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ABSTRACT 

Third generation Metal-on-Metal (MoM) hip replacements were designed as a 

durable option, especially for young and active people. Traditional metal-on-

polyethylene (MoP) would produce polyethylene wear and lead to osteolysis in 

these patients. Third generation MoM was introduced as a new, longer lasting 

bearing couple and high hopes were placed on it. Simulator studies showed 

encouragingly low rates of bearing wear. As a result, surgeons rapidly adopted 

MoM hip resurfacing and soon MoM total hip arthroplasty (THA) was introduced. 

However, evidence from clinical studies to support the use of MoM hip 

replacements was lacking.  

More than one million MoM hip replacements were implanted during the early 

2000s. First reports of emerging problems were published in 2006. These described 

periprosthetic soft-tissue lesions causing pain and implant failure leading to 

revision surgery. In 2007, the Australian Orthopaedic Association National Joint 

Registry Annual Report reported higher than expected revision rates for MoM hip 

resurfacings. Several more case series from hospitals were reported, and follow-up 

programs to identify patients in need of revision surgery were launched. The term 

Adverse Reaction to Metal Debris (ARMD) was created to describe the diverse 

findings seen in failed MoM hips. 

Etiopathogenesis of ARMD has been of interest for more than a decade now 

but remains poorly understood. Failure is seen with both high and low wearing hip 

implants. High wear is, however, considered to be the primary cause of failure in 

most patients. Metal wear debris is thought to cause local soft tissue inflammation 

and necrosis in adjacent tissues. Mainly, three types of tissue responses have been 

suggested: lymphocytic type IV hypersensitivity mimicking response, which has 

also been termed Aseptic Lymphocyte-dominated Vasculitis-Associated Lesion 

(ALVAL). The two other types are foreign-body macrophage response and direct 

cytotoxic response from metal ions, leading to necrosis. Some evidence suggests 

that the foreign-body and cytotoxic responses are associated with high implant 

wear or blood metal ion levels, and the lymphocytic hypersensitivity/ALVAL 

response to low wear, but contradicting reports exist. Patient susceptibility has also 
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been suggested as a major contributor to the development of soft tissue lesions and 

subsequent failure. 

The aim of this dissertation is to investigate the etiology and pathogenesis of 

ARMD. In study I, we analyzed bearing wear, whole blood and synovial fluid metal 

ion levels in MoM hip resurfacings. We then investigated the possible associations 

of these with histological findings of the synovial tissue. In study II, metal 

concentrations in synovial tissue were determined and investigated in relation to 

histological findings, whole blood and synovial fluid metal ion levels. Hip 

resurfacings and total hip replacements were compared. In study III, we sought to 

find subtypes of ARMD using statistical cluster and latent class analyses for 

histological findings of synovial tissues. Imaging findings and metal ion levels were 

compared between the observed subtypes. In study IV, we aimed to investigate 

whether intrinsic, host-related factors affect the pathogenesis of ARMD in bilateral 

MoM hip replacement patients. 

In study I, we found that bearing wear, WB and synovial fluid metal ion levels 

correlated with the degree of macrophage infiltration and necrosis. Further, WB 

and synovial fluid metal ion levels correlated with bearing wear volume and rate. In 

study II, we found that periprosthetic tissue metal concentrations were not 

associated with histological findings. Patients with MoM total hip arthroplasties 

evinced more necrosis and lymphocytes than did patients with hip resurfacings. In 

study III, four different subtypes of ARMD were identified. We found that 

ALVAL-type response is dualistic in nature – either wear-particle related or more 

of an immunological hypersensitivity response. Cytotoxic and foreign-body 

responses were also noted. In study IV, it was observed that bilateral patients 

evince similar histological and imaging findings on contralateral sides despite 

markedly different wear volumes between the sides. 

Our results therefore suggest that ARMD is not one or two entities but four. 

Implant wear may lead to cytotoxic, foreign-body or wear-related ALVAL 

response. Some patients may also develop an ALVAL response in the presence of 

a low wearing hip replacement. Further, intrinsic host-related factors are likely 

central in the development of ARMD and may dictate the type of tissue response 

to a large degree. Extrinsic factors, such as wear volume, whole blood and synovial 

fluid metal ion levels, are associated with the degree of necrosis and the number of 

macrophages in the tissues. Periprosthetic tissue metal concentrations were not 

associated with histological features. Thus, the analysis of periprosthetic metal 

concentrations does not seem beneficial. As the literature regarding the 

associations between external factors and histological findings is very discrepant, 

intrinsic factors may be of more importance and lead to susceptibility to metal 
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debris. Also, taper debris in total hip arthroplasties is likely more immunogenic 

and/or cytotoxic compared with bearing wear debris. This finding has significance 

in terms of non-MoM (such as MoP, metal-on-polyethylene) total hip 

arthroplasties in addition to MoM total hip arthroplasties. In future, understanding 

why some patients are more susceptible than others and whether these patients can 

be identified is of great importance to properly allocate follow-up resources and to 

time revision surgery optimally. 
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TIIVISTELMÄ 

Kolmannen sukupolven metalli-metallitekonivel (metal-on-metal, MoM) lonkkaan 

suunniteltiin kulutuskestävyytensä vuoksi erityisesti nuorille ja aktiivisille ihmisille. 

Perinteinen metalli-muovi-liukupari oli juuri tässä potilasryhmässä osoittautunut 

huonoksi vaihtoehdoksi muoviosan kulumisen vuoksi. Muovipartikkelit johtivat 

osalla potilaista luukudoksen heikkenemiseen ja sen seurauksena tekonivelosien 

irtoamiseen. Kolmannen sukupolven MoM-tekonivelet esiteltiinkin 

kulutuskestävänä uutena vaihtoehtona. Alustavissa simulaattoritutkimuksissa 

kuluma näyttäytyi hyvin vähäisenä. MoM-tekoniveliä alettiin suosia nopeasti ja 

käyttö levisi myös muihin potilasryhmiin, vaikka kliinisten tutkimusten tuomaa 

näyttöä näiden nivelten tuloksista tai turvallisuudesta ei ollut. 

2000-luvun aikana lonkan MoM-tekoniveliä ehdittiin asentaa maailmanlaajuisesti 

yli miljoona kappaletta. Ensimmäiset viitteet niihin liittyvistä ongelmista saatiin 

vuonna 2006, kun julkaistiin potilassarjoja, joissa nivelten ympärillä nähtiin 

kudostuhoa ja pehmytkudosmassoja. Osalla potilaista oireena ilmeni kipua ja 

liikerajoitusta. Noin vuotta myöhemmin, 2007, Australian ortopediyhdistys ilmoitti 

heidän rekisterissään näihin tekoniveliin liittyvän odottamattoman paljon 

uusintaleikkauksia. Useita raportteja uusintaleikkaukseen johtaneista 

pehmytkudosreaktioista julkaistiin seuraavina vuosina tieteellisissä lehdissä. Termi 

metallireaktio (Adverse Reaction to Metal Debris, ARMD) lanseerattiin kuvaamaan 

MoM-tekoniveliin liittyviä tulehduksellisia pehmytkudosreaktioita. Näissä havaittiin 

nivelkapselin tulehduksellista paksuuntumista, kudostuhoa ja myös isompia 

tulehduksellisia pehmytkudosmassoja, pseudotuumoreita. Ongelman todellinen 

laajuus alkoi valjeta vuonna 2010, kun Britannian terveysvalvontaviranomainen 

julkaisi MoM-tekoniveliin liittyvän varoituksen, jossa suositeltiin leikattujen 

potilaiden tiivistä seurantaa ja tarvittaessa uusintaleikkausta. Muutamaa kuukautta 

myöhemmin yksi suosituimmista MoM-tekonivelmalleista vedettiin pois 

markkinoilta. Tähän päivään mennessä MoM-tekonivelten käyttö on lakannut lähes 

kokonaan ja useita eri malleja on vedetty pois markkinoilta. 

Metallireaktioiden etiologia ja patogeneesi ovat edelleen pitkälti epäselviä 

huolimatta kiivaasta, vuosia jatkuneesta tutkimustyöstä. Tekonivelestä kuluessa 

irtoavia nanometrikokoluokan metallipartikkeleja pidetään suurimpana syynä 
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tulehduksellisiin reaktioihin ja uusintaleikkauksiin. Osalla potilaista 

uusintaleikkaukseen kuitenkin joudutaan huolimatta hyvin vähäisestä tekonivelen 

kulumasta. Onkin esitetty pääasiassa kolmen tyyppistä mekanismia näille 

pehmytkudosreaktioille: metalliyliherkkyyden aiheuttamaa tyypin IV 

yliherkkyysreaktiota, metallipartikkeleista aiheutuvaa vierasesinereaktiota sekä 

suoraa metalli-ioneista johtuvaa kudostuhoa aiheuttavaa reaktiota. Tyypin IV 

reaktiossa keskeisimpinä soluina ovat lymfosyytit ja kudoksissa nähdään nekroosia. 

Vierasesinereaktiossa taasen makrofagit ovat keskeisimpiä tulehdussoluja eikä 

nekroosia yleensä nähdä. Suorassa sytotoksisessa reaktiossa metalli-ionit johtavat 

solujen kuolemaan. Samalla kudoksiin kertyy makrofageja poistamaan kuolleita 

soluja ja syntyy itseään ylläpitävä tulehdusreaktio. Osassa tutkimuksissa 

tekonivelten matala kuluma on yhdistynyt tyypin IV yliherkkyysreaktiota 

muistuttavaan kudosten histologiaan (nimetty ALVAL-reaktioksi, Aseptic 

Lymphocyte-dominated Vasculitis-Associated Lesion) ja korkea kuluma 

vierasesinereaktioon tai sytotoksiseen reaktioon. Myös päinvastaisia tuloksia on 

kuitenkin esitetty ja tutkimuskirjallisuus on monelta osin varsin ristiriitaista. On 

myös ehdotettu, että potilaiden välillä olisi yksilöllisiä eroja siinä, miten herkästi 

kudokset reagoivat metallipartikkeleille. Tutkimusnäyttöä tästä ei kuitenkaan ole. 

Tässä väitöskirjassa pyrimme tutkimaan metallireaktioiden etiologiaa ja 

patogeneettisiä mekanismeja. Aineiston muodostivat potilaat, joilta oli 

Tekonivelsairaala Coxassa uusintaleikattu MoM-tekonivel ja vaihdettu se toisen 

tyyppiseen tekoniveleen. Keskeisenä tutkimusmetodina oli nivelkapselikudosten 

histologisten näytteiden analysointi, joka antaa epäsuoraa tietoa tekoniveltä 

ympäröivien kudosten tilanteesta, tulehdusreaktioista ja niiden syistä. Histologisista 

analyyseistä saatua tietoa yhdistimme kliinisiin potilastietoihin sekä tekonivelen 

kulumasta kertoviin mittareihin. Ensimmäisessä osatyössä analysoimme liukuparin 

kulumaa sekä veren ja nivelnesteen metalli-ionien määrää. Näiden mahdollista 

yhteyttä nivelkapselin kudoksen histologiaan selvitettiin. Toisessa osatyössä 

määritimme eri metallien pitoisuuden nivelkapselikudoksessa ja tutkimme sen 

yhteyttä kudosten histologisiin löydöksiin sekä veren ja nivelnesteen metalli-

ionipitoisuuteen. Pinnoitetekonivelten ja kokotekonivelten välisiä mahdollisia eroja 

verrattiin. Kolmannessa osatyössä pyrimme löytämään mahdollisia piileviä 

metallireaktion alatyyppejä. Pyrimme ryhmittelemään potilaita 

tilastomatemaattisesti niiden nivelkapselikudosten histologisten ominaisuuksien 

perusteella samankaltaisiin ryhmiin. Kuvantamislöydöksiä ja veren metalli-

ionipitoisuuksia verrattiin eri ryhmien välillä. Neljännessä osatyössä selvitimme, 

vaikuttavatko nk. sisäiset tekijät eli potilaskohtaiset erot metallireaktion 
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kehittymiseen. Tutkimusaineistona oli potilaita, joilta oli molemmista lonkista 

uusintaleikattu MoM-tekonivel. 

Ensimmäisessä osatyössä havaitsimme, että pinnoitetekonivelten kuluma sekä 

veren ja nivelnesteen metalli-ionipitoisuudet korreloivat kudosten makrofagien 

määrän ja kudostuhon asteen kanssa. Sen lisäksi veren ja nivelnesteen metalli-

ionipitoisuudet olivat yhteydessä tekonivelen liukuparin kuluman määrään. Toisessa 

osatyössä odotuksista poiketen havaitsimme, että kudosten metallipitoisuus ei ollut 

yhteydessä kudosten histologisiin löydöksiin. Potilailla, joilla oli uusintaleikattu 

MoM-kokotekonivel, oli enemmän kudostuhoa ja lymfosyytteja verrattuna 

pinnoitetekonivelpotilaisiin. Kolmannessa osatyössä löysimme neljä erilaista 

metallireaktion alatyyppiä. Havaitsimme, että aiemmin julkaistu ALVAL / tyypin 

IV yliherkkyysreaktio jakautuu mitä luultavimmin kahteen hieman erilaiseen 

reaktioon – immunologiseen, yliherkkyysmekanismilla syntyvään ja toisaalta 

metallipartikkeleiden aiheuttamaan. Kahtena muuna alatyyppinä oli 

metallipartikkeleiden aiheuttama solutuhoon johtava sytotoksinen reaktio ja 

metallipartikkeleiden aiheuttama vierasesinereaktio. Neljännessä osatyössä näimme, 

että potilaiden molemmissa lonkissa oli pitkälti samanlaiset histologiset ja 

kuvantamislöydökset huolimatta isoistakin eroista kulumassa puolien välillä.  

Tulostemme perusteella näyttäisi siltä, että ARMD voidaan jakaa neljään eri 

alatyyppiin. Kuluma voi johtaa sytotoksiseen, vierasesinereaktioon tai ALVAL-

reaktioon. Toisaalta osalla potilaista ALVAL voi kehittyä huolimatta hyvin 

vähäisestä kulumasta. Näiden lisäksi yksilölliset erot potilaiden välillä 

todennäköisesti ovat keskeisessä roolissa. Nämä saattavat määrittää potilaan 

herkkyyden metallipartikkeleille ja toisaalta siitä seuraavan kudosreaktion tyypin. 

Ulkoiset tekijät, kuten nivelen kuluma sekä veren ja nivelnesteen metalli-

ionipitoisuudet ovat yhteydessä nekroosin ja makrofagien määrään kudoksessa, 

mikä tukee aikaisempia havaintoja ja sopii sytotoksisen sekä vierasesinereaktion 

taudinkuvaan. Tutkimuksissamme tekonivelen liukuparin kuluma myös korreloi 

veren metalli-ionien pitoisuuteen. Tietoa veren metalli-ionipitoisuudesta voidaan 

potilastyössä hyödyntää tekonivelen kuluman määrän sekä haitallisen 

metallireaktion todennäköisyyden arvioinnissa. Mielenkiintoista kyllä, kudosten 

metallipitoisuus ei odotuksistamme poiketen ollut yhteydessä histologisiin 

löydöksiin. Kirjallisuus eri ulkoisten tekijöiden yhteydestä kudosreaktion tyyppiin 

on varsin ristiriitaista. Ehdotamme, että taustalla on ainakin osasyynä 

potilaskohtaisten, yksilöllisten tekijöiden merkitys patogeneesissä 

 Tutkimusten potilasaineistot ja menetelmät ovat myös olleet varsin kirjavia, 

mikä vaikeuttaa tulosten vertailua. Löydöstemme perusteella kartioliitoksesta 

irtoava metalli on todennäköisesti haitallisempaa kuin liukupinnoista irtoava metalli. 
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Löydös on merkityksellinen, sillä samantyyppisiä metallisia kartioliitoksia on 

monessa muussa edelleen käytössä olevassa tekonivelmallissa, esimerkiksi metalli-

muovi liukuparisissa. Tulevaisuudessa olisi tärkeää pyrkiä ymmärtämään, miksi osa 

potilaista näyttäisi olevan herkempiä metallireaktion kehittymiselle tai vaikea-

asteisille kudosmuutoksille. Näiden potilaiden aikainen tunnistaminen seurannassa 

on keskeistä, jotta uusintaleikkaus voidaan tehdä riittävän varhaisessa vaiheessa ja 

toisaalta, jotta turhilta uusintaleikkauksilta vältyttäisiin. 
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1 INTRODUCTION 

Hip replacements with metal-on-metal (MoM) bearing surfaces were first 

developed in the 1930s. However, early attempts at using them did not fare well, 

and for several decades metal-on-polyethylene (MoP) was the bearing surface of 

choice. (Gomez and Morcuende 2005). The MoP bearing surface functioned well 

in elderly patients, but in young and active patients the poor wear resistance of 

polyethylene proved to be a major drawback (Amstutz and Grigoris 1996). At the 

same time, MoM hip replacements were being developed simultaneously and these 

new bearings showed promisingly low wear rates in simulator studies (Anissian et 

al. 1999, Clarke et al. 2000). Subsequently, MoM hip resurfacings were released to 

the market and directed at young and active people who had high demands for 

longevity and wear resistance (Amstutz and Le Duff 2006). Early clinical reports 

were encouraging (Daniel et al. 2004, Back et al. 2005). The use of MoM bearings 

was soon extended to new-generation large-diameter (LD) total hip arthroplasty 

(THA) with hopes of reduced dislocation rates and improved longevity compared 

with conventional MoP THAs (Singh et al. 2013). Unfortunately, the rapidly 

growing use of MoM bearings was not justified by proper evidence from clinical 

trials but rather driven by sheer marketing forces and beliefs (Cohen 2012, Reito et 

al. 2017). By 2012, it was estimated that more than one million patients worldwide 

had received a MoM hip replacement (Lombardi Jr et al. 2012). 

A few years after the large-scale launch of the new-generation MoM hip 

resurfacings and THAs, the first alarming reports were published. These reports 

described painful soft-tissue lesions around the joint, which eventually led to 

revision surgeries (Boardman et al. 2006, Pandit et al. 2008a, Toms et al. 2008). 

Macroscopically and microscopically, these lesions were very heterogenous and an 

umbrella term, Adverse Reaction to Metal Debris (ARMD), was launched to 

describe them as a group (Langton et al. 2010). ARMD is seen with both high and 

low wearing implants, although high wear is considered more of a risk factor 

(Kwon et al. 2010, Langton et al. 2010, Matthies et al. 2012, Grammatopoulos et al. 

2013).  
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Histologically, perivascular and diffuse lymphocytic infiltrations and severe 

necrosis of the periprosthetic tissues were observed in a subset of patients and the 

response was termed Aseptic Lymphocyte-dominated Vasculitis-Associated Lesion 

(ALVAL) (Davies et al. 2005, Willert et al. 2005). These findings led to the 

hypothesis that an adaptive immune response, resembling type IV hypersensitivity 

response, was the cause of failure in some patients. Later, it was noted that some 

patients with a failed MoM hip replacement had a macrophage dominated 

histology instead (Campbell et al. 2010). The authors reported that the ALVAL-

type response was associated with low implant wear, suggesting hypersensitivity to 

wear debris, and the macrophage response was associated with high implant wear, 

suggesting a response to excess metal wear debris. Thereafter, both supporting and 

contradicting findings have been published (Grammatopoulos et al. 2013, 

Lohmann et al. 2013, Paukkeri et al. 2016). Some studies have suggested other 

responses, such as the cytotoxic effects of metal particles and the immunologically 

mediated response with tertiary lymphoid organs, in failed MoM hips (Mahendra et 

al. 2009, Mittal et al. 2013).  

Currently, approximately 10 000 patients each year receive a hip replacement in 

Finland. This number has been steadily growing since the 1980s. (THL 2018). 

Thus, as the population ages, more demand is placed on the longevity of joint 

replacements. To achieve a safe and long-lasting hip replacement design, one has to 

properly understand the mechanisms of implant failure seen with previous bearing 

materials. 

Despite substantial previous and ongoing research efforts, however, the etiology 

and pathogenesis of ARMD are still poorly understood. Indeed, several 

fundamental questions remain unanswered. Why do some patients develop 

destructive lesions despite a well-positioned, low-wearing implant? How is the 

volume of wear debris generated related to the characteristics of the subsequent 

tissue response? Are there differences in the susceptibility of individuals to metal 

wear debris? Do indirect measures of implant wear accurately predict implant wear 

volume and tissue response? Is debris from modular junctions biologically different 

than bearing wear debris? Are there possibly several different etiopathogenetic 

mechanisms of soft-tissue lesions? In this dissertation, we aimed to answer these 

questions and to further contribute to the complex puzzle of ARMD and its 

etiopathogenesis. 
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2 REVIEW OF THE LITERATURE 

2.1 Metal-on-metal bearing in hip arthroplasty 

2.1.1 History of metal-on-metal hip replacement  

The first attempts to treat osteoarthritis with a prosthesis by the French surgeon 

Pierre Delbet date back to between 1910 and 1920. He performed 

hemiarthroplasty of the hip using a rubber femoral head to replace the 

osteoarthritic caput of the femoral bone. During the following three decades, a 

variety of materials, such as ivory and acryl, were used as a hemiarthroplasty with 

varying degrees of success. The first total hip arthroplasty (THA), and 

simultaneously the first metal-on-metal (MoM) hip arthroplasty, was described by 

Philip Wiles in 1938. He used components made of stainless steel but, 

unfortunately, with poor results. The first widely used prostheses were developed 

by Thompson in 1950 and by Böhlman and Moore in 1952. The first person to 

develop a successful MoM THA was George McKee in the 1950s. Another 

successful MoM THA was developed by Peter Ring in the 1960s. The MoM hip 

replacements of this era form the first generation of MoM THA. (Gomez and 

Morcuende 2005). The use of these MoM implants had ceased by 1970s after John 

Charnley developed the steel-on-polyethylene THA, which performed better. In 

the 1980s, interest in MoM arthroplasty grew again when second generation MoM 

THAs were introduced by Maurice Muller, Bernard Weber and the Sulzer brothers. 

(Amstutz and Grigoris 1996) 

At the same time, first generation MoM hip resurfacings were being developed 

by Derek McMinn in England and Heinz Wagner in Germany. MoM hip 

resurfacings were developed based on the hypothesis that the failure of previous 

hip resurfacing attempts using metal-on-polyethylene (MoP) bearings was due to 

excessive friction. This led to a myriad of polyethylene wear particles being 

generated and resulted in osteolysis. The MoP THA had proved to be well-suited 

for older people, but in young and active people the excessive wear of the 
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polyethylene was a problem. The proposed benefits of hip resurfacings included 

preservation of femoral bone, normal joint biomechanics and stability of the joint 

due to the ability to use large heads. (Amstutz and Grigoris 1996). Early clinical 

reports of the McMinn resurfacing devices were encouraging (McMinn, Treacy, Lin 

1996) and led to the development of the Birmingham hip resurfacing (BHR) 

(second generation resurfacing) by McMinn (McMinn 2003). Early clinical reports 

of BHR resurfacings also showed excellent results (Daniel et al. 2004, Back et al. 

2005). These MoM resurfacings were targeted at young and active people due to 

their wear resistance and preservation of bone (Amstutz and Le Duff 2006). As 

MoM hip resurfacings provided promising results, interest in MoM bearings in 

THA also grew (third generation) and MoM bearings quickly gained popularity. In 

2009, MoM bearings were used in approximately 35% of all THA surgeries 

performed in the United States (Bozic et al. 2009). In 2012, it was estimated that 

more than one million patients had received a MoM hip replacement (Lombardi Jr 

et al. 2012). However, the rapidly increasing use of MoM bearings, especially the 

Articular Surface Replacement (ASR) (by DePuy Orthopaedics) hip resurfacing and 

the ASR XL (by DePuy Orthopaedics) THA, was not supported by sufficient 

evidence from clinical trials (Reito et al. 2017). 

Despite the promising early results of MoM bearings, concerns began to be 

raised some years later when the first reports describing adverse soft tissue 

reactions around MoM bearings were published (Boardman et al. 2006, Gruber et 

al. 2007, Pandit et al. 2008a, Toms et al. 2008). Histopathological studies revealed 

that the majority of the periarticular tissues obtained from patients with failed 

MoM hip replacements consisted of lymphocyte and macrophage infiltrates and 

varying amounts of necrosis (Davies et al. 2005, Willert et al. 2005, Pandit et al. 

2008b, Mahendra et al. 2009, Campbell et al. 2010). In 2007, the Australian 

Orthopaedic Association National Joint Replacement Registry (AOANJRR) stated 

that the ASR (by DePuy Orthopaedics) and Durom (by Zimmer, Warsaw, IN, 

USA) hip resurfacings had unexpectedly high revision rates (AOANJRR 2007). 

The real extent of problem came to light in 2010 when the Medicines and 

Healthcare products Regulatory Agency (MHRA) in the UK published a medical 

device alert regarding adverse soft tissue reactions in patients with MoM hips 

(MHRA 2010). Four months later, in August 2010, DePuy voluntarily recalled the 

ASR XL and ASR hip resurfacings from the market (DePuy Orthopaedics 2010). It 

was later shown from internal documents that the marketing and research 

conducted by DePuy were gravely fraudulent and that the company was aware of 

the severe problems long before the public and the authorities (Steffen et al. 2018). 
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Numerous other MoM systems have since been recalled as well: Durom by 

Zimmer in 2008, R3 by Smith & Nephew in 2012, Rejuvenate and ABG II by 

Stryker in 2012, and Modular SMF and Modular Readapt Femoral System by Smith 

& Nephew in 2016 (FDA 2008, 2012b, 2012a, 2016a, 2016b, Smith & Nephew 

Orthopaedics 2012). As a result of the recalls and high revision rates, the use of 

MoM bearings in both THA and hip resurfacing surgeries has almost completely 

ceased (AOANJRR 2017, NJR 2017).  

2.1.2 Reasons for revision surgery in MoM hips 

MoM hip replacements have both traditional modes of implant failure as seen with 

conventional THA but also failure modes that are more specific to MoM bearings. 

Traditional failure modes include dislocation, aseptic component loosening, 

infection, periprosthetic fracture and osteolysis (Carrothers et al. 2010, Reito et al. 

2014, Matharu et al. 2016, Seppänen et al. 2016, NJR 2017). However, failures 

related to metal wear debris resulting from wear of the implant have been of the 

most concern. Adverse Reaction to Metal Debris (ARMD) is among the most 

frequent causes of failure in MoM hip replacements. ARMD is an umbrella term 

and refers to the harmful tissue responses caused by metal wear debris, such as 

pseudotumors, inflammatory responses, necrosis and metallosis (Langton et al. 

2010). In data from the National Joint Registry of England and Wales (NJR), 

ARMD is the most frequent cause of failure in MoM THA and the second most 

frequent cause in MoM resurfacings (NJR 2017). In the majority of studies 

reporting the outcomes of patient cohorts from single centers, ARMD has been 

the most frequent cause of failure in both THA and hip resurfacings (Ollivere et al. 

2009, Langton et al. 2010, 2011b, Reito et al. 2013, Lainiala et al. 2014, Reito et al. 

2015a, Matharu et al. 2016, Sidaginamale et al. 2016, Matharu et al. 2017, Lainiala et 

al. 2019). Moreover, it has been suggested that data from registries underestimate 

the prevalence of ARMD due to reasons such as the underreporting of MoM 

failures and the delayed introduction of ARMD as a revision indication (Matharu 

2017).  

