 introduces the methodologies developed and the research during
the course of this thesis followed by Chapter 4 with the implementation of methods and
the result of this thesis. Chapter 5 discusses how the research questions were solved
and concluded this thesis with conclusion and future scope.



5

2 THEORETICAL BACKGROUND

In this chapter, an overview of the theoretical background relevant to the scope of this
thesis is provided. Section 2.1 introduces the concept of image segmentation and clas-
sification both classical and latest advancement in image segmentation are discussed.
This is followed by section 2.2 which describes the robot grasping techniques and its
theories. Section 2.4 describes robot control and discusses the various types of robot
control available and provides a comparison between the methods.

2.1 Image Segmentation

In this section image segmentation techniques are discussed. Image Analysis and Pat-
tern Recognition are the first stage for Image Segmentation. Clustering image areas
into different regions based on homogeneity or discontinuity of certain characteristics like
color, intensity or texture provides information about the objects presence in an image.

The process of Image Segmentation can be divided into three stages (Ku. Vasundhara
2014):

1. Image processing - Cleaning the image, which can be removal of outlier pixels to
removing of noise.

2. Initial object discrimination - The image is divided into groups of objects having
similar attributes.

3. Object boundary clean up - The edges of objects are reduced to single pixel width.

Discontinuity and Regularity at a pixel position are utilised to separate different regions
in an image. A good segmentation techniques preserves the area, edges and degree
of curvature for the objects in the image. In the consequent sections a brief description
of the traditional methods is followed by discussing the state of art technology in image
segmentation the Deep Neural Network.

2.1.1 Traditional Image Segmentation Method

Computer vision and image analysis requires efficient feature extraction, this features
is similar to the ones used in machine learning and pattern recognition. A feature can
be defined as an information which can be understood by the computer and is relevant
to classify different image areas. Features focusing on different characters of an image
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are used for segmentation, such as Pixel color, Histogram of oriented gradients (HOG)
(Dalal and Triggs 2005), Scale-invariant feature transform (SIFT) (Lowe 2004), SURF
(Bay, Tuytelaars and Gool 2006), Harris Corners (Bruce and Kornprobst 2009), Features
from Accelerated Segment Test (FAST) (Rosten and Drummond 2005) just to name a
few. Both unsupervised and supervised learning can be used in image segmentation.

Binary Thresholding

Thresholding is a simple method for segmentation of gray scaled image which is widely
used in biomedical areas e.g X-ray CT scanner or MRI (Magnetic Resonance Imaging)
equipment which produces gray scaled images. As the name suggests popular method
of binary thresholding converts a grey-level image into a binary image, at first a threshold
value is selected, pixel values are classified as black (0) if it’s value is below the threshold,
while white(256) implies the pixel value is above the threshold. It is used to distinguish
foreground from the background (M. Jogendra Kumar 2014). On the other hand Multilevel
thresholding separate the image based to multiple threshold values and as such works
very well for images consisting of different colored objects. figure 2.1 is an example of
Binary Thresholding on grey image.

Figure 2.1. Grey Image and Result of Binary Thresholding
Source: https://www.mathworks.com/help/images/ref/imbinarize.html

K-means

K-means clustering is a popular algorithm for unsupervised clustering. As an initial re-
quirement the desired number of clusters are provided beforehand to perform k-means
clustering on an image. This number of clusters is analogous to the number of classes
in classification. At first, the feature space is populated with randomly placed k number
of centroids. In the next step, each data point is assigned to the nearest centroid, in suc-
cessive steps the centroid moves to the center of the cluster, and continues the process
of clustering until the stopping criterion is reached (Hartigan 1975). As such k-means
algorithm is one of the easiest algorithm of understand and implement. It can be used in
both binary and multilevel classification.

https://www.mathworks.com/help/images/ref/imbinarize.html
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figure 2.2 shows an example of image segmentation using clustering. From the image
it can be observed k-means was successful in segmenting out the dog from the back-
ground. In the example number of clusters was chosen as 3, which resulted in classifying
the shades of the floor also.

Figure 2.2. Segmentation with k means
Source: https://www.mathworks.com/help/images/ref/imsegkmeans.html

The algorithm is not suitable for large data-sets, since the time taken to look at all the
images and perform k-means clustering is very high. Also classification result vary im-
mensely with number of clusters being chosen. With increase in computation time the
hardware requirements also become more expensive to implement.

Support Vector Machine (SVM)

Support vector machine (SVMs): SVMs are one of the popular binary classifiers which
have successfully performed well on numerous tasks (Liu, Deng and Yang 2018). training
data can be represented as (xi , yi) here xi represents the feature vector and yi ∈ {-1,
1} represents the binary label for training example i ∈ {1, . . . , m}. Where w is a weight
vector and b is the bias factor (Liu, Deng and Yang 2018) as shown in 2.3

The binary classification equations are:

w⃗ · x⃗− b = 1(data points on or above the boundary is classified as 1) (2.1)

and

w⃗ · x⃗− b = −1(aata points on or above the boundary is classified as -1) (2.2)

The above equations can be rewritten as

yi⃗(w⃗ · xi⃗ − b) ≥ 1 (2.3)

Geometrically distance between the two hyperplanes defined in Eq.2.1 and Eq.2.2 is
2

∥w⃗∥ . SVM tries to find an optimal solution which tries to find the minimum ∥w⃗∥ which
maximises the distance between the hyperplanes.

https://www.mathworks.com/help/images/ref/imsegkmeans.html
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Figure 2.3. SVM binary classifier
Source: https://en.wikipedia.org/wiki/Support-vector_machine

Edge based segmentation

An edge can be defined as a series of connected pixels that lie on the border of two re-
gions having different grey values. Pixel positions that are nearer to the boundaries of ob-
jects in the image are selected by edge-based segmentation. Filtering, Differentiation
and Localization constitute the three main steps in the process of edge based segmen-
tation (Chaturvedi et al. 2017). The most commonly used edge detection algorithms are
Sobel, Canny, Prewitt, Robert, Marr and Hilldreth (Aravindh and Manikandababu 2015).
Canny edge detection is more complex than other edge detection algorithms, inspite of
additional complexity it is one of the best and popular edge detection technique (Ilkin et
al. 2017). Mathematical expression of the three main goals for edge detection (Ilkin et al.
2017) are given below:

• Low error rate - the detected and actual edges are as close as possible to each
other.

• The edge points can be well defined - the distance between actual edge center to
detected edge point should be minimum.

• Single edge point answer - the detector selects only one point as the correct edge,
the smallest local maximum around the edge.

In this thesis the edge based segmentation was applied. Edge detection provided a easy
way to generate contour surrounding the objects. This contours were then classified
as region of interest (RoI) by comparing the enclosed contour area with an empirically
calculated threshold value.

https://en.wikipedia.org/wiki/Support-vector_machine
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2.1.2 Recent Deep Neural Network for Image Segmentation

Artificial Neural Network (ANN) got its inspiration from biological neurons. An artificial
neuron forms the basic building block of an ANN. Each single artificial neuron takes
some inputs which are then weighted and summed up. The weighted output is then
passed through a transfer function or activation function, this is the score value from a
single neuron (Liu, Deng and Yang 2018). An example of neural model is illustrated in
figure 2.4. Different stacking of the neurons leads to formation of Restricted Boltzmann
Machine (RBM) (Larochelle and Y. Bengio 2008), Recurrent Neural Network or Recursive
Neural Network (RNN), Convolutional Neural Network (CNN) (LeCun and Bengio 1995),
Long Short Term Memory (LSTM) (Hochreiter and Schmidhuber 1997) and other types
of ANNs. The basic architecture is illustrated in figure 2.4

Figure 2.4. Simple model of Artificial neural network
Source: (Liu, Deng and Yang 2018)

Convolutional Neural Network (CNN) (LeCun and Bengio 1995) uses shared-weight ar-
chitecture, which is inspired by biological processes. The inter-neuron connectivity pat-
tern are made to mimic the organization of the animal visual cortex. Another important
concept is receptive field, which makes selective response of individual cortical neurons
to stimuli such that it is restricted to a region of the visual field. Also, CNN possess the
property of shift invariant or space invariant, which is based on their shared-weight archi-
tecture and translation invariance characteristics. Due to this excellent structure of CNN,
it has obtained remarkable results on image classification, segmentation, and detection.
The following part will present the recent progresses which is based on CNN and its
modification for better image semantic segmentation.

