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ABSTRACT 
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Machine learning has become one of the leading sciences governing modern world. Various 
disciplines specifically neural networks have recently gained a lot of attention due to its 
widespread applications. With the recent advances in the technology the resulting big data has 
augmented the need of bigger means of storage, analysis and henceforth utilization. This not 
only implies the efficient use of available techniques but suggests surge in the development of 
new algorithms and techniques. In this project, three different machine learning approaches 
were implemented utilizing the open source library of keras on TensorFlow as a proof of 
concept for the task of intelligent invoice automation. The performance of these approaches for 
improved business on data of invoices has been analysed using the data of two customers with 
two target attributes per customer as a dataset. The behaviour of neural network hyper-
parameters using matplotlib and TensorBoard was empirically calculated and investigated. As 
part of the first approach, the standard way of implementing predictive algorithm using neural 
network was followed. Moreover, the hyper-parameters search space was fine-tuned, and the 
resulting model was studied by grid search on those hyper-parameters. This strategy of hyper-
parameters was followed in the next two approaches as well. In the second approach, not only 
further possible improvement in prediction accuracy is achieved but also the dependency 
between the two target attributes by using multi-task learning was determined. As per the third 
implemented approach, the use of continual learning on invoices for postings was analysed. 
This investigation, that involves the comparison of varied machine learning approaches has 
broad significance in approving the currently available algorithms for handling such data and 
suggests means for improvement as well. It holds great prospects, including but not limited to 
future implementation of such approaches in the domain of finance towards improved customer 
experience, fraud detection and ease in the assessments of assets etc. 
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1 Introduction: 
 

For decades, in the finance literature there had been limited application of machine 

learning.  But as time is progressing, the financial sector has started to see a tremendous 

increase in the use-cases of machine learning. Today, machine learning has begun to 

play a major role in the domain of finance from approving loans, to managing assets, 

to assessing risks. Many companies are using machine learning in their daily business 

routines. As per the applications in various aspects the use of machine learning 

approaches not only saves time but also gives a high turnover in their annual 

budgeting and profit targets, depending on level of accuracy of the machine learning 

algorithm or platform they are using and its relevant domain of the problem. Recent 

technological advancements particularly rise of big data, processing power and the 2008 

financial crisis, have justified the increased potential of machine learning approaches in 

various domains of finance (1). 

There is a huge variety of financial assistance/services being offered by the financial 

institutions targeting not only individuals but businesses as well. The services and the 

financial institutions are explained in detail in the Chapter 2. All these financial 

services require some types of transactions to be carried out. With the availability of 

internet platforms, the number of transactions has increased multifold. Carrying out 

the correct transactions in minimum time is one of the key descriptors that give these 

businesses an edge over its competitors. 

The process for a transaction usually starts when an invoice is generated. A company 

providing some monthly services to several customers requires sending their customer 

a bill/invoice that will notify the customer of the due amount to be paid. The 

generation of invoices from vendor to customer multiplies exponentially as the 

businesses scales up and customers increase. To manage this huge number of invoice 

generation, many companies hire people or outsource this tedious task. Institutions 

providing financial services are the ones who have to deal with the invoice posting.  

OpusCapita is one such example of a case, which deals with posting of hundreds of 

invoices. Currently, this tiresome task is being done manually by teams, who 

determine the posting parameters on the basis of their expert opinion. We have tried to 

automate this wearisome task of manually determining the posting parameters by 

using machine learning. We have selected 2 posting parameters as the target classes 

for our problem.  

Pertaining the data privacy concerns, we will not be using their real names but will 

refer to them as target variable 1 and target variable 2. We have implemented a 

predictive algorithm that could predict the values of target classes in invoices datasets. 

We also compared our algorithm with various other machine learning approaches and 

analysed its’ behaviour in predicting the target classes. 

Financial businesses have started harnessing the power of machine leaning in majority 

of their business domains. Based on the nature of the use cases, bankruptcy and fraud 
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detection has remained the most significant topic and has been studied widely and 

consistently for the last few decades (2). The market is full of the variety of the 

machine learning API’s with cloud storage from the leading vendors. Microsoft is one 

amongst such vendors. OpusCapita has begun using Microsoft Azure machine 

learning studio for intra company predictive analytics. This tool has proved to be 

relatively useful, but this usefulness comes with a certain degree of restriction on the 

freedom as well. 

Amongst the basic information available about the working of the tool in its 

documentation guide, the tool still acts as a black box to the end user. This lack of 

awareness about the internal working of the tool doubles when a technical domain 

expert of machine learning has to make guesses, about the several technical aspects of 

the machine learning algorithm and then adjust the limited visible parameters in 

correspondence. To tackle this issue, OpusCapita has made its own internal 

classification platform however; the availability of predictive algorithm is still void. 

This project begins with the discussion on the background of neural networks origin. In 

the first part the concept of biological neurons that led to the concept of neural networks 

is discussed.  There on the concept of artificial neural networks upon which this whole 

thesis is based on has been described in the 2nd Chapter. Not only has its structure been 

deciphered in detail but also its parameters, hyper parameters and various types have 

been elucidated. 

 

In the 3rd chapter, the approaches used previously before feed forward neural networks 

were implemented have been listed in details. The literature is reviewed regarding the 

work done in this thesis. 

 

In the 4th chapter, the discussion moves on to our empirical work. The tools and 

technology that has been used is elucidated in detail and the behaviour of neural 

network’s hyper-parameters is empirically shown. 

 

In the 5th chapter, the behaviour of the implemented algorithm is analysed, and its 

performance is compared with Azure ML studio performance, for all the three 

approaches for both data sets. 

 

The 6th chapter provides a conclusion to this work and determines the other strategies 

that can also be applied on the basis of current work. 
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2 Background: 
 

2.1 Finance: 

 

In the financial sector, several types of businesses operate providing a wide range of 

services. Typical bodies, providing services could be banks, insurance companies, 

financial firms, brokerages, credit unions etc. Some of the key services provided by the 

commonly known financial institutions are: 

• Retail banks: 

That usually deals in products targeting individual consumers. 

• Commercial Banks: 

It provides services to business for commercial use.  

• Brokerage: 

It assists in trading of stocks through its stockbrokers. 

• Insurance Companies: 

It aids in providing financial security against natural mishaps to individuals. 

• Mortgage Companies: 

As the name indicates, the institution provides loans for mortgages to either 

individuals or consumers. 

• Internet banking: 

In addition to the afore mentioned major financial institutions, a new way of 

banking has also been introduced with the name of Internet banking. It deals in 

same businesses as the conventional financial institutions, but the services are 

additionally facilitated through internet API’s (application programming 

interface). 

OpusCapita is one such organization that works in a similar manner as of internet 

banking but in a more constricted area. As part of its job functions it facilitates the 

consumers in online transactions of payments. Its customer could be a buyer, seller or 

payer, who has to make any transaction. On average, around millions of transactions are 

supported per day through its business platform. 

The service model for OpusCapita at a broader level is shown in Figure 2.1: 

 

Figure 2.1  Categories of Customers 
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The main types of transactions are explained below: 

• Accounts Receivables: 

This is the transaction types carried by the customer in order to pay for the services 

the customers have used. This type of money or the invoices are bounded by some due 

date that depends upon the service offerings. 

• Account Payables: 

These types of transactions are carried out to pay the invoices from the Companies 

that are offering services to its suppliers etc. 

• Procurement: 

This domain concerns with the supplier management and corresponding risk 

analysis. The workflow is usually complex enough with the suppliers ranging from 

selections to assessing risks and thus it has its own dedicated domain. OpusCapita 

provides eProcurement solution for managing all the transactions of this category. 

 

2.2 Machine learning: 

 

In this section, the background of machine learning and particularly working of neural 

networks has been reviewed. Recently, the use of artificial neural networks (ANN) has 

become very popular in various fields. Deep learning approach is progressing at a very 

fast pace(3).The research in the field of neural network has shown its strength in terms 

of pattern classification and pattern recognition (4). In various domains, artificial neural 

network has proved their absolute necessity by competing human performance. One of 

the many reasons in the increased popularity of neural networks is massive parallelism, 

their ability to learn and then generalize in a distributed manner are some of its major 

advantages (5). Unlike traditional model-based methods, ANN’s are self-learning, data-

oriented networks. They learn from sample data sets in order to capture the functional 

dependency of the predictors and target classes(4).ANNs are highly flexible in 

modelling the patterns in data and are highly adaptable, as they can control the learning 

behaviour(6). 

 

2.2.1 Working of a Biological Neural Network: 

Artificial neural network works on the principles of biological neurons in our brains. 

Artificial neural networks are technical intelligence systems which resemble the 

inductive power and behaviour of human brain (1). Our brain has billions of neurons 

that are densely packed and interconnected to each other. One such neuron is shown in 

Figure 2.2. A typical biological neuron has a “cell body” that receives inputs 

(information) from “Dendrites” which brought incoming signals and sends the 

information out through “Axon”, a single outgoing channel(7). 
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Figure 2.2 Biological Neural Network 

 

More specifically, neural networks based on similar functionality are called artificial 

neural networks to create a distinction from biological neural networks in our brains (7).  

From this point onwards, we will refer to the neural network as Artificial Neural 

network (ANN). ANN resembles the biological neural network in the way that learning 

of the network is carried out from the environment and interneuron connection stores 

the learned knowledge(8). 

 

2.2.2 Working of Artificial Neural Network (ANN): 

 

The artificial neural network in Figure 2.3 is also sometimes termed as feed forward 

neural network if there are no directed cycles in the network. Analogous to biological 

neuron, the artificial neural network has several components. The behaviour of the 

neural network can be tuned by carefully setting the values for these components. 

  

Figure 2.3Artificial Neural Network 

 

 

 

 

 

 



6 
 

 

2.2.3 Structure of Artificial Neural Network: 

 

In the Figure 2.3, the structure of a typical neural network (multi-layer) can be seen. A 

neuron is represented in green colour. The structure of a neural network and its key 

components are discussed below: 

2.2.3.1 Layers: 

A neural network is divided into a set of layers. Each layer consists of a set of neurons 

and is connected to its adjacent layers. The simplest neural network is perceptron that 

consists of only one layer known as the output layer. As, usually when the number of 

layers are counted in a neural network, the input layer is not counted. Perceptron has an 

input layer as well but no hidden layer. The input layer is directly connected to the 

output layer. 

In the Figure2.3, a Multi-layer (ANN), that consists of 2 layers could be observed– 

Hidden layer and Output layer. The input layer is where the input data for training or 

testing the algorithm is being sent to the neural network. Depending upon the settings, 

this layer will then send its computed output to the next layer which is the hidden layer. 

The hidden layer will then do the computations and send its computed output to the next 

layer which is the output layer. Depending on the settings of the output layer, it will 

send its feedback on possible adjustments for the hidden layers. It must be noted that A 

network too small or too large can lead to poor performance. The Algorithms size is 

usually set using different approaches like “Constructive algorithms” or “Predictive 

algorithms” where the algorithm either starts from too small or too large network and 

then either constructed to a larger network or pruned to a smaller one(9). 

2.2.3.2 Neuron: 

Neuron is the fundamental part of the neural network often referred to as “Unit”. In a 

fully connected neural network, each neuron in a layer is connected to all the neurons in 

the next layer. A neuron gets weighted sum of inputs from the neurons in the previous 

layers, if it is not the input layer. It then passes that input through an activation function. 

If the output of the activation function is more than the already set threshold, the neuron 

will fire, means it will send its calculated output to the next layer. This firing of neurons 

means that it can now participate in the learning process and can send its computed 

output to the next layer. In Figure 2.3, it could be seen that 1st layer has 5 neurons as the 

number of inputs. The next layer to the input layer which is called Hidden layer has 3 

neurons that are not input dependent but user choice. 