On very rare occasions, the accumulation of cobalt and chromium ions in the 

bloodstream may lead to systemic consequences. For example, neurotoxicity, 

cardiomyopathy and thyroid toxicity have all been reported (Bradberry et al. 2014). 

In their systematic review, Bradberry et al. found 18 case reports of MoM patients 

with evidence of symptoms caused by the systemic dissemination of metal ions. 
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Neurological symptoms included peripheral neuropathy, hearing loss and cognitive 

impairment. Complete or partial resolution of the symptoms were seen in most 

patients after removal of the metal-containing prostheses. 

2.2 Wear of the metal-on-metal hip replacement 

Implant wear is defined as mechanical action leading to the removal of material 

(McKellop et al. 2014). Early simulator tests suggested that MoM implants were 

producing at least an order of magnitude less wear in vitro compared with MoP hip 

implants (Anissian et al. 1999, Clarke et al. 2000, Goldsmith et al. 2000). However, 

at the time, it was not properly understood that the biological response to metal 

particles and ions was significantly different from polyethylene particles, possibly 

influenced by the smaller particle size, higher number of particles and composition 

of these particles (Catelas et al. 2011). There are multiple different mechanisms that 

can produce wear in MoM hip implants, either alone or in conjunction (McKellop 

et al. 2014). Further, metallic debris can also result from corrosion of the implant, 

which is not implant wear by definition (McKellop et al. 2014, Hothi et al. 2017). 

The source of wear may vary depending on the type of MoM implant. In hip 

resurfacings, wear is mainly produced in the bearing couple, but small amounts of 

corrosion metal debris may also be generated at the bone-cup interface as well as at 

the cup-liner interface in modular cup liners (Langton et al. 2010, Vendittoli et al. 

2010, Lord et al. 2011, Hothi et al. 2015). In THA, however, wear (and also 

corrosion) can take place in the head-neck trunnion, the neck-stem trunnion and 

the femoral stem in addition to the bearing surfaces (Langton et al. 2012, Cooper et 

al. 2013, Hothi et al. 2016b, 2016a, Di Laura et al. 2018). The source of wear debris 

has an effect on the particle composition and subsequent tissue response, and is 

thus of importance (Sidaginamale et al. 2016, Di Laura et al. 2017, Xia et al. 2017).  

2.2.1 Design and metallurgy of hip resurfacing and total hip replacement 

MoM hip resurfacing comprises a metallic cap resurfacing the anatomical femoral 

head and a metallic cup inserted in the acetabulum (Figure 1) (Amstutz and Le 

Duff 2006). This combination forms the bearing couple and is the origin of bearing 

wear debris (Anissian et al. 1999, Clarke et al. 2000). In addition, metal may also be 

released from the back of the acetabular cup component (Jacobs et al. 1998, 
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Vendittoli et al. 2010). The back of the cup is most often made of porously coated 

titanium or cobalt-chromium-molybdenum (CoCrMo) alloy to enhance fixation, 

whereas the bearing surfaces of the cup and femoral head are made of cast or 

wrought CoCrMo alloy for low friction and maximum durability (Amstutz and Le 

Duff 2006, Heisel et al. 2009, Liao et al. 2013). The femoral cap is fixated with 

cement (Amstutz and Le Duff 2006). The proportions of the metals in the 

CoCrMo alloy vary, but a common alloy (ASTM standard F75) used in modern hip 

resurfacings contains 58.9–69.5% cobalt, 27.0–30% chromium, 5.0–7.0% 

molybdenum and other elements in minor amounts (Mn, Si, Ni, Fe and C) (Liao et 

al. 2013). Thus, cobalt and chromium are present in significantly higher 

proportions compared with the other metals. 

Large-Diameter (LD) MoM THA shares many of its features with MoM hip 

resurfacing. It has a similar metallic acetabular cup and a metallic femoral head 

articulating against the cup, forming a bearing couple identical to that of hip 

resurfacing. In THA, however, the femoral head is attached to a stem, which is 

inserted into the femoral medullary canal (Figure 2). The anatomical femoral head 

is resected in this process. The stem can be fixated with or without cement. If 

cementless fixation is chosen, a porously coated femoral stem is used to allow for 

bone ingrowth and stable fixation (Siopack and Jergesen 1995, Mellon et al. 2013b). 

The head and stem are modular components that are intraoperatively impacted 

together, forming a taper junction or trunnion. In some designs, the neck is also 

modularly attached to the stem, forming another neck-stem, modular junction. 

(Krishnan et al. 2013). These designs are frequently called dual-modular or dual-

tapered THA (Cooper et al. 2013). The acetabular cup may be a monobloc (in LD 

THA) or modular (in small-diameter THA) comprising a separate outer cup and 

inner liner (Mellon et al. 2013b). The backside of the modular liner is prone to 

wear and corrosion (Gascoyne et al. 2014, Agne et al. 2015, Hothi et al. 2015, 

Tarity et al. 2017). It is of significance that all modular junctions are susceptible to 

wear and corrosion (Higgs et al. 2013). Furthermore, the femoral stem alone, in the 

absence of modularity, may corrode and produce metal debris (Hothi et al. 2016a). 

Most of the research regarding modular junctions has focused on material loss at 

the head-neck trunnion (Cooper et al. 2012, Gill et al. 2012, Langton et al. 2012, 

Matthies et al. 2013b, Hothi et al. 2016b). Despite the potential for material loss at 

modular junctions, most importantly at the head-neck trunnion, more material is 

lost from the bearing couple (Langton et al. 2011a, 2016, Hart et al. 2012c, 

Matthies et al. 2013b, Scholes et al. 2017).  
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The metallurgy of the MoM THA resembles that of the MoM hip resurfacing 

with some differences. However, each manufacturer has their own designs that 

have some unique properties in terms of metallurgy and the manufacturing 

process. In MoM THA, the articulating surfaces of the acetabular cup and the 

femoral head are made of CoCrMo alloy similar to that used in hip resurfacing. 

There are multiple slightly different alloys used. The most commonly used alloy is 

F75, the exact metallurgy of which is explained in detail in the first paragraph. 

Wear and corrosion resistance are the primary reasons for the use of CoCrMo 

alloy. The outer surface of the acetabular cup is often made of porously coated 

titanium as in hip resurfacings. The difference with hip resurfacing comes from the 

femoral stem component. (ASM International 2003). In some designs, CoCrMo is 

used in the stem, whereas most designs use titanium-based alloys (Krishnan et al. 

2013). A popular titanium alloy is composed of 90% titanium, 6% aluminum and 

4% vanadium. The advantages of titanium include high biocompatibility due to 

oxidation of aluminum which forms a passivation layer to the surface. The 

disadvantages include high potential for wear. As a result, titanium-based alloys are 

not used in bearing surfaces. (ASM International 2003). 

 



33 

 

Figure 1.  Metal-on-metal hip resurfacing components (Biomet Recap). On the left is the acetabular 
cup and on the right is the femoral resurfacing head, which is hollow from the inside. 
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Figure 2.  Metal-on-metal total hip arthroplasty components (DePuy Summit stem, DePuy ASR head 
and cup). On the left is the acetabular cup and on the right is the modular femoral head 
attached to the stem. 
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2.2.2  Bearing wear 

2.2.2.1 Wear modes and wear mechanisms 

Bearing wear originates from the bearing couple. Wear modes define the 

mechanical conditions under which the implant is operating, and four separate 

wear modes have been defined. Wear mechanisms, on the other hand, are the 

processes that generate wear at the microscopic level. The wear mode of a well-

functioning MoM hip bearing is multidirectional sliding wear (mode 1). Sliding 

occurs between the head and cup. (Pourzal et al. 2013). Wear modes 2, 3 and 4 

describe unintended conditions. In wear mode 2, contact is made between the 

bearing and non-bearing surfaces. An example of this would be contact between 

the femoral head and the rim of the acetabular cup. Wear mode 3 refers to a similar 

condition as in wear mode 1 with the addition of third-body particles between the 

articulating surfaces. These particles may originate from bone or implant surfaces. 

Wear mode 4 is defined as contact between two non-bearing surfaces. For 

instance, contact between the femoral stem and the acetabular rim (impingement). 

Overall, wear modes are not exclusive to each other and several modes may be 

present at the same time. (McKellop et al. 2014). Wear mechanisms are the 

processes that produce damage to the surfaces. Similar to wear modes, there are 

four distinct wear mechanisms of concern in MoM hip replacements. The first one 

is adhesive wear, which results from local bonding between two surfaces. As 

motion occurs, local bonding forces a segment of one surface to break loose, 

possibly resulting in pits. These loose segments may further act as third-body 

particles. The second wear mechanism is abrasive wear. Asperities on one surface 

or third-body particles lead to cutting and plowing, resulting in scratches of a 

diverse magnitude. The third one is surface fatigue in which cracks on the surface 

occur. These cracks may also produce loose fragments. (McKellop et al. 2014). The 

fourth wear mechanism is tribochemical wear. In MoM hip replacements, a 

tribochemical layer or film is formed on the articulating surfaces when implants are 

in situ. This layer consists of metallo-organic compounds produced by the 

mechanical mixing of synovial fluid proteins and the metallic material of the 

surface layer. The layer modifies the wear behavior of the underlying material and 

is likely beneficial in reducing adhesion and abrasive wear. However, the 

tribochemical layer undergoes continuous remodeling – the removal and formation 

of material – defined as tribochemical wear. In conclusion, wear modes define the 
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acting wear mechanisms, which may work in conjunction, resulting in material loss.  

(Wimmer et al. 2009, Pourzal et al. 2013, McKellop et al. 2014). 

2.2.2.2 Wear in simulator studies – measurement, amount, factors associated with 
increased wear and properties of the generated metal particles 

To better understand the wear behavior of hip implants, joint simulators are used 

in preclinical studies. The aim of simulators is to reproduce the in vivo conditions 

of the human hip. The reliability of these simulations, however, depends on how 

accurately the in vivo conditions can be reproduced. (Affatato et al. 2008). Wear of 

the implants is measured through gravimetric means and wear volume is further 

calculated using the weight and density of the material lost (Bills et al. 2005). 

Several simulator studies on MoM implants were performed at the turn of the 

century. These studies enhanced our understanding of the wear behavior, amount 

of wear and the factors associated with increased wear. A study by Clarke et al. 

showed that the wear of MoM implants is biphasic – consisting of an initial high-

wear running-in phase that is followed by a steady-state phase with significantly 

lower wear (Clarke et al. 2000). In that study, and also in other simulator studies, it 

has been shown that the overall wear of MoM implants is about one to two orders 

of magnitude lower compared with traditional MoP implants (Anissian et al. 1999, 

Clarke et al. 2000, Goldsmith et al. 2000). A meta-analysis comprising 56 simulator 

studies concluded that the mean running-in wear was 2.1 mm3/106 cycles, and the 

mean steady-state wear was 0.4 mm3/106 cycles (Kretzer et al. 2009). 106 cycles in a 

simulator have been compared to one year of prosthetic use by the patient 

(Anissian et al. 1999). Kretzer et al. analyzed which designs and manufacturing 

parameters affected wear behavior the most. They found that high clearance 

between the head and cup increased running-in wear but not steady-state wear. 

Contrarily, large head diameter led to lower wear, both running-in and steady-state. 

It has previously been shown that the significance of these geometrical factors is 

rooted in their direct effect on the lubrication of the implant (Dowson 2006). In 

this study, Dowson reported that both the clearance and head diameter affect the 

thickness of the lubricating fluid film between the articulating surfaces. Whereas 

lower clearance is generally good for minimizing wear through a thicker fluid film, 

too low a clearance may lead to equatorial contact, which in turn leads to high 

friction and wear.  

Simulator studies have shown that the wear debris generated at the implant 

surfaces is composed of nanosized particles in the range of 20-60 nm (Firkins et al. 
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2001, Catelas et al. 2003). Due to the extremely small particle size, the total number 

of particles generated by MoM implants exceeds that of MoP implants by a factor 

of two to three despite the significantly lower volumetric wear of MoM implants 

(Goldsmith et al. 2000, Firkins et al. 2001). Nanosized particles are considered 

biologically highly active (Pourzal et al. 2013). A simulator study found that these 

particles were mostly composed of chromium and oxygen, likely chromium oxide, 

and to a lesser extent CoCrMo alloy (Catelas et al. 2003). It has been further 

suggested that cobalt is less present in the particles due to its dissolution into ions 

(Pourzal et al. 2013). To conclude, early simulator studies showed promisingly low 

wear of MoM implants that was mostly affected by geometrical factors that led to 

the generation of high numbers of nanosized wear particles. 

 

 

 

2.2.2.3 Wear in retrieval studies – measurement, amount and factors associated with 
increased wear 

In retrieval studies, the implants retrieved in revision surgery are examined. 

Retrieval studies are fundamental for understanding the causes of failure (Jacobs 

and Wimmer 2013, Hart et al. 2015). Retrieved components should be analyzed 

thoroughly, that is, inspected visually, microscopically, nanoscopically and 

measured for material loss (Pourzal et al. 2013). Retrieval analysis can then be 

combined with clinical patient data (for example, age, sex, BMI, follow-up time, 

allergological tests) imaging data, blood metal ion concentrations and histological 

analysis of the periprosthetic tissues to further the understanding of the etiology 

and pathogenesis of implant failure (Hart et al. 2015). Different methods have been 

used to estimate bearing surface wear, such as linear wear (maximum wear scar 

depth) and volumetric wear (total volume of the material lost from bearing 

surfaces) (Lord et al. 2011). Volumetric wear is considered primary as the total 

amount of material lost from the surface is of the utmost importance (Ilchmann et 

al. 2008). However, no single standard exists for the volumetric wear measurement 

of retrieved implants. Bills et al. described a method developed on the basis of an 

ISO standard for in vitro wear measurement (Bills et al. 2012). The volumetric 
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wear was measured using a coordinate machine that probed the explanted implant 

surface and created a geometrical map of the surface. This map was then compared 

to a reference map of an unworn surface and the volumetric wear calculated using 

computer software. Similar geometrical methods have also been used in other 

studies (Morlock et al. 2008, Becker and Dirix 2009, Witzleb et al. 2009, Lord et al. 

2011). However, Bills et al. reported significant measurement uncertainties, which 

make comparisons between studies challenging (Bills et al. 2012).   

Dozens of retrieval studies have been performed over the last three decades 

(Tables 1 and 2). The reported sample sizes have mostly been small. The data are 

very heterogenous as some studies have only included data for one component, 

some studies have included data for both components separately, and some studies 

have combined the data for both components to calculate total wear. Furthermore, 

the follow-up time in these studies has been variable and various statistics have 

been used. However, as can be seen from Table 1, the mean/median wear volume 

in most studies has ranged between 10 and 100 mm3, and the mean/median 

volumetric wear rates have been between 2 and 20 mm3/year. In most studies, the 

mean/median linear wear has been between 10 and 100 m and the linear wear 

rate between 5 and 20 m/year (Table 2). Compared to the mean steady-state wear 

of 0.4 mm3/106 cycles (comparable to a year of prosthesis use) reported in the 

simulator study meta-analysis by Kretzer et al., it becomes obvious that the real-

world wear seen in the retrieval studies is several-fold higher than that reported in 

preclinical simulator studies (Kretzer et al. 2009). This highlights the importance of 

retrieval studies to assess the true performance of prostheses. There are no clearly 

defined boundaries for abnormal versus normal wear, but volumetric wear rates > 

1 mm3/year and linear wear rates > 5 m/year are generally considered abnormal 

(Hart et al. 2012a, Sidaginamale et al. 2013, Cook et al. 2019). In most retrieval 

studies, however, the average values reported exceed these values (Tables 1 and 2). 

It is therefore safe to state that most of the MoM hip replacements studied 

produce higher than expected and higher than acceptable amounts of wear debris.  

Several factors associated with the high wear of implants have been discovered 

in retrieval studies, and these can be further categorized into implant-, patient- and 

surgeon-specific factors. Implant-specific factors include clearance, cup arc of 

cover and femoral head size (Underwood et al. 2011, Matthies et al. 2013a). Certain 

implant designs are more susceptible to high wear than others, especially the 

DePuy ASR hip resurfacing and the DePuy ASR XL THA (Ebramzadeh et al. 

2011, Underwood et al. 2011). The ASR hip resurfacing has certain design 

differences compared with the older generation BHR, that is, reduced arc of cover 
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of the cup, smaller clearance and lower radius of the acetabular rim (Underwood et 

al. 2011). Low angle of cup cover, small head size and clearance reduce the 

“contact patch to rim distance” (CPRD) of the cup and predispose the implant to 

edge-loading, which is a well-established cause of high wear (Morlock et al. 2008, 

Matthies et al. 2011, 2013a, Underwood et al. 2011). In a study of highly worn ASR 

acetabular cups, severe edge-loading was present in all components and on average 

constituted 58% of the total wear volume (Lu and Ebramzadeh 2019). A 

recognized patient-specific factor related to high wear is motion pattern (Mellon et 

al. 2013a). Cup positioning, namely inclination and anteversion, are factors defined 

as surgeon-specific. Suboptimal cup inclination angle is associated with high wear 

(Morlock et al. 2008, Hart et al. 2011a, Matthies et al. 2011, Cook et al. 2019). 

Inclination angle has been shown to correlate with CPRD and edge-loading, which 

serves to explain the abnormal wear (Morlock et al. 2008, Matthies et al. 2011). In a 

similar manner, cup anteversion is also related to high wear through its effect on 

CPRD and the risk of edge-loading (Matthies et al. 2013a, Cook et al. 2019). 

However, edge-loading leading to high wear may also occur in well-positioned 

implants (Matthies et al. 2011, Hart et al. 2013). A safe zone of 30-50 degrees 

inclination and 5-25 degrees of anteversion has been shown to reduce the 

dislocation rate in THA, later termed “Lewinnek’s safe zone” (Lewinnek et al. 

1978). In relation to MoM hip replacements, it has been shown that inclination 

angle outside this safe zone is also related to high wear (Hart et al. 2011a, Matthies 

et al. 2011). The geometrics of surgeon- and implant-specific factors are illustrated 

in Figure 3. 
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Figure 3.  A 2-dimensional schematic drawing of the key surgeon- and implant-specific factors 
related to the wear behavior of hip replacement. Adopted from Matthies et al. 2013a. 

*Clearance = RCUP - RHEAD 
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Table 1.  Studies that have reported the volumetric wear of metal-on-metal hip replacements. 
THA = Total Hip Arthroplasty, HR = Hip Resurfacing, SD = Small Diameter, LD = 
Large Diameter, 1st Gen = First generation, 2nd Gen = Second generation, 3rd Gen = 
Third generation. 

Study Implant type, 
subgroup 

Component N Wear volume (range) 
mm3 

Volumetric wear rate 
(range) mm3/year 

McKellop et 
al. 1996 

1st Gen, SD THA Head 21 Median 21.7* (1.6-
67.3) 

Median 2.0 (0.12-11.2) 

Willert et al. 
1996 

1st Gen, SD THA Both 6 Median 36.87* (0.65-
190.4) 

Mean 4.96 (0.22-22.36) 

Milošev et al. 
2006 

SD THA Both 5 Mean 1.43 (0.13-3.91) Mean 0.43 (0.02-1.63) 

Morlock et al. 
2006 

HR, in-situ <100 
days 

Head 11 Mean 0.17 (0-0.47) - 

 HR, in-situ 100-
200 days 

Head 8 Mean 1.02 (0-3.61) - 

 HR, in-situ >200 
days 

Head 7 Mean 2.76 (0-17.96) - 

Bills et al. 
2007 

- Both 2 Mean 3.9* (2.2.-6.1) - 

Morlock et al. 
2008 

HR, edge-load Both 14 - Median 0.0768 (0.0057-
0.1941) 

 HR, no edge-
load 

Both 12 - Median 0.009 (0.00-
0.0143) 

Tuke et al. 
2008 

1st Gen SD THA Both 5 Median 35 (28-77) - 

Witzleb et al. 
2009 

2nd Gen HR Head 
Cup 

8 
2 

Median 2.9 (IQR 0.9-
6.0) 
- 

Median 2.5 (IQR 0-6.4) 
Mean 13.4 (4.7-22.1) 

Bolland et al. 
2011 

3rd Gen LD THA Both 17 - Mean 1.86 (SD 1.55) 

Langton et al. 
2011a 

3rd Gen LD THA Both 51 - 1.27 - 24.08 

Langton et al. 
2011b 

2nd Gen HR Both 19 - Median 10.83* (3.11 – 
95.5) 

Lord et al. 
2011 

2nd Gen HR Both 22 - Mean 21.66 (0-51-
95.50) 

Glyn-Jones et 
al. 2011 

2nd Gen HR, 
pseudotumor 

Head 
Cup 

18 
18 

Mean 17.4 (± 34.1) 
Mean 13.4 (± 38.4) 

Mean 3.3 (± 5.7) 
Mean 2.5 (± 6.3) 

 2nd Gen HR, no 
pseudotumor 

Head 
Cup 

18 
18 

Mean 2.7 (± 4.0) 
Mean 1.1 (± 2.4) 

Mean 0.8 (± 1.2) 
Mean 0.4 (± 0.8) 
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Grammatopou
los et al. 2013 

2nd Gen HR Head 
Cup 

56 
56 

Mean 15.6 (0-198) 
Mean 11.3 (0-150) 

- 
- 

Lohmann et 
al. 2013 

2nd Gen SD THA Both 28 - Mean 0.45 (± 0.31) 

Pelt et al. 
2013 

3rd Gen LD THA, 
metallosis 
3rd Gen LD THA, 
no metallosis 

Both 
 
Both 

10 
 
7 

Mean 94 (± 69) 
 
Mean 11 (± 10) 

Mean 16 (± 9) 
 
Mean 3 (± 2) 

Matthies et al. 
2013a 

3rd Gen LD THA Head 
Cup 

110 
110 

Median 3.44 (0.11–
228.30) 
Median 1.94 (0.06–
194.80) 

Median 1.31 (0.06–
45.66) 
Median 0.62 (0.04–
39.62) 

Reinisch et al. 
2015 

2nd Gen SD THA Both 10 - Mean 0.32 (0.22-0.47) 

Langton et al. 
2016 

3rd Gen LD THA Both 47 - Median 1.92 (0.23-8.37) 

Koper et al. 
2016 

3rd Gen LD THA Head 
Cup 

9 
9 

Median 3.2 (0.0-24.4) 
Median 0.23 (0.0-28.0) 

Median 0.94* (0.0-4.8) 
Median 0.059* (0.0-5.5) 

Sidaginamale 
et al. 2016 

3rd Gen LD THA 
2nd Gen HR 

Both 
Both 

116 
83 

- 
- 

Median 2.02 (0.27-68.9) 
Median 7.35 (0.62-95.5) 

 3rd Gen LD THA Both 5 Median 40.9* (30.0-
57.3) 

Median 6.3 (4.1-7.6) 

Park et al. 
2018 

2nd Gen HR & 
3rd Gen LD THA 

Both 530 Median 14 (1-636) Mean 9.0 (0.2-99) 

Campbell et 
al. 2018a 

3rd Gen LD THA Both 165 Median 17.5 (-) - 

* Calculated from individual measurements given in the study
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Table 2.  Studies investigating the linear wear of metal-on-metal hip replacements. THA = Total 
Hip Arthroplasty, HR = Hip Resurfacing, SD = Small Diameter, LD = Large Diameter, 
1st Gen = First generation, 2nd Gen = Second generation, 3rd Gen = Third generation. 

Study Implant type 
& possible 
subgroups 

Component N Linear wear (range) 

m 

Linear wear rate 

(range) m/year 

McKellop et al. 1996 1st Gen, SD 
THA 

Both 21 Median 53* (8-272) Median 4.9* (0.83-
45.3) 

Schmalzried et al. 
1996 

1st Gen, SD 
THA 

Both 5 Median 84* (35-196) Median 3.8* (1.75-
8.9) 

Willert et al. 1996 1st Gen, SD 
THA 

Both 6 Median 63.65* (17.1-
210) 

Median 7.5* (1.67-
24.7) 

Campbell et al. 1999 2nd Gen SD 
THA 

Head 7 Median 7* (3-19) - 

 1st Gen HR Head 3 Median 9* (6-32) - 

Sieber et al. 1999 2nd Gen SD 
THA 

Both 118 - 1st year mean 25 (no 
range given) 

     2nd year mean 5 (no 
range given) 

Rieker and Köttig 
2002 

2nd Gen SD 
THA 

Both 231 - 1st year mean 35 (no 
range given) 

     After 2nd year 5 (no 
range given) 

Böhler et al. 2002 2nd Gen SD 
THA 

Both 6 Mean 17.3 (6.57-
23.16) 

Mean 11.1 (2.81-
15.44) 

Reinisch et al. 2003 2nd Gen SD 
THA 

Both 21 Mean 17 (-) Mean 7.6 (2.9-12.8) 

Campbell et al. 2006 1st and 2nd 
Gen HR 

Both 39 Range <2-164 - 

Milošev et al. 2006 2nd Gen SD 
THA 

Both 5 Mean 31.3 (12.8-
52.7) 

Mean 6.3 (3.12-9.17) 

Morlock et al. 2006 HR, in-situ 
<100 days 

Head 11 Mean 5.67 (0-13.00) - 

 HR, in-situ 
100-200 days 

Head 8 Mean 10.50 (4.00 -
21.00) 

- 

 HR, in-situ 
>200 days 

Head 7 Mean 13.50 (3.00-
69.00) 

- 

Bills et al. 2007 - Both 2 Mean 14.25 (5-25) - 

 1st Gen SD 
THA 

Both 5 Median 84 (30-146) - 
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Witzleb et al. 
2009 

2nd Gen HR Head 
Cup 

8 
2 

Median 6.9 (IQR 4.5-
8.6) 
- 

Median 7.3 (IQR 4.7-
9.1) 
Median 20.35* (9.2-
31.5) 

Kwon et al. 2010 2nd Gen HR, 
pseudotumor-
group 

Head 
Cup 

9 
9 

Median 21.05 (2.74-
164.80) 
Median 14.87 (1.93-
163.68) 

Median 8.1 (2.75-
25.4) 
Median 7.36 (1.61-
24.9) 

 2nd Gen HR, 
no-
pseudotumor-
group 

Head 
Cup 

22 
22 

Median 4.44 (1.50-
8.80) 
Median 2.51 (0.23-
6.04) 

Median 1.79 (0.82-
4.15) 
Median 1.28 (0.18-
3.33) 

Matthies et al. 
2011 

2nd Gen HR Head 
Cup 

60 
60 

- Median 3.50 (0.00-
84.70) 
Median 4.71 (0.00-
173.81) 

 3rd Gen LD 
THA 

Head 
Cup 

60 
60 

- Median 2.71 (0.00-
51.30) 
Median 3.85 (0.00-
119.15) 

Underwood et al. 
2011 

2nd Gen HR, 
ASR 

Head 
Cup 

66 
66 

Mean 13.14 (0.0-
315.3) 
Mean 21.99 (1.3-
651.8) 

Mean 6.0 (0.0-8.7) 
Mean 9.2 (0.0-245.6) 

 2nd Gen HR, 
BHR 

Head 
Cup 

64 
66 

Mean 15.07 (1.5-
234.4) 
Mean 14.9 (2.0-
740.4) 

Mean 3.5 (0.7-52.4) 
Mean 4.2 (0.0-153.8) 

Glyn-Jones et al. 
2011 

2nd Gen HR, 
pseudotumor 

Head 
Cup 

18 
18 

Mean 37.8 (± 53.3) 
Mean 68.4 (± 117.7) 

Mean 8.4 (± 8.7) 
Mean 16.1 (± 21.4) 

 2nd Gen HR, 
no 
pseudotumor 

Head 
Cup 

18 
18 

Mean 8.7 (± 10.8) 
Mean 3.5 (± 5.6) 

Mean 2.9 (± 3.9) 
Mean 1.0 (± 1.5) 

Hart et al. 2011a 2nd Gen HR Head 
Cup 

45 
45 

- 
- 

Median 8.7 (IQR 0.0-
8.4) 
Median 5.6 (IQR 3.2-
27.2) 

Ebramzadeh et 
al. 2011 

1st and 2nd 
Gen HR & 
THA - 
pseudotumor 

Head 
Cup 
 

- 
- 

- 
- 

Median 8.00 (no 
range) 
Median 10.02 (no 
range) 

 No 
pseudotumor 

Head 
Cup 

- 
- 

- 
- 

5.25 (no range) 
4.15 (no range) 

Matthies et al. 
2012 

2nd Gen HR, 
pseudotumor 

Head 
Cup 

72 
72 

- 
- 

Median 5.3 (0.0–
84.1) 
Median 6.8 (0.0–
180.0) 

 2nd Gen HR, 
no 
pseudotumor 

Head 
Cup 

33 
33 

- 
- 

Median 2.0 (0.0–
62.1) 
Median 2.2 (0.0–
64.3) 



45 

Hart et al. 2013 2nd Gen HR Cup 276 - Median 4.5 (IQR 0.2 
– 20.7) 

Grammatopoulos 
et al. 2013 

2nd Gen HR Head 
Cup 
Both 

56 
56 
56 

Mean 36 (0-283) 
Mean 87 (0-949) 
- 

 
 
Mean 21.8 (0-202) 

Ebramzadeh et 
al. 2014 

2nd Gen HR Head 
Cup 

88 
88 

Median 14 (2-316) 
Median 12 (2-614) 

- 
- 

Takamura et al. 
2014 

2nd Gen HR, 
ALTR 
 
2nd Gen HR, 
no ALTR 

Head 
Cup 
Head 
Cup 

7 
4 
23 
5 

- 
- 
- 
- 

Median 12.5 (3.6-
31.5) 
Median 23.0 (1.5-
36.7) 
Median 1.7 (0.6-7.7) 
Median 1.48 (0.86-
2.53) 

Matthies et al. 
2013a 

2nd Gen HR Head 
Cup 

165 
165 

- Median 4 (0-25) 
Median 5 (0-90) 

Reinisch et al. 
2015 

2nd Gen SD 
THA 

Both 10 - Mean 1.6 (1.0-2.1) 

Park et al. 2018 3rd Gen LD 
THA, 2nd Gen 
HR 

Head 
Cup 

553 
546 

Median 13 (2-649) 
Median 23 (3-968) 

- 
- 

* Calculated from individual measurements given in the study. 
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2.2.3 Trunnion wear and corrosion 

It has been stated that metals used as biomaterials should be noble or resistant to 

corrosion in the human body. The cobalt-chromium alloys used in MoM hip 

replacements are noted for their high corrosion and wear resistance. (ASM 

International 2003). However, as previously discussed, all modular junctions in 

MoM THA have been shown to be prone to both corrosion and wear. These 

processes are of importance because they lead to the release of metal ions and 

particles that contribute to adverse host reactions (Cooper et al. 2012). By 

definition, wear is the removal of material by mechanical action (McKellop et al. 