In the following sections some of the segmentation technique which formed the core idea
for image segmentation in this thesis are described. There has been major development
in the field of image segmentation but implementing the techniques as a whole required
creating marked data-set such as used in COCO challenges. Since during this thesis
an automated image data-set generation was implemented as explained in section 3.1,
and the generated data-set consisted of single object type during training, a simpler CNN
based on LeNet was sufficient for classification.
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Fast Region-based Convolutional Network (Fast R-CNN)

Fast Region-based Convolutional Network (Fast R-CNN) (Girshick 2015) is based on
region proposals i.e. Region of Interest (RoI). It reduces the time necessary to analyse
all region proposals by analysing only the interest regions.

It starts with a main Convolutional Neural Network (CNN) which takes the entire image
as input. This is followed by application of selective search methods on the produced
feature maps from the previous layer to detect Region of Interests (RoIs) so that it can
be fed into a fully connected layer. Also, RoI pooling layer is used to reduce the feature
maps size to get valid RoI which have fixed height and width so that it can be fed into a
fully connected layer. A softmax classifier is then used on the generated vector to predict
the object and generate the localizations boxes.

Figure 2.5. Fast-RCNN architecture
Source: (Xu 2017)

You Only Look Once (YOLO)

The YOLO model (Redmon et al. 2016) is targeted for real-time applications. It starts with
dividing the entire image into grids which have multiple boundaries associated. Each grid
cell can predict only one object.

The entire image is taken as input, this is then divided into S × S grid. Each grid cell
is associated with one object and then the grid cells predict bounding boxes around the
object. Every boundary box is defined by 5 elements x, y, w, h and a box confidence
score. The confidence score is a parameter which indicates likelihood of an object (ob-
jectness) inside the box and the accuracy of the the boundary box. This is followed by
normalization of the bounding box width w and height h by the image width and height.
Hence, x, y, w and h are all between 0 and 1 (Hui 2018).
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Figure 2.6. YOLO example application. S × S Grid-size divides the entire input image,
using regression B bounding boxes are predicted. Each bounding box is associated with
a class having the highest confidence score.

Source: (Redmon et al. 2016)

YOLO has 24 convolutional layers followed by 2 fully connected layers (FC). If C is the
number of estimated probabilities for each class. B is the fixed number of anchor boxes
per cell, and each of these boxes are defined by the elements defined above namely
x, y, w, h and confidence values, then the final layer provides an output S × S × (C +

B × 5) tensor corresponding to the predictions for each cell of the grid.

Single-Shot Detector (SSD)

Single-Shot Detector (SSD) (Liu1 et al. 2016) is simlar to the YOLO model. In SSD all
the bounding boxes and their respective class probabilities are predicted all at once with
an end-to-end CNN architecture. The model uses different size of filters (10× 10, 5× 5

and 3× 3) to construct the convolutional layers. The bounding boxes are predicted using
the Feature maps from convolutional layers at different position of the network. As the
final step the yield is at that point handled by a particular convolutional layers having
3×3 filters called extra feature layers which produces a set of bounding boxes which are
comparative to the anchor boxes of the Fast R-CNN.

Each box is characterised by 4 parameters namely, center coordinates, width and height.
In addition a vector representing the probabilities corresponding to the confidence for
each object class of object is produced.

To keep only the most relevant bounding boxes a Non-Maximum Suppression method is
also used at the end of the SSD model. To avoid lot of negative boxes being predicted
a Hard Negative Mining (HNM) is also used, where only a a sub-part of these boxes is
selected during the training. The boxes are ordered by confidence and the top is selected
depending on the ratio between the negative and the positive which is at most 1/3.
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Figure 2.7. SSD example application. Input to the model is the image and the ground
truth bounding boxes. Boxes with different aspect ratio are selected by the feature map.
The boxes localisation and aspect ratio are updated during training to match the ground
truth

Source: (Liu1 et al. 2016)

2.2 Robot grasp

This section will review some of the base concepts for generating a stable robot grasp.
Here the theoretical basis for generating a two-fingered grasp is more relevant to the the-
sis and as such will be the focus. Although some concepts remain the same irrespective
of the gripper type.

In the recent review of (J. Bohg and Kragic 2014a), the two main methods for grasp
synthesis algorithms are Analytical and Data-Driven methods (Jabalameli, Ettehadi and
Behal 2019). Analytical approaches tries to find grasp solutions through kinematics and
dynamics formulations (A. Sahbani 2012). Similar research in grasping such as (Bicchi
and Kumar 2000), (A. M. Okamura and Cutkosky 2000), (A. M. Okamura and Cutkosky
2000), (Park and Starr 1992) and (Howard and Kumar 1996) generate the grasping cri-
teria using robot and or object models. The grasp in equilibrium should be force-closure,
stable, dexterous. There are some difficulties with analytical approach as in the real
world scenario it is difficult to model a task, and it is too ideal to assume readily available
physical and geometrical model (A. Sahbani 2012) . Despite the efficiency in simulation
environment it is difficult to perform efficient grasp in a real world scenario based on the
the classical metrics mentioned earlier (Diankov 2010),(J.Weisz and Allen 2012).

With Data-Driven methods on the other hand, the grasps are based on experience and
knowledge base. As such these methods depend on human experience, accumulated
knowledge of objects and acquired data (Jabalameli, Ettehadi and Behal 2019). In re-
search such as (J. Bohg and Kragic 2014a) classified Data-Driven approaches depend-
ing on the encountered object, where object were classified as one of the three types
unknown, known or familiar to the method. In case of unknown objects the first step in-
volves modelling object shape with primitives such as boxes, cylinders and cones and
define grasping strategy based on that. Ultimately, match the 3D mesh of the object in
obtained data with their grasp database during this online phase. Some research based
on probabilistic framework (R. Detry and Piater 2009) estimate the pose of known object



13

in an unknown scene. Whereas others used empirically calculated robot hand kinemat-
ics and planning control loop for grasp included a human operator (Ciocarlie and Allenc
2009). Other methods employed encountered object 2D and/or 3D features to extract fea-
tures such as texture or shape etc which can be used as a similarity parameter (J. Bohg
and Kragic 2014b). Whereas, in (A. Saxena and Ng 2008) a logistic regression model
based on the labeled data sets. This generated model applied on the 2D image .

For any object manipulation task selecting a stable grasp decides the success or failure.
(A. M. Okamura and Cutkosky 2000) defined a stable grasp as a grasp which can
perform force closure on the object. In a pick and place type manipulation the grasp
needs to be disturbance resistant, meaning the contact forces are enough to resist any
possible motion of the object (A. M. Okamura and Cutkosky 2000). For a successful
planar grasps such as in (Nguyen 1986) force closure can be a determining condition.
For this type of grasps the applied forces are along the plane and the only input is in the
form of shape of the object. Also the convex sum including the three contacts describe
contact between object and robot fingertips.