 

Figure 2.4 Neuron 
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2.2.3.3 Activation Functions 

Activation functions are of great importance and acts as a fundamental part of a neuron. 

They aid in creating non-linearity in the neural networks. The most influential unit in 

the structure of neural network is the net inputs function commonly referred to as “the 

activation function or threshold function or transfer function”, which outputs a resultant 

value called as “unit's activation”(10). As we explained earlier, each neuron gets a 

weighted sum of inputs from the neurons in the previous layer. 

Depending upon the number of layers this weighted sum of inputs could grow more and 

more as it progresses through the layers in the network. Imagine if the network consists 

of large number of layers, this weighted sum would explode the network. To avoid this 

exploding of neural network by the computed weighted sum of inputs, activation 

functions are used. Depending upon the nature of the activation function you are using, 

the output of the neuron could be binary [0,1], in range of [-1,1] etc.  

There have been different types of activation function in use. One can create his own 

custom defined activation functions. New strategies in defining the activation functions 

have been proposed in literature. For example, for a convolutional neural network, a 

non-static adaptive activation function has been proposed that learns the function 

parameters during the training time and based on those learned parameters, generates 

several types of activation functions at the time of testing(11). In a traditional manner, 

fixed activations functions are used for each neuron. Below is the list of most 

commonly used activation functions for non- linear cases: 

1. Rectified Linear Unit: 

This activation function is shown in Figure 2.5. It does not only introduce non-linearity 

in the architecture of the neural network but also has very simple logic behind its 

functioning. It returns the same output as the input, if the input is positive; otherwise it 

would return the value as zero. This type of simplicity creates an effect of scarcity in the 

neural network, thus making it popular in the deep learning community. But the 

activation function has a slight issue as well. For the neurons whose output goes into the 

state 0 are turned off and are no longer respondents to the gradient updates, thus playing 

no role in the learning process. The issue is often referred as ‘Dying relu problem’. 

     (1) 

 

 

Figure 2.5 Rectified Linear Unit. Source(12) 
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2. Hyperbolic tangent function (Tanh(x)): 

This function is a ratio between the hyperbolic sine and the cosine functions and 

is shown in Figure 2.6. It is a sigmoid function that produces ‘s’ shaped curve. 

The output is bounded between [-1,1]. This activation function is usually 

preferred in the neural network due to back propagation approach which requires 

gradient calculations. The activation function has a little issue often termed as 

“Vanishing gradients”. It has a sharp slope in the centre which attracts as good 

distinction on predictions, but this slope almost vanishes near the edges. Thus, 

for any input change at those points, very little difference would occur in the 

output and the gradient would be small as well. Small changes in gradient would 

mean that the network would learn very slowly for those values. 

 

tanh(𝑥) =
sinh(𝑥)

cosh(𝑥)
                                        (2) 

 

 

Figure 2.6  Hyperbolic Tangent Function. Source (13) 

 

3. Sigmoid: 

The function has similar properties as of hyperbolic tangent function. It also gives a 

steep curve in the centre, but this steepness also vanishes (not so vivid) near the edges 

thus effecting the properties of the gradients. Unlike the Tanh, this activation function 

gives output in the range (0,1) as can be seen in Figure 2.7. It is also preferred due to the 

back-propagation trick in the neural network. The function is a preferred choice in case 

of binary classification case. But it has a slight issue of squeezing the gradients. 

 

 

Figure 2.7 Sigmoid Activation Function. Source (14) 
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4. Softmax: 

The function is mostly preferred in the case of multiclass classification. It gives as an 

output, an array of vectors (probabilities) that always sums up to 1. This function is 

often used to get probabilities as well. It gives categorical probability distribution, 

which tells the probability of any of the possible classes to be true. For calculating the 

probability of ith  class for a data sample in a dataset having  j classes, we have equation 

(3) mentioned below: 

 

 

 

 

2.2.3.4 Cost Function: 

The problem of learning from inputs to generate corresponding outputs can be dealt as a 

process of minimizing a suitable error function(15). This error function is referred to as 

objective function as well, in that case the goal is to maximize the specified objective 

function. Optimization problems use objective functions to select the solutions that 

yield high values of objective function(16).The objective function is also sometimes 

called as cost function or error function that the network tries to reduce. There is a 

variety of objective functions which are being used according to the field of application 

of the Neural network as well as the classification cases. Most commonly used error 

function is the Sum of Squared error (SSE) or Mean Squared Error (MSE)(17)(18)(19). 

In keras, for machine learning problems that can be categorized under Multiclass 

classification domain, the recommended cost function is categorical cross entropy as 

shown in equation (4): 

−∑ 𝑝(𝑥)log(𝑞(𝑥))𝑥                      (4) 

 

2.2.3.5 Gradient Descent: 

Gradient descent is a computational optimization algorithm in which the error function 

(which is dependent on the parameters which are weights of the network)is minimized 

by taking the derivative of the error function and updating the parameters of the neural 

network in the opposite direction of the derivative (the way these derivatives are 

computed is called back propagation). A trade-off is made between the accuracy as well 

the time for parameter updating depending upon how much data you use. According to 

(20) , commonly used gradient descent algorithms are: 

1. Batch gradient descent: 

In this strategy the gradient of the error function is computed with respect to the 

parameters for an error function over the entire training set in each update. 

2. Stochastic gradient descent: 

𝑃(𝑦 = 𝑗) =
𝑒
𝑧𝑗

∑ 𝑒𝑧𝑘𝐶
𝑘=1

       (3) 

where 𝑧𝑗is the weighted sum arriving into a particular neuron of the output layer and the 

denominator normalizes the output layer neurons to sum to one.    



10 
 

It performs the gradient update for each sample of training data thus it’s faster in 

updating the gradients, than the batch gradient descent. 

 

3. Mini batch gradient descent: 

This algorithm has been designed to take a mid-way between batch gradient 

descent and stochastic gradient descent. Mini batch represents the size of 

training set when divided into several parts. 

2.2.3.6 Optimizer: 

There are different types of optimizers that can be used in the neural network as helpers 

for the gradient descent. These optimization algorithms determine how the parameters 

are updated based on the computed gradient. Commonly use optimizers are explained 

below: 

1. Momentum: 

It basically tries to aid the objective function in getting trapped in the local 

minima (the minimum of the error function). Momentum works very effectively 

for stochastic gradient descent where the steepness is larger in one dimension 

than in the other for example near local minima(21).It guides SGD in the 

relevant direction and smooth out the oscillations(22) . 

 

2. Adam: 

Instead of computing only the first derivative of the objective function, Adam 

calculates the second derivative as well. In other words, Adam uses the second 

moments of gradient in attempting to optimize the objective function(23). The 

authors in (23)empirically proved the convergence goal, that was defined 

theoretically and demonstrated how well “Adam” performs. 

 

2.2.4 Types of Neural Network: 

As the research in the field of neural network is advancing, the available types of neural 

network are also increasing. The types of network from the earliest single-layer 

perceptron have evolved significantly into various types depending on their use cases. 

Some most commonly used neural networks are explained below: 

 

2.2.4.1 Single-layer Perceptron: 

It is a very simple and basic type of neuron consisting of only two layers: Input layer, 

Output layer. The neuron in the output layer takes a weighted combination of the input, 

applies some suitable activation function and passes it as a result. A typical perceptron 

can be seen in Figure 2.8. 
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Figure 2.8Perceptron 

 

2.2.4.2 Feed Forward Neural Network: 

These networks are also very popular and have been in use in a lot of areas. In a feed 

forward neural network all nodes are fully connected. There is at least one hidden layer 

between the input layer and the output layer. As the number of hidden layers increases 

from 1, the network becomes deep and is often referred to as deep neural network. 

There is no loop in the network. Back propagation is the common way of training this 

neural network. A typical feed forward neural network can be seen in Figure 2.9. 

 

Figure 2.9 Feed Forward Neural Network 

 

 

2.2.4.3 Recurrent Neural Network: 

These networks are similar to the feed forward neural network with a major difference. 

This difference is the presence of loop in its layers. In a feed forward neural network, 

we assumed that all the outputs of each neuron in a particular layer can be computed 

independently of each other. Whereas, in some cases at some point in time the 

prediction of output might be dependent and could be better predicted if the previous 

output is also known. This kind of system could be seen in the way natural language 

processing occurs. This type of dependency induces a memory in these networks so that 

the network is able to remember about its calculations. A typical recurrent neural 

network can be seen in Figure 2.10. 
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Figure 2.10Recurrent Neural Network 

 

 

 

2.2.4.4 Autoencoders: 

These types of neural networks have two parts: Encoding part, Decoding part. So, in 

terms of layers we can say that they have an input layer, encoding layer and decoding 

layer. These networks are used in unsupervised learning. They try to generate the copy 

of its input while learning the properties of the data. Autoencoders resemble Principal 

Component Analysis but it provides more flexibility and can learn both linear and non-

linear representations of the data. It can also be used to search for common 

representations across data. There are further several types of Autoencoders depending 

on the usage requirements. A typical autoencoder is shown in Figure 2.11. 

 

Figure 2.11Autoencoder 
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2.2.4.5 Extreme Learning Machine: 

These neural networks are a variation of feed forward neural network and can be seen in 

Figure 2.12. It works faster than the feed forward neural networks. It does not use 

backpropagation or gradient descent for tuning its parameters. They key aspect behind 

its working is that the number of neurons in the hidden layer are generated randomly. 

This is also one of the downsides as the size of the hidden layer could randomly add up 

poorly chosen for the learning task. 

 

Figure 2.12Extreme Learning Machine 

 

 

 

2.2.4.6 Radial Basis Neural Networks: 

These neural networks are also a slight variation of feed forward neural networks. There 

neural networks use radial basis as their activation in the neurons. They perform 

relatively better on classification tasks. The output is determined from weighted sum of 

RBF neurons and number of output nodes is one per class to be classified. Ref Figure 

2.13.  

 

Figure 2.13 Radial basis neural network 

 Based on the availability of time and resources, only a feed forward neural network was 

attempted in this work. 
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3 Literature Review: 
 

This chapter represents the literature review on the application of feed forward neural 

networks, multi-task learning and continual learning in finance particularly in terms of 

Business process automation. 

 

3.1 Feed Forward Neural Networks in Financial Process 

Automation: 
 

So far, neural networks or in general machine learning has been employed in the field of 

finance in very limited domains. The domains like fraud detection, mortgage, stock 

prediction, etc. that have been targeted are vital points for the financial business and so 

part of the research has been focussed on trying to reduce the risk factors of financial 

institutions rather than automating business processes. 

Those areas of finance, that can give leverage to a company in terms of efficient 

business processes and particularly easy Invoice-to-pay processing hasn’t been targeted 

much yet. However, under the category of Order-to-Cash (O2C) which also covers the 

domain of invoice automation, it has been tried to predict the customers that can 

potentially “default” and thus need to be given customized treatment by analysing the 

invoices data. For example,(24)used the invoices data as a supervised classification 

learning problem to predict those customers that would pay late and needed suitable 

actions in advance, to improve the Account Receivables but this O2C work did not 

employ neural networks. 

(25)has worked on classifying a relatively smaller set that consists of 560 digitally 

scanned invoices into 68 different classes based on imaging by focussing mainly on the 

features to extract information from the images of invoices. (26) used a convolution 

neural network to address the problem of recognizing invoices and determining if the 

invoice is printed by machine, is it written by hand or it’s just a normal receipt. This 

paper also focussed on feature extraction through complex deep neural network for 

images, however for classification they have used the commonly recommended 

machine learning algorithms. Surprisingly KNN (K Nearest Neighbours) surpassed the 

results in terms of classification. However, none has tried to automate the classification 

of invoices into a certain category of an attribute that is a part of invoices data. 