2014). Corrosion, on the other hand, can appear in various forms. Furthermore, 

corrosion and mechanical wear often interact and can result in further degradation 

of the metal (ASM International 2003).  

Corrosion is an electrochemical process in which two metal surfaces or parts of 

the same metal surface and their environment interact. The metal surfaces form 

electrodes and the body fluid between them acts as an electrolyte. The difference in 

electrochemical potential between the electrodes leads to corrosion and the release 

of metal ions. (Urish et al. 2019). Implants are protected by the presence of a 

passive surface film which inhibits corrosion. The disturbance of this film may lead 

to accelerated corrosion. (Kruger 1979, ASM International 2003).  

There are various types of corrosion that include pitting, fretting, crevice, 

fatigue and galvanic corrosion. In pitting corrosion, there are highly localized areas 

of corrosion “pits”. These may originate, for instance, from defects in the 

protective surface film. Fretting corrosion occurs in the junctions of two metal 

surfaces where small micromotion is possible. The micromotion leads to the 

generation of abrasive particles, mechanical wear and disturbance of the protective 

film. Crevice corrosion develops when a metal surface is only partially protected 

from its environment, such as in crevices and junctions. The environment favors 

corrosion as metal ions accumulate in these areas. When fretting is also present, the 

process is called mechanically assisted crevice corrosion (MACC). Corrosion 

fatigue is the fracture of metal resulting from the combined action of corrosion and 

mechanical forces. Finally, when two dissimilar metals corrode due to the 

difference in electrochemical potentials, the phenomenon is known as galvanic 

corrosion. This type of corrosion may occur in the junctions of components made 

of different metals. (ASM International 2003, Urish et al. 2019). 
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Of most interest has been the trunnion or taper interface between the neck of 

the stem and the head in MoM THA. Both wear and corrosion may occur in the 

trunnion due to micromotion. When these two processes leading to material loss 

act together, the phenomenon is known as tribocorrosion. The dominating mode 

of material loss in trunnions is considered to be fretting corrosion or MACC. The 

taper junction forms a closed crevice where metal ions are robust, and this 

accelerates the corrosion process. In addition, oxygen is depleted which inhibits the 

regeneration of the oxidized protective surface film. (Urish et al. 2019). 

Corrosion at the trunnion interface can either be qualified by visual inspection 

or by measuring volumetric material loss (Goldberg et al. 2002, Langton et al. 

2012). Visual corrosion scoring has been shown to moderately correlate with actual 

measured volumetric material loss, the latter being more accurate (Hothi et al. 

2014). Although volumetric material loss from the trunnion has been found to be 

less than bearing wear in the majority of investigated implants, it may also exceed it 

(Hart et al. 2012c, Langton et al. 2012, Matthies et al. 2013b). Langton et al. 

observed that a third of implants showed no meaningful surface damage at all, 

which should be expected from all devices (Langton et al. 2012). It was further 

observed that the factors associated with higher material loss from the trunnion 

were large head diameter, varus stems and laterally engaging tapers. Theoretically, 

all of these factors increase the lever arm and stress encountered at the taper 

junction. Contrarily to Langton, Matthies et al. found that neither head diameter 

nor any other design or clinical variable was associated with material loss from the 

trunnion (Matthies et al. 2013b). It remains unclear therefore which factors 

accelerate the rate of material loss at the interface. 

It is not only the head-neck trunnion that is susceptible to corrosion and metal 

ion release. Some THA designs include a modular junction between the neck and 

the stem (dual-modular THA). This junction has been shown to corrode and 

release metal ions (Krishnan et al. 2013, Di Laura et al. 2018). In addition, the 

femoral stem as a whole, in regions outside modular junctions, may also corrode 

(Hothi et al. 2016a). 

2.2.4 Indirect means for estimating the wear process in MoM hip 
replacement patients 

Wear of MoM prostheses can only be measured after explantation. It is, however, 

important for clinicians to be able to estimate whether the implant is producing 
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abnormal amounts of wear as this contributes to the revision decision (Matharu et 

al. 2018b). Several methods for estimating the amount of wear have been studied. 

The most established method is the measurement of blood cobalt and chromium 

ions. Wear and corrosion of the implant produce both insoluble particles and 

soluble metal ions. The insoluble particles may further oxidize and produce soluble 

metal ions. (Catelas et al. 2011). These ions diffuse into the bloodstream and can 

then be used as a surrogate measure of wear. Several studies have shown a strong 

correlation between blood cobalt and chromium prior to revision surgery and the 

actual wear volume of the retrieved implants (De Smet et al. 2008, Langton et al. 

2011b, Matthies et al. 2013b, Sidaginamale et al. 2013). In a similar manner, 

synovial fluid metal concentration correlates with wear volume, and a sample can 

be obtained prior to revision decision (De Smet et al. 2008). The measurement of 

synovial fluid metal concentrations may, however, be unreliable as metals are 

present in both soluble and insoluble forms, and most methods only detect soluble 

metal ions (Davda et al. 2011). Further, synovial fluid sampling is more invasive 

compared to whole blood sampling and may not offer any additional information. 

Several studies have assessed periprosthetic tissues obtained at revision surgery. 

The disposition of chromium, cobalt, nickel and titanium has been observed 

(Doorn et al. 1998, Lohmann et al. 2013, Witt et al. 2014, Koper et al. 2016). Witt 

et al. noted that tissue metal concentrations did not correlate with serum metal 

levels. Moreover, correlations with implant wear have not been reported. The 

metal particles observed in the tissues are less than 100 nm in size (Doorn et al. 

1998). Several different forms of metals have been observed (Hart et al. 2010, Di 

Laura et al. 2017, Morrell et al. 2019). The association between metal 

concentrations in periprosthetic tissues and the wear of the implants has not been 

studied. Tissue samples, however, can only be obtained at revision surgery. Thus, 

they are not useful in the follow-up of patients, but they are useful retrospectively 

for research purposes. 
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2.3 Metals in the human body 

2.3.1 Metals and health 

Certain metals are essential for cellular functioning and human health. These 

essential metals, which include manganese, iron, copper, zinc, cobalt, molybdenum, 

chromium and vanadium, belong to trace elements and exist in very limited 

quantities in the human body. Nutrition is the primary source of these metals. In 

biologic systems, metals are often bound to proteins, forming metalloproteins, 

which have essential roles in enzymatic, structural and storage functions. 

Deficiency of these elements may lead to adverse effects for health and can be 

reversed with nutrition or supplements. Iron deficiency leading to microcytic 

anemia is likely the most recognized of these. Contrarily, excess concentrations of 

these elements may lead to toxicity and organ-specific symptoms. Most of the toxic 

and beneficial reactions are related to the ability of these metals to participate in 

redox reactions, either loosing (oxidation) or gaining electrons (reduction). Further, 

these metals may also bind to proteins and change their conjugation. This may be 

of benefit or harm. (Fraga 2005). In addition, non-essential metals, such as gold, 

silver, platinum and lithium, are recognized to have therapeutic effects. Gold has 

been used to treat severe rheumatoid arthritis, silver has anti-infective properties, 

platinum has applications in cancer treatment and lithium has proved effective in 

the treatment of bipolar disorder. (Guo and Sadler 1999).  

2.3.2 Excess concentrations of metals in the human body 

Exposure to too much metal from either the environment or intrinsically from 

medical devices may lead to excessive concentrations both locally in the affected 

organ and systemically, observed as elevated blood metal ion concentrations. 

(Barceloux 1999, Savarino et al. 2002, Lohmann et al. 2013). As discussed earlier, 

the bearing in MoM hip replacements is composed of CoCrMo alloys. Cobalt and 

chromium are known to have adverse and toxic effects in high concentrations, but 

similar data regarding molybdenum are scarce (WHO 1996). The adverse local 

effects from cobalt and chromium released from MoM hip replacements are 

discussed in more detail in the next chapter. The systemic effects on these patients 
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are less well known; however, some rare case reports have been published. These 

have described neuropathy, cardiomyopathy, hearing loss and cognitive impairment 

(Bradberry et al. 2014). Cobalt has been considered to be the root cause of these 

manifestations. In addition, several different cellular mechanisms have been 

proposed. These include the formation of free radicals, mitochondrial dysfunction, 

changes in calcium and iron metabolism, changes in erythropoiesis, changes in 

iodine metabolism and genotoxicity (Paustenbach et al. 2013). 

2.4 Adverse Reaction to Metal Debris 

2.4.1 History 

The first reports of adverse tissue reactions following the implantation of MoM hip 

replacements date back to the 1970s. In 1974, Evans et al. reported elevated cobalt 

and chromium levels combined with necrosis and macrophage infiltration in the 

periprosthetic tissues of patients implanted with first-generation MoM hip implants 

(Evans et al. 1974). In addition, they also found that these patients presented 

evidence of metal sensitivity in skin patch testing. In the same year, Winter found 

evidence of necrosis and macrophage infiltration associated with the accumulation 

of cobalt-chromium particles around MoM hips (Winter 1974). In 1977, Willert 

and Semlitsch published a histological study comparing the findings in the capsular 

tissues of patients implanted with prostheses of different bearing types (Willert and 

Semlitsch 1977). In their study, they found that the tissues around MoM hip 

implants generally displayed macrophages, fibrosis, necrosis and in some cases 

lymphoplasmocellular infiltrates. In these patients with lymphoplasmocellular 

infiltrates, hypersensitivity to metal debris was suggested.  In the same year, Brown 

et al. published their histological findings from around 20 first-generation MoM 

hips (Brown et al. 1977). All of their samples evinced necrosis and macrophage 

infiltration, and in some samples lymphocyte infiltration was also noted. As one 

can observe, adverse response to metal debris from MoM hips was already well 

described in the 1970s. It has been argued, however, that little attention was paid to 

these findings during the large-scale reintroduction of MoM hips in the early 2000s 

(Athanasou 2016).  
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The problems related to third generation MoM hip implants did not truly 

surface until relatively recently. Early reports described inflammatory tissue 

response, necrosis, extra-articular soft-tissue masses, implant loosening and pain 

(Willert et al. 2005, Boardman et al. 2006, Gruber et al. 2007, Pandit et al. 2008a, 

Toms et al. 2008). Today, these adverse reactions have resulted in large numbers of 

patients having to undergo revision surgery. For example, in the Australian 

Orthopaedic Association National Joint Replacement Registry, a total of 17 345 

MoM hip resurfacings had been implanted by 2018. Of these, 1 656 (9.5%) have 

since undergone revision surgery (AOANJRR 2018). In a recent large cohort of 

MoM patients, 36% of MoM THAs and 14% of MoM hip resurfacings had 

undergone revision surgery (Lainiala et al. 2019). It has been estimated that globally 

at least 80% of all MoM hips remain unrevised (Matharu 2017). Data from our 

institution is in line with this estimation – 78% of all MoM hip replacements 

remained unrevised as of 2019 (Lainiala et al. 2019). In total, approximately 1.5 

million MoM hip replacements were implanted worldwide and those unrevised are 

still at risk for failure due to ARMD (Matharu et al. 2018c). Due to the high failure 

rate caused by adverse reactions, numerous systems have been recalled by their 

manufacturers (Chapter 2.1.1) and the use of MoM bearings has now almost 

completely ceased (AOANJRR 2017, NJR 2017). 

2.4.2  Definition and terminology 

Various terms have been used to describe the adverse reactions related to MoM hip 

replacements. The most widely used has been the term Adverse Reaction to Metal 

Debris (ARMD), which was first described by Langton et al. in 2010 (Langton et al. 

2010). ARMD is an umbrella term and refers to the pathological findings – both 

micro- and macroscopic – seen in failed MoM hips. These findings include 

inflammatory tissue responses, soft-tissue masses, necrosis and the macroscopic 

staining of the tissues, that is, metallosis. Some studies have used the term Adverse 

Local Tissue Reaction (ALTR) rather than ARMD but both terms can be 

considered synonyms (Whitehouse et al. 2015, Liow et al. 2016, Xia et al. 2017). 

The soft-tissue masses, cystic or solid, related to MoM hip implants were described 

as pseudotumors by Pandit et al. in 2008 and the term has since been widely used 

(Pandit et al. 2008a). The term Aseptic Lymphocyte-dominated Vasculitis-

Associated Lesion (ALVAL) was first defined by Willert et al. in 2005 to describe a 
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subset of patients with specific histological findings related to the failure of MoM 

hips (Willert et al. 2005).  

The misuse of the terminology described above has been of some concern 

(Athanasou 2016). For example, ALVAL and ARMD have been used 

synonymously, although ALVAL refers to a specific histological subset of ARMD. 

In addition, some studies have used the term pseudotumor as a synonym for 

ARMD. By definition, all patients with a pseudotumor have ARMD, but not all 

patients with ARMD have a pseudotumor. Furthermore, the misuse of the 

terminology in the literature may lead to difficulties when comparing studies.  

2.4.3 Etiology and risk factors 

Most risk factors for ARMD and related failure are similar to the risk factors for 

all-cause revision (of which most are due to ARMD). However, the different 

definitions of ARMD between studies makes the evaluation of the risk factors 

challenging. The reported risk factors for failure specifically related to ARMD and 

pseudotumor are listed in Table 3. ARMD can be understood as a complication 

arising from the generation of metal debris from the bearing surface or modular 

interface. The generation of metal debris leads to local tissue responses and typical 

clinical presentation (Mahendra et al. 2009, Langton et al. 2010, Haddad et al. 

2011). ARMD, in its different forms, has been observed in patients with both high- 

and low-wearing prostheses (Campbell et al. 2010, Kwon et al. 2010, Langton et al. 

2010, Ebramzadeh et al. 2011, Langton et al. 2011b, Matthies et al. 2012, 

Grammatopoulos et al. 2013, Ebramzadeh et al. 2014). Most failures appear to be 

related to excess wear, and it is therefore considered to be the most important 

cause of the development of ARMD (Langton et al. 2010, 2011a, 2011b, Matthies 

et al. 2011, Takamura et al. 2014). Moreover, high wear also results in high local 

concentrations of metal debris leading to cellular and immunological cascades, and 

ultimately manifesting clinically as ARMD (Athanasou 2016). However, ARMD 

has also been observed in patients with low implant wear. Sensitivity to metal 

debris, either type IV delayed adaptive immunity response or some other 

mechanism, has been suggested as a cause of ARMD in these patients (Campbell et 

al. 2010, Matthies et al. 2012, Park et al. 2018).  

Metal ion levels in blood can be used to estimate the in vivo wear state of the 

implant and the need for revision surgery (De Smet et al. 2008, Langton et al. 
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2011b, Sidaginamale et al. 2013, Van Der Straeten et al. 2013). High metal ion 

levels are associated with higher risk for all-cause and ARMD revision when 

compared with low metal ion levels (Langton et al. 2010, Hart et al. 2011b, 

Langton et al. 2013b, Hart et al. 2014). However, there is no method for 

recognizing those who are at risk for revision despite low implant wear and low 

blood metal ion levels. Metal hypersensitivity mediated by type IV delayed 

response has been suggested as a cause, but there is no reliable test to predict the 

individual response to metal debris (Teo and Schalock 2016). It has been reported 

that women are at higher risk for ARMD and related failure (Glyn-Jones et al. 

2009, Murray et al. 2012a, Langton et al. 2013b, Reito et al. 2013, Matharu et al. 

2016). In addition, there is some evidence that metal hypersensitivity may be more 

frequent in women (Ebramzadeh et al. 2011) and previous exposure to metal ions 

from wearing jewelry has been suggested as a possible cause (Pandit et al. 2008a). 

On the other hand,  Langton et al. noted that ALVAL-type responses share many 

histological features with autoimmune diseases, such as rheumatoid arthritis, and 

these diseases are more frequent in women (Langton et al. 2013b). Thus, it could 

be that women are genetically more susceptible to ARMD. Patients with bilateral 

MoM hips have higher risk for failure due to ARMD compared with patients with 

unilateral MoM hips (Langton et al. 2016). Sensitization to metal debris caused by 

the first MoM hip was suggested by the authors. In addition to delayed-type 

hypersensitivity to metal debris, it is possible that the magnitude and type of host 

response, that is, patient susceptibility, is individually variable overall. This could 

lead to a difference in the thresholds of metal debris needed between patients to 

provoke an adverse reaction. Patient susceptibility has been suggested as a possible 

contributor to the development of ARMD in numerous previous studies 

(Campbell et al. 2010, Donell et al. 2010, Ebramzadeh et al. 2011, Hart et al. 2012a, 

Matthies et al. 2012, Ebramzadeh et al. 2014, Athanasou 2016, Langton et al. 

2016), but no direct evidence to support this has been presented. 

Other known risk factors for ARMD include those factors that affect the wear 

process of the prosthesis, and these factors can be divided into implant-specific 

factors and surgical factors. Hip resurfacings have a lower prevalence of ARMD 

than stemmed THA (Langton et al. 2011a, Reito et al. 2013). Wear debris from the 

trunnion-interface between the head and stem in THA was suggested by the 

authors as a contributor to the higher risk of failure due to ARMD. In addition to 

implant type, implant brand has also been shown to be associated with risk for 

failure due to ARMD (NJR 2017). The highest failure rates have been observed 
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with ASR XL and ASR resurfacing devices in data from both registries and clinical 

trials (Langton et al. 2011b, NJR 2017). It has been suggested that this high failure 

rate is due to the design of the ASR cups, that is, small arc of cover leading to edge 

loading and increased wear (Langton et al. 2011b). In some studies utilizing 

univariable analyses, a small head size in hip resurfacing patients has been 

identified as a risk factor for ARMD (Glyn-Jones et al. 2009, Ollivere et al. 2009, 

Langton et al. 2011b, Murray et al. 2012a, Reito et al. 2013), but in analyses 

controlling for gender, a similar association has not been found (Glyn-Jones et al. 

2009, Murray et al. 2012a, Reito et al. 2013, Matharu et al. 2016). Thus, it is likely 

that the results of the univariable analyses are confounded by the fact that women 

have smaller components and that female gender is associated with higher risk for 

ARMD. Conversely, in THA, a large head size has been identified as an 

independent risk factor for ARMD (Reito et al. 2015a). It has been suggested that 

increments in head size lead to increases in the lever arm between the trunnion and 

the head and/or increased frictional torque in bearing, which may translate in to 

greater micromotion and subsequent wear at the trunnion. This could therefore 

serve to explain the risk associated with larger head sizes (Langton et al. 2012). 

Surgical factors associated with increased risk for ARMD include malpositioning of 

the cup, namely excessive inclination and excessive or insufficient anteversion of 

the cup (De Haan et al. 2008, Langton et al. 2011b). Excessive inclination leads to 

increased bearing wear, which is considered to be the root cause of ARMD (Hart 

et al. 2013). 

Table 3.  The risk factors for revision specifically related to ARMD or pseudotumor in single-
center cohorts in patients with metal-on-metal hip replacements. 

Risk factor Study 

Female gender 
Glyn-Jones et al. 2009, Murray et al. 2012b, Reito et 
al. 2013 

Acetabular component malpositioning 
De Haan et al. 2008, Grammatopoulos et al. 2010, 
Langton et al. 2011b 

High component wear Kwon et al. 2010, Glyn-Jones et al. 2011 

High blood metal ion levels Langton et al. 2010, 2013b 

Bilateral hip replacement Langton et al. 2016 

Total hip replacement (vs. hip resurfacing) Langton et al. 2011a 

Large head-size in THA Reito et al. 2015a 

Age < 40 Glyn-Jones et al. 2009 
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2.4.4 Prevalence of revision surgery resulting from ARMD 

The prevalence of revision surgery resulting from ARMD varies widely between 

studies (Table 4). At our institution, the prevalence has been between 7.4% and 

48.8% at five to eight-year follow-up, depending on implant type and brand (Reito 

et al. 2013, 2015a, Lainiala et al. 2014). The prevalence appears to be higher in 

patients with THA versus hip resurfacing and in patients with DePuy ASR 

prostheses versus other devices (Langton et al. 2011a, 2011b, 2013b, 2016, 

Matharu et al. 2017). In addition to patient, implant and surgeon related factors, 

Reito et al. have shown that the prevalence of revision for ARMD depends on the 

level of screening implemented (Reito et al. 2016b). More rigorous screening leads 

to a higher prevalence of ARMD. Hence, differences in the definition of ARMD, 

the level of screening and the diagnostic methods used make comparisons between 

studies challenging. Further, the indications for revision surgery may also vary 

greatly between centers and individual surgeons (Matharu et al. 2019) Overall, 

ARMD is the most frequent cause of revision surgery in both HR and THR 

(Ollivere et al. 2009, Langton et al. 2010, 2011a, Reito et al. 2013, Lainiala et al. 

2014, Matharu et al. 2016, 2017, Sidaginamale et al. 2016).  
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2.4.5 Clinical presentation 

Clinical presentation in ARMD is considered to result from the accumulation of 

metal debris in periprosthetic tissues, leading to the activation of immunological 

responses and possible direct cytotoxic effects, further observed as 

pathophysiological changes, such as inflammation, swelling and necrosis (Figures 4 

and 5), which are likely the root cause of clinical manifestations (Mahendra et al. 

2009, Langton et al. 2010, Haddad et al. 2011, Athanasou 2016). Patients may 

present with localized pain, effusion or masses around the hip (Figures 4 and 5), 

limited range of movement, sensation of pressure or instability, squeaking and 

numbness of the hip (Pandit et al. 2008a, Langton et al. 2010, Lainiala et al. 2014). 

In addition, ARMD may be accompanied by gluteal muscle atrophy, which can 

impair the function of these muscles (Toms et al. 2008, Berber et al. 2015, Reito et 

al. 2016a). However, patients may be completely asymptomatic despite the 

inflammation, soft-tissue masses and tissue destruction present in their hips (Kwon 

et al. 2011, Wynn-Jones et al. 2011, Almousa et al. 2013, Fehring et al. 2014). The 

natural history of these changes and the possible progression of symptoms is not 

well understood. Moreover, even less is known about the follow-up and treatment 

of these asymptomatic patients.  
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Figure 4.  A massive necrotic soft-tissue mass (pseudotumor) around the hip joint (arrow). 

 

Figure 5.  A thickened synovial capsule (thin arrow) with necrosis (thick arrow). 
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2.4.6 Surveillance and diagnostics 

Patients with MoM hip arthroplasty are at risk for developing ARMD, and 

therefore in dire need of surveillance. A large body of literature on the subject 

exists and many authorities worldwide have published their recommendations for 

follow-up protocols (Health Canada 2012, FDA 2013, MHRA 2017, TGA 2017). 

Matharu et al., however, have argued that current follow-up protocols are neither 

evidence-based nor cost effective (Matharu et al. 2015). Most commonly, 

surveillance includes clinical examination, blood metal ion sampling, imaging and 

in some cases hip aspiration (Matharu et al. 2018b).  

Patients should be evaluated thoroughly for signs and symptoms of ARMD. 

Symptoms include pain and mechanical sensations, such as clicking, clunking or 

instability. Signs that can be observed in clinical examination comprise swelling of 

the hip, soft-tissue masses around the hip area and limping. Patient-reported 

outcome measures, such as Oxford Hip Score (OHS), may offer supporting 

information on the severity of patient’s symptoms. (Matharu et al. 2018b) 

The rationale behind blood metal ion sampling is that in vivo wear is known to 

correlate with metal ions measured in whole blood and serum (De Smet et al. 2008, 

Sidaginamale et al. 2013). Furthermore, elevated levels of blood metal ions have 

been associated with poor implant function and increased risk for implant failure 

leading to revision surgery (Langton et al. 2010, Hart et al. 2011b, Van Der 

Straeten et al. 2013, Hart et al. 2014). There is, however, no clear consensus 

regarding the optimal threshold values of metal ion levels to detect patients with 

poorly performing MoM implants in need of revision surgery (Matharu et al. 