Definition 1: A wrench convex represents the range of force directions that can be ex-
erted on the object.

Figure 2.8. Planar contacts examples: a)Point contact without friction b) Friction Point
contact c) Contact with Soft finger d) Contact on edge

Source: (Jabalameli, Ettehadi and Behal 2019)

The primitive contacts and their wrench convexes in 2D in figure 2.8. The two wrenches
forming the angular sector illustrates the Wrench convexes. The finger must apply force in
normal direction in a frictionless contact. However, force direction into the wrench convex
can be used with friction contact.

There are two theorem based on (Nguyen 1986) which deal with the set of planar wrenches.
Theorem 1: (Nguyen I) A set of planar wrenches W can generate force in any direction if
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and as it were in the event that there exists a set of three wrenches (w1; w2 ; w3 ) whose
respective force directions f1 ; f2 ; f3 satisfy:

1. two of the three directions f1 ; f2 ; f3 are independent.

2. a strictly positive combinations of the three directions are zero i.e.

i=3∑︂
i=1

αifi = 0

Theorem 2: (Nguyen II) A set of planar forces W can generate clockwise and counter-
clockwise torques if and only if there exists a set of four forces (w1; w2 ; w3; w4) such
that:

1. three of four forces have lines of action that do not intersect at a common point or
at infinity.

2. let p12 (resp. p34 ) be the points where the lines of action of w1 and w2 (resp. w3

and w4 ) intersect. There exist positive values of αi such that

p34 − p12 = ±(α1f1 + α2f2) = ∓(α3f3 + α4f4)

During force-direction closure it is checked if the friction cones formed by the contact
forces span every directions in the plane. Whereas during Torque closure tests it is
checked if the sum of all applied forces generates pure torques. Also from the above
Theorem I and II, among the four wrenches at-least three independent wrenches is a
necessary condition for a force closure grasp in a plane. Assuming frictional contact, we
can assume two wrenches for each point contact. Thus, for a planar force closure grasp
a minimum of two contacts with friction is required. As stated by (Park and Starr 1992)
and (Nguyen 1986), conditions for creating a planar force closure grasp is shown in figure
2.9:

• Two opposing fingers: For grasp with two contact points, p1 and p2. With friction
between the contacts a force closure is possible if the segment made by p1 − p2

points out of and into two friction cones located at p1 and p2 . Mathematically
speaking, let ϕ1 and ϕ2 be the angular sectors associated with the friction cones
at e1 and e2 , then satisfying arg(p1 − p2) ∈ ±(ϕ1 ∩ −ϕ2) is the necessary and
sufficient condition for successful grasp with two point contacts with friction.

• Triangular grasp: A three point contacts grasp with friction, located at p1; p2 and
p3 is force closure, if and only if there is a point, pf (force focus point) such that:
i) For friction cone at the ith contact is such that at pi , the segment pf - pi points
out of friction cone. ii) With ki as the associated unit vector pointing out of the edge
for segment pf − pi. A a strictly positive combinations of the three directions is
requried to be zero as

i=3∑︂
i=1

αifi = 0
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Figure 2.9. Geometric interpretation of Force closure using two finger gripper (in opposi-
tion) and triangular type end effector. (a) Successful force closures grasps for two-finger
(b) Successful force closures grasps for triangular end-effector, while (c) impossible force
closure grasps for two-finger and (d) impossible force closure grasps for triangular end-
effector.

Source: (Jabalameli, Ettehadi and Behal 2019)

2.3 Robot Control

In this thesis Panda robot from Franka Emika (GmbH 2017a) robot was used. The
Franka_hw package which is based on libfranka API. The libfranka API is the hard-
ware abstraction of the robot and is utilised by the ROS control framework (GmbH 2017b).
Only some specific claimable combinations of commanding interfaces are allowed by the
controller interface (GmbH 2017b) for the robot, since it does not make sense for e.g.
command joint positions and Cartesian poses simultaneously. The possible claims to
command interfaces are shown in figure 2.10

In this thesis combination of EffortJointInterface and Franka CartesianVelocityInter-
face was choosen to create a controller having VelocityControl and impedanceCon-
trol. In this chapter the author analyses the controllers present and provides a overview
for choosing the above mentioned controller for this thesis. In the next sections the au-
thor provides a brief overview of the different control mechanism available and makes a
comparison between the methods.
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Figure 2.10. Combination of command interface
Source: https://frankaemika.github.io/docs/franka_ros.html

2.3.1 Position/Force control algorithms

Stiffness control by only position feedback or by force feedback corrections is a method
involving the relation between position and applied force (Zeng and Hemami 1997). The
stiffness of the joints are the deciding factor in calculating stiffness of end-effector. De-
sired stiffness of the end-effector can be acheived by adjusting the stiffness of the servos
in the robot joints, thus enabling us to follow a desired trajectory as well as apply a desired
force.

Exact position control necessitates that the controller end-effector servos are capable to
reject all the aggravations, for example, dynamic powers of the robot itself, outside pow-
ers, etc .that may follow up on the end-effector with the high stiffness of the controllers.
To fulfill this need of disturbance elimination one can use highly stiff servo controllers
controlling the joints of the manipulator. The feedback gain is the parameter that decides
on the stiffness of the servo. On the other hand for force control, the system stiffness is
made minimum as allowed by the system. Thus for force control it can be concluded that
the lower servo stiffness is used.

In end so as to actualize stiffness control, the stiffness ought to rely upon the specific task,
as such one should attempt to control the stiffness of end-effector in various directions to
accomplish the ideal motion control. There can be two ways to adjust the stiffness of ma-
nipulator end-effector. In the first control gains of end-effector servos is adjusted whereas
the second way could be to adjust/change the stiffness of joint servos. Accordingly the
powers applied on the environment by the end-effector is controlled by the stiffness of the
end-effector. The underlining principle of active stiffness control is shown in figure 2.11.

In the figure 2.11 the terms are defined as follows. J - Jacobian matrix of the robot, XD

- task space desired position vector, X and Ẋ - task space position and velocity vectors,
∆X - error in position vector, ∆θ - the joint angle and displacement vector, τp - stiffness

https://frankaemika.github.io/docs/franka_ros.html
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Figure 2.11. Active stiffness control loop
Source: (Dede 2003)

control joint command input vector, N - a vector of nonlinear feed-forward compensation
for Coriolis and centrifugal and gravity forces, τ - vector of gross joint torque/force input,
XE - the contacted environment position vector, KE - the total stiffness of the environ-
ment and sensors, F - calculated world space contact force (or torque) vector. Kp and
Kv - the diagonal matrices control gains, KF - position command modifying compliance
matrix

The fundamental system comprises of a task space containing the robot, the control
system comprises of nonlinear compensation and velocity feedback for linearizing the
robot dynamic system. A mix of proportional feedback of force and position is controlled
by stiffness control loop which characterizes joint torque τp. τp is thus defined by the
following equation

τp = Kp∆θ (2.4)

The unit of KF in figure 2.11 is displacement/force, which is stiffness. Thus manipulator
mechanical stiffness can be controlled by tuning the matrix KF . With changing envi-
ronmental parameters the matrix KF should also be updated to exert the same force on
different environments.

2.3.2 Impedance control

Impedance control is another well known robot control technique which can be of different
forms relying upon the measured signals, for example, velocity, position and force and
their different mix. In basic impedance control a gain matrix is used to multiply with the
forces sensed, this gain matrix is determined by the mechanical impedance present in
the system. The blend of this offers the changes to be made for the position and velocity
(Zeng and Hemami 1997).