If we look into neural networks applications in finance further, our supposition 

mentioned already regarding usage of neural networks in finance, seems to strengthen. 

During the 90’s, the use of the feed forward neural network in finance increased steadily 

in different fields mainly, prediction of bankruptcy, forecasting stock market, credit 

analysis and business cycle recognition(27). Moreover, (28) also suggested, that 

majority of the applications of neural network in finance have targeted “default” 

prediction in financial decisions particularly. The literature searched varied in the 

domains like predicting stock, bankruptcy, fraud detection, construction contract, credit, 

etc. with not even a single paper trying to automate a tedious manual financial process. 
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Among the cited list of publications, the only article that seems to resemble our research 

approach was (29) that used feed forward neural network for prediction of interest rate, 

to support efficient investment strategy. But it differs significantly from our work in 

terms of the data used, methodology employed which in their case is only a feed 

forward neural network with a 33-3-2-1 topology and above all, the target class 

predicted which in our case are the categorical attributes for invoices and in their case, 

and  interest rate. 

Some researchers used neural networks in addition to other popular machine learning 

algorithms, but the domain of work remained the same as explained above. For 

example,(30)built scientific model to combat fraud using several strategies including 

neural networks on transaction’s data and found out that neural network performing 

better than the decision trees and logistic regression when compared on the basis of lift 

chart for prediction of “default” transactions. 

We came to this conclusion that not only has the aim of the research, revolved around 

the subjects of predicting fraud, stock market, credit, etc. but also the topology 

employed for the neural networks, has remained pretty much the same i.e. majority have 

used only 1 hidden layer with only a few using 2 hidden layers. While few have tried to 

automate some financial business process as well. 

Also, the use of the feed forward neural network was pretty common with some 

exceptions like some papers have made the use of recurrent neural networks for the 

targeted financial problems (31). 

 

3.2 Multi-Task learning in Financial Process Automation: 
 

Multi-task learning has been used widely in different domains giving substantially 

better results.(32)has used in image detection for joining the sparse sub-hyperspectral 

models to detect a target in high spectral images. 

Yet, similar to our findings regarding feed forward neural network, it appears that the 

use of Multi-task learning is also limited to afore mentioned domains but comparatively 

there is less material available for review in terms of its financial applications. For 

example,(33)took Canadian stock data of upto 8 years, monthly treasury bills, applied 

partially soft parameter sharing for predicting future returns of stocks and concluded 

that partial Multi-Task learning in the form of parsimonious model performed better for 

the given set of targets. 

(34) also applied MTL on financial forecasting but the aim was to propose the 

regularization in the typical neural network architecture. It is worth mentioning that 

both of these papers focussed on time series aspect as well which is out of the scope for 

this project. 

However, any researches, that could suggest the use of multi-task learning to automate a 

financial process could not be found let alone invoice automation. 

 



16 
 

 

3.3 Continual Learning in Financial Process Automation: 
 

 

Another variation of the feed forward neural network that we used is Continual 

Learning. Continual learning or Lifelong learning (LL) has garnered much attention in 

recent years. The technique mainly applies the use of models that have already learned 

tasks, to perform better after enhancing their learning from the tasks learned later in a 

continual manner (35).  

However, the technique usually suffers from Catastrophic forgetting in which the 

learning of the new tasks interferes with the knowledge from already learned tasks (36) 

. (36) has also discussed in detail the ideas for rectifying the problem of catastrophic 

forgetting and concluded that while learning the model could validate itself repeatedly 

by keeping snapshots of parameters and a snapshot of original dataset. Though the 

technique is becoming popular, but it hasn’t been tested much yet for classification of 

invoices. 

(8) has worked on classifying the documents that consisted of Invoices using a dynamic 

approach towards incremental learning. It also incorporates the idea of dynamically 

creating a new neuron depending upon receiving data which might have a class that 

didn’t exist in the previously learned data set. Although the approach followed can be 

categorized to the continual learning we performed, however the concept of 

dynamically evolving network of neurons base on the current data set, distinguishes 

their approach from ours. 

We have discussed this technique further in the technical implementation section. 
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4 Technical Implementation: 
 

4.1 Setup: 

To begin with, we used sklearn Multi-Layer Perceptron library for our work. Due to less 

flexibility in the functionality of sklearn Multi-layer perceptron library and more ease of 

use in the open source library Keras, we shifted our work to Keras. In the table 4.1 

below, are the details of the tools and technologies that we have used: 

 

Frameworks/ Tools  Keras on TensorFlow 

Evaluation strategy K - Fold Cross Validation where k=4 

Language Python 

Visualizations for results interpretations TensorBoard, Matplotlib  

Table 4.1 Tools and setups 

 

 

4.1.1 Keras: 

Keras is an open source neural network library that is available in python and R. It acts 

as an application programming interface on the comparatively complex neural network 

libraries like TensorFlow, Theano, CNTK. Keras further provides variety of functional 

API and sequential models to implement a variety of Neural networks. 

4.1.2 TensorFlow: 

TensorFlow is an open source machine learning framework that provides variety of 

numerical computations with ease. It is used to make different machine learning models 

at different levels of abstractions. 

4.1.3 Python: 

Python is a scripting language and is very popular for its use in machine learning 

models. It supports different programming paradigms like functional programming, 

object-oriented programming. Machine learning and specifically neural networks 

supporting frameworks allows using python. Several versions of python have been 

released. The version used in this empirical work is: 3.6.4. 

4.1.4 Matplotlib: 

Matplotlib is a plotting library in python. It provides various graphics and 

visualizations. This library has been used to visualize the performance of the machine 

learning algorithms under investigation. 

4.1.5 TensorBoard: 

TensorBoard is a library being developed to visualize the algorithm performance and its 

learning. The visualization provides interactive insights into the algorithm performance 
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on training data, validation data and test data. Also, for very deep neural networks one 

can visualize the network and parameters flow. 

4.2 Methodology 

 

In all the machine learning examples, the data pre-processing is an important and 

critical step in the cycle of machine learning, training and predictions. Amongst the 

commonly known practices, the most important is handling missing data. In the data 

files used in the study, missing data was marked by several notations:  

["","NA","N/A","empty","NaN","Empty","nan","NAN"]. 

So, a common representation to represent missing data was first needed. Therefore, all 

the values in the afore mentioned list as were marked as “unknown” in all over the 

dataset. The strategy employed for the missing values imputation is “Complete Case 

Analysis” where the samples having missing data in the target class are deleted. Some 

of the softwares have this functionality to remove rows having missing data either in 

predictors or outcome which is called complete case analysis (37) . 

• The nominal attribute in the dataset was binned manually on the basis of the 

expert’s knowledge into 16 bins. 

• For Target Variable1, the max difference in the count for Customer1 was found 

around 300 for the top most occurred value and the top fifth occurred value. For 

Customer2, this difference was around 17,786, if the first highest occurred value 

count is compared with the fifth highest occurred value. Similar scenario was 

observed for Target Variable2 as well, in both datasets. The skewedness for data 

available as Target Variable1 is shown in Figure 4.1. 

 

Figure  4.1 Skewedness in Target Variable1 

 

 

 

• Based on data distribution and expert judgement, a sample from the available data 

was randomly selected so that previously top 5 most common values of the target 

variables will now have same number of occurrence count. The same strategy was 

followed on Azure ML Studio so that the results can be compared. As the nature 

of both target variables was categorical even though they were represented using a 

combination of numbers, taking mean or average of these columns would not 

make any sense. However, using open source python library, min-max 

normalization was done before feeding the data to the actual model. This type of 

normalization (which in our case was linear transformation) is imperative in order 

to get unbiased results from the model(38). 
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The analysis presented in the Table 4.2 below, was performed in accordance with the 

purpose of the algorithm which was to make a common predictive algorithm that could 

work on both datasets. 

 

Target Classes 

Properties 

Customer1 Customer2 

Total Rows in Dataset 8890 67363 

Unknown in Target Variable1 

and Target Variable2 

0 0 

Top 5 occurred values row 

count (Target variable1) 

658, 480, 460, 354, 334, 331, 

287 

19922,17150,3520, 

2676,2136,1947,1931 

After handling data 

Skewedness, row count of the 

top occurred values is: 

334,334,334, 

334,334,331,287 

2136,2136,2136, 

2136,2136,1947,1931 

Total Rows after handling 

Data Skewedness 

8274 32639 

One Hot Encoding, 

data (rows, columns) 

(8274,2664) (32639, 17568) 

Unique values in Target 

Variable1 

128 176 

Unique values in Target 

Variable2 

25 11 

Table 4.2 Data preprocessing on Customer1 and Customer2 

 

4.2.1 K - fold Cross Validation: 

For a large amount of data, k-fold cross validation can be used for performance 

evaluation of classification algorithms, because the training data is generally insufficient 

to evaluate algorithm performance(39). The dataset was divided into 4 folds. At a time, 

only first 3 folds are given as training set and the remaining 1-fold is kept as test set. 

This process is repeated four times. Since the divided test set in this data, was not 

unseen data but a portion of available data so we named it as Dev Test Set. So, we will 

refer the commonly used term “Test Set” as “Dev Test Set”. At the time of dividing the 

data into training and dev test sets, business logic was used as a constraint on splitting. 

According to the business logic, two or more invoices belonging to one customer should 

not exist both in training and test set. The primary key that is used to identify the 

invoice-customer relationship was checked at the time of splitting and it was made sure 

that a particular customer’s invoice can only be found either in Training set or DevTest 

Set but not both. 

4.2.2 Validation Set 

The training set is further divided into Training and Validation set. Python scikit-learn 

provides a library “train_test_split”, that returns the splits of the target classes 

proportional to a desired split proportion of the overall data set. The resulted splits were 

then checked to verify that the row count after splitting in each of the fold is somewhat 
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similar. The statistics of the rows after splitting and the target class distributions are 

shown in the Table 4.3& Table 4.4 below: 

 

Customer1 Fold1  Fold 2 Fold 3 Fold 4 

Rows in Training Set  6384 6422 6919 6719 

Rows in DevTest 1890 1852 1355 1555 

Rows in Validation set 1916 1927 2076 2016 

Remaining rows in 

Training set 4468 4495 4843 4703 

Columns after One Hot 

Encoding 2664 2664 2664 2664 

Total Rows 8274 8274 8274 8274 
Table 4.3 Customer1 - Row counts in Training set, validation set & Dev Test set 

 

 

Customer2 Fold1  Fold 2 Fold 3 Fold 4 

Rows in Training Set  26,089 26259 26087 25930 

Rows in DevTest 6550 6380 6552 6709 

Rows in Validation set 7827 7878 7827 7779 

Remaining rows in Training 

set 18262 18381 18260 18151 

Columns after One Hot 

Encoding 17568 17568 17568 17568 

Total Rows 32639 32639 32639 32639 
Table 4.4 Customer2 - Row counts in Training set, validation set & Dev Test set 

Before splitting, all the data was label encoded and One-hot-encoded using libraries 

from sklearn package. 

 

4.2.3 Classification Platform 

 

Keras provides different API’s to create custom designed models for feed forward 

neural networks. In the current study Keras sequential model is used to build our feed 

forward neural network for traditional classification platform. This approach will be 

referred as Classical Model under investigation in the later parts of the work, for 

referencing while comparing it with the other machine learning approaches. In the 

graphs that designed for visualizing the algorithm performance, this approach will be 

represented as CLF. Besides CLF, the other approaches that we have tested are Multi-

Task Learning and Continual Learning. 