2018b). Therefore, the decision for revision surgery should not be based solely on 

blood metal ion levels (Hart et al. 2014).  

Imaging of the hip is recommended because it provides important information 

to aid in the decision-making process. Suitable imaging modalities include native 

radiographs, Metal Artifact Reduction Sequence Magnetic Resonance Imaging 

(MARS-MRI) and ultrasound. Native radiographs cannot be used to detect soft 

tissue–related pathologies, but they can identify other abnormalities that are 

sometimes associated with ARMD. These abnormalities include high acetabular 

inclination and osteolysis. Furthermore, native radiographs may reveal other causes 

of implant failure besides ARMD, such as periprosthetic fracture and aseptic 

loosening of the components. Ultrasound and MARS-MRI are recommended 

imaging modalities for detecting soft tissue pathologies, such as pseudotumors, 

severe muscle atrophy and joint effusion, that belong under the umbrella term 



60 
 

ARMD. Both of these imaging modalities have their own advantages and 

disadvantages. The advantages of ultrasound in comparison to MARS-MRI include 

its relatively low cost, the short amount of time needed to perform the 

investigation and fewer contraindications. The advantages of MARS-MRI include 

not being operator-dependent, better visualization of deeper tissues and the 

possibility to compare findings to contralateral hip and to retrospectively inspect 

images. Two classifications have been published for MRI findings and these have 

been commonly used in later studies: the Imperial classification by Hart et al. and 

the modified Norwich classification by Anderson et al. (Anderson et al. 2011, Hart 

et al. 2012d). Both ultrasound and MARS-MRI can detect pseudotumors with 

sufficient sensitivity and specificity, albeit MARS-MRI has performed slightly 

better in imaging studies. Hence, MARS-MRI is considered to be the gold standard 

and is often the first line of imaging. (Matharu et al. 2018b) 

Hip aspiration is not frequently used, but in some cases it may aid the 

diagnostics. For instance, bacterial cultures and cell counts from hip aspirates may 

help in differential diagnostics between prosthetic joint infection and ARMD. 

Further, the implant wear of both hips can be estimated separately in bilateral 

MoM patients using metal content analysis of the hip aspirate. (Matharu et al. 

2018b) 

In conclusion, no single investigative modality can solely be used in the 

surveillance of patients with MoM hip implants. Surveillance should include 

thorough clinical examination, measurement of blood metal ions, native 

radiographs and cross-sectional imaging with either MARS-MRI or ultrasound. 

Asymptomatic patients with underlying ARMD present a diagnostic challenge. 

Moreover, asymptomatic patients may develop pseudotumors with the potential to 

cause tissue destruction, even in the absence of high blood metal ions (Pandit et al. 

2008a, Mahendra et al. 2009, Wynn-Jones et al. 2011, Matthies et al. 2012). It has 

been suggested that susceptibility to metal debris is the underlying cause in these 

patients (Willert et al. 2005, Campbell et al. 2010, Matthies et al. 2012). Skin patch 

testing and lymphocyte transformation tests have been researched as diagnostic 

means to detect these patients, but evidence does not support their use (Teo and 

Schalock 2016). 
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2.4.7 Treatment 

The heterogeneity of ARMD as a complication and the lack of evidence makes the 

management and treatment of these patients challenging. Surgeons need to decide 

whether to continue surveillance or to proceed with revision surgery. There is no 

good evidence regarding the threshold of revision surgery to achieve optimal 

results. In some situations, the decision to proceed with revision surgery can be 

straightforward: symptomatic patient with solid pseudotumor causing damage to 

adjacent tissues. Contrarily, a patient with no symptoms, no imaging findings and 

low blood metal ions can safely continue to be surveilled. However, large numbers 

of patients fall somewhere in between these two scenarios, that is, into a “gray” 

area. Early studies reporting results of AMRD revisions showed poor outcomes, 

which led the authorities to suggest early revision. As of today, there is no good 

quality evidence to support surgeons in the decision-making process; most 

management guidelines rely on expert opinion (level 5 evidence). (Matharu et al. 

2018a). 

Due to the heterogeneity of ARMD, revision surgery is often challenging, and 

surgical strategies need to vary according to the presentation. ARMD with only 

synovitis and slight metallosis requires a different approach than ARMD with solid 

pseudotumor, soft-tissue necrosis and muscle atrophy. However, despite the 

differences in intraoperative presentation, the main objective of revision surgery is 

to convert the MoM bearing couple into a bearing couple that does not produce 

metal debris. Suitable bearing couples include MoP, ceramic-on-polyethylene and 

ceramic-on-ceramic. Depending on the fixation and positioning of the 

components, either femoral/acetabular or both components can be revised. In 

THA, revision of only the modular components, such as the femoral head and 

acetabular liner, may be sufficient. (Matharu et al. 2018a). 

ARMD revisions are not without complications. These include infections, 

dislocation and ARMD recurrence (Matharu et al. 2018a). Early short-term results 

suggested that the functional outcome of revision is significantly worse compared 

with MoM revision performed for causes other than ARMD (Grammatopolous et 

al. 2009). Furthermore, 50% of patients revised for ARMD presented with 

complications and one third required re-revision. Matharu et al. conducted a 

systematic review of all studies reporting complication and re-revision rates after 

ARMD revision (Matharu et al. 2018a). Complication rates were found to range 

from 4 to 69% and well over 10% in most of the included studies. Re-revision rates 

ranged from 2 to 44%. The authors noted that the overall outcomes of ARMD 
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revision surgery have likely improved over time. Possible explanations for this 

improvement were lowered threshold for performing revision surgery, improved 

patient surveillance, more experienced surgeons and longer time interval from 

primary operation to revision. The lowest rates of complications and re-revisions 

were reported in the largest studies with experienced, high-volume surgeons. 

2.5 Histopathology of ARMD 

2.5.1 Histology and organization of healthy synovium 

The synovium forms an enclosed environment for the joint. It consists of a 

synovial membrane that attaches to the bone surfaces. The functions of the 

synovium include lubrication of the joint and defense against pathogens. The 

synovial membrane can further be divided into intimal and subintimal layers. The 

intimal layer, also termed the synovial lining, is the innermost layer. Intimal cells are 

known as synoviocytes and can be divided into two major types: A and B. Type A 

synoviocytes are macrophage-like and form an immunological barrier. Type B 

synoviocytes resemble fibroblasts and produce important components of synovial 

fluid. Under the intima lays the subintima, which consists of the extracellular 

matrix and a few cells. Occasional inflammatory cells, such as macrophages and 

lymphocytes, are also observed. (Smith 2011). A photomicrograph of a histological 

section of hip joint synovium is shown in Figure 6.  
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Figure 6.  A photomicrograph of a H&E stained section of healthy hip joint synovium. The thick arrow 
points to intact synovial lining. The thin arrow points to synoviocytes. The intermediate 
arrow shows subintimal macrophages and fibroblasts. Photomicrograph captured with 
Nikon Eclipse 50i fitted with 20x objective (total magnification 200x). 
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2.5.2 Overview of the histopathology of ARMD 

Several studies have been conducted regarding the histopathology of ARMD. In 

these studies, samples, such as synovial capsule and pseudotumor tissue, have been 

obtained from the periprosthetic tissues and graded using light microscopy. Some 

studies have used flow cytometry to determine the number of inflammatory cells 

present. 

Findings observed in periprosthetic tissue samples obtained from patients with 

ARMD include necrosis, inflammatory cell infiltrates consisting of variable 

amounts of neutrophils, macrophages, plasma cells, T- and B-lymphocytes, 

germinal centers, sarcoid-like granulomas and vascular damage (Davies et al. 2005, 

Willert et al. 2005, Campbell et al. 2010, Natu et al. 2012, Grammatopoulos et al. 

2013). Most of the inflammatory cells are either macrophages or lymphocytes. 

Necrosis may be coagulative or fibrinoid (Krenn et al. 2014). In addition, there 

appears to be distinct patterns of histopathological findings. At least three different 

pathological responses have been suggested: 1. Foreign-body macrophage 

response, 2. Cytotoxic response and 3. ALVAL response (Davies et al. 2005, 

Willert et al. 2005, Mahendra et al. 2009, Campbell et al. 2010, Natu et al. 2012, 

Berstock et al. 2014). It should be noted, however, that these responses may 

overlap considerably and may present simultaneously (Berstock et al. 2014, 

Ricciardi et al. 2016). Several different scoring systems for tissue samples have been 

used of which the ALVAL score is likely the most popular (Campbell et al. 2010, 

2018b). ALVAL scoring and Natu scoring are explained in more detail in the 

Methods section, chapter 4.2.4. 

2.5.3 Foreign-body macrophage response 

It is well recognized that the generation of polyethylene particles in patients with 

MoP implants induces an inflammatory macrophage response which can, over 

time, lead to osteolysis and aseptic loosening of the implant. The degree of 

osteolysis is related to the high volume of polyethylene wear debris produced. 

(Harris 1994). Although MoM implants are substantially lower wearing, metal 

particles also appear to evoke a macrophage response in the synovial tissue in some 

patients, although milder than that seen with MoP implants (Doorn et al. 1996, 

Willert et al. 1996, 2005). Macrophages have three major roles in tissue 

inflammation: phagocytosis of foreign particles or not viable tissues, antigen 

presentation and modulation of the immune response via numerous cytokines and 
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growth factors (Fujiwara and Kobayashi 2005). Histopathologically, this type of 

response in the synovium is characterized by the presence of superficially located 

macrophages with or without foreign-body giant cells and granulomas (Figure 7) 

and preservation of the underlying tissue architecture (Campbell et al. 2010, 

Berstock et al. 2014). Fine metal particles or “metal dust” are often seen in the 

cytoplasm of macrophages as a sign of phagocytosis (Nawabi et al. 2014) (Figure 

8). Immunologically, metal particles are recognized by macrophages as foreign 

material, which activates numerous signaling pathways to gather more 

macrophages to the site to help clear the metal debris. Diffuse lymphocytes may 

also be present in minor quantities. This type of macrophage-mediated response is 

termed innate or non-specific immune response. (Athanasou 2016). For a 

microscope image of the characteristic histological features, please see Figure 11, 

page 100. 

 

Figure 7.  Photomicrograph of an H&E stained section of synovial tissue removed from patient 
revised for ARMD. The two-headed arrow shows the whole granuloma with metallic debris 
encapsulated inside. One-headed arrow points to a multinucleated giant cell. 
Photomicrograph captured with Nikon Eclipse 50i fitted with 20x objective (total 
magnification 200x). 



66 
 

 

Figure 8.  Photomicrograph of an H&E stained section of synovial tissue removed from patient 
revised for ARMD. The arrow points to a macrophage with phagocytized fine metal debris 
inside. Photomicrograph captured with Nikon Eclipse 50i fitted with 40x objective (total 
magnification 400x). 

2.5.4 Cytotoxic response 

In some patients, the histological picture of ARMD comprises substantial tissue 

necrosis in addition to macrophage infiltration. It has been suggested that in these 

patients the underlying cause of necrosis is the direct cytotoxic effect of cobalt-

chromium particles and ions (Mahendra et al. 2009). The presumed mechanism is 

the following: metal particles are phagocytized by periprosthetic cells and 

contained in phagolysosomes, the acidic environment of lysosomes leads to 

degradation of the metal particles into ions, which then escape the lysosome and 

lead to apoptosis and necrosis of the affected cells (Salvati et al. 1993, Xia et al. 

2011).  In keeping with this hypothesis are in vitro studies which show that cobalt 

and chromium ions can cause dose-dependent necrosis and apoptosis in 

macrophages (Catelas et al. 2001, 2005, Kwon et al. 2009). Several authors have 
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suggested that the necrosis induced by metal ions leads to a cycle in which 

macrophages are first recruited to clear the cellular and metallic debris but end up 

undergoing cell death themselves, which then leads to more macrophages being 

recruited and a worsening of the situation (Salvati et al. 1993, Mahendra et al. 2009, 

Grammatopoulos et al. 2013). Further, there is evidence that the release of metal 

ions and particles from dead macrophages leads to the cell death of adjacent 

fibroblasts as well (Xia et al. 2011). It is not understood why some patients develop 

necrosis in addition to macrophage inflammation, while some do not (Eltit et al. 

2019). In conclusion, the cytotoxic response is likely a combination of the direct 

cytotoxic effect of metal debris and the activation of the innate immune response 

which leads to the histopathological findings of tissue necrosis and heavy 

macrophage infiltration. For the characteristic features of this response, please see 

Figure 12, page 101. 

2.5.5 ALVAL response 

Willert et al. and Davies et al. were the first to report that in some patients with 

early onset of pain the capsular tissues display prominent lymphocytic infiltration, 

necrosis, fibrin exudation, vascular wall changes, occasional plasma cells and 

variable amounts of macrophages (Davies et al. 2005, Willert et al. 2005). 

Lymphocytes were present diffusely in the superficial layer and as perivascular 

cuffs in the intermediate layer of the capsule. The authors suggested the presence 

of lymphocyte-dominated type IV hypersensitivity response to metal debris and 

described it as Aseptic Lymphocyte-dominated Vasculitis-Associated Lesion 

(ALVAL). Perivascular lymphocytic cuffing of the capillaries, swelling of the 

vascular walls and necrosis are characteristics for vasculitis, and thus the findings 

were described as vasculitis-associated lesion. Davies et al. noted, however, that it 

is unclear whether these findings represent active vasculitis or a novel form of 

immunological response with unknown consequences.  

Since the pioneering work by Davies et al. and Willert et al., numerous studies 

have described mostly similar findings (Witzleb et al. 2007, Huber et al. 2008, 

Pandit et al. 2008b, Mahendra et al. 2009, Campbell et al. 2010, Natu et al. 2012, 

Grammatopoulos et al. 2013, Berstock et al. 2014, Langton et al. 2016, Ricciardi et 

al. 2016). The role of vascular wall changes in the development of tissue necrosis 

has been questioned (Mahendra et al. 2009, Natu et al. 2012). Natu et al. suggested 

that necrosis is likely due to pronounced lymphocytic inflammation but may also 
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be due to vascular wall changes leading to local ischemia and necrosis. The authors 

stated that it is still not understood whether the vascular wall changes are a 

consequence of lymphocytes transiting through the wall or true vasculitis. In a 

study by Langton et al., it was shown that the thickness of lymphocytic cuffing 

correlated with the degree of necrosis (Langton et al. 2011b). Further, T-killer 

lymphocytes, which can cause necrosis, have been found in tissues with suggested 

type IV response and may be related to the common finding of tissue necrosis in 

ALVAL response (Hasegawa et al. 2016). In some patients with lymphocytic tissue 

responses, germinal centers containing B- and T-lymphocytes have also been 

observed (Natu et al. 2012, Langton et al. 2013b, Mittal et al. 2013). A microscope 

image of germinal center is shown in Figure 9. Natu et al. suggested that these are 

the end stage of lymphocytic inflammatory response. However, Mittal et al. 

concluded that these germinal centers, or tertiary lymphoid organs, form their own 

distinct pathological subset of ARMD. The role of these germinal centers is not 

fully understood (Hasegawa et al. 2016). Altogether, studies have supported the 

hypothesis that an adaptive immune response, leading to lymphocyte-dominated 

inflammation and subsequent necrosis, is the cause of failure in some patients. For 

a microscope image of characteristic histological features, please see Figure 13, 

page 102. 
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Figure 9.  Photomicrograph of an H&E stained section of synovial tissue removed from patient 
revised for ARMD. The arrow shows a germinal center. Photomicrograph captured with 
Nikon Eclipse 50i fitted with 4x objective (total magnification 40x). 

2.5.6  Histopathology of pseudotumors 

The term pseudotumor is often used interchangeably with the term ARMD. 

However, by definition, pseudotumors are cystic or solid masses that connect with 

the joint space (Pandit et al. 2008a). It is not understood why pseudotumors form 

in only a subset of patients who develop ARMD. Pseudotumors can be associated 

with all of the responses described above – Foreign-body, cytotoxic and ALVAL 

response (Mahendra et al. 2009, Campbell et al. 2010, Grammatopoulos et al. 

2017a). Further, pseudotumors do not seem to be specific to MoM implants as 

they are also observed in patients with other types of bearing couples (Carli et al. 

2011). In patients with MoP hip implants, corrosion debris from the trunnion most 

likely causes the formation of pseudotumors (Cooper et al. 2012, 2013). However, 

pseudotumors may also form in response to polyethylene wear (Murgatroyd 2012). 

The histology of these lesions appears to be solely granulomatous macrophage 
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inflammation and no lymphocytes have been observed (Carli et al. 2011). This is in 

contrast to the common finding of heavy lymphocytic infiltration and necrosis in 

MoM pseudotumors (Mahendra et al. 2009, Campbell et al. 2010). 

2.6 Etiopathogenesis of ARMD 

As reviewed above, three main types of tissue responses have been suggested in 

ARMD, and these may further overlap. Periprosthetic tissues show inflammatory 

changes, such as swelling, presence of macrophages, T-lymphocytes and necrosis, 

in different proportions (Grammatopoulos et al. 2013, Berstock et al. 2014). Other 

findings include occasional B-lymphocytes, plasma cells, neutrophils, granulomas 

and germinal centers (Natu et al. 2012, Grammatopoulos et al. 2013, Hasegawa et 

al. 2016). These different microscopic, tissue-level findings reveal important 

indirect information about the underlying pathological processes. It is for this 

reason that the histopathological analysis of tissues related to failed MoM hip 

replacements is important. (Athanasou 2016). Another, less commonly used 

method for evaluating the cellular response is flow-cytometry. This method uses 

specific cellular antigens to detect the exact amounts of different inflammatory 

cells and their subgroups present in a tissue sample (Brown and Wittwer 2000). 

The most commonly scored histological features are the presence and extent of 

macrophages, lymphocytes and necrosis (Campbell et al. 2018b). Macrophages are 

considered a key component of the innate, non-specific response to foreign 

material. Lymphocytes, on the other hand, form the cellular basis of the adaptive 

immune response, which is antigen-specific and has an immunological memory. 

(Athanasou 2016). Necrosis may be the result of the direct cytotoxic effects of 

metal wear but may also be due to lymphocytic inflammation (Mahendra et al. 

2009, Campbell et al. 2010, Langton et al. 2011b). Innate and adaptive 

immunological responses are not exclusive. The adaptive response may then be 

provoked if foreign material (metal debris) is presented by antigen-presenting cells 

and recognized as a specific antigen by sensitized lymphocytes. Macrophages help 

maintain inflammation by secreting cytokines that gather and affect lymphocytes in 

many ways (Athanasou 2016). In regard to the ALVAL response, it has been 

suggested that the underlying mechanism is an adaptive, cell-mediated type IV 

response that leads to the accumulation of diffuse and perivascular lymphocytes 

(mainly T-lymphocytes), inflammation and necrosis of the periprosthetic tissues 

(Davies et al. 2005, Willert et al. 2005). It has been postulated that metal ions may 
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form complexes with host-proteins which would change their conjugation, be 

recognized as foreign antigens and lead to activation of the adaptive immunological 

cascade (Athanasou 2016, Eltit et al. 2019).  

Histopathological findings may be further combined with clinical and retrieval 

information, such as implant wear, gender and time from primary operation to 

revision surgery, to better understand the underlying pathogeneses and their 

variations in individuals (Campbell et al. 2018b).  Since ARMD is considered a 

consequence of wear debris, many studies have focused on the associations 

between metal wear burden and histopathological findings (Table 5) (Langton et al. 

2010, Takamura et al. 2014). Some studies have directly measured wear from 

retrieved implants, and some have used indirect methods, such as blood/synovial 

metal ion concentrations or periprosthetic tissue metal concentration (Table 5). As 

becomes evident from the table, the results of these studies have been discrepant. 

 In a central study in 2010, Campbell et al. showed that the ALVAL response 

was associated with low implant wear. Conversely, a macrophage-dominant 

response was seen with high implant wear. This formed a basis for a hypothesis 

that the ALVAL response is due to hypersensitivity to metal debris and does not 

therefore require abnormal amounts of metal debris to be provoked (Campbell et 

al. 2010). This hypothesis has been supported by the majority of the research; 

however, opposing results have also been published (Table 5). On a group-level, 

associations between metal wear burden and type of tissue response have mostly 

been weak. In some studies in which group-level associations were not found 

between metal wear burden and lymphocytes, the authors noted that a subset of 

patients presented features of ALVAL responses and had low wear, supporting the 

original hypothesis (Grammatopoulos et al. 2013, 2017a). 

Campbell et al. suggested that high amounts of metal wear lead to a foreign-

body, macrophage-dominated innate response (Campbell et al. 2010). Many of the 

studies have supported this finding (Table 5). Grammatopoulos et al. further 

observed that high wear was associated with both macrophages and necrosis 

(Grammatopoulos et al. 2013). They proposed a cycle where metal particles cause 

direct cytotoxic effects to cells which undergo cell-death. This leads to the 

accumulation of macrophages to clear the cell debris and results in the 

macrophages also facing cell-death. This subsequently leads to the recruitment of 

more macrophages. The direct cytotoxic effects of metal particles have also been 

suggested by another study (Mahendra et al. 2009). However, it remains unclear 

whether the foreign-body macrophage-response without necrosis is a separate 

entity.  
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Other etiopathological factors, such as particle size and origin, patient 

susceptibility and gender, have also been suggested. Metal debris from the taper-

interface is potentially more immunogenic and cytotoxic than debris from the 

bearing surfaces (Langton et al. 2013a, Xia et al. 2017). Xia et al. reported that taper 

debris led to more severe necrosis and lymphocytic infiltration than bearing wear 

despite smaller amounts of metals being present in the tissues. Another often 

proposed factor is patient susceptibility. It has been suggested that individual 

reactivity to metal debris is variable (Grammatopoulos et al. 2013). The existence 

of individual patient susceptibility is widely accepted (Campbell et al. 2014). There 

is, however, no direct evidence to support this belief. Studies have been conducted 

regarding clinical testing for metal hypersensitivity, but no clinically useful tests 

have been found (Teo and Schalock 2016). Women have been observed to be at 

higher risk for failure at similar levels of blood metal ions compared to men 

(Langton et al. 2013b). Other researchers have published similar findings, as 

discussed earlier in Chapter 2.4.3. Langton et al. also noted that the ALVAL 

response was overrepresented in women. They suggested that when compared to 

men, women may be more prone to mount adaptive immune responses leading to 

ARMD. 

The pathogenesis of ARMD is still poorly understood. Several different 

mechanisms have been proposed, but many of the studies regarding 

etiopathogenesis have been in disagreement. Furthermore, the observed 

associations have mostly been relatively weak. In conclusion, there appears to be 

several different pathological entities which most often lead to ARMD in the 

presence of a high wearing implant. However, ARMD is also encountered in 

patients with low wearing implants, and the presence of an adaptive, lymphocytic 

ALVAL response in these patients is supported by the body of evidence. These 

responses often overlap and other, still unrecognized, responses may exist 

(Grammatopoulos et al. 2013, Berstock et al. 2014, Ricciardi et al. 2016) 
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Table 5.  The reported associations between metal measurements and tissue responses in the 
published literature.  

Study 
Metal 
measurement 

Tissue 
characterizatio
n 

N 
Association between metal measurement & tissue 
response 

    Macrophages Lymphocytes Necrosis 

       

Campbell et al. 
2010 

Linear wear Histology 32 High wear Low wear Not associated 

Langton et al. 
2011a 

Volumetric 
wear 

Histology 25 Not associated Not associated Not associated 

Ebramzadeh et al. 
2011 

Linear wear Histology 353 - Low wear - 

Grammatopoulos 
et al. 2013 

Volumetric 
wear 

Histology 56 High wear High wear High wear 

Ebramzadeh et al. 
2014 

Linear wear Histology 119 High wear Low wear Not associated 

Nawabi et al. 
2014 

Volumetric 
wear 

Histology 94 - Low wear - 

Campbell et al. 
2018a 

Volumetric 
wear 

Histology 165 High wear Not associated Not associated 

Lohmann et al. 
2013 

Synovial 
tissue 
concentration 

Histology 28 Low metal load High metal load - 

-“- 
Serum ion 
concentration
s 

-“- 27 Not associated Not associated - 

Reito et al. 2015b 
Synovial fluid 
concentration
s 

Histology 163 Not associated High metal load High metal load 

Paukkeri et al. 
2016 

Whole blood 
concentration
s 

Flow cytometry 16 High metal load Low metal load - 

Grammatopoulos 
et al. 2017a 

Whole blood 
concentration
s 

Histology 38 Not associated Not associated Not associated 



 

74 

3 AIMS 

The purpose of this dissertation was to investigate the histopathological 

characteristics of ARMD, implant wear, clinical markers of implant wear, 

periprosthetic tissue metal ion levels, and to investigate the relationships between 

these characteristics in order to better understand the etiopathogenesis of ARMD. 

The specific aims of the studies were to investigate: 

Study I:  Bearing wear and its association with histopathological findings in 

patients with failed ASR MoM hip resurfacings 

Study II:  The association between periprosthetic tissue metal ion levels, 

whole blood and synovial fluid metal ion levels and 

histopathological findings in patients with failed MoM hip 

replacements 

Study III:  The histopathological patterns and possible subgroups in ARMD 

Study IV: The role of host-specific factors in the pathogenesis of ARMD 
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4 PATIENTS AND METHODS 

4.1  Patients 

Between November 2000 and February 2012, a total of 2 868 primary MoM hip 

replacements (LD THA and hip resurfacings) were implanted in 2 398 patients at 

our institution. Of these, 1 036 were ASR MoM hip replacements (Depuy 

Orthopaedics, Warsaw, IN, USA) that were implanted in 887 patients between 

March 2004 and December 2009. For the purposes of the studies included in this 

dissertation, we retrospectively identified patients who had undergone revision 

surgery of a MoM hip replacement either unilaterally or bilaterally. We did not 

perform power calculations since all of our studies were retrospective in nature. All 

patients with sufficient data were included. A summary of the studies is presented 

in Table 6. 

For study I, we identified those patients with ASR hip resurfacings that had 

been revised at our institution between the manufacturer’s recall of the ASR hip 

replacements in August 2010 and the end of our recruitment period in January 

2016. During this period, a total of 114 ASR hip resurfacing devices in 107 patients 

were revised at our institution. All consecutively revised patients who gave 

informed consent and fulfilled the following criteria were included in our study: 1) 

Revision was due to ARMD, 2) Retrieved components were available for bearing 

wear analysis and 3) A periprosthetic tissue sample was available for 

histopathologic analysis. After exclusion, 85 hips in 78 patients were included in 

our study. Twenty-one of these patients were referred to our institution from 

central hospitals from other hospital districts and 57 patients had had their index 

operation (primary arthroplasty) and follow-up at our institution. Of the 85 hips 

included in the study, 56 were explanted from female patients and 29 from male 

patients. Mean age at the time of the revision surgery was 57.3 years (SD 10.3 

years). Mean follow-up time between index operation and revision surgery was 5.4 

years (SD 1.8 years). Surgery was performed by or under the direct supervision of 

14 senior orthopaedic surgeons. 
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For study II, we recruited a pilot patient in June 2013 followed by the 

recruitment of consecutive patients between February 2014 and August 2016. In 

total, 134 hips with variable MoM implants were revised for ARMD at our 

institution during the recruitment period. Of these, two hips were not included due 

to infection, two hips were not included due to inadequate tissue samples and 23 

hips were not included as they were operated on by surgeons who did not 

participate in the recruitment and sample collection. Thus, in total, 107 hips were 

included. Of these, 87 were THA and 20 were hip resurfacings. Whole blood 

samples were available for 106 patients and synovial fluid samples for 90 patients. 