The target of impedance control is to build up an ideal dynamical connection between
the end-effector applied force and position. The mechanical impedance Zm is the con-
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Figure 2.12. Impedance control loop
Source: (Dede 2003)

nection between the applied force F and the velocity Ẋ. In the frequency domain, this is
represented by

F (s) = Zm(s)Ẋ(s) (2.5)

in terms of position X(s) it is

F (s) = Zm(s)Ẋ(s) (2.6)

Desired impedance can be indicated as,

sZm(s) = Ms2 + Ds + K (2.7)

The constant matrices M , D and K represents the ideal inertia, damping and stiffness
values, respectively. Generally, as in this case, the target impedance is chosen as a
direct second-order system to imitate dynamics of mass-spring-damper (Ha et al. 1998).
It is assignment of impedance control to ensure the behavior of the controlled system to
be as managed by equation (2.7). Impedance control has been implemented in different
forms, depending on how the measured signals, i.e. speed, position or force are utilized.
figure 2.12 shows the structure of a essential impedance control loop, which decides an
suitable value for Zm(s) .

2.3.3 Hybrid Position/Force Control

In non-deterministic environments, force and position information are combined into uni-
fied control strategy for movement of the end-effector, this type of control is known as the
hybrid/position/force control. This type of control has the intrinsic advantage of analyz-
ing the position and force component freely to take advantage of best available control
mechanism among each and then combining the end-result from each at the final stage
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to compute the joint torques (Fisher and Mutjaba 1991). As such in this sort of control
there exists a relationship between the position and the applied force of the end-effector,
these relationship varies on case to case premise. A hybrid position/force control scheme
is shown in figure 3.5.

Figure 2.13. Hybrid control loop
Source: (Dede 2003)

In figure 2.13, the notations are as follows: S = diag(sj)(j = 1...n) - compliance
selection matrix, n - degree of freedom. The matrix S decides the sub-spaces for which
position or force are to be controlled, and sj - as 1 or 0. When sj = 0 , the jth DOF is
force controlled, otherwise it is position controlled. The value of S matrix can be constant,
can alter with the configuration or can continuously change in time (Fodor and Tevesz
1999).

For each setup, a generalized surface can be characterized in a constraint space with
position restrictions along the normals to the surface and tangential force limitations,
which suggests, the end-effector can not move along the normals into the surface and
can not apply forces along the tangents of the surface. Utilizing this information, S matrix
is formed.

The command torque is defined by

τp = τpp + τpf (2.8)

τpf and τpp and are the command torques acting in force and position sub-spaces,
respectively.

In this way, force control and position control are decoupled. Hence designing a law for
independent control with distinctive control execution prerequisites for wanted position
and force trajectory tracking is conceivable with this sort of control. Normally, the position
control law in figure 2.13 consists of a PD action, and the force control law consists of a
PI action. This is because for the position control, a faster response is more desirable,
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and for the force control a smaller error is more preferable.

2.3.4 Comparisons among Different Control Schemes

In this thesis a robot controller which can execute motion through a free space to reach
the target point and is able to compensate for the collision during motion was required
to perform a pick operation from the robot ready state to the grasping state where the
gripper collided with the surface. Here the author presents a comparative study between
different control mechanisms as discussed above. At first we start with position control,
which is suitable where the robot is free to move in the task space and the motion is not
constrained by external factors like human etc. On the other hand Force control needs
feedback data of contact force, thus the robot controller ought to have the right sensor
data to read the contact force. Also, this requirement of Force control makes this mech-
anism suitable for areas where the robot is required to be in contact with environment
to decide on the next steps. During free motion since there is no feedback component
which can provide feedback on the motion being executed, the robot can go out of control.
Hybrid position/force control separates assignment space into two subspaces, called the
position-controlled and force-controlled subspaces. This situation complicates the con-
trol mechanism, in a few cases amid control, the control law should be switched to adjust
with the necessities within the task-space, which may lead to unsteady reactions. On the
other hand, impedance control may be a bound together control technique appropriate
for all control stages, including free movement, obliged motion and the transients, without
the requirement to switch control modes. Hence, the author chose impedance control for
controlling the manipulator.
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3 METHODOLOGIES

In this chapter, the methodologies relevant to the scope of the study in this thesis is
presented. The chapter starts with explaining how the author created the image data-
set followed by the image segmentation techniques being used. Then in the last section
the desired the robot controller characteristics are discussed. A flow diagram figure 4.5
shows the interaction of the mentioned techniques.

3.1 Creating Training Data

In conventional machine learning problem, we train our model based on objects which
have readily available training data-set such as images of a cat, dog etc. A training data
set for industrial purpose is not available in most cases. There are many components and
they differ in size, color, weight etc. In this thesis parts of an engine were taken as the
test objects. The thesis work started with creating an image data set of the engine parts.
Utilising this image data-set we can train a neural network to build a detector to classify
different engine components.

The work started with taking pictures manually and then training few basic neural net-
works. In image recognition the larger the data-set, the better is the learned model. To
generate an image data-set an automated method for collection of images was required.
This led in creation of a system in which the robot end-effector moves through different
positions looking at the object from different angles towards the work-space.

The system uses the capability of Franka robot to record the joint values and save them
to a local file. A single object whose image database is to be created is placed in the
work-space. The process starts with a human instructor moving the end-effector through
space and the system keeping a record of the joint values as shown by the flowchart in
figure 3.1a. This results in the robot going through different positions and capturing the
image of the object from different angles.

Next the system reads from the stored joint values and moves the robot through space as
shown in figure 3.1b. On reaching the desired location robot sends a signal which makes
the camera to capture image of work-space. The system then stores image in a local
folder. In the current system each location creates one RGB, one Edged and one Depth
image. This was done to keep provision for using the other image format for creating a
better classifier. The author proceeded with using RGB image only in this thesis.
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(a) Pose Generation

(b) Imageset Generation

Figure 3.1. Training Data Creation

As the joint values are recorded and saved the same values can be utilized to create
image data-set for other objects. As such the author recorded the joint values once and
used them to generate image database for all the test objects. This system allows to
easily create image data-set for unknown objects and retrain the learning model

3.2 Object Detection

The background studies in image segmentation forms the basis of image segmentation
technique used in this thesis. The issue with using existing technique was creating a
image database which is labelled as used in COCO challenges (in 2017 and 2018). The
COCO data-set for object segmentation is composed of more than 200k images with over
500k object instance segmented. Thus, finding a classifier which can use single object
image to learn and then localise the object in work-space as is present in COCO images
as shown in figure 3.2 where the areas where the persons exists are zoned out.

Figure 3.2. Example COCO images with object instance segmented
Source: https://cocodataset.org/workshop/coco-mapillary-iccv-2019.html

In this thesis the process of image segmentation is a two step process. First, the RoI is

https://cocodataset.org/workshop/coco-mapillary-iccv-2019.html
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found from the work-space and then the identification is done using the classifier trained
with the images generated in section 3.1. figure 3.3 shows the flowchart for identifying
object in work-space.

Figure 3.3. Image Segmentation

3.2.1 Finding Region of Interests (RoI)

Searching for RoI is based on using edge detection technique(Canny edge detector).
After capturing image of work-space a contour around the objects are formed. This is
followed by calculating the area enclosed by the contour as shwon in figure 3.4. This
contour area is compared with a threshold value which indicates presence of object at
that location. The threshold value is empirically calculated.

(a) RGB image (b) Edged image

Figure 3.4. Threshold detection for ROI

As seen in figure 3.5b the contour contains broken edges which can be connected by
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using a higher canny threshold value. Thus this method of contour area calculation
from work-space image can be an indication of presence of some object, thus providing
an RoI. The next step is to go through all the RoI’s and identify them using the classifier
developed which is explained next.