 

4.2.4 Steps involved in defining Artificial Neural Network 

 

In order to optimize the use of the computational resources as well as minimizing the 

processing time, the features of the neural network for implementing a predictive 

algorithm were determined as below: 
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a. Hyperparameters are those parameters of the neural network that cannot be 

directly determined from the samples/cases in the given data but requires 

careful tuning and estimation for good performance of the predictive 

algorithm. In this case, a domain of hyper parameters is first defined and 

tested the performance of algorithm over those values. This allowed to 

restrict the possible values of hyper parameters for grid search to a set, so 

that the algorithm takes less execution time. 

b. The domain of hyperparameters including the values that are being used in 

Azure and drew plots about the behaviour of the predictive algorithm on 

those domain values was then defined.  

c. By drawing conclusion and careful heuristics from those graphs, the selected 

hyperparameters were being able to confine the domain that required to be 

tested.  

d. The predictive algorithm was then trained using Grid search, on the selected 

set of Hyperparameters over the tested domain of values. 

 

4.2.5 Hyper Parameters Space Exploration 

As mentioned earlier, a suitable range of values was defined as the domain of the hyper 

parameters. The algorithm performance was then tested on those parameters and the 

domain values were confined further. This allowed us to spend less time in execution by 

avoiding the algorithm run on unnecessary parameters. Some of the most important 

hyper-parameters whose values can influence the algorithm directly, are explained in 

this chapter. 

 

 

 

 

4.2.5.1 Learning rate: 

For learning rate, we tested the domain values [0.1, 0.001] and kept the values of the 

rest of the hyper parameters fixed. 
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Figure 4.2 Accuracy of the classical model on each epoch for 
Learning rate=0.1, BatchSize=50, Epochs=100, Prediction 
accuracy on training set= 76% (in blue color). Prediction 
accuracy on Training_Test set= 67% (in orange color). It 
stopped after 5 epochs 

 

 
Figure 4.3 Accuracy of the classical model on each epoch for 
Learning rate 0.001, BatchSize=50, Epochs=100, Prediction 
accuracy on training set=93% (in blue color). Prediction 
accuracy on Training_Test set= 80% (in orange color). It 
stopped after 14 epochs 

 

 
Figure 4.4 Accuracy of the classical model on each epoch for 
Learning rate=0.1, BatchSize=300, Epochs=100, Prediction 
accuracy on training set= 88% (in blue colour). Prediction 
accuracy on Training_Test set= 75% (in orange colour). It  
stopped after 5 epochs. 

 
Figure 4.5 Accuracy of the classical model on each epoch for 
Learning rate=0.001, BatchSize=300, Epochs=100, 
Activation=’tanh’, optimizer=Adam, DropOutRate=0.0. 
Prediction accuracy on training set= 93% (in blue colour). 
Prediction accuracy on Training_Test set= 79 

From the above displayed figure 4.2, figure 4.3, figure 4.4 and figure 4.5, we can see 

that, even though it takes more epochs, still the algorithm smoothly achieved high 

performance when the learning rate was set 0.001. When the learning rate =0.1, the 

classical model is performing well on the training data but not on the Dev Test Set. It 

takes abrupt shifts in its movement, regardless of the fact, that the number of epochs- 

the algorithm chose to run for, were less. From these figures, it was concluded that the 

learning rate could be fixed as 0.001. 
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4.2.5.2 Batch size: 

For Batch size, we tested the domain of values as: [50, 100, 200,300]. 

 
Figure 4.6 Accuracy of the classical model on each 
epoch for Learning rate=0.1, BatchSize=50, 
Epochs=100, Activation=’tanh’, optimizer=Adam, 
DropOutRate=0.0. Max achieved accuracy on training 
set=76% (blue line) and on Train_Test set=67% 
(Orange line) 

 

 
Figure 4.7 Accuracy of the classical model on each 
epoch for Learning rate=0.1, BatchSize=100, 
Epochs=100, Activation=’tanh’, optimizer=Adam, 
DropOutRate=0.0. Max achieved accuracy on 
training set=83% (blue line) and on Train_Test 
set=74% (orange line). 

 
Figure 4.8 Accuracy of the classical model on each epoch for Learning rate=0.1, BatchSize=200, Epochs=100, 
Activation=’tanh’, optimizer=Adam, DropOutRate=0.0. Max achieved accuracy on training set=87% (blue line) 
and on Train_Test set=74% (orange line). 

 

From the Figure 4.6, Figure 4.7 and Figure 4.8 it can be visible that the bigger batch 

size was performing better, but using all the batch sizes in the domain was preferred 

throughout the work, as there is no single rule for selecting a batch size. 
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4.2.5.3 Optimizer: 

The performance for RMSProp, Adam and stochastic gradient descent was then tested. 

 
Figure 4.9 Accuracy of the classical model on each 
epoch for Learning rate=0.1, BatchSize=50, 
Epochs=100, Activation=’tanh’, optimizer=Adam, 
DropOutRate=0.0. Max achieved accuracy on training 
set=93% (blue line) and on Train_Test set=80% 
(Orange line) 

 
Figure 4.10 Accuracy of the classical model on each 
epoch for Learning rate=0.1, BatchSize=50, 
Epochs=100, Activation=’tanh’, optimizer=Adam, 
DropOutRate=0.0. Max achieved accuracy on training 
set=93% (blue line) and on Train_Test set=80% 
(Orange line) 

 

 

 
Figure 4.11Accuracy of the classical model on each epoch for Learning rate=0.1, BatchSize=50, Epochs=100, 
Activation=’tanh’, optimizer=SGD, DropOutRate=0.0. Max achieved accuracy on training set=48% (blue line) 
and on Train_Test set=46% (Orange line) 

 
Figure 4.12 Classical model accuracy for each epoch for three optimizers. The line at the top in orange color 
indicates “Adam”, in Blue color is “RMS Prop” and in Red color is “SGD”.  ‘Adam’ is performing clearly better. 
‘SGD’ need more iterations 

 

From the figures above, it can be seen that the performance of the optimizer “Adam” 

was better than the rest of the optimizers. So, the value for the optimizer was fixed as 

“Adam”. With, stochastic gradient descent, the performance was still improving, and it 

would need more than 100 epochs to reach its end. 
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4.2.5.4 Classical Model: 

The classification platform that has been built using Keras sequential model consists of 

3 layers- “Input layer, Hidden layer, Output layer”. The number of neurons in the input 

layers is the same as the number of columns in the input feature data set. This input 

feature dataset that we used for training the algorithm is termed as X_train. Selecting 

appropriate number of nodes in both the hidden output layer and by careful training of 

the input and output weights, SLFNs (Single Layer Feed forward neural network) turns 

out usually a good choice for function approximation, digital signal and image 

processing, modelling, adaptive control and information retrieval(40). The author 

discussed SLFN in reference to hyper parameters tuning, however, similar careful 

consideration is needed for tuning of neural networks of any size. 

  

A suitable number of neurons were tested, varying the value around the one used in 

Azure ML studio. It was found that the 200 neurons seem to be the best option as after 

that the accuracy doesn’t vary. Similarly, the numbers of hidden layers were varied. 

Based on the prediction accuracies on the Dev Test Set, it was decided to keep only 1 

hidden layer. For the output layer, the numbers of neurons were kept the same as the 

number of unique values in the output class. This led us to fix the value of activation 

function as ‘softmax’ in the output layer. 

 

Since some of the hyperparameters requires careful tuning, it did not seem suitable to 

fix value for each of them. For example, for Batch size and DropOut rate we preferred 

grid search. Table 4.5 shows the values of the hyper parameters that we used in our 

classical model. 

 

Batch size 50,100,200, 300 

DROP-OUT RATE 0.0,0.1, 0.2 

ACTIVATION Tanh 

Based on our analysis in the process of hyper parameters space exploration, we fixed 

these values for the respective hyper parameters 

OPTIMIZER Adam 

LEARNING RATE 0.001 
Table 4.5 Classical Model Hyper - parameters 

 

 The Keras classical model was given freedom to select a best choice from those values 

of the hyperparameters after the model was trained for their all possible combinations. 

This strategy has been referred in this paper as “Grid Search”. Any open source library 

for doing this grid search was not used rather it was implemented manually. The key 

reason behind this was ‘hidden tuning of neural network’ that the open source library 

(for grid search) might be doing. 
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4.3 Models: 

As discussed in chapter 3, there is so much variety in the types of models, that are 

available in the domain of neural networks. Based on the data size and the type of 

prediction required, three main types of neural network applications were chosen and 

experimented with the data in four ways. In all applied strategies, Multi-layer feed 

forward neural network has been used. 

4.3.1 CLF: 

The first strategy corresponds to the traditional multi-layer perceptron. From this 

section further, this classifier is represented as “CLF”. 

4.3.1.1 General Comparison: 

The performance of this model has been cross-validated first in general. This means that 

the performance on the data generated by the cross-validation split of our classifier 

“CLF” and the prediction accuracies of Azure ML studio has been compared on the data 

generated by cross-validation split of Azure.  

4.3.1.2 Exact Fold Comparison: 

In order to strengthen confidence on the designed model, the performance of “CLF” was 

compared with the Azure ML Studio on exact same data. The training data and test data 

of 4-Folds was taken from Azure, and the performance of “CLF” was tested by training 

and testing it on those datasets. 

4.3.2 Multi-Task Learning: 

The effect of the performance of classical model was compared with another approach 

called Multi-Task learning. The concept of Multi-Task learning originated by (41) as 

mentioned in (42) and (43), however as deep networks were not prevalent at that time, 

this approach targeted shallow networks (44). It is a type of predictive modelling in 

which the learning of one task is influenced by the learning of other tasks (41). It’s an 

inductive transfer method with the goal of achieving better generalized performance by 

leveraging shared information in related tasks (45). If the tasks are related, it is better to 

learn them simultaneously rather than following the typical way of learning one task at 

a time (46). In most cases, learning multiple related tasks in parallel has shown to 

achieve better performance (41)(47)(48)(49).   

(50) has suggested that multi-task learning exhibits similarity to statistical multi-level 

learning and by carefully designing the prior distributions, has utilized Bayesian 

approach as a strategy for Multi-Task learning (MTL). (51) has exploited hidden 

properties of phoneme sub-categories on vocabulary speech database and then by 

utilizing several techniques incrementally grew larger networks without any 

performance degradation. Many other scientists have cited this paper as a well depicted 

discussion to defy the traditional strategy of “Divide and Conquer” and leading to MTL 

strategy. (41) has compared the effect of single task learning (STL) versus multi-task 

learning (MTL) on object recognition and was able to achieve 20-30% better accuracy 

in the latter case. (49)  has used MTL for natural language preprocessing.  

It could be seen that many related forecasting indicators can be predicted 

simultaneously in the domain of finance (52).(53)has applied multitask learning in stock 

price prediction by utilizing the relationship between companies and compared the 
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performance of this model with the individual stock price prediction model and 

empirically demonstrated improvements in the trading profit. 

The important notion is that the tasks which are going to be learnt in shared model, 

should somehow be related so that they can serve as a source of inductive learning (41). 

Keeping this assumption, MTL was used to not only determine the quality of 

performance but also, to know if there exists any dependency in the target business 

variables. 

Both the prediction classes, in the Invoices of the tested datasets of two customers, were 

suitable to be used in Multi-task learning, as the feature set that is used for their training 

is common. The training process of both prediction variables was combined. This 

enabled to determine if any dependency in the prediction variables that could be used. It 

also helped to save the training time by carrying out the training of both Target 

Variables simultaneously. 