In addition to the patients undergoing revision surgery, two further patients who 

had undergone primary hip arthroplasty and whose tissue samples had been 

retrieved from osteoarthritic synovium were recruited as controls for tissue metal 

analysis. The revised implants for the study are presented in more detail in Table 7. 

 For study III, we identified patients who had been implanted with an ASR 

MoM hip replacement (either THA or hip resurfacing) at our institution and had 

undergone revision surgery between the recall of the ASR hip replacements in 

August 2010 and the end of our recruitment period in January 2015. During this 

time, a total of 334 hips in 301 patients were revised. In 296 of the 334 revision 

surgeries, a tissue sample was retrieved for histopathological analysis, and these 

patients were included in the study. The vast majority of these patients were 

revised for ARMD. 

For study IV, we included all patients with an ASR hip replacement (either 

THA or hip resurfacing) who had undergone bilateral revision surgery at our 

institution. By the end of our recruitment period in September 2016, 316 patients 

had been revised. Of these, 33 patients had undergone bilateral revision. Four of 

these patients were excluded due to missing tissue samples. Thus, 29 patients were 

included in our study (58 hips). All patients had the same head-cup-combination 

on both sides: five patients had bilateral ASR hip resurfacing and 24 patients had 

ASR XL stemmed THA bilaterally. Simultaneous bilateral hip revision was 

performed for two patients, and bilateral revision surgeries were performed for the 

remaining 27 patients sequentially. 
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Table 6.  Summary of study designs, patient demographics and retrieved hip replacements. 

 

Study I II III IV 

Study design Retrospective cohort Retrospective cohort Retrospective cohort Retrospective cohort 

Patients 78 99 - 29 

Hips 85 107 296 58 

Females 
(percentage of 
all patients) 

56 (66%) 42 (42%) - 13 (45%) 

Mean age at 
primary 
operation (SD) 

57.3 (10.3) 66.8 (7.5) - 
*First hip 61.7 (8.3) 
*Second hip 63.1 
(8.5) 

Mean follow-
up time (SD) 

5.4 (1.8) 7.1 (2.5) - 
First hip 4.5 (1.29) 
Second hip 5.8 (1.8) 

Retrieved hip 
replacements 

ASR resurfacing See Table 7 
ASR resurfacing and 
THA 

ASR resurfacing and 
THA 

*Mean age at revision operation 
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Table 7.  Retrieved hip replacements in Study II. 

Retrieved total hip replacements  

  

Femoral component  Acetabular component Quantity 

                            

DePuy Summit DePuy ASR 32 

DePuy Summit DePuy Pinnacle 10 

Biomet Bimetric Biomet M2A38 10 

Biomet Bimetric  Biomet ReCap 5 

DePuy Corail DePuy ASR 4 

Smith-Nephew Synergy Smith-Nephew R3 4 

Zimmer ZMR  Zimmer Durom 2 

Zimmer M/L Taper Zimmer Durom 2 

Wright Medical Profemur Wright Medical Conserve Plus 2 

Other  Other 16 

 Total = 87 

Retrieved hip resurfacings  

DePuy ASR 9 

Smith-Nephew BHR 6 

Zimmer Durom 2 

Biomet ReCap 2 

Smith-Nephew BHR – TM Revision shell 1 

 Total = 20 
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4.2 Methods 

4.2.1 Follow-up of MoM patients at our institution 

After the recall of the DePuy ASR hip arthroplasties and the Medicines and 

Healthcare products Regulatory Agency (MHRA) medical device alert regarding 

MoM hip arthroplasties, a systematic screening program was launched at our 

institution (DePuy Orthopaedics 2010, MHRA 2010). All patients with MoM hip 

arthroplasty were included in the program. Patients were given an Oxford Hip 

Score questionnaire to assess their symptoms and hip function (0-48p, 48p best 

possible), examined physically (including the Harris Hip Score) and whole blood 

(WB) chromium and cobalt ion levels were measured (Harris 1969, Dawson et al. 

1996). Hip and pelvic radiographs were taken before each visit. In addition, all ASR 

patients were referred for Metal Artifact Reduction Sequence MRI (MARS-MRI), 

unless there were contraindications, in which case patients were referred for 

ultrasound imaging of the hips. Patients with hip replacements other than ASR 

were referred for MARS-MRI or ultrasound imaging if they had symptoms or 

elevated WB metal ion levels. Findings were classified using a previously published 

Imperial pseudotumor classification in which pseudotumors are graded 1, 2A, 2B 

or 3, depending on their wall-thickness, contents and shape (Table 8) (Hart et al. 

2012d).  

Table 8.  Imperial grading of pseudotumors using MARS-MRI. Adopted from Hart et al. 2012d. 

Pseudotumor type Wall Contents Shape 

1 Thin-walled 
Fluid-like: hypointense on T1, 

hyperintense on T2 

Flat, with walls mainly 

in apposition 

2A 
Thick-walled or 

irregular 

Fluid-like: hypointense on T1, 

hyperintense on T2 

Not flat, with >50% of 

the walls not in 

apposition 

2B 
Thick-walled or 

irregular 

Atypical fluid: hyperintense on 

T1, variable on T2 
Any shape 

3 
Solid 

throughout 
Mixed signal Any shape 
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4.2.2 Indications for revision surgery 

Revision surgery was considered if 1) a clear pseudotumor (class 2A, 2B or 3) (Hart 

et al. 2012d) was observed on cross-sectional imaging regardless of symptoms or 

WB metal ion levels; or 2) the patient had elevated WB metal ion levels and hip 

symptoms despite normal findings in cross-sectional imaging; or 3) the patient had 

a continuously symptomatic hip or progressive symptoms regardless of imaging 

findings or metal ion levels; or 4) the patient had progressively increasing blood 

metal ion levels even without symptoms or findings in cross-sectional imaging 

(Reito et al. 2013). Symptoms included hip pain, discomfort, sense of instability, 

and/or impaired function of the hip and sounds from the hip (clacking, squeaking). 

WB metal ion levels were regarded as being elevated if either chromium or cobalt 

exceeded 5 ppb (Hart et al. 2011b). 

4.2.3 Definition of ARMD in this thesis 

Failure was classified as being due to ARMD on the basis of the following criteria 

(Reito et al. 2013, Lainiala et al. 2015): 1) there was presence of metallosis or 

macroscopic synovitis in the joint; and/or 2) a pseudotumor was found during 

revision; and/or 3) a moderate to high number of perivascular lymphocytes along 

with tissue necrosis and/or fibrin deposition was seen in the histopathologic 

sample; and 4) perioperatively, there was no evidence of component loosening or 

periprosthetic fracture. In addition, infection was ruled out by obtaining multiple 

(at least five) bacterial cultures during revision surgery.  

4.2.4 Histopathological analysis of periprosthetic tissue (Studies I, II, III and 
IV) 

During every MoM hip revision at our institution, samples of the inflamed synovia 

and/or pseudotumor capsule are obtained for histopathological analysis. One to 

five samples are taken, depending on the surgeon and the availability of excess 

periprosthetic tissue. The samples are obtained from the most metallotic, inflamed 

synovial capsule and/or pseudotumor capsule. The results of these analyses were 

used in all the studies of this dissertation (I, II, III and IV). For analysis, each 

obtained tissue sample was formalin fixed and embedded in paraffin. Several 10 μm 

microtome sections were made and stained with standard hematoxylin and eosin 
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staining. The sections were examined histologically under transmitted light with a 

Nikon Eclipse 50i microscope (Nikon Corporation, Shinagawa, Tokyo, Japan). The 

sections were graded by a senior musculoskeletal pathologist (Jyrki Parkkinen) with 

more than 10 years’ experience in the field, using scoring principles adopted from 

the study by Natu et al. (Natu et al. 2012). If the severity of findings between 

different sections of the same tissue sample were inconsistent, averages were 

determined. In study I, a more concise ALVAL scoring system was used in 

addition to Natu grading (Campbell et al. 2010). The pathologist was blinded from 

clinical patient characteristics. 

The Natu grading comprised the following parameters: 1) macrophage sheet 

thickness, 2) perivascular lymphocyte cuff thickness, 3) degree of necrosis, 4) 

presence of plasma cells, 5) presence of diffuse lymphocytic infiltrate, 6) presence 

of germinal centers and 7) presence of granulomas. The thickness of macrophage 

sheets was calculated using a graticule and graded 0–3 (absent, < 1 mm, 1–2 mm, 

> 2 mm). Lymphocyte cuff thickness was also calculated using a graticule. An 

average of five measurements was taken and graded as 0–3 (absent, 0.25 mm, 0.25–

0.75 mm, > 0.75 mm). The extent of overall tissue necrosis in a sample was graded 

based on the surface necrosis typing according to Davies et al. (Davies et al. 2005). 

Type 1 surface contains intact synovial epithelium. Type 2 surface shows loss of 

synovial epithelial cells without fibrin deposition. In type 3 surface, there is fibrin 

deposition, and in type 4 surface there is extensive necrosis and loss of 

architecture. The extent of type 4 surface necrosis was used to grade the overall 

tissue necrosis in a given sample, as described by Natu et al. In grade 4 necrosis, 

more than 75% of the tissue sample showed type 4 surface necrosis. In grade 3 

necrosis, between 25 and 75% showed type 4 surface necrosis. In grade 2 necrosis, 

either less than 25% of the tissue showed type 4 surface necrosis or the tissue 

showed type 3 surface. In grade 1 necrosis, the sample consisted of type 2 surface. 

In ALVAL grading, a total score of 0-10 is given based on three subscores: 

synovial lining (0-3p), tissue organization (0-3p) and inflammatory infiltrate (0-4p). 

Both synovial lining and tissue organization reflect the degree of necrosis and 

higher scores mean a higher degree of necrosis. Inflammatory infiltrate score 

reflects the predominant inflammatory cell type on a spectrum: 0 points means 

minimal infiltrates, 1 point means predominantly macrophages, 2 points means 

both macrophages and diffuse/perivascular lymphocytes, 3 points means mostly 

lymphocytes in aggregates and some macrophages and 4 points means large 

lymphocyte aggregates and little to no macrophages. Total scores of 0-4 points are 

considered low, 5-8 moderate and 9-10 high. The subscores graded are thought to 
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reflect the features of a prominent ALVAL response. The authors suggested that 

high scores distinguish hypersensitivity-related ALVAL responses from those 

responses related to high wear (low scores). (Campbell et al. 2010). 

4.2.5 Metal analysis of the periprosthetic tissue (Study II) 

In study II, metal concentrations were analyzed from the obtained periprosthetic 

tissue samples in addition to histopathological grading. For metal content analysis, 

a subsample (approx. 0.3 g) was cut from the tissue sample, weighed and 

transferred into a Teflon vessel. Samples were first decomposed with 5 ml 

Suprapur HNO3 (Merck) by microwave digestion technique using a CEM MDS-

2000 Microwave System (CEM corporation, Matthews, NC, USA) and then diluted 

to 10 ml with Milli Q-water. The digests were analyzed for Al, Cr, Co, Ti, Mo and 

V with an Inductively Coupled Plasma Optical Emission Spectrometer. A Thermo 

Electron iCAP 6600 Duo View equipped with Cetac ASX-520Hs and autosampler 

was used (Thermo Fisher Scientific, Waltham, MA, USA). Detection limits for Al, 

Cr, Co, Ti, Mo and V were 9.0, 0.2, 0.2, 3.0, 0.2 and 3.0 μg/g, respectively. NIST 

SRM 1576b (Bovine liver) was used as a certified reference material to ensure the 

performance of the analytical procedure for tissue samples. 

4.2.6 Whole blood metal ion measurement (Studies I, II and III) 

In studies I, II and III, we utilized the metal ion measurements conducted in the 

follow-up of patients for investigational purposes. All patients underwent WB 

analysis of Co/Cr following sampling from the antecubital vein using a 21-gauge 

needle connected to a Vacutainer system (Becton, Dickinson and Company, 

Franklin Lakes, NJ, USA) and trace-element blood tubes containing sodium 

ethylenediaminetetraacetic acid (EDTA). Standard operating procedures were 

established at the Finnish Institute for Occupational Health for Co and Cr 

measurement using dynamic reaction cell inductively coupled plasma (quadripole) 

mass spectrometry (Agilent 7500 cx, Agilent Technologies, Santa Clara, CA, USA). 

The laboratory technicians were blinded to all clinical outcomes. The samples were 

preserved at +6 °C to +8 °C prior to analysis. 
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4.2.7 Synovial fluid metal ion measurement (Study II and III) 

In studies II and III, synovial fluid (SF) analysis was performed. Since October 

2011, our MoM hip revision protocol has involved perioperative SF aspiration, 

which is always taken before opening the deep fascia using a standard 18- to 20-

gauge needle connected to a Vacutainer system (Becton, Dickinson and Company, 

Franklin Lakes, New Jersey) and trace element tubes containing sodium EDTA. 

Similar procedures as those described above for WB were used for SF metal ion 

concentration measurement. 

4.2.8 Bearing wear analysis (Studies I and IV) 

In studies I and IV, the volume of material loss from the cup and head bearing 

surfaces was measured at the London Implant Retrieval Center (LIRC) using a 

Zeiss Prismo (Carl Zeiss Ltd., Rugby, UK) coordinate measuring machine (CMM). 

A total of 400 polar scan lines on each surface were defined and up to 30 000 data 

points captured using a 2 mm ruby stylus; protocols for this method have been 

previously published (Bills et al. 2012). An iterative least square fitting method was 

used to analyze the raw data captured by the CMM and the unworn geometry of 

the bearing surface was used to map regions of material loss from which the total 

volumetric loss was calculated for each component. Total wear volume was 

calculated by combining head and cup wear volumes for each patient. Volumetric 

wear rate (mm3/year) was further calculated by dividing total wear volume in cubic 

millimeters by implantation time in years. 

4.2.9 Statistical analysis 

In all but study III, statistical analyses were conducted using SPPS software (IBM 

SPSS Statistics for Windows, Version 21.0. Armonk, NY: IBM Corp.). In study III, 

analyses were performed using R Software, version 3 (R Foundation, Vienna, 

Austria). In all studies, mean values with standard deviation (SD) were reported for 

normally distributed variables and medians with range and/or interquartile range 

(IQR) for variables with skewed distribution. Differences between non-normally 

distributed variables were compared using Mann-Whitney U-test. In all studies, p-

values of <0.05 were considered statistically significant. 
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In studies I and II, Spearman rank correlation was used to study the 

associations between different variables due to non-normal distribution of these 

variables. When analyzing the correlation between WB metal ion concentrations 

and other factors, we only included patients with unilateral hip arthroplasties to 

avoid the confounding effect of metal ions being released to the blood from the 

other implant. 

In study III, two different cluster-based segmentation methods were used to 

detect the underlying latent groupings of cases. Latent class analysis (LCA) and 

cluster analysis with hierarchical approach (HCA) were used (Beckstead 2002, 

Schreiber 2017). Clusters of cases were then mapped against a recent consensus 

statement of joint-related histopathological classification (Krenn et al. 2014). 

Between-group differences in clinical variables after HCA were compared using 

either Kruskal–Wallis test or chi-square test.  

In HCA, our main interest was to find clusters of cases (hips) based on their 

dissimilarity. Since our data comprised binary and ordinal variables, we chose the 

Gower method to form the distance matrix (Gower 1971). After the selection of 

the appropriate dissimilarity measurement, clustering began by assigning each case 

to be an individual cluster forming a proximity matrix sized 284 columns × 284 

rows. The matrix reflected the closeness of each cluster. Each case began as an 

individual cluster and was gradually merged with the most closely related cluster (of 

cases). We used the complete linkage method. This process was repeated until one 

single cluster remained. Our aim was to identify any meaningful and histologically 

relevant clusters. Hence, we did not use solely the agglomerative approach, which 

is the most commonly used method, to establish the optimal number of clusters. 

The agglomerative process uses the agglomeration schedule in which the change in 

agglomeration coefficient is depicted as the distance between merged clusters. The 

higher the change in the agglomeration coefficient, the higher is the dissimilarity 

between clusters. We interpreted the last stages of the clustering process to define 

the meaningful clusters of observations as five or less clusters were expected to be 

seen. “Natural break” was defined as the largest change in agglomeration 

coefficient producing meaningfully distinguishable clusters. 

In addition to HCA, LCA was also performed to further analyze the possible 

underlying structures in our data set. LCA also aims to identify meaningful groups 

or class memberships of cases according to their (dis)similarity. To identify the 

optimal set of groups, LCA was first performed with two groups, then three 

groups, and so on. Akaikes Information Criterion (AIC) indices were interpreted to 

assess the most suitable baseline model. By using cluster analysis with LCA, we 
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aimed to have both the optimal model suggested by the indices and a meaningful 

set of groups so that each group could be readily labeled. 

We further aimed to validate our primary outcome after cluster analysis and 

LCA by first running a validation analysis using both techniques and then 

separately for both implant groups. The rationale for this was the different wear 

behaviors between stemmed THAs and hip resurfacings. Bearing wear is seen in 

both implants, but taper corrosion is only seen in THA. If our segmentation 

techniques are robust against one major etiological factor, similar clusters and class 

memberships should be produced regardless of the implant type included in the 

analysis. Each cluster formed by validation clustering was matched against primary 

clusters. The distribution of cases among clusters obtained from validation cluster 

analysis was cross-tabulated against primary clustering to see whether discordant 

cases, that is, negative matches among two different clustering processes, existed. 

Validation LCA was performed in an equal way using the same principle as with 

the study cohort (all cases included). 

In study IV, the statistical significance of the difference in wear volume between 

the higher and lower wearing side was tested using Wilcoxon signed ranks test 

(related samples). Mann-Whitney U-test was used to test the difference in wear 

volume distribution between the hips in patients with symmetric versus asymmetric 

histological and imaging findings (independent samples). The differences in 

histological findings between left and right hips were compared and the number of 

patients with identical findings, patients with a difference of one point and a 

difference of two points between the sides were calculated. The statistical 

significance of the difference in histological findings between the sides was tested 

with marginal homogeneity test except for the difference in presence of germinal 

centers, which did not fill the test requirements, and the McNemar test was used 

instead (Bonnini et al. 2014). Whether the presence of MRI-confirmed 

pseudotumor was similar between left and right sides was tested using McNemar 

test (related samples). 
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4.2.10 Ethical considerations 

All studies were approved by the ethical committee of Pirkanmaa Hospital District 

(R11196 and R11006). All patients gave written informed consent to participate in 

the studies. Principles of Helsinki Declaration were strictly obeyed. No harm was 

done, or strain placed on patients. Participating in the studies did not affect the 

level or type of care patients received. Opting out from the study was possible at 

any time without negative consequences to the patient. 
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5 RESULTS 

5.1 Wear of the ASR hip resurfacing (Study I) 

In study I, 85 hips in 78 patients were analyzed for bearing wear volume. Analysis 

of the explanted components demonstrated a wide range of wear in both the 

acetabular cup and the femoral head (Table 9). Median total wear was 39 mm3. 

Wear rates were also highly variable with a median of 9.0 mm3/year (range, 1.1 - 

99.7 mm3/year). In a vast majority of the components (85.1%), the femoral head 

was more worn than the acetabular cup. Median ratio for head wear to cup wear 

was 1.7 (range, 0.5 - 10). 

Table 9.  Median volumetric wear and range for acetabular and femoral components and both 
combined. 

Component Median volumetric wear (mm3) Range (mm3) 

Acetabular cup 14 2 – 247 

Femoral head 24 4 – 485 

Both combined 39 7 – 541 

5.2 Whole blood and synovial fluid metal ion levels and their 
association with bearing wear (Studies I and II) 

In study I, in addition to actual volumetric component wear, WB and SF metal ion 

levels were also highly variable (Table 10). Cobalt was present in higher 

concentrations than chromium. In study II, we noted similarly variable 

concentrations. Subgroup analysis of the THAs and hip resurfacings separately 

revealed significantly higher concentrations of cobalt ions in THA compared with 

hip resurfacings (Table 11). We could not detect a difference in chromium 

concentrations between the groups. 
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Table 10.  Median concentrations  and ranges  for chromium and cobalt ions in both whole blood 
and synovial fluid. 

Metal ion Whole blood (µg/l) Range (µg/l) Synovial fluid (µg/l) Range (µg/l) 

Chromium 9.7 0.5 – 93.9 701 7.0 – 52360 

Cobalt 15.4 0.7 – 224.7  281.5 27.0 – 14870  

 
 
Table 11.  Median values, p-values for comparison between groups and ranges for whole blood 

metal ion concentrations in patients with unilateral total hip arthroplasty (n=69) or hip resurfacing 
(n=13) patients. 

 
Total hip arthroplasty Hip resurfacing 

Metal Median 
concentration in 
whole blood (µg/l) 

Range (µg/l) Median 
concentration in 
whole blood 
(µg/l) 

Range (µg/l)   P-value 

Chromium 3.7 0.4  -  29.9 3.9 1.5  -  7.2                           0.60 

Cobalt 11.0 0.6  -  108.5 3.9 1.5  -  16.2 0.001 

In study I, the total wear volume of the head and cup strongly correlated with WB 

metal ion concentrations (Cr: ρ = 0.80, p < 0.001 and Co: ρ = 0.84, p < 0.001) and 

moderately with SF metal ion concentrations (Cr: ρ = 0.50, p < 0.01 and Co: ρ = 

0.41, p = 0.027). Wear rate had slightly stronger correlation with WB metal ion 

concentrations (Cr: ρ = 0.87, p < 0.001 and Co: 0.89, p < 0.001) and SF metal ion 

concentrations (Cr: ρ = 0.71, p < 0.001 and Co: 0.66, p < 0.01) than total wear 

volume. 

5.3 Metal debris accumulation in periprosthetic tissues and its 
relation to WB and SF metal ion levels (Study II) 

Chromium had the highest concentration of all metals in the periprosthetic tissue 

in both the hip resurfacing and THA groups (Table 12). Titanium was elevated 

above the detection limit in nine patients with hip resurfacing and in 29 patients 

with THA. The concentrations for aluminum and vanadium did not reach the 

detection limit in any of the patients and were thus omitted from the analyses. We 

could not detect differences in periprosthetic tissue metal concentrations between 

THA and hip resurfacing groups (Table 12). In the tissue samples of the two 
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control patients, only the concentration of chromium exceeded the detection limit 

(0.3 µg/g and 0.5 µg/g, respectively).   

Table 12.  Median values with respected p-values and ranges for periprosthetic tissue metal 
concentrations in patients with total hip replacements (n = 87) and hip resurfacings (n 
= 20). 

             Total hip arthroplasty                Hip resurfacing 

Metal 
Median 
concentration 
(µg/g) 

Range (µg/g) 
Median 
concentration 
(µg/g) 

Range (µg/g) 

 

P-
value 

  

Chromium 
39.2 

0.4  -  1955.0 43.8 0.6  -  922.1 0.60 

Cobalt 6.4 0.2  -  262.0 3.2 0.2  -  248.8 0.19 

Molybdenum 1.8 0.2  -  174.6 0.5 0.2  -  32.4 0.080 

Titanium 5.8 3.0  -  118.9 4.9 4.9  -  25.3 0.10 

Periprosthetic tissue chromium and cobalt concentrations correlated weakly with 

whole blood and synovial fluid chromium and cobalt concentrations in the THA 

group (Table 13). In the resurfacing group, only periprosthetic tissue cobalt 

concentration reached statistically significant correlation with synovial fluid cobalt 

concentration (Table 13). 

Table 13.  Spearman rho correlation coefficients between tissue metal concentrations, whole 
blood (WB) and synovial fluid (SF) metal ion concentrations in total hip arthroplasty    
(n = 87) and hip resurfacing (n = 20) groups. 

            Total hip arthroplasty                   Hip resurfacing 

 Tissue chromium Tissue cobalt Tissue chromium Tissue cobalt 

WB chromium rho= 0.32, p<0.01  rho= 0.48, p=0.10  
WB cobalt  rho= 0.31, p<0.01  rho= 0.24, p=0.43 
SF chromium rho= 0.29, p<0.01  rho= 0.63, p=0.067  
SF cobalt  rho= 0.34, p<0.01  rho= 0.70, p=0.035 
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5.4 Histopathological findings in periprosthetic tissues (Studies 
I, II, III and IV) 

In all studies, we noted wide variability between patients in histopathological 

presentation of the tissues. Pronounced inflammatory response (macrophages, 

lymphocytes, granulomas, germinal centers) and tissue necrosis were observed in 

vastly variable degrees. All tissues evinced at least mild macrophage infiltration 

(macrophage sheet thickness score of ≥ 1), and in some cases strong infiltration 

was observed. Granulomas were observed in a minority of the samples. In regard 

to perivascular lymphocyte infiltration, most tissues evinced little to no 

lymphocytic cuffing (scores 0 and 1) and the cuffing was thick in only a few 

samples (scores 2 and 3). All cases with heavy lymphocyte cuffs had a macrophage 

sheet thickness score of 1, that is, there was only a little macrophage infiltration in 

these tissues (Study I). We noted the presence of germinal centers in only a small 

percentage of samples. The degree of necrosis was approximately evenly 

distributed in its four categories. In study I, the grade of necrosis correlated with 

the thickness of the perivascular lymphocyte cuff (rho = 0.41, p<0.001). Further, 

all cases with heavy lymphocytic infiltration displayed either grade 3 or 4 necrosis. 

All five tissue samples with germinal centers had grade 4 necrosis. 

In studies II and III, we compared histopathological findings in THA versus 

hip resurfacing patients (Tables 14 and 15). In both studies, lymphocyte cuff 

thickness score was higher in patients with THA versus hip resurfacing and the 

difference was statistically significant. However, no difference was detected in 

macrophage sheet thickness between the hip resurfacing and THA groups.  The 

grade of tissue necrosis was higher in the THA group compared with the hip 

resurfacing group. Furthermore, in Study III, we noted that extracellular metal was 

present more frequently in THAs versus hip resurfacings (Table 15). 
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Table 14.  Lymphocyte cuff thickness, macrophage sheet thickness and grade of necrosis in total 
hip arthroplasty group (n = 87) and hip resurfacing group (n = 20). 

  Total hip arthroplasty Hip resurfacing 
P-value for 
group 
comparison 

     

Lymphocyte cuff 
thickness 

 
0 (absent) 

 
33 (37.9%) 

 
15 (75%) 

 

1 (0-0.25 mm) 41 (47.1%) 4 (20%)  

 2 (0.25-0.75 mm) 13 (14.9%) 1 (5.0%)  

 3 (>0.75 mm) 0 (0%) 0 (0%)  

    0.011 

Macrophage sheet 
thickness 

0 (absent) 1 (1%) 0 (0%)  

1 (<1mm) 68 (78.2%) 18 (90%)  
 2 (1-2mm) 16 (18.4%) 2 (10%)  
 3 (>2mm) 2 (2.3%) 0 (0%)  
    0.65 

     
Grade of necrosis 1 3 (3.4%) 8 (40%)  
 2 19 (21.8%) 4 (20%)  
 3 12 (13.8%) 1 (5%)  
 4 53 (60.9%) 7 (35%)  
    <0.001 
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Table 15.  Distribution of histological findings in 284 failed ASR metal-on-metal hip replacements. 
THA = total hip arthroplasty. 