3.2.2 Object identification

As explained in previous section the RoI area provides an indication of object presence.
if the contourarea > threshold, then these area is cropped having dimension equal
to maximumlength × maximumwidth of object with some padding. Thus using
this technique it is possible to crop out a part of image which contains only one object as
shown below in figure 3.5

(a) RGB image

(b) Edged image

Figure 3.5. Crop RoI

After finding the RoI region and cropping out the image part the cropped image is used
by the generated network model to identify the object. In this thesis a simple CNN was
used as a classifier. The classifier uses The LeNet architecture which was first introduced
by (Y. LeCun et al. 1998). As the name of the paper suggests, the authors implementa-
tion of LeNet was used primarily for Optical character recognition (OCR) and character
recognition in documents.

3.3 Motion planning and controllers

In ROS ecosystem there exists ready made packages such as MoveIt which implement
motion planning and can control the robot. This thesis started with utilizing ready made
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packages and sending goal coordinates to the end-effector. Although the ready-made
controllers can be easily integrated and provide better visualisation, those packages were
unable to compensate for the collision during motion or collision with work-space floor.
The ready-made packages require accurate measurement so collision can be avoided.
Since this thesis utilised only one depth camera as the sensor for checking the environ-
ment, there were inaccuracies in measurement. These issues required development of
custom motion planner suited for this thesis.

In this thesis the custom motion planner developed takes the start and goal point as input
in Cartesian space. It calculates a linear motion between the two points and calculates
the way-points on the linear path. The way-points are series of small steps to reach goal
points avoiding any violation in the robot limits. Other parameters such as the velocity
profile is calculated based on the industry standard trapezium profile, also the accelera-
tion period is mirrored to create the deceleration period. The middle section during robot
motion is scaled such that the robot moves at a constant speed. The velocity profile is
modelled around two main input parameters as shown in figure 3.6:

• The desired target speed of end-effector travel.

• The acceleration and deceleration of the end-effector.

Figure 3.6. Trapezoidal velocity profile

The custom controller developed for this thesis utilised command from a combination
impedance control method as explained in section 2.3.2 in combination with the velocity
control explained above. This combination of controllers allowed for compensating with
collision with surface, which was not possible with ready-made controllers.
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4 IMPLEMENTATION

This chapter forms the core of the actions performed in achieving autonomous robot
grasp. The author starts with explaining the devices used during, followed by the core
architecture and concluding with software design implemented for this thesis.

4.1 Devices used

• Robot: Panda from Franka Emika is 7-DOF manipulator. It has torque sensors in
all the seven joints and there exists extensive and useful libraries of controllers and
hardware interfaces to control the robot.

• Camera: Intel RealSense D435 is a USB-powered depth camera and consists of a
pair of depth sensors, RGB sensor, and infrared projector. It has software libraries
implemented in C++ and python.

• Computer: The setup required two separate computers one for implementing the
vision part and the other for robot commands. Panda arm requires real-time kernel
installation in the workstation PC to send real-time control values at 1 kHz. On
the other hand vision requires a computer with GPU. A two system configuration
keeping vision and robot control side separate was implemented to eliminate the
limitation of GPU powered device not being able to use real time kernel.

4.2 Architecture

The architecture used in this thesis comprises of the work-space, the manipulator, a depth
camera and two computers. A pictorial representation of system architecture is shown in
figure 4.1:

• FCI: The Franka Control Interface (FCI) permits a quick and direct low-level bidirec-
tional association to Panda. It gives the current status of the robot and empowers
its direct control via an outside workstation PC associated by means of Ethernet.
By utilizing open source C++ interface libfranka real-time control values are send at
1 kHz.

• PANDA: The robot used in this thesis is a 7-DOF manipulator. There is separate
control for the arm(robot links) and hand(gripper). It is possible to send control
commands at 1 kHz. From the franka control interface documentation, the control
commands are:
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Figure 4.1. System Architecture

– Gravity and friction compensated joint level torque commands.

– Joint position or velocity commands.

– Cartesian pose or velocity commands.

At the same time, measurement data can be received at 1 kHz. Measurement data
received are:

– Measured joint data, such as the position, velocity and link side torque sensor
signals.

– Estimation of externally applied torques and wrenches.

– Various collision and contact information.

In addition Forward kinematics of all robot joints, Jacobian matrix of all robot joints
and Dynamics: inertia matrix, Coriolis and centrifugal vector and gravity vector can
be received from the robot via the FCI.

• WORKSTATION-PC: Controller PC connected with FCI via ethernet. The robot
commands are send using this PC. Linux with PREEMPT_RT patched kernel is
the operating system for this computer. Since the robot sends data at 1 kHz fre-
quency, it is important that the workstation PC is configured to minimize laten-
cies. This PC also communicates with VISION-PC via ROS. The VISION-PC and
WORKSTATION-PC are in the same Wifi network and proper configuration is made
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so that they can communicate over ROS.

• D435: Intel realsense depth camera is mounted on the grippers to observe the
work-space. As mentioned in wikipedia pages (Wikipedia 2018) Intel RealSenseDepth
Camera D435 is perfect for capturing stereo depth in a assortment of applications
that offer assistance to see the world in 3D. The camera incorporates the Intel Re-
alSense VisionProcessor D4 highlighting high depth resolution - up to 1280x720 at
30 frames persecond (fps), long-range capabilities, global shutter technology and a
wide field of view. With the global shutter technology and a wide field of view (91.2◦

x 65.5◦ x 100.6◦),the Intel RealSense depth Camera D435 offers exact depth per-
ception when the object is moving or the gadget is in movement, and it covers more
field of view, minimising blind spots. It is designed for simple setup with USB 3.0
and is in a sleek form factor for portability.

• VISION-PC: This is responsible for capturing the work-space image. It is connected
with the D435 camera. This PC is equipped with latest 8th Gen Intel R⃝ CoreTM i7
processor and overclockable NVIDIA R⃝ GeForce R⃝ GTX 1060 graphics. This PC is
suitable for image processing and faster computation to generate grasping point on
the objects in the work-space.

4.3 Software Design

This sections explains the software packages developed during this thesis. Some of the
important algorithms developed are explained with pseudo code. Broadly, there are two
packages which are developed in this thesis:

• panda_c++ - this package is responsible for robot control. It starts up robot motion
and takes goal commands from the vision system.

• panda_python - this package is responsible vision part and the calculations associ-
ated with grasping.

Both these packages and there working are explained below which also serves in ex-
plaining the work of this thesis.

4.3.1 Robot Control

The package layout is as shown in figure 4.2. This package contains the necessary codes
related to controlling the robot. This controller commands are via the workstation PC to
the robot. During the thesis it was essential that the there exists a server which listens to
grasp commands. Also after performing the current task the robot goes back to its ready
position and waits for next grasp command. During robot motion the robot does not take
any more commands. The components of this package are explained in the following
sections.
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Figure 4.2. Robot control folder structure

Grasp Data

This is the data structure which was defined to communicate with the ROS server. The
data structure is defined as follows:

1 # A name for this grasp
2 string id
3

4 # The position of the end-effector for the grasp. This is the pose of
5 # the "parent_link" of the end-effector, not actually the pose of any
6 # link in the end-effector. Typically this would be the pose of the
7 # most distal wrist link before the hand (end-effector) links began.
8 geometry\_msgs/PoseStamped grasp\_pose
9

10 # The position of the end-effector for the release. This is the pose of
11 #the "parent_link" of the end-effector, not actually the pose of any
12 #link in the end-effector. Typically this would be the pose of the
13 #most distal wrist link before the hand (end-effector) links began.
14 #geometry_msgs/PoseStamped release_pose
15 ---
16 # send response of grasp result
17 bool grasp\_result

Each item is explained in the message comments. The request from vision system
sends out geometry_msgsPoseStamped as grasp and release pose for the robot. The
geometry_msgsPoseStamped grasp_pose consists of Cartesian position (x, y, z) and
orientation in quaternion (w, x, y, z).