4.3.2.1 Multi-Task learning – Model architecture: 

Multi-Task learning in neural networks architecture is mainly achieved through 

parameters sharing in the following ways: 

1. Hard parameter sharing 

2. Soft parameter sharing 

4.3.2.1.1 Hard parameter sharing: 

The approach is also known as classical approach as was first introduced in (41). In the 

mechanism, the hidden layers are kept shared while keeping the output layers (which 

are task specific, thus their number would be same as the number of the tasks) unshared 

and independent of each other (42).  This mechanism is usually preferred due to its 

several advantages:  

1. Firstly, it avoids overfitting (54), as the added output neurons will act as regularizes 

for hidden representation (44).   

 2. Secondly, the implementation of this mechanism is easy (43). However, (55) has 

proposed a new architecture other than the traditional ones mentioned above, with the 

name as SLUICE network using recurrent neural network. The network could be 

replaced with Multi-layer perceptron as well and founded on the fact that the network 

Figure 4.13Hard parameter sharing 
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can learn selective sharing of layers, subspaces. Resultingly, the model even 

outperformed the performance of hard parameter sharing. Below Figure 4.13 is visual 

description of how hard parameter sharing works. 

 

4.3.2.1.2 Soft parameter sharing: 

Soft parameter sharing is also known as column-based approach (44). Every task is 

given its own independent model and parameters; however, the parameters are then 

shared across the models. (42)also suggested the similar approach by allowing the task 

to share kernel hyperparameter but each task can have different kernels. In Figure 4.14, 

a visual understanding of how soft parameter sharing works could be achieved. 

 

Figure 4.14 Soft parameter sharing 

 

Besides, the most popular strategies mentioned above, there are several other methods 

proposed as variations of the already described strategies. For example, (56) has 

introduced Multi-task learning in the IVM algorithm where the heuristic, greedily 

selected the most informative examples from the tasks but it slightly impacts the 

computational cost. The other variation includes Regularized Multi-task learning where 

the tasks are assumed to be similar (have come from some particular distribution), 

however it puts a penalty for each task depending on how much it gets deviated from 

the mean(46). (57) has empirically shown the achievement of state-of-the-art results by 

using Multi-task learning in Web search ranking. Boosted decision trees have been used 

by the author along with l1-regularization to have sparsity. In the current project 

however, regularization wasn’t used, dropout was introduced in the network instead. 
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(58) has proposed another variation of Multi-task learning with the name Robust Multi-

task learning. In their proposed algorithm, the tasks relationship is captured using a low 

rank structure and simultaneously identified the outlier tasks using a groups sparse 

structure which can be seen in equation (8). 

  (8) 

 

Where L is low rank matrix capturing the task dependency, S is Sparse Matrix capturing 

the non-dependency (or as the author called – outliers). li and si forms the weight vector. 

For ith task and jth training sample, we have x representing the sample and y representing 

the target class. 

 

 

4.3.2.2 Technical Implementation: 

Keras provides functional API that can be used to develop a customized model. This 

API was used to build a neural network with one hidden layer. Input_layer is the input 

layer for the neural network with number of columns – 2723. This Input layer is 

connected to the layer “Dense_4” which is the only hidden layer in this neural network. 

The hidden layer has the parameters = 544800. In the Table 4.6 below, it can be seen 

that hidden layer is common and shared by Target Variables which are represented by 

the Dense_5 and Dense_6 layers respectively (can be seen in Connected to column of 

the table). 

Layer(type) Output 

neurons 

Parameters 

# 

Connected 

to 

Input_layer 2723 0 
 

Dense_4 200 544800 Input_layer 

Dense_5 128 25728 Dense_4 

Dense_6 25 5025 Dense_4 

Total parameters 575,553 
  

Trainable 

parameters 

575,553 
  

Table 4.6 Multi-Task Learning Model 

 

The Table 4.7 shows how the numbers of parameters shown in Table 4.6 are calculated. 

 

Combining input layer from 

the previous layer: 

2723*200 = 544,600 

Adding bias parameters for each of 

the neuron in the hidden layer: 

544600+200=545,800 

 

200*128= 25,600 

Adding bias parameters for each of 

the neuron in the output layer: 

25,600 + 128=25,728 
Table 4.7 Multi-Task learning number of parameters calculation 

min
L,S
L((l i+si)

T|x ji , y ji )+α||L||+β∨|S|∨❑1,2,
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The objective function from simple Categorical Cross entropy is changed as below in 

Equation (9): 

1

𝑛
∑ ∑ 𝑦𝑗

𝑖 log �̂�𝑗
𝑖 + (1 − 𝑦𝑗

𝑖) log(1 − �̂�𝑗
𝑖)𝑘

𝑗=1
𝑛
𝑖=1                                                           (9) 

In equation (9), we are summing up the individual log loss functions. Total tasks are 

represented by ‘k’ whereas n represents the total training samples. 𝑦 represents the 

actual output for 𝑗 task for sample 𝑖. �̂� represents the predicted values for 𝑗 task for 

sample 𝑖. 

 

4.3.3 Continual Learning: 

Continual learning is the ability to learn based on new data while retaining the 

knowledge from previous learning experience(59). A typical artificial neural network 

forgets its previous knowledge while learning based on current information. This 

forgetfulness in literature has been commonly referred as catastrophic forgetting 

(59)(60) . Artificial neural networks are considered liable to suffer from Catastrophic 

forgetting which means learning on current data will interfere with the previous learning 

information (61)(36). However, the phenomenon of catastrophic forgetting occurs when 

the network is trained in sequential pattern on different tasks and the weights of the 

networks changes according to the objectives of the new tasks (62) . 

According to (63), learning and remembering different tasks would also help in 

generalizing artificial intelligence. In a complex environment, it could also help in 

achieving full autonomy by incrementally building its competence while considering 

tasks in a continuously growing capacity (64).  

4.3.3.1 Continual learning – Technical Implementation: 

Different approaches have been used to include the continual learning capability in the 

artificial neural networks. (65) has mentioned 3 approaches based on the available 

dataset for learning which are explained below: 

a. “Classical fine-tuning for new tasks”: Two given datasets are disjoint and the 

task in the second dataset changes. 

b. “Continuous learning of known classes”: The cases in the 2nd dataset have 

known classes that the network has learned earlier while training on the 1st 

dataset. One might consider this approach resembling the online learning and the 

datasets could be perceived as continuously growing. 

c. “Continuous learning of known and new classes”: It might happen that the 2nd 

dataset that is available for learning might have not only the already known 

classes but may also include some new unseen classes as well. So, the both 

available datasets may not be the same. 
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The well-suited strategy in the case of OpusCapita was case b, the case of 

continuously growing datasets. The paper further suggests a network strategy for 

all the 3 cases. For our case, the author suggests that the network can be trained 

on 2nd data set without any need of modification in the network architecture. 

This approach was followed, and the results of artificial neural network were 

compared with and without the continuous learning case. 
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5 Results: 
 

5.1 Accuracy Metrics 

 

 Every algorithm has some performance measures that determine the level of accuracy 

or the performance level of that algorithm. OpusCapita needed three business metrics to 

determine how well the predictive algorithm is working: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦%𝑜𝑛𝐷𝑒𝑣𝑇𝑒𝑠𝑡𝑆𝑒𝑡 =
𝑁𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑟𝑜𝑤𝑠𝑖𝑛𝐷𝑒𝑣𝑇𝑒𝑠𝑡𝑠𝑒𝑡

𝑁𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑟𝑜𝑤𝑠𝑖𝑛𝐷𝑒𝑣𝑇𝑒𝑠𝑡𝑠𝑒𝑡
∗ 100  

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦%𝑜𝑛𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝑆𝑒𝑡 =
𝑁𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑟𝑜𝑤𝑠𝑖𝑛𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝑠𝑒𝑡

𝑁𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑟𝑜𝑤𝑠𝑖𝑛𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝑠𝑒𝑡
∗ 100 

 

𝑊𝑖𝑡ℎ𝑖𝑛𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝐼𝑛𝑣𝑜𝑖𝑐𝑒𝑠% =
𝑁𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑟𝑜𝑤𝑠𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑤𝑖𝑡ℎ𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒>𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

𝑇𝑜𝑡𝑎𝑙𝑟𝑜𝑤𝑠𝑖𝑛𝐷𝑒𝑣𝑇𝑒𝑠𝑡𝑠𝑒𝑡
∗ 100

      

   

 

• Business has set a confidence threshold of 89% in Azure ML studio. So, algorithm 

performance with Azure ML Studio was compared, first on the basis of business set 

threshold. Then it was varied along a range of values to get an overall performance 

view of our implemented algorithm and compared it with Azure ML studio. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑊𝑖𝑡ℎ𝑖𝑛𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝐼𝑛𝑣𝑜𝑖𝑐𝑒𝑠% =
𝑁𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑟𝑜𝑤𝑠𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑤𝑖𝑡ℎ𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 > 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

𝑇𝑜𝑡𝑎𝑙𝑟𝑜𝑤𝑠𝑖𝑛𝐷𝑒𝑣𝑇𝑒𝑠𝑡𝑠𝑒𝑡
∗ 100 

 

5.2 General Comparison: 

In this comparison, the best results that could be received from Azure ML studio were 

compared and classical model was applied on the same dataset. The data in each of the 

folds to be tested, is not guaranteed to be same but the strategy of data splitting used in 

both the cases is same. 

5.2.1 Customer1 Target Variable1: 

Below are the accuracies produced by the classical model. The data used in the folds 

below in Table 5.1 is based on the random sampling and splitting. The splits are not 

guaranteed to have same data in each fold as Azure Folds: 
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Customer1 Target 

Variable1: 

Fold1  Fold 2 Fold 3 Fold 4 Avg 

Accuracy% on Training Set  94.58 94.99 95.11 94.54 94.80 

Accuracy% on Dev Test Set  74.66 72.30 71.81 76.14 73.73 

Invoices% predicted with 

confidence >89%  
54.29 55.83 55.94 55.31 55.34 

Accuracy% on Invoices 

predicted with >89% confidence 
95.81 96.23 93.14 94.42 94.90 

Number of invoices predicted 

with confidence >89%  
1026 1034 758 860 919.5 

Number of invoices predicted 

with confidence >89%, correctly 
983 995 706 812 874 

batch_size* 300 50 300 200 -- 

dropout_rate* 0.0 0.2 0.2 0.2 -- 

optimizer:  adam adam adam adam -- 

Table 5.1 Customer1 Target Variable1 statistics 

*values that are chosen by algorithm when grid search was run. 

 

 

Figure 5.1: Customer1 Target Variable1 – General Comparison Accuracy on Dev Test Set 
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The Figure 5.1 shows the comparison of the investigated model and the ML Studio. On 

average, the model could do the predictions with 73.72% accuracy on the test sets. 

However, the accuracy achieved from ML studio on average is 73.60%. 

 

 

 

 
Figure 5.2: Customer 1 Target Variable1- General Comparison 

 

 

In the Figure 5.2, the invoices that could be predicted with over 89% confidence were 

checked. The resulting model from the current study could predict around 55% invoices 

with more than 89% confidence. On the other hand, ML studio could predict 62 % 

invoices with more than 89% confidence. 

 

 

 

5
4

,2
8

5
7

5
1

,8
6

5
5

,8
3

1
5

6
6

,0
5

5
5

,9
4

0
9

5
9

,8
1

5
5

,3
0

5
4 7

4
,2

6

5
5

,3
4

0
8

7
5

6
2

,9
9

CLF ML S T U DIO

P
E

R
C

E
N

T
A

G
E

MODEL

CUSTOMER1 TARGET VARIABLE1 –GENERAL 
COMPARISON. PREDICTIONS FOR INVOICES 
WITHIN THRESHOLD >89%.

Fold 1 Fold2 Fold3 Fold4 Average



35 
 

 
Figure 5.3: Customer1 Target Variable1 – General Comparison Accuracy of With In Threshold invoices 

Furthermore, the accuracy of those invoices was compared, that were predicted over 

89% confidence. The Figure 5.3 above shows the fold wise comparison of the 

prediction accuracies. The accuracy of currently investigated model was 94.89% while 

accuracy for ML studio was 92.85% for prediction of invoices. 