 

 THA    Hip resurfacing  

Observation  Number Percent Number Percent p-value for 
group 

comparison 

Plasma cells Present 48 23.1% 13 16.9% 0.3 

Diffuse 
lymphocytic 
inflammation  

Present 
 

55 
 

26.5% 
 

15 19.5% 0.3 

Germinal center  Present 
 

12 5.8% 6 7.8% 0.6 

Lymphocyte cuff Absent 72 34.8% 39 50.6% 0.005 

<0.25 mm 112 54.1% 32 41.6%  

0.25 – 0.75 
mm 

23 11.1% 4 5.2%  

>0.75 mm 0 0% 2 2.6%  

Macrophage 
sheet 

Absent 6 2.9% 0 0% 0.4 

<1 mm 151 72.9% 58 75.3%  

1-2 mm 44 21.2% 15 19.5%  

>2 mm 6 2.9% 4 5.2%  

Granulomas  Present 
 

30 14.5% 17 22.1% 0.15 

Necrosis Grade I 7 3.3% 21 27.3% <0.001 

 Grade II 50 24.2% 22 28.6%  

 Grade III 53 25.6% 16 20.8%  

 Grade IV 97 46.9% 18 23.4%  

Extracellular 
metal  

Present 
 

95 45.9% 12 15.6% <0.001 

Particle load Absent 44 21.2% 13 16.9% 0.6 

 Grade 1 40 19.3% 13 16.9%  

 Grade 2 50 24.2% 19 24.7%  

 Grade 3 49 23.7% 18 23.4%  

 Grade 4 24 11.6% 14 12.2%  
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5.5 Within-patient variability of histological, imaging and wear 
findings in patients with bilateral MoM hip replacements 
(Study IV) 

As noted in the previous chapter, the between-patient variability of histological 

findings was high. In study IV, we investigated within-patient variability between 

contralateral hips in those MoM patients that had been revised bilaterally. 

Interestingly, we observed that the within-patient variability in histological findings 

was low. The congruence of histological findings between the left and the right 

hips is presented in Table 16. In the majority of the histological features and also in 

the majority of the patients, there were no differences between the hips (p > 0.05 

for all comparisons). These features included macrophage sheet thickness, 

perivascular lymphocyte cuff thickness, presence of plasma cells, presence of 

diffuse lymphocytic infiltration and presence of germinal centers. In lymphocyte 

cuff thickness, the difference between the sides was at most 1 point. In 

macrophage sheet thickness, the findings were similar in 18 patients (62%), 

differed by 1 point in 9 patients (31%) and differed by 2 points in 2 patients (7%), 

respectively. The only histological findings that differed between the hips were 

grade of necrosis (p < 0.01) and presence of granulomas (p = 0.025). In the grade 

of necrosis there was a wide distribution in the difference between the sides. All 

patients had at least two histological variables with similar findings in both hips. 

The majority of patients (75.9%) had four or more histological variables with 

similar findings on both sides (Table 17). There were no differences in the 

similarity or dissimilarity of histological findings between left and right hips in 

males versus females (Table 18). 
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Table 16.  Congruence in histological grading between contralateral (left and right) hips (within-
subject).  

    Difference in histological grading between contralateral sides 

No 
difference 

1 p 2p 3p 4p Scale  

Macrophage sheet thickness 18 (62%) 9 (31%) 2 (7%) -  0-3 p 

Lymphocyte cuff thickness 14 (48%) 15 (52%) - -  0-3 p 

Degree of necrosis** 6 (21%) 10 (34%) 9 (31%) 1 (3%) 3 (10%) 0-4 p 

Presence of plasma cells 26 (90%) 3 (10%)    Yes/no 

Presence of diffuse 
lymphocytic infiltration 

19 (66%) 10 (34%)    Yes/no 

Presence of germinal centers 27 (93%) 2 (7%)    Yes/no 

Presence of granulomas** 24 (83%) 5 (17%)    Yes/no 

Percentages represent proportion of all patients. In variables marked with **, there was a statistically 
significant (p<0.05) difference between the sides.   



 

95 

Table 17.  The degree of similarity between the hips measured by the number of histological 
variables with similar findings on both sides in each patient. 

Histologic variables with symmetric findings on both sides Number of patients Percentage of patients 

1 0 0% 

2 2 6.9% 

3 5 17.2% 

4 6 20.7% 

5 6 20.7% 

6 9 31.0% 

7 1 3.4% 

 Total 29 Total 100 % 
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Table 18.  Comparison of similar and unsimilar histological findings between the sides in males 
versus females. 

Histological variable 

Symmetric 

findings on both 

hips 

Males Females P-value  

Macrophage sheet thickness 
Yes 

No 

11 (69%) 

5 (31%) 

7 (54%) 

6 (46%) 

 

0.46 

Lymphocytic cuff thickness 
Yes 

No 

9 (56%) 

7 (44%) 

5 (38%) 

8 (62%) 

 

0.46 

Degree of necrosis 
Yes 

No 

4 (25%) 

12 (75%) 

2 (15%) 

11 (85%) 

 

0.66 

Presence of plasma cells 
Yes 

No 

14 (88%) 

2 (12%) 

12 (92%) 

1 (8%) 

 

0.58 

Presence of diffuse lymph. 
Yes 

No 

12 (75%) 

4 (25%) 

7 (54%) 

6 (46%) 

 

0.27 

Presence of germinal centers 
Yes 

No 

15 (94%) 

1 (6%) 

12 (92%) 

1 (8%) 

 

1.0 

Presence of granulomas 
Yes 

No 

15 (94%) 

1 (6%) 

9 (69%) 

4 (31%) 

 

0.14 
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Bilateral MRI classification for the presence of pseudotumors was available for 25 

patients (86% of all patients). A total of 18 patients (72% of the classified) had 

either bilateral pseudotumors or no pseudotumors at all on either side, that is, the 

hips were symmetrical in regard to pseudotumor formation. There was no 

statistically significant difference in the presence of pseudotumor between the sides 

(p = 0.13). Of these 18 patients, 7 had pseudotumor on both sides (of which two 

were identical by exact classification) and 11 had no pseudotumor on either side. 

Contrary to histological and imaging findings, there was a statistically and 

clinically significant difference between the contralateral sides in wear volume. 

Component wear was available bilaterally for 17 (59% of all) patients. Total wear 

volume in either hip ranged from 3 mm3 to 94 mm3 (median 13 mm3, IQR 10 - 32 

mm3). The median difference in wear volume between higher and lower wearing 

side was 15.35 mm3 (range 1 to 39 mm3, IQR 6 - 23 mm3) (p<0,001). This 

difference is illustrated in Figure 10. The median ratio of total wear volume 

between the hips was 2.0 (range 1.09 to 10.0, IQR 1.67 - 3.72). In 9 of the 17 

(53%) patients with wear data available, the ratio of wear was 2.0 or greater, that is, 

there was at least a two-fold difference in the wear volume between the 

contralateral hips. Patients with asymmetrical pseudotumor finding between the 

sides evinced a similar distribution of total wear volume between the sides as those 

patients with symmetrical pseudotumor finding (Table 19). In addition, there were 

no differences in the total wear volumes of the hips in patients with pseudotumor 

on both sides (median 20.0 mm3, range 9.0 to 111.0) versus no pseudotumor on 

either side (median 16.3 mm3, range 3.0 to 51.0) (p = 0.28 for comparison).  

Table 19.  The difference in total wear volume between contralateral sides in patients with 
symmetrical versus asymmetrical pseudotumor finding between the sides. Only 
patients with complete wear data are included (n=17). 

 

 

  

                                                     Pseudotumor finding between contralateral sides 

 Symmetrical Asymmetrical P-value 

Median difference in total wear 

volume between the sides (mm3) 
12.7 13.5 0.79 
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Figure 10.  The difference in total wear volume between higher and lower wearing sides. 

5.6 Comparison of two histopathological scoring methods 
(Study I) 

In study I, tissues were scored using two different semiquantitative methods 

previously described in the literature – ALVAL and Natu grading (Campbell et al. 

2010, Natu et al. 2012). We observed that perivascular lymphocyte cuff thickness 

(Natu grading) strongly correlated with inflammatory infiltrate score (ALVAL 

grading) (ρ = 0.79, p < 0.001). Further, grade of necrosis (Natu grading) had strong 

correlation with synovial lining (ρ = 0.86, p < 0.001) and tissue organization score 

(ρ = 0.80, p < 0.001), which are components of the ALVAL score. 
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5.7 Latent histopathological subgroups observed (Study III) 

In study III, HCA and LCA were performed to establish the underlying structure 

and relationships of the histological observations and to find similar cohorts of 

cases. Clustering and latent class analyses suggested four distinct histopathological 

subtypes that could be readily and reasonably labeled and mapped against a recent 

consensus statement (Krenn et al. 2014) (Tables 20 and 21). Cluster 1 in HCA and 

Class 1 in LCA could be readily labeled as “abrasion-induced foreign body Type I 

neosynovitis” (Figure 11). The characteristics of this subgroup were absence of 

necrosis or mild necrosis, and lack of diffuse synovitis, germinal centers, plasma 

cells and granulomas. Perivascular lymphocyte cuffs were also mainly absent. 

Macrophage sheets were mainly thin and particle load inside them was moderate. 

Cluster 2 in HCA and Class 2 in LCA were labeled as “abrasion-induced necrotic 

Type I neosynovitis” (Figure 12). As in the foreign body reaction, diffuse synovitis, 

plasma cells, germinal centers and perivascular lymphocytic cuffs were absent. 

However, granulomas were seen; macrophage sheets were thicker; the level of 

necrosis was moderate; the particle load inside macrophages was higher, and 

extracellular metals particles were present. Cluster 3 in HCA and Class 3 in LCA 

were similar. Plasma cells and germinal centers were prevalent; the level of necrosis 

was very high; lymphocytic cuffs were thick, and both particle load and 

extracellular metal content was low or absent. We labeled Cluster 3 in HCA and 

Class 3 in LCA as “immunologic Type IV neosynovitis” (Figure 13). The 

remaining subgroups, that is, Cluster 4 in HCA and Class 4 in LCA, were partly 

similar to the previous reaction, but plasma cells and germinal centers were less 

frequent and lymphocytic cuffs were thinner. For overview of common features 

with Class/Cluster 3, see Figure 13. However, in Class/Cluster 4 necrosis was 

moderate or high and also diffuse synovitis was most frequent. Extracellular metal 

particles were commonly present and particle load within macrophages was high. 

Hence, these subgroups were labeled as “abrasion induced inflammatory 

lymphocytic Type I neosynovitis.” A summary of the characteristics of each 

subgroup is shown in Table 22.  
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Figure 11.  Photomicrograph of synovial tissue classified as Cluster/Class 1. Arrow 1 points to 
subintimal macrophage sheet. Arrow 2 shows synovial lining which is mostly intact. Arrow 
3 shows a blood vessel. No visible necrosis or lymphocyte accumulations. Captured with 
Nikon Eclipse 50i light microscope fitted with 20x objective (total magnification 200x). 
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Figure 12.  Photomicrograph of synovial tissue classified as Cluster/class 2. Arrow 1 points to 
disrupted synovial lining. Arrow 2 shows a thick subintimal macrophage sheet. Arrow 3 
points to macrophages with intracellular metallic debris. Arrow 4 points to necrotic acellular 
tissue. Captured with Nikon Eclipse 50i light microscope fitted with 20x objective (total 
magnification 200x). 
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Figure 13.  Photomicrograph of synovial tissue classified as Cluster/class 3. Arrow 1 represents 
disrupted synovial lining. Arrow 2 shows thick perivascular lymphocyte cuffs which are 
interconnected. Arrow 3 demonstrates diffuse lymphocytes. Captured with Nikon Eclipse 
50i light microscope fitted with 20x objective (total magnification 200x).  
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Table 20.  Distribution of histological findings divided by the four groups or clusters resulting from 
cluster analysis. 

Observation   Cluster 1 Cluster 2 Cluster 3 Cluster 4   
Abrasion-

induced 
foreign body 

type I 
neosynovitis 

Abrasion-induced 
necrotic Type I 

neosynovitis 

Immunologic type 
IV neosynovitis 

Abrasion-
induced 

inflammatory 
lymphocytic type 

I neosynovitis 

Number of hips  68 hips 78 hips 88 hips 50 hips 

Diffuse lymphocytic inflammation present 
  0.0% 0.0% 25% 95.0% 

Germinal center present 
  0.0% 0.0% 15.9% 8.0% 

Plasma cells present 
  1.3% 12.0% 55.7% 12.0% 

Granulomas present 0.0% 28.2% 20.5% 14.0% 

Lymphocytic cuff Absent 72.1% 55.1% 17.0% 8.0% 

<0.25 mm 27.9% 42.3% 61.4% 76.0% 

0.25 - 0.75 mm 0.0% 2.6% 19.3% 16.0% 

>0.75 mm 0.0% 0.0% 2.3% 0.0% 

Macrophage sheets Absent 1.5% 1.3% 3.4% 2.0% 

<1 mm 75.0% 64.1% 76.1% 82.0% 

1-2 mm 20.6% 26.9% 18.2% 16.0% 

>2 mm 2.9% 7.7% 2.3% 0.0% 

Necrosis Grade I 29.4% 7.7 % 0.0% 4.0% 

  Grade II 63.3% 25.6 %                     2.3% 14.0% 

  Grade III 7.4% 35.9 % 20.5% 36.0% 

  Grade IV 0.0% 30.8 % 77.3% 46.0% 

Extracellular metal content present 0.0% 82.1% 26.1% 40.0% 

Particle load Absent 17.6% 5.1% 31.8% 26.0% 

  Grade 1 14.7% 21.8% 23.9% 10.0% 

  Grade 2 32.4% 20.5% 26.1% 16.0% 

  Grade 3 22.1% 32.1% 11.4% 34.0% 

  Grade 4 13.2% 20.5% 6.8% 14.0% 
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Table 21.  Distribution of histological findings divided by the four groups or classes resulting from 
latent class analysis. 

Observation   Class 1 Class 2 Class 3 Class 4 

  

Abrasion-induced 
foreign body type I 

neosynovitis 

Abrasion-induced 
necrotic Type I 

neosynovitis 

Immunologic type 
IV neosynovitis 

Abrasion- 
induced 

inflammatory 
lymphocytic type 

I neosynovitis 

Number of hips  116 hips 41 hips 37 hips 90 hips 

Germinal center 
present 

  0.0% 0.0% 44.1% 1.6% 

Diffuse lymphocytic 
inflammation present 

 4.2% 9.7% 40.0% 51.8% 

Plasma cells present   0.0% 7.7% 47.2% 44.7% 

Granulomas present  5.5% 31.3% 27.2% 19.0% 

Lymphocytic cuff Absent 69.9% 70.0% 4.1% 0.0% 

<0.25 mm 31.6% 27.3% 52.7% 87.1% 

0.25-0.75 
mm 

0.% 2.7% 40.6% 11.8% 

>0.75 mm 0.0 % 0.0% 2.6% 1.1% 

Macrophage sheets Absent 0.0% 3.1% 12.4% 0.0% 
 

<1 mm 87.5% 6.9% 75.7% 86.9% 
 

1-2 mm 11.4% 74.3% 6.6% 13.1% 
 

>2 mm 1.1% 15.6% 5.3% 0.0% 

Necrosis Grade I 24.5% 0.0% 0.0% 0.0% 

  Grade II 43.6% 28.5% 9.8% 7.7% 

  Grade III 15.1% 33.3% 0.0% 41.1% 

  Grade IV 17.3% 38.3% 90.2% 51.2% 

Extracellular metal content present 
  

29.3% 40.5% 0.0% 62.9% 

Particle load Absent 6.7% 6.2% 59.7% 27.1% 

  Grade 1 20.7% 14.9% 11.7% 21.0% 

  Grade 2 33.7% 16.6% 22.1% 16.6% 

  Grade 3 28.5% 18.6% 3.1% 29.5% 

  Grade 4 10.3% 43.7% 3.5% 5.9% 
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Table 22.  Semi-qualitative descriptions of the four groups of synovial histopathological 
responses seen in ARMD. 

 
Abrasion-induced 
foreign body type I 
neosynovitis 
 
 
Cluster/Class I 

Abrasion-induced 
necrotic Type I 
neosynovitis 
 
 
Cluster/Class II 

Immunologic type IV 
neosynovitis 
 
 
 
Cluster/Class III 

Abrasion-induced 
inflammatory 
lymphocytic type I 
neosynovitis 
 
Cluster/Class IV 

Intact or mildly 
destructed synovia 

Moderately or highly 
destructed synovia 

Extremely destructed 
synovia 

Highly destructed 
synovia 

No or mild diffuse 
lymphocytic synovitis 

No or mild diffuse 
lymphocytic synovitis 

Diffuse lymphocytic 
synovitis present 

Diffuse lymphocytic 
synovitis present 

No plasma cells No plasma cells Plasma cells clearly 
present 

Plasma cells may be 
present 

No germinal centers No germinal centers Germinal centers present No germinal centers 

Perivascular lymphocyte 
cuffs mostly absent  

Perivascular lymphocyte 
cuffs absent 

Perivascular lymphocyte 
cuffs thick 

Perivascular lymphocyte 
cuffs present 

Large extracellular metal 
particles may be present 

Large extracellular metal 
particles clearly present 

Large extracellular metal 
particles absent 

Large extracellular metal 
particles may be present 

Moderate to high number 
of metal particles inside 
histiocytes 

Moderate to high number 
of metal particles inside 
histiocytes 

None or few metal 
particles inside histiocytes 

Some metal particles 
inside histiocytes 

Thin or moderately thick 
macrophage sheets 

Moderately to very thick 
macrophage sheets 

Macrophage sheets 
absent or thin 

Thin macrophage sheets 
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5.8 Comparison of MRI findings and metal ion levels (WB and 
SF) across different histopathological subgroups (Study III) 

In study III, we found that the hips in both the “immunologic neosynovitis” and 

the “abrasion-induced lymphocytic neosynovitis” groups were prominently THAs, 

and that they had the lowest median levels of metals present in both SF and WB 

(Table 23). The lowest WB and SF cobalt levels were seen in the “immunologic 

neosynovitis” group. Thick-walled pseudotumors were most common in the 

“foreign body neosynovitis” and “inflammatory lymphocytic neosynovitis” groups. 

The highest metal levels in WB and SF were seen in the “abrasion-induced foreign 

body neosynovitis” and “abrasion-induced necrotic neosynovitis” groups. Hip 

resurfacings were most frequently present in the “abrasion-induced foreign body 

neosynovitis” group. 

Table 23.  Comparison of clinical variables across different subgroups. * p-value for rank 
comparison. 

  Abrasion- 
induced 
foreign body 
type I 
neosynovitis 

Abrasion- 
induced 
necrotic 
Type I 
neosynovitis 

Immunologic type 
IV neosynovitis 

Abrasion- 
induced 
inflammatory 
lymphocytic 
type I 
neosynovitis 

P-value 

Implant type Resurfacing 35 (51.5%) 17 (21.8%) 17 (19.3%) 9 (18%) <0.0001 

 Total hip 33 (48.5%) 61 (78.2%) 71 (80.7%) 41 (82%)  

Pseudotumor No 29 (49.2%) 58 (70.7%) 29 (58%) 20 (45.5%) 0.0012 

 Thin walled, 
cystic 

9 (15.3%) 11 (13.4%) 15 (30%) 7 (15.9%)  

 Thick 
walled 
cystic, solid 

21 (35.6%) 13 (15.9%) 6 (12%) 17 (38.6%)  

WB Cobalt 
(µg/l) 

Median 
(IQR) 

13.6 (8.2-
37.7) 

12.5 (7.9-
19.4) 

8.3 (1.83-18.3) 10.2 (5.4-
15.6) 

0.0019* 

Synovial 
Cobalt (µg/l) 

Median 
(IQR) 

1595 (593-
2772) 

1193 (530-
1983) 

416 (226-1029) 728 (556-
1423) 

0.0056* 

WB Chrome 
(µg/l) 

Median 
(IQR) 

5.6 (2.4-
12.8) 

4.2 (2.6-7.8)  3.4 (1.93-10.1) 3.1 (2.3-5.2) 0.088* 

Synovial 
Chrome (µg/l) 

Median 
(IQR) 

872 (384-
2870) 

992 (417-
4293) 

447 (132-1883) 652 (168-
1473) 

0.11* 
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5.9 Associations between wear, indirect measures of wear (WB, 
SF, tissue metals) and histopathological findings (Studies I 
and II) 

5.9.1 Wear volume and volumetric wear rate (Study I) 

In study I, associations between volumetric wear measurements and 

histopathological findings were investigated. Correlations between histological 

variables, total wear volume of the head and cup components combined, and wear 

rate are listed in Table 24. Total wear volume correlated with macrophage sheet 

thickness, grade of necrosis (Figure 14), synovial lining score, tissue organization 

score and total ALVAL score. Wear rate had similar correlations, but a correlation 

with macrophages could not be established (p = 0.069). Median wear rate for those 

tissues with heavy lymphocyte infiltration (score ≥2) and high degree of necrosis 

(grade ≥3) was lower than for those tissues with a lower number of lymphocytes 

observed (Table 25). 
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Figure 14.  The difference in median total wear volume (head and cup) in patients with low-grade 
necrosis (grades 1 and 2) versus patients with high-grade necrosis (grades 3 and 4), 
p<0.001. 
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Table 25.  Wear rates according to lymphocyte cuff thickness. 

 Lymphocyte cuff < 2 Lymphocyte cuff ≥ 2 P-value 

Median wear rate 

(mm3/year) 
8.1 14.5 0.054 

Range (mm3/year) 1.1 - 99.8 3.7 - 48.0  

5.9.2 Whole blood metal ion levels (Studies I and II) 

In Study I, in a similar manner to wear volume and wear rate, WB cobalt and 

chromium ion levels correlated moderately with macrophage sheet thickness, grade 

of necrosis, synovial lining score, tissue organization score and total ALVAL score 

(Table 24). However, in Study II, only WB cobalt and metal particle load correlated 

with each other. No other correlations could be established between WB metal ion 

levels and any of the histological variables (Table 26) in either the THA or the hip 

resurfacing groups in Study II. Moreover, lymphocyte cuff thickness did not 

correlate with any of the wear or metal measurements in Studies I and II. 
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5.9.3 Synovial fluid metal ion levels (Studies I and II) 

In study I, SF chromium ion concentration correlated with grade of necrosis, 

synovial lining score and total ALVAL score (Table 24). SF cobalt ion 

concentration correlated with all histological variables – lymphocytic cuffing, 

macrophage sheet thickness, grade of necrosis, inflammatory infiltrate score, 

synovial lining score, tissue organization score and total ALVAL score (Table 24). 

Contrarily, in Study II, only SF chromium correlated with metal particle load in the 

hip resurfacing group. Neither SF chromium nor cobalt ion levels correlated with 

any other histological variables (Table 26). 

5.9.4 Periprosthetic tissue metal concentrations (Study II) 

In study II, neither periprosthetic chromium, cobalt, molybdenum nor titanium 

concentrations correlated with any of the histological variables except metal 

particle load (Table 26). However, in the THA group, median chromium 

concentration was lower in those tissues with lymphocytic cuffing present versus 

tissues with no lymphocytic cuffing at all (p= 0.045, Table 27). In regard to cobalt 

and molybdenum, no differences could be established (p>0.05). In the hip 

resurfacing group, concentrations of chromium and cobalt were lower in those 

tissues with lymphocytes present, but these differences were not statistically 

significant (Table 28). 

Table 27.  Median metal concentration in tissues with lymphocytes present and tissues with no 
lymphocytes present in the total hip replacement group (n = 87). 

Median concentration in tissue (µg/g) Lymphocytes present No lymphocytes present P-value 

Chromium 30.1  67.4 0.045 

Cobalt 6.4 6.1 0.43 

Molybdenum 1.7 1.8 0.38 
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Table 28.  Median metal concentration in tissues with lymphocytes present and tissues with no 
lymphocytes present in the hip resurfacing group (n = 20). 

Median concentration in tissue (µg/g) Lymphocytes present No lymphocytes present P-value 

    

Chromium 8.0 79.3 0.11 

Cobalt 1.2 4.2 0.12 

Molybdenum 0.3 0.69 0.20 
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6 DISCUSSION 

6.1 Principal findings 

This dissertation focused on the histopathological findings of soft tissues retrieved 

from patients with revised MoM hip replacements. We evaluated the role of latent 

histopathological subtypes, patient-related factors, clinical variables, implant wear, 

metal concentrations in tissues, SF and WB on the pathogenesis of the adverse 

reactions related to metal wear debris frequently seen in patients with MoM hip 

replacements. 

Overall, the histopathological findings were vastly diverse. Inflammatory 

changes were present in all tissues. Notably, variable amounts of macrophages, 

lymphocytes, plasma cells, germinal centers, granulomas and necrosis were seen. 

We identified four different histopathological subtypes of ARMD – wear-related 

foreign-body macrophage response, wear-related necrotic response, immunologic 

lymphocytic adaptive response and wear-related lymphocytic response. Patients 

with THAs presented with the highest amounts of perivascular lymphocytes and 

tissue necrosis compared with patients with hip resurfacings. Implant wear and WB 

metal ion concentrations were associated with macrophage sheet thickness and 

grade of necrosis, but not lymphocyte cuff thickness. Tissue metal concentrations 

had poor or non-existent correlations with any of the histopathological variables 

except metal particle load in macrophages. In bilateral patients, we observed strong 

agreement in histopathological findings and imaging findings between contralateral 

sides despite markedly different wear volumes.  

6.2 Direct wear measurements, indirect estimates of wear and 
their associations 

The median total wear volume of the ASR hip resurfacing in our patient cohort 

was 39 mm3. Park et al. reported a lower median total wear of 21 mm3 for 21 ASR 

hip resurfacings (Park et al. 2018). Lord et al., on the other hand, reported a mean 
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volumetric wear of 29 mm3 for 22 ASR acetabular cups and 22 mm3 for 32 ASR 

femoral heads (Lord et al. 2011). Conversely, a simulator study of ASR resurfacings 

reported volumetric wear of approximately 5 mm3 at 15 million cycles, roughly 

equivalent to 15 years of prosthesis use (Leslie et al. 2008). Wear of the ASR hip 

resurfacing is much higher than what would have been anticipated from the results 

of the simulator study. Hence, these results highlight the importance of retrieval 

studies to establish the true performance of hip replacements. 

WB metal ion levels had strong correlation with bearing wear volume and wear 

rate. SF metal concentrations also correlated with bearing wear volume and wear 

rate, but the correlations were weaker. Wear rate had a stronger correlation with 

WB and SF metal ion levels than total bearing volume. Wear rate, WB and SF 

metal ion levels likely reflect the average recent burden of metal debris, whereas 

total wear volume reflects the amount of total wear accumulated during 

implantation time. Similarly to our study, De Smet et al. found that both WB and 

SF metal ion levels correlated well with linear wear of the femoral component (De 

Smet et al. 2008). Langton et al. also noted a strong correlation between wear 

volume and WB metal ion levels (Langton et al. 2011b). Measurement of WB metal 

ion levels is a reliable, indirect way to gain information of the in situ wear process. 