Robot Motion

The robot motion can be divided into two parts. The first part is the Motion planner which
takes care of generating a plan to reach from current position to goal position. The plan
generated should be within the velocity and acceleration limit of the robot. The second
part is concerned with execution and it consists of robot controllers and executors. It
takes the motion plan trajectory points and commands the robot to move through a set of
steps to reach the goal point. The two parts are explained below:



30

• Motion Planner: The trajectory component is created after receiving way-points to
goal. Motion between the robot current position and the grasping position is divided
into two parts. The first motion plan is made in a way that the robot positions itself
over the object grasping location. The second motion is then a vertical straight mo-
tion to grasp object. The user can define additional way-points. Adding additional
way-points reduces the chances of robot gripper disturbing the object position by
touching it during its motion.

The velocity profile applied is the industry standard trapezium profile as shown in
figure 3.6. The acceleration period is mirrored to create the deceleration period.
The middle section is scaled accordingly; keeping the end-effector at a constant
speed. Algorithm 1 represents the algorithm for motion planner. This method takes
the path including the way-points defined by the user.

Algorithm 1 Motion planner algorithm

Require: path with waypoints
1: procedure TRAJECTORY GENERATION ▷ way-points between start to goal
2: dx = acceleration ∗ dt ∗ ∗2 ▷ path is discretised into small, equally sized units
3: discritisedPath = path divided into small steps of dx
4: targetSpeed = sqrt(sizeOf(discritisedPath) ∗ acc)
5: EndStageT ime = targetSpeed/acceleration
6: EndStageDisplacement = EndStageT ime ∗ targetSpeed/2
7: MidStageDisplacement = PathLength− 2 ∗ EndStageDisplacement
8: MidStageT ime = MidStageDisplacement/TargetSpeed
9: TotalT ime = EndStageT ime ∗ 2 + MidStageT ime ▷ refer figure 3.6

10: timeList = [0, dt, dt ∗ 2, ..., T otalT ime]
11: speedV alues = []
12: for t in timeList do
13: if t <= EndStageT ime then
14: speedV alues← acc ∗ t ▷ insert acc*t to speedValues
15: else if t >= EndStageT ime + MidStageT ime then
16: speedV alues← −acc ∗ t+ c ▷ insert -acc*t + some constant velocity in

mid region to speedValues
17: else if t > EndStageT ime then
18: speedV alues← targetSpeed ▷ insert targetSpeed to speedValues
19: end if
20: end for
21: trajectory = []
22: for v in speedValues do
23: samples = speedvalue ∗ dt/dx ▷ number of samples in the path list

corresponding to the speed value
24: trajectory ← samples ▷ add the sample set to trajectory
25: end for
26: return trajectory ▷ The trajectory between two points
27: end procedure

After receiving the goal position. The robot sends its current position and the goal
position with one way-point as default as explained earlier, to the planner and it
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receives a list of trajectory points with velocity associated with it. This list of points
is then send to the robot controller to perform actual motion on the robot.

• Robot motion control: Franka can implement combinations of commanding inter-
faces, in this thesis a combination of EffortJointInterface + FrankaCartesianVeloci-
tyInterface. In this thesis as discussed earlier impedance control with velocity was
chosen as the controller to perform a smooth grasp operation while taking care of
the collision to the work-space.

In the velocity control part the controller checks its current location w.r.t the target
location defined by the motion planner. After the motion plan is generated the target
location is updated from a separate thread. The velocity controller algorithm 2 takes
this updated target values and generates the required velocity values to control the
robot.

Algorithm 2 Velocity control algorithm

Require: robotState
1: procedure MOTION CONTROL▷ Control robot motion impedance and velocity control

▷ Get state of robot
2: currentX = robotState.X
3: currentY = robotState.Y
4: currentZ = robotState.Z

▷ Get the difference in position from planned State to current state
5: vecX = targetX − currentX
6: vecY = targetY − currentY
7: vecZ = targetZ − currentZ
8: normaliseFactor = sqrt(vecX2 + vecY 2 + vecZ2)
9: velocityX = speedLimit ∗ vecX/normaliseFactor

10: velocityY = speedLimit ∗ vecY/normaliseFactor
11: velocityZ = speedLimit ∗ vecZ/normaliseFactor
12: return velocity ▷ velocity in cartesian
13: end procedure

In impedance control a set of value for damping and stiffness are defined by the
user. The joint torque to be exerted is calculated and the command is sent to
the robot joints. In joint space we can start with Lagrangian formulation in robot
dynamics for robot control:

τ = M(q)q̈ + c(q, q̇) + g(q) + h(q, q̇) + τext (4.1)

where q is the joint angular position, M denotes symmetric and positive-definite
inertia matrix, c represents the Coriolis and centrifugal torque, g is the gravitational
torque, h includes further torques for e.g. inherent stiffness, friction etc., and τext

is total environmental external forces. The actuation torque τ on the left side is the
input variable to the robot.

One may also provide a proposal for control law, when actuating a robot from current
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position to goal in the following form:

τ = K(qd − q) + D(q̇d − q̇) + M̂(q)q̈d + ĉ(q, q̇) + ĝ(q) + ĥ(q, q̇) (4.2)

where qd is the desired joint angular position, K and D represent the control pa-
rameters, and M̂ , ĉ, ĝ, and ĥ denotes the internal model of the corresponding
mechanical terms.

Inserting equation 4.2 in equation 4.1 we get,

K(qd − q) + D(q̇d − q̇) + M(q)(q̈d − q̈) = τ ext. (4.3)

Eq. 4.3 forms the core of impedance control and is implemented in the algorithm
as shown in the psuedo code 3

Algorithm 3 Impedance control algorithm

Require: robotModel, jointDamping, jointStiffness
1: procedure IMPEDANCE CONTROL ▷ Control robot motion impedancecontrol ▷ Get

coriolis of robot
2: coriolis = robotModel.coriolis(robotState)
3: jointTorque = []
4: for joint in robotJoints do ▷ 7 joints in this thesis
5: torque = coriolis + stiffness + damping
6: jointTorque← torque ▷ insert torques values for each joint
7: end for
8: return jointTorque
9: end procedure

The robot controller take the above two control methods as control functions and
calls the Franka robot control method

robot− > control(impedanceControl, cartesianV elocityControl)

(4.4)

4.3.2 Vision

In this section the author describes code snippets and their working in this thesis. The
vision part is divided into following parts:

• Objector Detector: A 4-layer CNN was used to generate a classifier for detecting
the objects under consideration. The architecture of CNN is shown in figure 4.3.

As mentioned in methodologies LeNet architecture was used to construct this clas-
sifier. The LeNet architecture is straightforward and small, (in terms of memory
footprint), making it perfect for basics of CNNs — it can even run on the CPU (if
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Figure 4.3. CNN architecture

the system does not have a suitable GPU). LeNet classifier being very simple in
design can be easily upgraded by adding or removing layers from the network. The
author tested the results of using different architecture and also tested changing the
number of layers in the classifier. The author chose the 4-layer network design due
to the following reasons:

– 4 layer architecture provided better classification result w.r.t 3-layer architec-
ture on a data base consisting of RGB images of the objects.

– With increase in the number of layers beyond 4 layers, the training time in-
creased without any actual increase in the accuracy of the classifier.