 

 

 

 

 

5.2.2 Customer1 Target variable2: 

Later the performance of the investigated model for the 2nd target variable was analysed 

which was referred as Target variable2. Table 5.2 shows the descriptive performance on 

accuracy. 

CLF Fold1 Fold2 Fold3 Fold4 Average 

Accuracy% on Training Set  99,29 99,42 99,40 99,37 99,3693375 

Accuracy% on Dev Test Set  97,82 96,02 95,80 94,47 96,02666 

Invoices% predicted with 

confidence >89%  

90,17 90,90 87,09 87,89 89,012 

Accuracy% on Invoices 

predicted with >89% 

confidence 

99,106 99,3743 98,8505 99,5249 99,213925 

Number of invoices predicted 

with confidence >89%  

1119 959 870 842 -- 

Number of invoices predicted 

with confidence >89%, correctly 

1118 953 860 838 -- 

Table 5.2: Customer1 Target Variable2 
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Figure 5.4: Customer1 Target Variable2 – General Comparison 

The Figure 5.4 above shows the accuracy of the resulting model as well as the ML 

studio. The model investigated in the current study resulted in the predictions on the 

Dev Test set with 96% accuracy while we were able to get 94.7% accuracy by ML 

studio. 
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Figure 5.5: Customer1 Target Variable2 – General Comparison 

Later on, the fold wise count of Invoices that were predicted by the algorithm were 

compared with a desired level of confidence of the prediction. Form Figure 5.5, it could 

be seen that on average, model proposed in the current study could predict 89% invoices 

with more than 89% confidence while ML studio could predict 92% invoices with more 

than 89% confidence. 
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Figure 5.6: Customer1 Target Variable2 – General Comparison 

 

After the performance of the algorithm with the ML studio on accuracy of those 

invoices that were predicted over 89% confidence were subject to comparison.  This 

resulted in 99% accuracy on average in its prediction whereas on contrast ML studio 

was 98% accurate as displayed in Figure 5.6. 

 

 

5.2.3 Customer2 Target Variable1: 

Here the comparison of the performance of our algorithm with ML studio for data of 

Customer2 is displayed below Table 5.3 below shows the accuracy statistics. 

CLF Fold1 Fold2 Fold3 Fold4 Average 

Accuracy% on Training Set  94,93 93,23 90.14 92,13 92.61 

Accuracy% on Dev Test Set  71.59 74.14 72.63 73.26 72.90 

Invoices% predicted with 

confidence >89%  

52.78 55.77 52.32 53.03 53.47 

Accuracy% on Invoices 

predicted with >89% confidence 
91.15 91.51 91.45 91.68 91.44 

Number of invoices predicted 

with confidence >89%  
3457.09 3558,12 3428 3557,78 3500,24 

Number of invoices predicted 

with confidence >89%, correctly 
3151.13 3256.04 3134,92 3261.77 3200.96 

Table 5.3: Customer2 Target Variable1 
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Figure 5.7: Customer2 Target Variable1 – General Comparison– Accuracy on Dev Test Set 

The Table 5.3 and Figure 5.7 above shows the fold wise comparison of the accuracies 

on Dev Test set. The model investigated in the current study was able to predict with 

72.9% confidence while we almost same level of accuracy could be achieved from ML 

studio as well. 
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Figure 5.8: Customer2 Target Variable1 – General Comparison 

Then the performance of the algorithm by determining how many invoices could be 

predicted with over 89% confidence was examined. It is worth mentioning that the 

model investigated in the current study could predict more than 50% invoices with more 

than 89% confidence. However, ML studio could predict 72% invoices with more than 

89% confidence as shown in Figure 5.8 above. 
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Figure 5.9: Customer2 Target Variable1 – General Comparison 

In the Figure 5.9 above, it can be seen that the investigated model gives 91% accuracy 

with > 89% confidence. However, in spite of the fact that ML studio predicted 72% 

invoices with >89% confidence. Its accuracy is pretty low as compared to the devised 

model which is 85% accurate. 

5.2.4 Customer2 Target Variable2: 

The performance of our model for Customer2 for Target variable2 was compared. The 

key accuracy measures are shown in Table 5.4. 

 Fold1 Fold2 Fold3 Fold4 Average 

Accuracy% on Training 

Set  
99.80 99.80 99.60 99.80 99.75 

Accuracy% on Dev Test 

Set  

95.63 95.86 96.56 93.89 95.4829 

Invoices% predicted with 

confidence >89%  
89 89 89 89 89 

Accuracy% on Invoices 

predicted with >89% 

confidence 

88.72 90.75 91.33 89.23 90.004875 

Number of invoices 

predicted with 

confidence >89%  

99.05 99.39 99.84 98.37 99.160025 

Number of invoices 

predicted with 

confidence >89%, 

correctly 

629 657 611 613 627.5 

Accuracy% on Training 

Set  

623 653 610 603 622.25 

Table 5.4 Customer2 Target Variable2 – General Comparison 
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Figure 5.10: Customer2 Target Variable2 – General comparison – Accuracy on Dev Test Set 

In the Figure 5.10 above, it can be seen that the last bar on left side is slightly higher 

than the last bar on the right side. The model investigated in the current study gave 95% 

accuracy on Dev Test set for Target Variable2 on the other hand ML studio gave 

94.67% accuracy. 

 

 

 
Figure 5.11: Customer2 Target Variable2 – General Comparison – Invoices predicted with over89% confidence 

For invoices that are predicted with more than 89% confidence, The model investigated 

in the current study was able to predict 90% while ML studio performed slightly better 
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resulting in 92% invoice prediction with the set level of confidence as shown in Figure 

5.11. 

 

 

 

 
Figure 5.12: Customer2 Target Variable2 - Accuracy for Invoices predicted with over 89% Confidence 

Now, in the Figure 5.12 above, the prediction accuracy for invoices that were predicted 

with more than 89% confidence could be seen. The model investigated in the current 

study was 99% accurate while predicting 90% invoices with > 89% confidence.  While 

ML studio was 97% accurate in predicting 92% invoices with > 89% confidence. 
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5.3 Exactly Same Fold Comparison: 

 

The comparison of classical algorithm and Azure ML studio mentioned above was 

conducted on same datasets, but the data in each fold wasn’t guaranteed to be exactly 

the same. Therefore, the algorithm performance on exactly the same data was tested in 

each of the four folds that Azure ML studio was using in its 4-fold. The data for these 

folds was taken from Azure ML studio. Below in Table 5.5 are the results obtained from 

our classical platform: 

 

 

5.3.1 Customer1 Target Variable1: 

Target Variable1 Fold1  Fold 2 Fold 3 Fold 4 Average 

Accuracy% on Training Set  94,30 94,18 94,66 94,38 94,38 

Accuracy% on Dev Test Set  72,42857 74,11 66,59 84,5122 74,41 

Invoices% predicted with confidence 

>89%  

52,14 62,41 51,47 73,05 59,77 

Accuracy% on Invoices predicted 

with >89% confidence 

95,4415 95,352 90,3508 97,1619 94,58 

Number of invoices predicted with 

confidence >89%  

351 581 524 599 514 

Number of invoices predicted with 

confidence >89%, correctly 

335 554 438 582 482 

batch_size* 50 50 200 100 -- 

dropout_rate* 0,10 0,2 0,1 1,1 -- 

Table 5.5 : Classical Model performance on exactly same data in each fold as in Azure ML Studio 

 *Indicates those parameters that are selected by Grid Search from the available 

options. 
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Figure 5.13: Customer1 Target Variable1 – Accuracy on Dev Test Set 

 

In the Figure 5.13 above, the performance of the resulting model with the ML studio on 

exactly same test data was compared (Dev Test Set). The devised classical model gave 

the accuracy 74.41% on average which is slightly higher than the performance of the 

ML studio 73.6%. 
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Figure 5.14: Customer1 Target Variable1 – Invoices that are predicted with over 89% confidence 

In this Figure 5.14, the percentage of Invoices that fall within the set Threshold was 

compared. On average 59% invoices fall within threshold in the tested classical model 

which is slightly less than the 62% of ML studio. 
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Figure 5.15: Customer1 Target Variable1 – Accuracy for Invoices predicted with over 89% Confidence 

In the Figure 5.15 above, we compared the 3rd business Metric. The model investigated 

in the current study gave 94.58% accuracy for those invoices that fall within the set 

threshold of greater than 89% prediction confidence. This accuracy is higher than the 

accuracy achieved from ML Studio which is 92.85%. 
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In the figures below, the confidence is varied between threshold 0 and 99 to determine 

the count of invoices that are predicted with that confidence. It also shows the accuracy 

of those within confidence threshold invoices. 

 

Figure 5.16 Customer1 Target Variable1 

The Figure 5.16 above displays the average of the results of the four folds. The classical 

model investigated in the current study has shown better performance in terms of 

accuracy when the threshold was set to about 85% or higher confidence level. In terms 

of count of invoices that are predicted with this confidence, classical model represented 

as CLF predicts less invoices than Azure when the confidence level is set to about 85% 

or higher. From the Figure 5.16, above it can be said that the devised algorithm 

performed well on Business metrics for Customer1 Target Variable1. 

 

 

5.3.2 Customer1 Target Variable2:  
Fold1  Fold 2 Fold 3 Fold 4 Average 

Accuracy% on Training Set  99,4459 99,4025 99,4873 99.3910 99,431 

Accuracy% on Dev Test Set  97,4404 93,2984 96,5708 94,7876 95,5243 

Invoices% predicted with 

confidence >89%  
91,350 85,4450 92,7710 92.0849 90,412 

Accuracy% on Invoices 

predicted with >89% confidence 
99,323 99,7549 99,100 98,846 99,159 

Number of invoices predicted 

with confidence >89%  
1035 816 1001 954 952 

Number of invoices predicted 

with confidence >89%, correctly 
1028 814 992 943 944 

batch_size* 50 50 100 50 -- 
Table 5.6: Customer1 Target Variable2 fold wise performance on exact same data 

*represents the values that were selected by the Grid Search of the 

Algorithm from the given range of values. 
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Figure 5.17: Customer 1 Target Variable2 – Accuracy on Dev Test Set 

In the Figure 5.17 above, the 1st business metric for Target Variable2 was compared. 

The accuracy on Dev Test set for the investigated model on average is 95.52% while the 

accuracy obtained for the exact same data from ML studio was 94.72%. 
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Figure 5.18: Customer1 Target Variable2 – Invoices predicted with over 89% Confidence 

The Figure 5.18 shows the fold wise comparison for how many invoices can be 

predicted with more than 90% Confidence. The proposed model could predict 90.41% 

invoices with > 89% confidence while ML studio could predict 92% invoices with > 

89% confidence. 

 

 

80

82

84

86

88

90

92

94

96

Classical Model Azure ML Studio

In
v
o

ic
e

s 
w

it
h

in
 t

h
re

sh
o

ld
 %

Model

Customer1 – Target Variable2 

Invoices Within Threshold > 89% on 

Dev Test Set 

Fold1 Fold2 Fold3 Fold4 Average



51 
 

 

Figure 5.19: Customer1 Target Variable2 - Accuracy for Invoices predicted with over 89% Confidence 

The Figure 5.19 displays the fold wise comparison of the accuracy of those invoices that 

were predicted with more than 89% confidence. The investigated model could predict 

invoices with over 99.15% accuracy whereas the ML studio could predict the invoices 

within threshold with 98.57% accuracy. 
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The performance of the devised classical model for Customer1 Target Variable2 was 

compared with the performance of Azure ML studio. The average of the results was 

taken as four folds and was plotted in the graph below: 

 

Figure 5.20 Customer1 Target Variable2 

As depicted in the Figure 5.20 above, the threshold for confidence of prediction is 

varied on the horizontal X-axis, the lines, in “Purple” representing the accuracy of 

predictions by the Classical model and “Green” representing the accuracy of prediction 

of Azure ML studio, stayed very close to each other. For the percentage of Invoices that 

fall within the threshold of Confidence, the line in green colour stayed above the line in 

orange colour. This graph indicates that the investigated classical model performed 

initially similar however it improved later as the confidence threshold was varied. This 

resulted in improved confidence than Azure ML Studio for most of the threshold values. 