On the other hand, the measurement of SF metal concentrations does not seem to 

offer any additional information compared with WB measurement. Furthermore, 

aspiration of SF is more invasive. We therefore recommend using WB metal ion 

levels as a surrogate measure of implant wear. 

6.3 Periprosthetic tissue metal concentrations and their 
associations with WB and SF metal concentrations 

Chromium had the highest concentrations in periprosthetic tissues in both THAs 

and hip resurfacings. This is in line with previous research (Catelas et al. 2006, Hart 

et al. 2010, Lohmann et al. 2013, Scharf et al. 2014). The median concentrations of 

chromium in the periprosthetic tissue exceeded those of cobalt by more than six-

fold in both study groups. Chromium is known to accumulate in the tissues to a 

high degree, whereas cobalt ions are rapidly transported to the blood and 

eliminated in the urine, which explains why chromium concentration is higher than 

cobalt in periprosthetic tissues (Merritt et al. 1989, Brown et al. 1993). 

Periprosthetic metal concentrations correlated poorly with whole blood and 

synovial fluid metal ion concentrations. The only exception was the good 
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correlation between synovial fluid and periprosthetic tissue cobalt concentrations. 

Witt et al. also found no correlation between serum and periprosthetic metal ion 

levels (Witt et al. 2014). We suggest that the overall poor correlations are due to 

tissues reflecting the accumulated metal load, while whole blood and synovial fluid 

reflect the amount of wear that has been generated more recently. This is 

supported by Kuba et al. who noted that tissue concentrations are dependent on 

the in situ time of the implant (Kuba et al. 2019).  

6.4 Histopathological findings and semiquantitative scoring 
methods 

In all studies, we observed variable degrees of macrophage infiltration, perivascular 

and diffuse lymphocytes, necrosis, occasional plasma cells, granulomas and 

germinal cells. Similar descriptive findings have been made in a plethora of 

previous studies (Davies et al. 2005, Willert et al. 2005, Mahendra et al. 2009, 

Campbell et al. 2010, Natu et al. 2012, Grammatopoulos et al. 2013, Lohmann et 

al. 2013). We found a similar correlation between perivascular lymphocytic cuffing 

and necrosis as reported in a previous study (Langton et al. 2011b). Furthermore, 

all tissue samples with germinal centers presented with severe necrosis. Mittal et al. 

suggested that these tissues with germinal centers represent a pathological entity, 

whereas Natu et al. proposed that they are the end-stage of the continuum of 

lymphoid neogenesis (Natu et al. 2012, Mittal et al. 2013).  

We compared two different scoring methods to assess periprosthetic tissues: 

the scoring system published by Natu et al. and ALVAL-scoring by Campbell et al. 

(Campbell et al. 2010, Natu et al. 2012). Both of these scoring methods have been 

used in several recent studies, but to the best of our knowledge no direct 

comparisons have been made (Campbell et al. 2018b). ALVAL grading is relatively 

restricted compared to Natu grading as it only includes inflammatory infiltrate 

subscore, synovial lining subscore and tissue organization subscore. In comparison, 

the Natu score is more comprehensive. It includes separate scores for thickness of 

macrophage sheets, lymphocyte cuffs, presence of diffuse lymphocytes, presence 

of germinal centers, granulomas and plasma cells, and grade of necrosis. However, 

as is the case with other scoring methods, the Natu method is still semiquantitative. 

Furthermore, the number of diffuse lymphocytes is not graded, only whether they 

are present or not.  
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As discussed by Ricciardi et al., both the synovial lining and tissue organization 

subscores of ALVAL grading reflect the degree of necrosis (Ricciardi et al. 2016). 

A strong correlation between these ALVAL subscores and the Natu score for 

necrosis was observed in our study. ALVAL score was originally designed to help 

distinguish failures related to high wear from failures related to low wear and 

suspected hypersensitivity response. Although necrosis is often seen with ALVAL 

response, it is not specific for ALVAL as it is also seen with macrophage-

dominated reactions with possible related cytotoxicity (Mahendra et al. 2009, 

Grammatopoulos et al. 2013). This leaves only the inflammatory infiltrate score in 

ALVAL grading specific for ALVAL response. In the present study, a strong 

correlation between lymphocyte cuff thickness (Natu) and inflammatory infiltrate 

subscore (ALVAL) was observed. This indicates that the inflammatory infiltrate 

subscore is useful in distinguishing lymphocyte-dominated responses from those 

that are not lymphocyte-dominated. Phillips et al. also concluded that ALVAL 

scoring is useful for distinguishing between macrophage and lymphocyte responses 

(Phillips et al. 2014). Inflammatory infiltrate score involves the evaluation of both 

lymphocytic and macrophagic components. However, both lymphocytes and 

macrophages are often seen in periprosthetic tissues. Grammatopoulos et al. 

suggested that an easier method to identify ALVAL responses from wear-related 

responses would be to measure only the thickness of the lymphocytic cuffing, 

referred to as Oxford ALVAL score in their study (Grammatopoulos et al. 2013). 

We agree with Grammatopoulos et al. and find that separate scores for the 

evaluation of macrophage and lymphocyte infiltration provide more information 

about the failure mechanism and lead to easier comparisons between 

histopathological studies. 

6.5 Latent subtypes of ARMD and related clinical findings 

The results of the hierarchical cluster and LCA implied four distinct subtypes of 

histopathological findings in failed ASR MoM hip replacements. Our results 

suggest that the traditional and often acclaimed “ALVAL-type” responses may be 

present in two different histological entities, a finding that coincides with the recent 

consensus statement. These subtypes are naturally very similar in nature – both 

evince perivascular lymphocyte cuffs and a high grade of necrosis. Furthermore, 

both diffuse lymphocyte infiltration and plasma cells are commonly seen. The 

major difference between these subtypes, based on the results of the current study, 
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is the particle load within macrophages and extracellular metal particles. One 

subtype lacked extracellular metal particles, and particle load within histiocytes was 

low or absent. Further, metal concentrations in WB and SF were lowest in this 

group. This subtype also evinced a very high grade of synovial necrosis, and 

germinal centers were more common in this subtype than in other subtypes. We 

therefore suggest that this subtype represents the “immunologic Type IV 

neosynovitis” reaction, that is, a true hypersensitivity type ALVAL reaction. On the 

other hand, the other “abrasion-induced inflammatory lymphocytic Type I 

neosynovitis” can be regarded as an “ALVAL-type response” associated with wear. 

In this subtype, the histopathological findings are slightly milder compared with 

“immunologic type IV neosynovitis.” The other groups in our analysis that 

coincide with the consensus statement were “abrasion-induced foreign body Type 

I neosynovitis” and “abrasion-induced necrotic Type I neosynovitis”. These two 

histopathological entities have been proposed previously (Mahendra et al. 2009, 

Grammatopoulos et al. 2013).  

It is noteworthy that hips in the “immunologic Type IV neosynovitis” group 

evinced the lowest levels of WB and SF cobalt and SF chromium despite the 

majority of hips being THAs in this group. This bodes well with the suspected 

hypersensitivity in this group of patients. In general, THAs produce higher metal 

ion levels compared with hip resurfacings (Lainiala et al. 2016). Moreover, THAs 

have an additional source of metal debris – taper wear and corrosion – this debris 

being different from the debris originating from the bearing surfaces (Xia et al. 

2017). Based on their results, Xia et al. suggested that taper wear/corrosion debris 

is more immunogenic than bearing wear debris. This would explain why most hips 

in both the “immunologic type IV neosynovitis” and “abrasion-induced 

inflammatory lymphocytic neosynovitis” groups were THAs.  

The current literature on the correlation between metal wear debris and 

ALVAL/lymphocytic adaptive tissue reactions is inconsistent (Table 5). ALVAL 

type reaction has been associated with low wear in several studies, but 

contradictory results have also been presented. Grammatopoulos et al. stated that 

the ALVAL reaction correlated moderately positively with increasing wear 

(Grammatopoulos et al. 2013). Moreover, they also found that hips with minimal 

wear and pseudotumor had the most severe ALVAL reaction. Our results, which 

suggest that failed MoM hips pose several different entities that vary in etiology, 

offer an explanation for the inconsistent findings between the wear and ALVAL 

responses reported in previous studies. Thus, an ALVAL response or ALVAL-type 

response may be the result of two different entities that may also differ in wear 
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characteristics, as suggested in our study. This dualistic nature of ALVAL may 

explain why previous studies have had conflicting results. We therefore suggest 

that immunologic/hypersensitivity response to metal wear debris is an important 

cause of ALVAL-type responses. However, in a subset of patients, there is a higher 

threshold of wear required before which an abrasion-induced ALVAL-type 

reaction starts to develop. 

A recent study by Ricciardi et al. was very similar to ours (Ricciardi et al. 2016). 

The major difference was that they also included non-MoM hips and aimed to 

investigate the subtypes of histopathological findings related to the corrosion 

products released from a variety of hip replacements. They defined four subtypes 

based on the available literature. One of the four subtypes was the macrophage-

dominated pattern. The second subtype was “mixed lymphocytic and macrophagic 

with or without features associated with hypersensitivity/allergy or response to 

particle toxicity.” This subtype is equal to the traditional ALVAL-type reaction that 

we suggested was dualistic in nature. Ricciardi et al. also suggested the division of 

this subtype based on the presence of hypersensitivity features. The third subtype 

described by Ricciardi was predominantly sarcoid-like granulomatous response. 

Our analysis did not, however, suggest this as a separate entity. This could be due 

to several factors. First, the majority of cases with sarcoid-like pattern were seen in 

the non-MoM hips with dual modular tapers. We do not suggest, therefore, that 

the sarcoid-like pattern would constitute a separate entity in MoM hips. Second, 

the segregation methods used in our study relied on the association of several 

histopathological variables. Thus, if the sarcoid-like granulomas developed in 

isolation, it is unlikely that this entity would be identified in the segregation 

analysis. 

6.6 Etiopathogenesis of ARMD 

The etiopathogenesis of the adverse reactions related to metal debris has been 

widely researched. However, the mechanisms and development of these often 

destructive lesions are still poorly understood. Attempts have been made to 

correlate implant wear, SF metal concentrations, tissue metal concentrations, WB 

metal ion levels and histopathological findings to better understand the 

mechanisms (Table 5). Results have been notably discrepant. It has been 

mathematically proven that most published research findings are false (Ioannidis 

2005), and this field of science is likely to be no exception. The replication of 
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scientific results is considered critical and improves the chance of the findings 

being true (Moonesinghe et al. 2007). Thus, we aimed to investigate several 

discrepant associations in the field of ARMD etiopathogenesis. Also, we aimed to 

create novel approaches for the study of ARMD etiopathogenesis and to 

investigate new hypotheses to be further tested and validated in future studies. 

6.6.1 Role of wear 

Bearing wear volume correlated weakly with the thickness of macrophage sheets 

and moderately with the degree of necrosis. Volumetric wear rate correlated 

moderately with the degree of necrosis, but correlation with macrophage sheet 

thickness could not be established. Neither wear volume nor volumetric wear rate 

correlated with lymphocytic cuffing.  

Metal debris originating from the bearing surfaces and/or trunnion has been 

shown to have cytotoxic effects on cells (Catelas et al. 2001, Petit et al. 2004, 

Scharf et al. 2014). It has been suggested that the cytotoxicity of metal debris 

further leads to tissue destruction and macrophage recruitment to clear the tissue 

and metal debris (Mahendra et al. 2009, Ricciardi et al. 2016). In support of this, we 

observed a correlation between implant wear and the number of macrophages as 

well as the degree of necrosis but not with the number of lymphocytes. Similar 

findings were made in a study by Grammatopoulos et al. (Grammatopoulos et al. 

2013). Other studies have also noted an association between wear and 

macrophages but not with necrosis (Campbell et al. 2010, 2018a, Ebramzadeh et al. 

2014). Langton et al., however, did not find correlation between wear and the 

number of macrophages or the amount of necrosis (Langton et al. 2011b). We also 

observed that the presence of granulomas was associated with increased total wear 

volume. Granulomas are thought to form in response to a high number of wear 

particles and our results support this idea (Gallo et al. 2014). Metal hypersensitivity 

leading to type IV response with strong lymphocytic infiltration has been suggested 

as a cause of failure in those patients with low wear (Campbell et al. 2010, 

Ebramzadeh et al. 2011, 2014, Nawabi et al. 2014). Contrary to our hypothesis, this 

was not observed in our study. In fact, patients with heavy lymphocytic cuffing had 

a higher wear mean rate than patients with lower numbers of lymphocytes. These 

findings suggest that excessive metal debris accumulation, not metal 

hypersensitivity, was the cause of lymphocytic cuffing, at least in some patients 

with hip resurfacing. Grammatopoulos et al. also found that the presence of 



 

121 

lymphocytes was associated with higher linear wear rate (Grammatopoulos et al. 

2013). Further, they reported the presence of a patient subgroup with 

hypersensitivity-related histopathological findings (lymphocytes and necrosis) and 

simultaneous low bearing wear, suggesting metal hypersensitivity as a cause of 

failure in those patients. 

6.6.2 Role of synovial fluid metal 

Synovial fluid cobalt correlated moderately with lymphocyte cuff thickness and 

necrosis. Chromium correlated only with necrosis. Reito et al. reported similar 

correlations (Reito et al. 2015b). These results support the hypothesis of metal 

debris having direct cytotoxic effects on tissues (Mahendra et al. 2009). 

Interestingly, only cobalt levels correlated with lymphocyte cuff thickness and this 

correlation was positive. This finding suggests that cobalt in synovial fluid may be 

dose-dependently relevant in the pathogenesis of lymphocytic ALVAL tissue 

response, at least in patients with hip resurfacings. 

6.6.3 Role of whole blood metal ions 

Whole blood metal ions have been investigated in relation to ARMD 

etiopathogenesis with discrepant results. In study I, we noted a correlation between 

WB metal ion levels and necrosis as well as macrophage sheet thickness. No 

correlation between WB metal ion levels and lymphocyte cuff thickness was 

observed. These results support the hypotheses of both foreign-body response and 

cytotoxic response in response to metal wear debris (Mahendra et al. 2009, 

Campbell et al. 2010, Grammatopoulos et al. 2013). Paukkeri et al. reported that 

patients with high numbers of lymphocytes in flow-cytometry had low levels of 

metal ions in blood compared with patients with a lower number of lymphocytes. 

They suggested type IV metal hypersensitivity response in patients with low metal 

ion levels in blood. We did not find a similar association. Other studies have also 

failed to find a similar association (Lohmann et al. 2013, Grammatopoulos et al. 

2017b). 

Interestingly, in study II, we did not find similar correlations between WB metal 

ion levels and histopathological findings. Only WB cobalt and metal particle load 

within macrophages correlated, but only in the THA group. One major difference 

between the two studies is that in study I we included only the hip resurfacings of 
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one manufacturer, whereas in study II several hip replacements (both THAs and 

hip resurfacings) from different manufacturers were included. As discussed earlier, 

there are differences in the metallurgy between manufacturers. This may therefore 

have hindered possible associations. Furthermore, the hip resurfacing group in 

study II was relatively small and likely underpowered to detect meaningful 

associations. Besides, in the THA group, metal released from trunnion surfaces 

likely behaves differently than the metal released from bearing surfaces (Xia et al. 

2017). 

6.6.4 Role of periprosthetic tissue metal 

Periprosthetic tissue metal concentrations correlated only with metal particle load 

within macrophages but not with other histopathological findings. However, 

tissues with lymphocytic infiltration had lower amounts of chromium compared 

with tissues with no lymphocytic infiltration. To the best of our knowledge, only 

one previous study has investigated the periprosthetic metal content in relation to 

histopathological findings in patients with failed MoM hip arthroplasties (Lohmann 

et al. 2013). Lohmann et al. found that high periprosthetic tissue metal content 

(chromium, cobalt and nickel combined and separately) was associated with a 

lymphocyte-dominated response and low metal content with a macrophage-

dominated response. We did not find a similar association – in fact our results 

favor the opposite. There are some weaknesses in the study by Lohmann et al. 

which may have distorted the outcome. First, the small number of cases in their 

study is likely to be a limiting factor. There were only five patients in the 

macrophage-dominated group and 22 patients in the lymphocyte-dominated group. 

The high prevalence of the lymphocyte-dominated response compared with the 

macrophage-dominated response is neither supported by previous studies nor the 

results of our studies (Campbell et al. 2010, Natu et al. 2012, Grammatopoulos et 

al. 2013). Furthermore, the mean values for tissue metal concentration were 

calculated and compared between the two groups. With nonparametric variables, 

this is not a valid statistical method. 

A recent review suggested that periprosthetic tissue metal concentrations may 

correlate more accurately with the histology than serum metal ion levels 

(Athanasou 2016). Our results do not support this hypothesis. We found that 

tissue metal concentrations had poor or non-existent correlations with histological 

findings. However, tissues with lymphocytic infiltration had lower amounts of 
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chromium compared with tissues with no lymphocytic infiltration. This finding 

alone supports the hypothesis of hypersensitivity as a cause of failure in patients 

with low-wearing MoM hip implants. However, we could not establish correlation 

between the number of lymphocytes and periprosthetic chromium concentration, 

which makes it difficult to draw conclusions in light of the overall results. 

6.6.5  Role of metal debris origin 

We found that periprosthetic tissues retrieved from patients with total hip 

replacements evinced more severe necrosis and more lymphocytes compared with 

tissues retrieved from patients with hip resurfacings. Taper wear debris has been 

suggested to be more immunogenic and cytotoxic than bearing wear debris 

(Langton et al. 2013a, Xia et al. 2017). Xia et al. compared tissues from patients 

with dual-modular non-MoM implants, MoM THA and MoM hip resurfacings. In 

dual-modular implants there are two modular junctions which serve as a source of 

trunnion wear, whereas in THA there is one modular junction and one bearing 

couple. In hip resurfacing, there are no modular junctions at all, and all wear debris 

originates from the bearing surfaces. Xia et al. found that tissues from patients with 

dual-modular implants had the highest amounts of lymphocytes and tissue 

destruction, whereas tissues from THA patients had lower amounts and, ultimately, 

tissues from hip resurfacing patients had the lowest amounts. This was despite the 

fact that tissues from patients with dual-modular non-MoM implants had the de 

facto lowest amount of metal debris. Also, patients with dual-modular implants 

had the shortest time to failure. The authors concluded that trunnion wear is likely 

more immunogenic and cytotoxic than bearing wear debris, leading to rapid failure. 

Our results support these findings and suggest that taper wear may cause more 

tissue destruction than bearing wear manifesting as substantially higher failure rates 

for THAs than hip resurfacings despite similar amounts of metals in the 

periprosthetic tissues. 

6.6.6 Role of intrinsic factors 

In the present dissertation, we found that there were notable differences in the 

histological findings between patients revised for ARMD, that is, the between-

subject variability was high. Heterogeneity has been characteristic for the results of 

ARMD research (Campbell et al. 2014). Most importantly, however, we found no 
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statistically or clinically significant differences in most of the histological and 

imaging findings between the left and right hips of the same patient, meaning that 

the within-subject variability in histological and imaging findings was low. Further, 

the majority of the patients had similar findings in both hips in several key 

histological variables. This was despite the fact that there was a clinically and 

statistically significant difference in the amount of wear volume between the sides, 

that is, there was a difference in the extrinsic factor between the sides. There are no 

clearly defined boundaries for abnormal versus normal wear, but volumetric wear 

rates exceeding 1 mm3/year are generally considered abnormal (Sidaginamale et al. 

2013, Cook et al. 2019). As the median difference of 15.4 mm3 in wear volume 

between contralateral sides measured in our study translates into remarkably 

abnormal yearly volumetric wear rate needed to generate that difference, we thus 

feel safe to consider the difference in median wear volume between the sides to be 

clinically significant. 

The contribution of host-specific factors in the pathogenesis of ARMD has 

been suggested in numerous previous studies, manifesting as patient susceptibility 

of different levels (Mabilleau et al. 2008, Campbell et al. 2010, Donell et al. 2010, 

Ebramzadeh et al. 2011, Hart et al. 2012b, Matthies et al. 2012, Ebramzadeh et al. 

2014, Athanasou 2016). However, to the best of our knowledge, there have been 

no previous studies that have actually assessed the role of intrinsic factors in the 

pathogenesis. On the contrary, there have been many studies that have investigated 

implant wear or the indirect markers of wear and the development of ARMD; 

however, the results of these studies are very discrepant as discussed in previous 

chapters. High wear or high blood metal ion levels resulting from high wear are 

associated with the risk for the development of ARMD (Langton et al. 2010, Hart 

et al. 2014). However, adverse reactions have been noted in patients with both high 

and low wearing hip implants (Campbell et al. 2010, Ebramzadeh et al. 2011, 

Kwon et al. 2011, Langton et al. 2011b, Matthies et al. 2012). In a systematic 

review, no clear dose-response relationship between wear and ARMD could be 

established (Campbell et al. 2014). We observed symmetry of histological findings 

between contralateral hips of the same patients despite differing amounts of wear. 

In addition, the distribution of wear volume between the sides was similar in 

patients with symmetrical versus asymmetrical histological and imaging findings. 

Further, patients with bilateral pseudotumors had similar amounts of wear volume 

in their hips as patients with no pseudotumor on either side. Our finding suggests 

that there are intrinsic factors that markedly contribute to the pathogenesis of 

ARMD that dictate the type of tissue response and the development of 
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pseudotumors, in addition to extrinsic factors, such as volume and the type of 

metal wear debris. Further, it is likely that there are differences in these intrinsic 

factors between patients as some develop aggressive tissue responses despite low-

wearing implant, whereas some tolerate large amounts of wear. Various terms, such 

as patient susceptibility, have been used to describe this phenomenon that 

clinicians have observed. (Matthies et al. 2012). 

A cohort of patients with bilateral MoM hips forms an excellent research 

framework to investigate and compare the role of intrinsic and extrinsic factors in 

the pathogenesis. The logic of this reasoning is illustrated in Figure 15. We are 

aware of only three previous studies that have compared the characteristics of 

ARMD between the sides in patients with bilateral MoM hip replacements. 

Madanat et al. compared MRI findings between left and right hips in patients with 

bilateral MoM hip replacements (Madanat et al. 2015). They found that the soft 

tissue reaction observed in MRI was symmetrical between the sides in most 

patients, both in sequentially and simultaneously implanted hips. In support of 

their findings, we report similar symmetry for the presence of MRI-confirmed 

pseudotumor between the sides. Another study by Pandit et al. consisted of four 

revised patients with bilateral MoM hips (Pandit et al. 2008b). All patients had 

developed a necrotic pseudotumor in both hips. In histopathological analysis, both 

hips of each patient had similar findings (necrosis, macrophages, lymphocytes). 

However, no wear data were included in the study and the histology was 

descriptive, not semiquantitatively scored. A recent study by Uchihara et al. 

included patients with both unilateral and bilateral MoM hips that had been revised 

for ARMD (Uchihara et al. 2018). They compared histological findings between 

left and right hips in the bilateral patients as well as histological findings between 

unilateral and bilateral patients. In addition, time-to-failure was compared between 

these two groups. The histological findings (necrosis, macrophages, lymphocytes) 

between the left and right hips of the bilateral patients were found to be 

symmetrical in the majority of cases, similar to the findings of the present study. 

However, we observed that there were differences in the grade of necrosis between 

the sides, while Uchihara et al. did not semiquantitatively grade necrosis. Further, 

there were no differences in the histological findings or time-to-failure between 

unilateral and bilateral patients in their study. Uchihara et al. concluded that the 

implantation of a MoM hip does not appear to lead to sensitization to metal debris 

that would in turn lead to poor clinical performance or a different tissue response 

in the second MoM hip. However, they did not discuss the significance of their 

findings in the context of intrinsic factors contributing to the similarity of the 



 

126 

tissue response between the contralateral hips in bilateral patients. Furthermore, 

their sample size was rather small (10 patients) and no wear data of the MoM hips 

were presented in the study. These three previous studies conducted on bilateral 

MoM patients are in agreement with our findings and support the hypothesis of an 

individual host response dictated by intrinsic factors as a significant contributor in 

the development of soft tissue reactions leading to failure of the hip. 

 

Figure 15.  Illustration of between- and within-patient variation and the effect of external and intrinsic 
factors on these. 

6.6.7 Limitations in our studies 

There are several limitations regarding the ability to draw conclusions of ARMD 

etiopathogenesis from histopathological studies and wear markers. Many of these 

limitations are common to all of the studies included in this dissertation. First, the 

histological scoring was performed by one observer only. However, multiple 

microtome sections of each sample were made and analyzed by a senior 

musculoskeletal pathologist well acquainted with ARMD histopathology. The 

samples obtained from soft tissues perioperatively might not represent the overall 

response of the synovia. Several samples would minimize this variation, but this 

approach has practical limitations since tissue preservation is important during 

revision surgery. However, Vaculova et al. found low intrapatient variability in 
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histological findings between different sampling sites of synovial tissue (Vaculova 

et al. 2018). Thus, a tissue-preserving approach would seem justified and accurate. 

Furthermore, there might be variation in cell counts among different sections from 

the same sample. However, we think that this sampling bias was reduced 

significantly due to the large group of cases.  

The scoring methods we used are semiquantitative and only give indirect 

information on the underlying pathological processes. Further, the histological 

findings only reflect one time point, and thus the individual natural history of 

ARMD cannot be determined. Although we identified four different subtypes of 

ARMD in Study III, it is possible that some of these reflect the same response at a 

different time point. In addition, it is possible that each revised hip may evince 

several different inflammatory responses. Therefore, there is some overlapping and 

inconsistencies when the distribution of each histological variable among clusters is 

interpreted. For example, there are cases with a minor grade of necrosis in the 

“Cytotoxic” group even though we suggested that the hallmark of this group is 

synovial necrosis. Cluster analysis does not allow overlapping groups. Hence, cases 

presenting more than one possible different response are forced to one of the 

remaining clusters. These specific cases cannot be identified during the clustering 

process, and they are merged to other groups. Since cluster analysis readily revealed 

different groups, however, we do not consider the overlapping of patterns to have 

been a significant problem. The prevalence of histological variables may not, 

however, be representative of the true prevalence since they do not develop in 

isolation from each other. 

Although we found correlation between wear, SF and WB metal ion levels and 

histopathological findings (Studies I and II), correlation does not necessarily mean 

full causation. There are many confounding variables. For example, the 

measurement of WB metal ion levels was not standardized to a certain time 

interval prior to revision surgery but instead depended on the individual follow-up 

scheme of the patient. Thus, the WB metal ion levels may not accurately reflect the 

stages leading to revision surgery. However, most implants are expected to wear at 

a steady state rate after the initial running-in period (Clarke et al. 2000). 

Furthermore, WB metal ion levels are likely to not only depend on the amount of 

metal wear debris produced but also on the capability of macrophage lysosomes to 

digest the particulate debris into metal ions (Xia et al. 2011). Cellular response of 

the synovial tissues may affect the way metal debris is handled, and thus affect 

metal ion levels (Langton et al. 2018). 
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In Study II, we did not find any evidence that periprosthetic tissue metal 

concentrations were related to characteristics of tissue responses, but we only 

measured the gross amounts of metals and not the forms in which the metals were 

present (ions versus particles, oxidation status, bonding with host proteins, etc.). 