– Overfitting was an issue associated with increase in number of layers.

In short the 4-layer architecture was chosen in an empirical way after testing with
other combination.

• RealSenseCamera: This part of the software package is responsible for vision. It
includes generating image database, grasp detection etc. In this section the author
discusses the image data-set generation algorithm and the reeb graph algorithm
which forms the basis of generating grasp pose.

Algorithm 4 employs openCV methods to find objects in an image and then crop
out the RoI. This RoI represents the object in work-space.

This function takes the image from the realsense camera and then find the contours
using Canny edge detector. Then the area of the contours is calculated, if the
contour area is greater than threshold defined by user it is sensed as an object
(RoI). This RoI is then cropped out using the maximum dimension of the object.
The cropped image can then be stored to create image data base or can be sent to
the classifier for classification.

• ReebGraph: Reeb graph can be used for recovering hidden structure which can
result in data skeletonization such as finding a core structure for an object. This
class is responsible for calculating the grasping point for the object. The following
code snippets explains the principles. Reeb graph tries to find a line which follows
the shape of the object placed centrally. Algorithm 5 implements this logic by taking
the contour image from RealSenseCamera and creating a masked image first. A
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Algorithm 4 Image Set formation

1: procedure IMAGESETGENRATOR ▷ Create image Set for training and testing
▷ OpenCV package was used for image analysis

2: blurImage = GaussianBlur(grayImage)
3: edgedImage = Canny(blurImage)
4: edgedImage = dilate(edgedimage)
5: edgedImage = erode(edgedimage)
6: Contours = FindContours(edgedimage)
7: for contourinContours do
8: if contourArea(contour) > threshold then
9: ImageList← contour ▷ add as an image of the object

10: end if
11: end for
12: end procedure

Algorithm 5 ReebGraphGenerator

1: procedure REEBGRAPHGENERATOR ▷ Create masked image of the object in
work-space with its miodpoint

2: for points in objectImageContour do
3: if point is inside the contour then
4: pixelV alue = 1
5: else
6: pixelV alue = 0
7: end if
8: end for
9: findMidPointInMaskedImage

10: end procedure

masked image of an object has all points inside the closed contour set as 1 while
the others are set to 0. The resulting image can be as seen in figure 4.4.

Figure 4.4. Masked image and midpoint detection
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From the masked image approximate mid-points are located in the masked area.
This is checked by calculating the gradient between 1 to 0 or 0 to 1. The gradient
check is done both in horizontal and vertical direction. Pixel location where the
gradient change occurs is saved. So for 1 to 0 we have one location and for 0 to 1

we get another pixel location. The areas between the change in gradient represent
object part and the mid-point is the pixel position which is placed at the centre
between the change is gradient 1 to 0 to 0 to 1. There may be areas where the
gradient change occur multiple time. These type of areas point that the object
shaped is curved in those area. These areas are neglected from grasping position
as it is easier to grasp straight areas with a two-fingered gripper.

After finding the midpoints the points are joined by polyfit line which gives an ap-
proximate of the orientation of the object. Thus the grasping point and orientation
component are calculated using reebGraph. This data is then packed into ROS
message as mentioned in Grasp Data mentioned above and sent to the robot.

4.4 Work flow

The work flow is divided into two parts. The first part is creation of object image database
this is followed by splitting the data-set into training and testing with the image data-set
created. The network is then trained with the training data and tested with the test data
available. This process is done once and the detector model is saved. The second part
starts with using the detector to locate the object as desired by the user and performing
the grasping operation.

4.4.1 Image database creation

This work starts with placing the object in the robot work-space and taking images using
different robot pose. For this step ROS package Moveit is used. The user first collects the
joint_states which contains the trajectory the robot will go through for capturing images
of the object to create image data-set. After collecting the joint_states, a simple script
is used to send the robot to all the collected joint_states and collect sample images. In
the collection there are three types of images 1. RGB image 2. Edged image 3. Depth
image. In this thesis different combination of images and image type was used, RGB
image was considered as the best for this this since with additional edge and depth data
the training time increased without any improvement in detection.

4.4.2 Grasp operation

The author presents a communication diagram to explain the communication and states
the system goes through during a full grasp operation. In figure 4.5 the flow is as follows:

1. Send robot to ready position above the work-space. Here the entire work-space is
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Figure 4.5. Flow Diagram

visible from the camera.

2. The camera node waits till the current robot position is received from the robot.

3. After receiving current robot position camera takes an image of work-space, it then
asks the user to indicate which object to pick.

4. In the vision PC side a object detector searches for the object as selected by the
user and if it is present further calculation is made to grasp the object. First a
masked image with only the object under consideration is made as shown in figure
4.4. Mid-point calculation is made and then the grasping position is selected.

5. The robot waits for a goal to go. On receiving grasping pose and release pose from
vision PC a motion plan is made to reach grasp pose.

6. The motion plan places the robot directly above the grasping point, from there the
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robot proceeds vertically down to grasp the object.

7. With object grasped next motion plan is made to reach the release pose and after
releasing the object the robot returns to ready position and is ready to take next
grasp command.

In figure 4.6 pictorial representation the work flow for object detection is shown, with the
gripping point shown in figure 4.7.

(a) Scene

(b) object detection

(c) Masked image

Figure 4.6. Vision workflow

The workflow starts with taking an image of the entire work-space from ready position,
this is shown in figure 4.6a, second stage starts with detecting zones with object, then
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Figure 4.7. grasping position

the type of object in that zone is detected represented in figure 4.6b with the object name
and confidence score. Third stage shown in figure 4.6c creates a masked image with
the entire work-space masked as 0 and only the area with object is masked 1. After this
mid-point calculation in the object area is performed to generate grasping position and
orientation as shown in figure 4.7. In figure 4.7 previous grasping position are also shown
and not to be confused. The system creates only one grasping position for each snap.
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5 EXPERIMENTAL RESULTS

In this thesis a franka manipulator with seven-degree-of-freedom was chosen. The robot
can withstand a maximum payload of 3kg and the it can grip objects with a grasping force
of 70N of maximum width 80mm (ActiveRobots 2018).

5.1 Experimental Setup

The experimental setup used in this thesis composed of system as shown in figure 4.1.
An actual working setup can be seen from this link: experimental Grasp Scene. During
this thesis the following were the deciding factors:

1. Surface color : White colored surface was selected to contrast the object color
from surface color. This condition is necessary for accurate edge detection.

2. Lighting : Overhead white lights were used. This type of lighting can cause shad-
ows which caused error in grasping and grasping during this thesis.

3. Object Location : The test objects were placed on top of the surface with different
orientation as shown in figure 5.2. It is assumed that objects are grasped using
force along the plane of surface.

4. Error/Noise : Due to calibration and measurement error the grasping point were
different from calculated points.

5.2 Evaluation of object recognition

An engine is composed of different type of component. Three components of different
shape, size and color was chosen during this thesis as shown in figure 5.1.

The training set composed of 500 images of each type and the test set included 100 im-
ages of each type. As explained earlier RGB image was utilised for training the network.
The total training time with a GTX 1060 graphics card was around 20 minutes.

Here the performance of the system developed can be calculated similar to success rate
as done in (Delowar et al. 2017):

successrate =
ErrorNumberofmisclassification

Totalnumberoftestdata
(5.1)

https://www.youtube.com/watch?v=VEimWorMtmA
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(a) Object A
(b) Object B

(c) Object C

Figure 5.1. Experimental objects

Referring to Table 5.1 there was a total of 12 scenes which were tested during this thesis.
The detection results of different objects are different. From the table 5.1 it can be inferred
that

• The designed detector was able to detect objectB and objectC accurately with a
success rate of 100%.