5.3.3 Customer2 Target Variable1: 

Next we compared the results of the Model under study with ML studio for customer 2 

Target variable 1. For this comparison, the data set belongs to Customer2 and the folds 

used for ML studio and for the investigated model are the same. 

Target Variable1 Fold1 Fold2 Fold3 Fold4 Average 
ACCURACY% ON TRAINING SET  93,94 93,73 93,64 93,76 93,766 

ACCURACY% ON DEV TEST SET  75,88 74,47 72,15 72,75 73,814 

INVOICES% PREDICTED WITH 

CONFIDENCE >89%  

56,44 57,08 55,66 52,67 55,462 

ACCURACY% ON INVOICES 

PREDICTED WITH >89% 

CONFIDENCE 

94,0408 91,0228 91,0204 91,03 91,778 

NUMBER OF INVOICES 

PREDICTED WITH CONFIDENCE 

>89%  

1762 1838 1715 1728 1761 

NUMBER OF INVOICES 

PREDICTED WITH CONFIDENCE 

>89%, CORRECTLY 

1657 1673 1561 1573 1616 

Table 5.7: Fold wise comparison of Target Variable1 for Customer2 on exact same data. 
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Figure 5.21: Customer2 – Target Variable1 Accuracy on Dev Test Set 

 

The Figure 5.21 displays the fold wise comparison for the 4-fold cross validated 

accuracies of the model under study and the ML studio on exactly same data sets. The 

model under investigation could predict the Target Variable1 with 73.81% accuracy 

while on average ML studio can predict the invoices with 72.82% accuracy on the other 

hand.  
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Figure 5.22: Percentage of invoices that are predicted with over 89% confidence. 

In the Figure 5.22 above, fold wise comparison for invoices that have been predicted 

with more than 89% confidence can be seen. The investigated model could predict 

55.46% invoices on average, while ML studio could predict 72.25% invoices with more 

than 89% confidence. 
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Figure 5.23: Customer2 Target Variable1, Accuracy of invoices 

In the Figure 5.23, the fold wise comparison of accuracy for those invoices that were 

predicted with more than 89% confidence is displayed. The classical model under 

investigation on average, gave the accuracy of 91.77% while ML studio could give the 

accuracy of 85.62% only. 

The next step was to compare the average performance of the four folds cross validation 

by varying threshold along the x-axis. 
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Figure 5.24: ML Studio v/s Classical model for various Confidence thresholds. 

In the Figure 5.24 describing the trend for Customer2 above, the slopes appeared sharp 

as compared to the plots of Customer1 for Target variable1. The average common cut 

point (the point where the lines are intersecting each other) indicates a confidence 

threshold between 50% - 60%, where the classical model under study started predicting 

less invoices with better accuracy as compared to ML studio which is predicting more 

invoices at the expense of accuracy. 

5.3.4 Customer2 Target Variable2: 

Next of the results for fold wise comparison of Target variable2 for Customer2 were 

analyzed. The accuracy comparison results are shown in Table 5.8. 

Target variable2 Fold1  Fold 2 Fold 3 Fold 4 Average 

ACCURACY% ON 

TRAINING SET  
99,60 99,59 99,50 99,68 99,593 

ACCURACY% ON DEV 

TEST SET  
93,54 92,21 98,26 94,51 94,628 

INVOICES% 

PREDICTED WITH 

CONFIDENCE >89%  

87,69 87,27 91,01 91,21 89,297 

ACCURACY% ON 

INVOICES PREDICTED 

WITH >89% 

CONFIDENCE 

97,8947 98,511 99,363 98,4939 98,565 

NUMBER OF INVOICES 

PREDICTED WITH 

CONFIDENCE >89%  

285 336 314 332 316,75 

NUMBER OF INVOICES 

PREDICTED WITH 

CONFIDENCE >89%, 

CORRECTLY 

279 331 312 327 312.25 

Table 5.8: Fold wise comparison of Target Variable2 for Customer2 
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Figure 5.25: ML Studio v/s Classical model- Customer2 Target Variable2 Accuracy on Dev Test Set 

The Figure 5.25 deciphers the fold wise comparison of the 4 folds for our model and the 

ML studio. On average, the investigated classical model predicted invoices with 94.62% 

accuracy on the other hand ML studio predicted the same data for almost 94.67% 

accuracy. 

 

 

Figure 5.26: Customer2 Target Variable2 Invoices that are predicted with over 89% Confidence 

 

In the Figure 5.26 above, the fold wise comparison for second metric could be observed. 

The devised classical model on average could predict 89.29% invoices with more than 
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89% confidence. Whereas, ML studio on the other hand could predict 92.75% invoices 

with more than 89% confidence. 

 

 

Figure 5.27: Customer2 Target Variable2-Accuracy of Invoices that are predicted with >89 % Confidence 

Then the performance of the algorithm under study was assessed in comparison, with 

ML studio for 3rd Business metric. The investigated classical model could accurately 

predict invoices with 98.56%, however ML studio could predict invoices with 97.19% 

accuracy as can be seen in Figure 5.27. 
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Further on, the performance of our classical model with ML Studio, for a range of 

confidence threshold rather than the Business set threshold was analysed. 

 

Figure 5.28: Azure ML Studio v/s Classical model for various Confidence Thresholds. 

In the Figure 5.28, the Classical Model shown in purple and Azure ML Studio in blue  

can be seen. They appear very close, as the threshold of confidence is varied. It can be 

observed that as the confidence threshold is varied between 50%-60%, the accuracy of 

the algorithm under study improves. The number of invoice prediction is slightly low as 

compared to the ML studio when the confidence threshold is >50%. 

 

5.4 Multi-Task Learning: 

 

The accuracies concluded on the Customer 1 are deciphered below in Table 5.9, when 

the Multi-task learning algorithm was applied for both Target variables. (*)mark 

indicates that the values written were selected by the Grid Search of the Algorithm and 

were not hard - coded. 
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5.4.1 Customer1: 

Target Variable1, Target Variable2  
Fold1  Fold 2 Fold 3 Fold 4 Average 

Target Variable1  

Accuracy% on Training Set  94,49 94,97 95,15 94,34  

Accuracy% on Dev Test Set  73,76 74,08 71,59 75,69 73,77897 

Invoices% predicted with confidence 

>89%  

55,34 54,81 58,89 57,43 56,6172 

Accuracy% on Invoices predicted with 

>89% confidence 

95,51 96,06 93,36 94,29 94,80297 

Number of invoices predicted with 

confidence >89%  

1046 1015 798 893 938 

Number of invoices predicted with 

confidence >89%, correctly 

999 975 745 842 890.25 

batch_size* 100 50 50 100 --- 

dropout_rate*  0.2 0.1 0.2 0.2 -- 

optimizer:  Adam Adam Adam Adam -- 

Epochs ran:* 40-50 35 35 50-60 -- 

Target Variable2  

Accuracy% on Training 

Set  

99.574 99.399 99.5044 99.553 99.506 

Accuracy% on Dev Test Set  95,18 97,52 95,87 97,17 96,435 

Invoices% predicted with confidence 

>89%  

93,39 94,22 93,14 92,15 93,2247 

Accuracy% on Invoices predicted with 

>89% confidence 

99,04 99,82 98,65 99,65 99,28995 

Number of invoices predicted with 

confidence >89%  

1745 1765 1262 1433 1551.25 

Number of invoices predicted with 

confidence >89%, correctly 

1742 1748 1245 1428 1540.75 

Table 5.9: Multi-Task learning performance metrics 
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Figure 5.29: Customer1 Target Variable1 Accuracy on Dev Test Set 

As indicated in Figure 5.29 above, the Target Variable1 accuracy didn’t improve with 

Multi-task learning. However, the accuracy of the Target Variable 2 got slightly better 

in the case of multi-task learning. 

 

Figure 5.30: Customer1 Target Variable1 Invoices predicted with Confidence >=90% 

 

 

In the Figure 5.30, on average 56.61% invoices of Target Variable1 and 93.22% 

invoices for Target Variable2 are predicted >89% Confidence. Whereas in the classical 
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model, 55.34 % invoices for Target Variable1 and 89.02% invoices for Target 

Variable2 were predicted with >89% confidence. This indicates, multi-task learning 

approach gave improved results in this case. 

 

 

Figure 5.31: Customer1 Target Variable1 Accuracy of Within Threshold Invoices 

The accuracy for those invoices that were predicted with over 89% confidence were 

compared and presented in Figure 5.31. In case of multi-task learning, on average 

94.80% for Target Variable1 and 99.28% of Target Variable2 was the accuracy which is 

slightly equivalent to the 94.89% for Target Variable1 and 99.21% for Target Variable2 

that was achieved in classical model.  
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5.4.2 Customer2: 

 

CUSTOMER2 (MULTI – TASK LEARNING) 

TARGET VARIABLE1, TARGET VARIABLE2  
Fold1  Fold 2 Fold 3 Fold 4 Average 

TARGET VARIABLE1 

ACCURACY% ON TRAINING SET  94,04 93,94 94,17 94,15 94.07 

ACCURACY% ON DEV TEST SET  
71,66 74,47 73,05 73,20 73,093 

INVOICES% PREDICTED WITH CONFIDENCE >89%  
53,19 54,42 54,50 54,29 54,099 

ACCURACY% ON INVOICES PREDICTED WITH 

>89% CONFIDENCE 

91,42 92,66 91,18 91,93 91,794 

NUMBER OF INVOICES PREDICTED WITH 

CONFIDENCE >89%  
3484 3472 3571 3642 3542 

NUMBER OF INVOICES PREDICTED WITH 

CONFIDENCE >89%, CORRECTLY 
3185 3217 3256 3348 3252 

TARGET VARIABLE2 

ACCURACY% ON TRAINING SET  
99,94 99,92 99,923 99,93 99,92 

ACCURACY% ON DEV TEST SET  98,99 99,09 99,08 99,21 99,092 

INVOICES% PREDICTED WITH CONFIDENCE >89%  
98,45 98,29 98,59 98,49 98,456 

ACCURACY% ON INVOICES PREDICTED WITH 

>89% CONFIDENCE 
99,73 99,63 99,55 99,69 99,65 

NUMBER OF INVOICES PREDICTED WITH 

CONFIDENCE >89%  
6449 6271 6460 6608 6447 

NUMBER OF INVOICES PREDICTED WITH 

CONFIDENCE >89%, CORRECTLY 
6432 6248 6431 6588 6425 

Table 5.10: Multi-task Learning – Customer2 
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Figure 5.32: Customer 2 Target Variable1: Accuracy on Dev Test Set 

 

In the Figure 5.32 above, the accuracy was tested on DevTest dataset. In case of multi-

task learning, on average accuracy of 73.09% for Target Variable1 and 99.09% for 

Target Variable2 were achieved. These values were more than the average values, 

72.90% Target Variable1 and 95.48% for Target Variable2. 
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Figure 5.33: Invoices predicted with >89% Confidence  

In this Figure 5.33, the second metric for Customer2 was analysed. By using multi-task 

learning, for Target Variable2 more invoices were predicted with over 89% confidence, 

than without multi-task learning. 

 

0

20

40

60

80

100

120

CLF Target

Variable1

Multitasking Target

Variable1

CLF Target

Variable2

Multitasking Target

Variable2

A
C

C
U

R
A

C
Y

 %

CUSTOMER2 TARGET VARIABLE 1 – INVOICES WITHIN 

THRESHOLD > 89% ON TEST SET

Fold1 Fold2 Fold3 Fold4 Average



66 
 

 
Figure 5.34: Customer2 Target Variable1 Accuracy of Within Threshold Invoices 

In the Figure 5.34 above, the accuracy of those invoices that were predicted with over 

89% confidence were analysed. For Target Variable1, 91.79% was predicted when 

multi-task learning was used which is slightly better than the figure 91.44% that was 

obtained in classical model under investigation. 

For Target Variable2, 99.16% accuracy was obtained without multi-task learning and 

99.65% was obtained by using multi-task learning. This multi-task learning seems to 

help somewhat for both variables on customer 2.  
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5.5 Continual Learning: 

 

Data set from 3 months (October, November and December) was utilized in the study. It 

was divided into 2 training datasets which are October and November and model 

prediction accuracy was tested on the dataset of December. The accuracy metrics were 

kept the same since not only the business goal was changed but also the machine 

learning approach was varied. The strategy of Continual learning on Customer2 dataset 

was not involved as it was beyond the scope of this project. 

The classical model under investigation was trained from scratch on the dataset of the 

most recent month i.e. November and its prediction accuracy were tested for the next 

month December. An already trained model was then trained on October dataset, on the 

month of November. The prediction accuracy for the second approach was compared 

with the prediction accuracy of the first one. The results obtained for Customer1 are 

shown below for Target Variable1 in Figure 5.35& Table 5.11 and for Target Variable 2 

in Figure 5.36 & Table 5.12. 

 

Customer1 Target Variable1  Trained on 

October, 

tested Dec 

Trained on 

November, 

tested Dec 

Trained Model of 

October, trained 

on November, 

test Dec 

Accuracy% on Training Set  3785 3228 3228 

Accuracy% on Dev Test Set  1877 1877 1877 

Invoices% predicted with 

confidence >89%  

1136 969 969 

Accuracy% on Invoices 

predicted with >89% 

confidence 

95.847489 94.864 85.081 

Number of invoices predicted 

with confidence >89%  

62.1204 69.6856 74.9067 

Number of invoices predicted 

with confidence >89%, 

correctly 

42.9941 47.94885 56.2599 

Accuracy% on Training Set  91.5737 93.555 92.23484 

Accuracy% on Dev Test Set  807 900 1056 

Invoices% predicted with 

confidence >89%  

739 842 974 

Table 5.11: Continual Learning Customer1 
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Figure 5.3510: Customer1 Target Variable1 Continual Learning 

 

In Figure 5.35, the bar for resulting accuracy when training on Oct and Nov data is 

observed as high as compared to the bar for only training on Oct data or the bar for only 

Training on Nov Data. This shows that the predictive algorithm performed better when 

trained only on most recent (Nov) data versus training only on the earlier (Oct) data. 

Furthermore, the algorithm performed much better when it was trained already on 

known classes of data from Oct, and then a 2nd time of training is done on Nov data. 

 

Customer1, Target variable2 Trained on 

October, Tested 

Dec 

Trained on 

November, 

Tested Dec 

Trained model of 

October, Trained 

again on 

November data 

set 
ROWS IN TRAINING SET 3785 3228 3228 

ROWS IN DEV TEST SET  1877 1877 1877 

ACCURACY% ON TRAINING SET   93,733 94,599 95,750 

ACCURACY% ON DEV TEST SET  87,320 90,889 90,942 

INVOICES% PREDICTED WITH 

CONFIDENCE >89%   
85,881 83,111 86,680 

ACCURACY% ON INVOICES 

PREDICTED WITH >89% 

CONFIDENCE 

96,588 98,589 99,569 

NUMBER OF INVOICES PREDICTED 

WITH CONFIDENCE >89%  
1612 1560 1627 

NUMBER OF INVOICES PREDICTED 

WITH CONFIDENCE >89%, 

CORRECTLY  

1557 1538 1620 

Table 5.12: Continual Learning Customer1 Target Variable2 
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Figure 5.3611: Continual Learning - Customer1 Target Variable2 

In Figure 5.36, the approach for Continual learning for Target Variable2 was tested. The 

algorithm showed the same behavior as we saw in the case of Target Variable1. All the 

three metrics for accuracy were high in case of Continual Learning scenario. This 

answered the question that Continual Learning is more effective in the case under study 

for Invoice postings. Due to time constraints, continual learning was not analyzed for 

Customer2. 

Table 5.13 and Table 5.14 in the next pages depicts the average of metrics for 4 folds, 

concerning each of the machine learning technique used. 
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Table 5.13 Summary of averages of results 
based on various approaches 

 

 
*
C

o
n
ti

n
u
al

 l
ea

rn
in

g
 

 C
u
st

o
m

er
1
 

 
T

ar
g
et

 

V
ar

ia
b
le

 2
 

9
5
,7

5
 

9
0
.9

4
 

8
6
.6

8
 

9
9
.5

6
 

1
6
2
7

 

1
6
2
0

 

T
ar

g
et

 

V
ar

ia
b
le

 1
 

8
5
.0

8
 

7
4
.9

0
 

5
6
.2

5
 

9
2
.2

3
 

1
0
5
6
 

9
7
4
 

M
u
lt

i-
T

as
k
 L

ea
rn

in
g

 

 

C
u
st

o
m

er
2

 

 
T

ar
g
et

 

V
ar

ia
b
le

 2
 

9
9
.9

2
 

9
9
.0

9
 

9
8
.4

5
 

9
9
.6

5
 

6
4
4
7
 

6
4
2
5
 

T
ar

g
et

 

V
ar

ia
b
le

 1
 

9
4
.0

7
 

7
3
.0

9
 

5
4
.0

9
 

9
1
.7

9
 

3
5
4
2
 

3
2
5
2
 

C
u
st

o
m

er
1
 

 
T

ar
g
et

 

V
ar

ia
b
le

 2
 

9
9
.5

0
6
 

9
6
.4

3
 

9
3
.2

2
 

9
9
.2

8
 

1
5
5
1
.2

5
 

1
5
4
0
.7

5
 

T
ar

g
et

 

V
ar

ia
b
le

 1
 

9
4
.7

3
 

7
3
.7

7
 

5
6
.6

1
 

9
4
.8

0
 

9
3
8
 

8
9
0
.2

5
 

C
la

ss
ic

al
 m

o
d
el

 (
G

en
er

al
 C

o
m

p
ar

is
o
n
) 

C
u
st

o
m

er
2
 

 
T

ar
g
et

 

V
ar

ia
b
le

 2
 

9
9
.7

5
 

9
5
.4

8
 

9
0
 

9
9
.1

6
0

 

6
2
7
.5

 

6
2
2
.5

 

T
ar

g
et

 

V
ar

ia
b
le

 1
 

9
2
.6

1
 

7
2
.9

0
 

5
3
.4

7
 

9
1
.4

4
 

3
5
0
0
.2

4
 

3
2
0
0
.9

6
 

C
u
st

o
m

er
1

 

 
T

ar
g
et

 

V
ar

ia
b
le

 2
 

9
9
.3

6
 

9
6
.0

2
 

8
9
.0

1
2

 

9
9
.2

1
3

 

9
4
7
.5

 

9
4
2
.2

5
 

T
ar

g
et

 

V
ar

ia
b
le

 1
 

9
4
.8

0
 

7
3
.7

3
 

5
5
.3

4
 

9
4
.9

0
 

9
1
9
.5

 

8
7
4

 

   A
cc

u
ra

cy
%

 o
n

 

T
ra

in
in

g
 S

et
 

A
cc

u
ra

cy
%

 o
n

 D
ev

 

T
es

t 
S

et
 

In
v
o
ic

es
%

 p
re

d
ic

te
d

 

w
it

h
 c

o
n

fi
d

en
ce

 

>
8
9
%

 

A
cc

u
ra

cy
%

 o
n

 

In
v
o
ic

es
 p

re
d

ic
te

d
 

w
it

h
 >

8
9

%
 

co
n
fi

d
en

ce
 

N
u
m

b
er

 o
f 

in
v

o
ic

es
 

p
re

d
ic

te
d

 w
it

h
 

co
n
fi

d
en

ce
 >

8
9

%
 

N
u
m

b
er

 o
f 

in
v

o
ic

es
 

p
re

d
ic

te
d

 w
it

h
 

co
n
fi

d
en

ce
 >

8
9

%
, 

co
rr

ec
tl

y
 

 



71 
 

Table 5.14 Summary of averages of results 
based on various approaches 
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6 Conclusion: 
 

In this project, possible machine learning approaches that could be applied in the 

domain of finance for the data of Invoices of two different Customers were carried out. 

Lately, the applications and henceforth the requirement for the implication of machine 

learning approaches is soaring in all fields of sciences. As per the field of finance, the 

most popular use cases explored so far are; fraud detection, loan management and 

insurance. The case that we targeted in this study was also from the domain of finance, 

however it was related to receivables. The scenario of receivables in our case of study is 

slightly different than the ones investigated generally. We analysed and conducted the 

study using the data from two (anonymous) customers and investigated the application 

of a classical machine learning method to determine their destination to be posted. We 

developed the predictive algorithm and compared its performance with Azure ML 

Studio already in use. 

Our first approach mainly focussed on implementing a predictive algorithm that could 

give at least similar accuracies as achieved from Azure ML Studio. We used open 

source library which is Keras with TensorFlow at the backend. We then compared the 

performance of the algorithm with ML studio on the basis of three different business 

metrics. Later, the performance of our model was studied not only in the general case 

(where the algorithm does the splitting of dataset into training and test sets on its own) 

and also on the exact same data for training and testing on each fold, that was used by 

the Azure ML studio. 

In the second approach, we implemented Multi-Task learning in our neural network. 

This not only helped us in identifying possible dependencies among the two target 

variables but also led us to possible improvement in the prediction accuracies. Based on 

our results, we concluded that since multi-task learning seems to improve performance, 

it suggests that Target Variable2 has dependency on Target Variable1. On the basis of 

our findings; we would suggest the business to look for case analysis that would cater 

the dependency of Target Variable2 on Target Variable1. 

To make a clear understanding of the various approaches, we applied Continual learning 

as the third approach. This resulted in supporting our findings that a neural network that 

has learnt on the data of last two months could perform better than the model that was 

only trained on last month. The resulting observations seem very logical as in the 

former case; it utilizes the data leaned from more number of cases which is a key to 

better performance of a predictive algorithm. 

Based on our results and prediction accuracies, we could say that overall our algorithm 

gave similar performance as could be achieved from Azure ML studio for our data of 

invoice postings. We not only evaluated the performance of our algorithm in general but 

also compared its performance on exactly same data that was used for training and 

testing in Azure in each of its 4 folds. 
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We successfully implemented and tested three fundamental approaches of machine 

learning on invoice data as discussed. However, as mentioned earlier, there are plenty of 

machine learning strategies available which could still be verified. This study implies 

that in the future, after further investing the data properties and business aspects, several 

other machine learning strategies can be checked for better prediction accuracies. The 

applications of machine learning based on utilizing neural networks in the field of 

finance holds tremendous opportunities. It may hold the keys to open the doors of 

wonders and is on the rise with the rapid advancement in technology. In addition to the 

current scenario of invoice postings, it can render improved customer experience, fraud 

detection, insurance and ease in the mode of payments etc. These widespread use cases 

of machine learning in sector of finance, can benefit from more variants of machine 

learning strategies.  
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