• The detector falsely detected objectA as objectB in 50% of the test cases. This
can be attributed to the fact that both objects were metallic and the detector was
not able to classify between them.

Hence, the success rate as defined in equation 5.1 for this thesis method was 0.5. This
accuracy is dependent on factors such as described in section 5.1

5.3 Evaluation of object grasp

The performance of the system can be divided into two parts evaluation of detection as
mentioned above and then the ability of the robot to pick and place the detected object.
In table 5.1 the grasping result is also presented the important points to note are:

• In the scenes if the object detection is false then grasping is also considered as
false. Hence grasping result for objectA is 50%.

• Grasping result for objectB is 66%. Whereas grasping result for objectC is 83%.

This result is based on the experimental results formed during checking with all the test
objects being present in the work-space. The image of the work-space was captured from
top ready position of the robot, such that entire work-space area is captured. Different
object location were chosen as shown in figure 5.2.

5.4 Experimental Data

In this section the experimental scenes and their associated data for performance eval-
uation are presented. For evaluation a total of 12 different scenes comprising of the test
objects in different location were tested. In figure 5.1 the test objects included in this
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thesis are shown.

In figure 5.2 the different scenes used for performance evaluation are shown. All objects
are placed on top of a table in different location. The entire work-space is placed in such
a way that the system while capturing a snapshot of the work-space is able to view the
entire work-space.

(a) Scene 1 (b) Scene 2 (c) Scene 3

(d) Scene 4 (e) Scene 5 (f) Scene 6

(g) Scene 7 (h) Scene 8 (i) Scene 9

(j) Scene 10 (k) Scene 11 (l) Scene 12

Figure 5.2. Experimental Scenes

The figure 5.2 shows the state of the objects in the work-space. These snaps are taken
by the camera fixed with robot gripper from its ready position. In this experimental setup
3 different object from a engine were selected as the sample objects. A CNN network
first detect the the object as desired by the user and then the grasping position is found.
In the following table 5.1 Detection result represents the True and False detection of
the object. Grasp result represents whether the object was grasped properly, as such
the robot was able to pick and place the object.

Scene Object name Detection result Grasp result
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Scene 1

object A True True

object B True True

object C True True

Scene 2

object A False False

object B True False

object C True True

Scene 3

object A False False

object B True True

object C True True

Scene 4

object A False False

object B True True

object C True False

Scene 5

object A True False

object B True True

object C True True

Scene 6

object A False False

object B True True

object C True True

Scene 7

object A False False

object B True False

object C True True

Scene 8

object A False False

object B True False

object C True True

Scene 9

object A False False

object B True False

object C True True

Scene
10

object A True True

object B True True

object C True False

Scene
11

object A True True

object B True True

object C True False
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Scene
12

object A True True

object B True True

object C True True

Table 5.1. Experimental data

With this table 5.1 this section can be concluded and the discussions and conclusions
are presented in the next chapter.
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6 DISCUSSION AND CONCLUSIONS

6.1 Discussion

This section discusses and reviews the work done in this thesis and how the research
questions presented in chapter 1 have been addressed. The subsections in the next
section holds discussions pertaining to each of the posed research questions and create
a automated pick place system.

6.1.1 RQ1: What features a machine learning framework
should have for an industrial pick-place application?

This question deals with creation of a framework which can be followed to generate an
object detection model in an assembly environment using the manipulator. As mentioned
in section 4.4.1 the robot goes through a set of location selected by a human operator
and captures the image of the object to create a image data-set. Utilising the robot for
data-set creation makes the process more efficient and faster, the user needs to define
the trajectory once. And the same defined trajectory can be utilised again to create data-
set for other objects. The human operator should go through the images captured to
clear the noisy and malformed images which may not be good for training the network as
shown in figure 6.1.

(a) Object A

(b) Object B

(c) Object C

Figure 6.1. Noisy and malformed images

The data-set created consisted of three types of images for each image captured with
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a depth sensor camera. In this thesis RGB image, depth image and edged image were
saved in the data set. Manipulating the parameters during training different models util-
ising RGB, depth and edged data were tested. With additional information there was no
significant improvement in detection results.

To train a detector using the generated image data-set, a simple 4 layer neural network
based on LeNet architecture was used. During this thesis experiments were performed
by increasing the number of layers, this addition did not produce any remarkable improve-
ment in detection but the training time increased.

6.1.2 RQ2: How to select grasp positions?

As discussed earlier the camera is positioned on top of work-space and takes an image
of the current work-space state, with this image, a RoI is generated which indicates pres-
ence of some object. Presence of the desired object is confirmed using the detector.
Next a masked image is placed where the object is present. This masked image is just
rough approximation of the object.

This approximate shape made it possible to generate a set of points placed centrally on
this masked image as shown in figure 4.4. After finding the central points we can set
the grasping point to be on both sides of the central point and hence were able to find
grasping position to grasp object efficiently. From the set of central points the point which
is placed closest to the centre of the entire object is selected. Also connecting the set of
points by a line, it was possible to find the orientation of the object . This orientation is
used such that the grip is performed perpendicular to the surface of object.

6.1.3 RQ3: What kind of robot controller to use?

During the start of this thesis open-source controllers such as MoveIt was tested to con-
trol the robot movement. Although much easier to use MoveIt required accurate grasping
information and failed on collision with the surface. This thesis required to keep account
of the inaccuracies in measurement from a depth camera and had to implement a robot
controller which can cater to collision with the surface.

During this thesis impedance controller was chosen to control movement of the robot
and perform a successful grasping operation. As explained in section 2.3.4 impedance
controller not only provided ways to deal with collision but can also be used in applications
where human interaction with the manipulator is necessary.

6.2 Conclusion and Future Scope

This section presents the summary and contribution of this thesis in the field of robotics
and machine learning in a assembly line.
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6.2.1 Thesis Summary

This research started with the idea of building a framework which can be developed and
scaled up to utilise the existing technology in object detection for an assembly line as
explained in the introduction chapter. This lead to a research journey involving a Panda
robot from Franka emika and some simple neural networks to build a system fully capable
of performing a basic pick and place operation in an assembly line.

With the theoretical background, the author provided the an abstract insight of the re-
search in the field of object detection, robot grasping, robot controllers. This core tech-
nologies formed the basis of this thesis. This was followed by the methodologies devel-
oped during the course of this thesis to implement a working solution. The solution can
detect test objects with a simple network and can perform pick and place operation as
desired by the user.

The chapter on implementation provided an idea of how all the different methods from
different fields of engineering came together to build a system for the completion of this
thesis. The chapter on experimental results compared results obtained in this thesis with
other research methods in the same area.

6.2.2 Future Research

As for directions of future research, the author proposes a few different directions taking
into account the limitations mentioned in the first chapter. The future scope for this thesis
will be:

1. Create a better detector - As explained in section 6.1.1, a simple detector which
was chosen as a proof of concept. There has been advance in the field of object
detection such as explained in section 2.1.2. A future work can be to utilise those
methods in object detection with the image data-set created during this thesis.

2. Ways to negate effects of shadows - Lighting can be important factor regarding
detection of edge of the object. The shadows can create false edge which can be
reduced using better lighting or using a filter to reduce the effect of shadows.

3. Use depth data to generate better detector and compute grasp points - All the im-
ages collected consisted of RGB, Edged and depth. Although depth data was avail-
able the data could not be utilised to generate a better detector. Depth data can be
utilised since each pixel position in an image will have different depth values and
this will be unique for each object.

4. Motion control - A controller which can detect obstruction, stop on detection and
proceed when the obstruction is removed should have been the ideal controller for
this application.
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