The amount of metal measured in our study reflects the total amount of all forms 

combined. The tissue samples used for metal measurement were rather small 

(approx. 0.3 g) and may not have completely reflected the average metal 

concentration of the whole synovium. Finally, we were not able to quantify the 

amount of taper wear debris generated in THAs, which may play a role in the 

pathogenesis. 

6.6.8 Discrepancies in the literature 

Previous literature on ARMD pathogenesis is vastly discrepant (Table 5). Several 

possible explanations for this exist. Based on our findings and experience, we 

suggest the following. First, as we demonstrated in Study III, ARMD is not one or 

two entities – instead, four different subtypes likely exist. Most previous studies 

have approached ARMD in dualistic nature – hypersensitivity-related lymphocytic 

response and wear-related foreign-body response. Second, as has previously been 

suggested, patients often present a combination of adaptive and innate immunity 

features in their tissues, and there is overlap between different responses (Berstock 

et al. 2014). Also, some patients may be susceptible to wear debris, develop 

hypersensitivity/ALVAL responses and still have poorly performing, high wearing 

implants. Third, methods between studies are very heterogenous. Implant wear has 

been measured directly (linear, volumetric, wear rates) and several indirect 

measures have been used (synovial fluid, tissue concentrations, whole blood). 

Further, the histological grading of tissues has not been standardized and a range 

of scoring methods have been used (Campbell et al. 2018b). These heterogeneities 

make comparison between studies challenging. Moreover, a recent study suggested 

that current scoring methods show poor intraclass correlation coefficients, and 

thus might not be reproducible (Smeekes et al. 2017). Histological grading is only 

semiquantitative and is likely dependent on the observer. Tissue samples only 

reflect a small portion of the inflamed synovia. Fourth, there is a lack of a clear 

terminology. Terms such as ARMD, pseudotumor and ALVAL are used 

interchangeably, although they have different meanings (Athanasou 2016). Fifth, 

the reported patient populations have mostly been small. Small sample sizes lead to 
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inadequate statistical power, a higher chance of false positives being reported and 

low reproducibility of the findings (Button et al. 2013). Furthermore, many studies 

are performed at tertiary centers where patients are referred from elsewhere. This 

creates a high possibility of selection bias. In conclusion, there are numerous 

possible causes for the discrepant findings in the field of ARMD etiopathogenesis. 

Therefore, the results should be interpreted with caution and replicated. 

6.6.9 Summary of the etiopathogenesis 

We observed four different subtypes of ARMD. The dualistic nature of ALVAL is 

a novel finding. ARMD can be divided into wear-related foreign-body response, 

wear-related cytotoxic response, wear-related ALVAL response or hypersensitivity- 

related ALVAL response. Our study was exploratory in nature, and therefore it 

should be replicated independently to confirm the results. Wear of the implants 

was highly variable, and ARMD can also result from low wear. Implant wear 

correlated with grade of necrosis and macrophages. Although the literature is 

incongruent, an association between wear and macrophages seems likely when 

viewed as a whole (Table 5). The association between wear and necrosis is more 

uncertain as only ours and one previous study have reported a positive association 

(Grammatopoulos et al. 2013). Necrosis may result from immunological cascades 

and/or from the direct cytotoxic effects of metal ions, which may create a 

discrepancy. We did not find correlations between lymphocytic cuff thickness and 

implant wear or any of the indirect wear measures. Mixed results have been 

published previously (Table 5). We suggest this is in part due to the dualistic nature 

of ALVAL we observed – ALVAL may develop due to wear or the susceptibility 

of the patient or both. Furthermore, the pathogenesis of ARMD in general appears 

to be affected by individual host-factors that likely leads to different levels of 

susceptibility to metal debris between patients. 

6.7 Implications for clinical practice 

Patients with MoM implants present a challenge for clinicians. Our results confirm 

that ARMD may develop both in the presence of a high-wearing, poorly 

performing implant as well as in a low-wearing implant. High wear is associated 

with macrophage inflammation and possibly necrosis. WB metal ion levels offer a 
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reliable measure to estimate the in vivo wear performance of the implant and the 

chance of adverse soft-tissue reactions. However, aggressive soft-tissue lesions may 

still be present despite low WB metal ion levels. We have illustrated the meaning of 

WB metal ion levels in the follow-up of patients in Figure 16. Individual host-

factors affect the pathogenesis in addition to external factors, such as wear debris. 

Bilateral patients define a distinct subset in terms of follow-up. Based on our 

findings, the development of a pseudotumor on the other side is likely to lead to 

the development of a similar lesion on the contralateral side.  

 

Figure 16.  A schematic diagram for the relationships between whole blood metal ion levels, wear, 
and histology of the periprosthetic tissues in the follow-up of patients. 
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7 CONCLUSIONS AND FUTURE PROSPECTS 

The primary aim of this dissertation was to study ARMD etiopathogenesis. We 

analyzed tissue samples histologically to investigate the type of tissue response. We 

then further assessed possible associations between the tissue responses and 

different measures of wear (volumetric implant wear, WB and SF metal ion levels, 

tissue metal concentrations). 

Wear volumes ranged from low to manifold higher. The same was true for 

periprosthetic tissue, WB and SF metal concentrations. WB and SF metal ion levels 

correlated well with wear volume and volumetric wear rate. Thus, they offer 

indirect information for surgeons about the wear process of the implant. WB 

measurement is less invasive, and thus more advisable. 

We observed four different histopathological subtypes of ARMD: foreign-body 

response, cytotoxic response, immunological/hypersensitivity ALVAL and wear-

related ALVAL-type response. The dualistic nature of ALVAL response is a novel 

finding. Our results show that ARMD is not one or two separate entities but four. 

This further helps to explain many of the discrepancies seen in the previous 

literature. 

Numerous studies have investigated the relationship between implant wear and 

indirect measures of wear and the histopathological characteristics of the tissue 

responses. Results have been discrepant. We found correlation between wear and 

both number of macrophages and grade of necrosis, supporting the hypotheses of 

foreign-body response and cytotoxic response. Periprosthetic tissue metal 

concentrations, contrary to what we hypothesized and what has been suggested in 

the previous literature, did not correlate with histological findings.  

Patient susceptibility has been suggested as a key factor in the pathogenesis of 

ARMD as some patients tolerate high amounts of wear and some develop ARMD 

in the presence of a low-wearing implant. No studies have been conducted that 

study the presence of such susceptibility. We found that intrinsic factors determine 

the type of tissue response in addition to external factors, such as wear. This lends 

support to the hypothesis of patient susceptibility.  

Numerous questions remain unanswered regarding ARMD pathogenesis. Why 

are some patients more susceptible than others? Can we identify these patients 
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somehow to better allocate follow-up? Do patients with different types of ARMD 

have different outcomes of revision surgery? Future studies should try to 

standardize the histological grading of tissues and reporting to make the results 

more comparable. Multimodal investigations combining clinical patient data, soft-

tissue imaging findings, implant retrieval data, metal ion levels and 

histopathological findings are needed. Furthermore, flow-cytometry seems a viable, 

more quantitative and less observer-dependent option to assess the tissue response. 

Another histological method would be to analyze cellular response based on the 

cell counts (macrophages, lymphocytes) per high-power fields instead of analyzing 

the thickness of cellular layers. Immunohistochemical methods could further be 

combined to deepen the understanding of the roles of macrophages and 

lymphocytes. 

Understanding the differences between taper wear debris and bearing wear 

debris is of the utmost importance. Although the use of MoM hip replacements 

has ceased, THAs with other bearing surfaces are still frequently used. The 

trunnion is still a source for metal debris and ARMD has caused the failure of MoP 

THAs as well (Whitehouse et al. 2015). Minimizing the potential for these reactions 

is therefore important. 

Finally, although more than a decade of ARMD research has been pursued, the 

pathogenesis remains only partially understood. A summary of the current 

knowledge based on ours and previous research is presented in Figure 17. 

Substantial numbers of patients with MoM replacements remain in follow-up. 

Mastering the pathogenesis and understanding the differences between patients 

may be of relevance in clinical decision making – to revise or to continue follow-

up? Further, it is important to understand the pathogenesis of ARMD thoroughly 

in order to design safer hip implants in the future and to avoid the same mistakes 

that were made with the current generation MoM hip replacements. 
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Figure 17.  A summary of the current knowledge regarding ARMD pathogenesis. Question marks 
refer to hypotheses proposed in the literature which are yet to be confirmed. 
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Abstract

Background: Adverse Reaction to Metal Debris (ARMD) is still a major reason for revision surgeries in patients with
metal-on-metal (MoM) hip replacements. ARMD consists of a wide range of alterations in periprosthetic tissues, most
important of which are metallosis, inflammation, pseudotumors and necrosis. Studies investigating histopathological
findings and their association to implant wear or indirect measures of wear have yielded inconsistent results. Therefore,
we aimed to investigate bearing surface wear volume, whole blood and synovial fluid metal ion concentrations,
histopathological findings in periprosthetic tissues and their associations.

Methods: Seventy-eight patients with 85 hips revised for ARMD were included in the study. Prior to revision surgery,
all patients had whole blood chromium and cobalt ion levels assessed. In revision surgery, a synovial fluid sample was
taken and analyzed for chromium and cobalt. Periprosthetic tissue samples were taken and analyzed for histopathological
findings. Explanted implants were analyzed for bearing wear volume of both acetabular cup and femoral head
components.

Results: Volumetric wear of the failed components was highly variable. The total wear volume of the head and cup had
a strong correlation with whole blood chromium and cobalt ion concentrations (Cr: ρ = 0.80, p < 0.001 and Co: ρ = 0.
84, p < 0.001) and a bit weaker correlation with fluid chromium and cobalt ion concentrations (Cr: ρ = 0.50, p < 0.01 and
Co: ρ = 0.41, p = 0.027). Most tissues displayed only low-to-moderate amounts of macrophages and lymphocytes. Total
wear volume correlated with macrophage sheet thickness (ρ = 0.25, p = 0.020) and necrosis (ρ = 0.35, p < 0.01). Whole
blood chromium and cobalt ion concentrations had similar correlations. Lymphocyte cuff thickness did not correlate
with either total wear volume or whole blood metal ion concentrations, but correlated with the grade of necrosis.

Conclusions: Bearing wear volume correlated with blood metal ion levels and the degree of necrosis and
macrophage infiltration in periprosthetic tissues suggesting a dose-response relationship. Whole blood metal ion levels
are a useful tool for clinician to estimate bearing wear and subsequent tissue response.
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Histopathology

* Correspondence: lehtovirta.lari.a@student.uta.fi
1Faculty of Medicine, University of Tampere, Tampere, Finland
2Coxa Hospital for Joint Replacement, Tampere, Finland
Full list of author information is available at the end of the article

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Lehtovirta et al. BMC Musculoskeletal Disorders  (2017) 18:523 
DOI 10.1186/s12891-017-1894-5

http://crossmark.crossref.org/dialog/?doi=10.1186/s12891-017-1894-5&domain=pdf
http://orcid.org/0000-0002-9391-8915
mailto:lehtovirta.lari.a@student.uta.fi
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Background
Adverse reaction to metal debris (ARMD) is still a
major reason for revision surgeries in patients with
metal-on-metal (MoM) hip implants. Although the
use of MoM hip implants has been widely ceased,
more than one million patients have received such a
device [1] and those that have not been revised still
pose an increased risk for implant failure. ARMD is
an umbrella term describing a wide range of alter-
ations seen macro- and microscopically in the peri-
prosthetic tissue such as metallosis, necrosis,
inflammation of different types and soft-tissue inflam-
matory lesions referred as pseudotumors [2–4].
Retrieval studies have investigated implant wear and

its association to ARMD. Results of these studies have
been inconclusive as adverse reactions have been ob-
served both in patients with high and low wearing hip
implants [5–11]. In their recent systematic review,
Campbell et al. concluded that no clear dose-response
relationship between wear and ARMD could be estab-
lished due to the heterogeneity of the findings in the in-
cluded studies. Studies that have investigated wear or
indirect markers of wear, such as synovial fluid (SF) or
whole blood (WB) metal ion concentrations, and the
histopathological features of ARMD have also yielded
inconsistent results [8, 9, 12–19]. Extra-articular tissues
retrieved from patients with ARMD vary considerably in
their histologic presentation. Most often tissues display
prominent macrophage infiltration as a response to the
cytotoxic metal wear debris with a variable amount of
lymphocytic infiltration, either diffuse or aggregated
[2, 3, 8, 13]. However, in a minority of patients with
ARMD, there is heavy lymphocytic infiltration, resem-
bling type IV hypersensitivity reaction [17, 20–23].
The presence of lymphocytes is usually accompanied
with the presence of necrosis and this type of tissue
response was first termed ALVAL (Aseptic Lympho-
cytic Vasculitis-Associated Lesion) by Willert et al.
[20]. Terms ALVAL and ARMD have however been
inappropriately used as synonyms in the recent literature
[24]. Low bearing wear has been associated with a
suspected metal hypersensitivity response in some studies
[8, 9, 16]. Vice versa, high bearing wear has been associated
with a macrophage-dominated foreign-body response.
[8, 13]. In addition, low WB metal ion levels have
been associated with lymphocyte-dominated tissue
response and high metal ion levels with macrophage-
dominated response [17]. Based on these findings, metal
hypersensitivity to implant-derived debris has been hypoth-
esized as a cause of ARMD in patients with low-wearing
hip implants, and cytotoxic, macrophage dominated
response in patients with high-wearing hip implants
[8, 13, 16, 17] However, findings not supporting these hy-
potheses have been published as well [10, 12, 15, 18, 19].

The histopathology of ARMD has been well described
but the literature regarding its association to implant
wear is inconsistent. It is important to understand the
true nature of the association between wear and
histopathological findings in ARMD. After all, it is the
histopathological changes – tissue destruction and in-
flammation – that lead to failure of MoM hip implants.
Implant wear cannot be measured in-vivo and thus
cannot be used in clinical decision making but there are
reliable indirect measures of wear, such as WB metal ion
levels, that are commonly used in the follow-up of
patients with MoM hip replacements. To gain a better
understanding of the relationships between histopatho-
logical findings, bearing wear and clinical markers of
wear we aimed to investigate bearing surface wear vol-
ume, WB and SF metal ion concentrations as clinical
markers of wear, and their associations with histopatho-
logical findings of the periprosthetic tissue in patients
with Articular Surface Replacement (ASR) hip
resurfacing device revised due to ARMD. Based on
the previous literature we hypothesized that 1) low
implant wear is associated with high amount of lym-
phocytes characteristic of an ALVAL response and 2)
high implant wear is associated with high amount of
macrophages characteristic of a foreign-body response
to metal wear debris.

Methods
Between the recall of the ASR MoM hip system (Depuy
Orthopaedics, Warsaw, IN, USA) in August 2010 and
the end of our recruitment period in January 2016, 114
ASR hip resurfacing devices in 107 patients have been
revised at our institution. All consecutively revised
patients who gave informed consent and fulfilled the
following criteria were included in our study: 1) Revision
was due to ARMD, 2) Retrieved components were avail-
able for bearing wear analysis and 3) Periprosthetic
tissue sample was available for histopathologic analysis.
After exclusion, 85 hips in 78 patients were included in
our study. Twenty-one of these patients were referred to
our institution from central hospitals from other hospital
districts and 57 patients had had their index operation
(primary arthroplasty) and follow-up at our institution.
Surgery was performed by or under the direct supervi-
sion of 14 senior orthopaedic surgeons. The study was
approved by the ethical committee of Pirkanmaa
Hospital District (R11006).
Revision surgery was considered if 1) a clear pseudotu-

mour (Imperial class 2A,2B or 3) [25] was observed on
cross-sectional imaging regardless of symptoms or WB
metal ion levels; or 2) the patient had elevated WB metal
ion levels and hip symptoms despite normal findings in
cross-sectional imaging; or 3) the patient had a continu-
ously symptomatic hip or progressive symptoms regardless
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of imaging findings or metal ion levels. Symptoms included
hip pain, discomfort, sense of instability, and/or impaired
function of the hip and sounds from the hip (clacking,
squeaking). WB metal ion levels were regarded as being
elevated if either chromium or cobalt exceeded 5 ppb. Post-
operatively, failure was classified as being due to ARMD on
the basis of the following criteria [26, 27]: 1) there was pres-
ence of metallosis or macroscopic synovitis in the joint;
and/or 2) a pseudotumor was found during revision; and/
or 3) a moderate to high number of perivascular lympho-
cytes along with tissue necrosis and/or fibrin deposition
was seen in the histopathologic sample; and 4) periopera-
tively there was no evidence of component loosening or
periprosthetic fracture. In addition, infection was ruled out
by obtaining multiple (at least five) bacterial cultures during
revision surgery.

Bearing wear analysis
The volume of material loss from the cup and head
bearing surfaces was measured using a Zeiss Prismo
(Carl Zeiss Ltd., Rugby, UK) coordinate measuring
machine (CMM). A total of 400 polar scan lines on each
surface were defined and up to 30,000 data points cap-
tured using a 2 mm ruby stylus; protocols for this
method have been previously published [28]. An iterative
least square fitting method was used to analyse the raw
data captured by the CMM and the unworn geometry of
the bearing surface was used to map regions of material
loss from which the total volumetric loss was calculated.
Wear rate (mm3/year) was further calculated by dividing
total wear volume in cubic millimeters by implantation
time in years.

Histopathological analysis of the periprosthetic tissue
During every hip revision, a sample of the inflamed
synovia or pseudotumor was obtained. For histopatho-
logical analysis, each tissue sample was formalin fixed.
Several 10 μm microtome sections were made and em-
bedded in paraffin. Standard hematoxylin and eosin
staining was used. The sections were examined histolog-
ically under normal light with a Nikon Eclipse 50i
(Nikon Corporation, Shinagawa, Tokyo, Japan). The
samples were graded by a senior musculoskeletal path-
ologist (JP) using scoring principles adopted from the
study by Natu et al. [2] (termed Natu grading in our
study) and the ALVAL score previously described by
Campbell et al. [8].
The Natu grading consisted of following parameters:

1) lymphocyte cuff thickness, 2) whether lymphocytic in-
filtrate was diffuse or aggregated, 3) presence of germi-
nal centers, 4) histiocyte sheet thickness, 5) metal
particle load within histiocytes, 6) extent of tissue necro-
sis, 7) presence of plasma cells and 8) presence of granu-
lomas. Lymphocyte cuff thickness was calculated using a

graticule. An average of five measurements was taken
and graded as 0–3 (absent, 0.25 mm, 0.25–0.75 mm,
>0.75 mm). Thickness of histiocyte sheets was also cal-
culated using a graticule and graded 0–3 (absent,
<1 mm, 1–2 mm, >2 mm). Metal particle load within
histiocytes was graded as 0–4 as done in the assessment
of iron decomposition in liver cells [29, 30]. The extent
of overall tissue necrosis in a sample was graded based
on the surface necrosis typing according to Davies et al.
[22]. Type 1 surface contains intact synovial epithelium.
Type 2 surface shows loss of synovial epithelial cells
without fibrin deposition. In type 3 surface there is fibrin
deposition and in type 4 surface there is extensive necro-
sis and loss of architecture. The extent of type 4 surface
necrosis was used to grade the overall tissue necrosis in
a given sample, as described by Natu et al. [2]. In grade
4 necrosis, more than 75% of the tissue sample showed
type 4 surface necrosis. In grade 3 necrosis, between 25
and 75% showed type 4 surface necrosis. In grade 2 ne-
crosis either less than 25% of the tissue showed type 4
surface necrosis or the tissue showed type 3 surface. In
grade 1 necrosis, the sample consisted of type 2 surface.
ALVAL scoring consists of three subscores: synovial

lining (0-3p), tissue organization (0-3p) and inflamma-
tory infiltrate (0-4p). Both synovial lining and tissue
organization reflect the degree of necrosis and higher
scores mean higher degree of necrosis. Inflammatory in-
filtrate score reflects the predominant inflammatory cell
type on a spectrum: 0 points means minimal infiltrates,
1p means predominantly macrophages, 2p means both
macrophages and diffuse/perivascular lymphocytes, 3p
means mostly lymphocytes in aggregates and some mac-
rophages and 4p means large lymphocyte aggregates and
little to no macrophages.

Whole blood and synovial fluid metal analysis
Since January 2012, WB metal ion (Co and Cr) con-
centrations have been routinely measured as a part of
the systematic follow-up program for patients with
MoM hip replacements at our institution. All patients
underwent WB analysis of Co/Cr following sampling
from the antecubital vein using a 21-gauge needle
connected to a Vacutainer system (Becton, Dickinson
and Company, Franklin Lakes, NJ, USA) and trace-
element blood tubes containing sodium ethylenedi-
aminetetraacetic acid (EDTA). Standard operating
procedures were established at the Finnish Institute
for Occupational Health for Co and Cr measurement
using dynamic reaction cell inductively coupled
plasma (quadripole) mass spectrometry (Agilent 7500
cx, Agilent Technologies, Santa Clara, CA, USA). The
laboratory technicians were blinded to all clinical
outcomes. The samples were preserved in +6 °C to
+8 °C prior to analysis.
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Since October 2011, our MoM hip revision protocol
has involved perioperative SF aspiration, which is always
taken before opening the deep fascia using a standard
18- to 20-gauge needle connected to a Vacutainer system
(Becton, Dickinson and Company, Franklin Lakes, New
Jersey) and trace element tubes containing sodium
EDTA. Similar procedures were used for SF metal ion
concentration measurement as described above for WB.

Statistical methods
Spearman rank correlation was used to study the associ-
ations between wear volume, WB and SF metal ion
concentrations, and histopathological findings due to
non-normal distribution of these variables. Medians
were calculated for wear volume, WB and SF metal ion
concentrations. To compare these median values
between different subgroups, nonparametric Mann-
Whitney U-test was used. When analyzing the correl-
ation between WB metal ion concentrations and other
factors, we only included patients with unilateral hip
arthroplasties (57 hips) to avoid the confounding effect
of metal ions being released to the blood from the other
implant. The threshold for statistical significance was set
to 0.05. The analyses were conducted using IBM SPSS
software (IBM Corp. Released 2012. IBM SPSS Statistics
for Windows, Version 21.0. Armonk, NY: IBM Corp.).

Results
Of the 85 hips included in the study, 56 were explanted
from female patients and 29 from male patients. Mean
age at the time of the revision surgery was 57.3 years
(SD 10.3 years). Mean follow-up time between index op-
eration and revision surgery was 5.4 years (SD 1.8 years).
Volumetric wear analysis of the explanted components

demonstrated a wide range of wear in both the acetabu-
lar cup and femoral head (Table 1). Wear rates were also
highly variable with a median of 9.0 mm3/year (range
1.1…99.7 mm3/year). In a vast majority of the compo-
nents (85.1%), the femoral head was more worn than the
acetabular cup. Median ratio for head wear to cup wear
was 1.7 (range, 0.5…10). In addition to actual volumetric
component wear, also WB and SF metal ion levels, serv-
ing as indirect markers of wear, were highly variable
(Table 2). The total wear volume of the head and cup
strongly correlated with WB metal ion concentrations
(Cr: ρ = 0.80, p < 0.001 and Co: 0.84, p < 0.001) and

moderately with SF metal ion concentrations (Cr: ρ =
0.50, p < 0.01 and Co: ρ = 0.41, p = 0.027). Wear rate had
slightly stronger correlation with WB metal ion concen-
trations (Cr: ρ = 0.87, p < 0.001 and Co: 0.89, p < 0.001)
and SF metal ion concentrations (Cr: ρ = 0.71, p < 0.001
and Co: 0.66, p < 0.01) than total wear volume.
Histologically, variable amounts of macrophages, lym-

phocytes and necrosis were seen in the tissue samples.
One or more germinal centers were present in 5 samples
(5.7% of all samples). One or more granulomas were
present in 14 samples (16.5% of all samples). All tissue
samples evinced at least some degree of macrophage in-
filtration (macrophage sheet thickness score of at least
1) and in most cases it was low to moderate (Fig. 1). In
regard to lymphocyte infiltration, most tissues evinced
little to no lymphocytes and in only a minority of the
samples the infiltrate was prominent (Fig. 2). All cases
with heavy lymphocyte infiltration (scores 2 or 3) had a
macrophage sheet thickness score of 1, ie. there was only
little macrophage infiltration in these tissues. Eight of
the nine tissue samples with heavy lymphocyte infiltra-
tion had grade 4 necrosis and the ninth had grade 3 ne-
crosis. Median wear rate for these tissues was higher
than that for the tissues with lower numbers of lympho-
cytes (Table 3). Lymphocyte cuff thickness correlated
positively with the grade of necrosis (ρ = 0.41, p < 0.001)
and inflammatory infiltrate score (ρ = 0.79, p < 0.001)..
All five tissue samples with germinal centers had grade 4
necrosis. The wear volume or wear rate of these cases
did not differ from cases without germinal centers (me-
dian wear volume in cubic millimeters 61 versus 37.5, p
= 0.94; median wear rate in cubic millimeters/year 11.9
versus 8.8, p = 0.86). Tissues with one or more granu-
lomas were associated with higher total wear volume
and wear rate when compared to tissues with no granu-
lomas (Table 4). Grade of necrosis correlated positively
with synovial lining score (ρ = 0.86, p < 0.001) and tissue
organization score (ρ = 0.80, p < 0.001).
Correlations between histological variables, total wear

volume of the head and cup components, wear rate as
well as WB and SF metal ion concentrations are listed in
Table 5. Total wear volume correlated with macrophage
sheet thickness, grade of necrosis (Fig. 3), synovial lining
score, tissue organization score and total ALVAL score.
Wear rate had similar correlations but the correlation
with macrophages did not quite reach statistical signifi-
cance. WB cobalt and chromium ion concentrations had

Table 1 Median volumetric wear and range for acetabular and
femoral components and both combined

Component Median volumetric wear (mm3) Range (mm3)

Acetabular cup 14 2–247

Femoral head 24 4–485

Both combined 39 7–541

Table 2 Median concentrations (μg/l) and ranges (μg/l) for
chromium and cobalt ions in both whole blood and synovial fluid

Metal ion Whole blood Range Synovial fluid Range

Chromium 9.7 0.5–93.9 701 7.0–52360

Cobalt 15.4 0.7–224.7 281.5 27.0–14870
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Fig. 1 Distribution of macrophage sheet thickness scores among all periprosthetic tissue samples

Fig. 2 Distribution of lymphocyte cuff thickness scores among all periprosthetic tissue samples
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similar correlations. SF chromium ion concentration
correlated with grade of necrosis, synovial lining score
and total ALVAL score. SF cobalt ion concentration cor-
related with all but macrophage sheet thickness. Neither
wear volume, wear rate, WB metal ion concentrations or
SF chromium ion concentration were associated with
lymphocyte cuff thickness or presence of germinal cen-
ters. However, SF cobalt ion concentration did correlate
with lymphocyte cuff thickness.

Discussion
In the present study, a spectrum of inflammatory and
necrotic changes associated with ARMD were seen –
variable macrophage and lymphocyte infiltration and
necrosis in periprosthetic tissues [2–4, 8, 21]. Most
patients evinced low-to-moderate macrophage infiltra-
tion and little to no lymphocyte infiltration. A few
patients evinced a very prominent lymphocyte infiltra-
tion with grade 4 necrosis typical of an ALVAL response
first proposed by Willert et al. [20]. The thickness of
lymphocyte cuffs correlated positively with the degree of
necrosis. Bearing wear and WB metal ion concentrations
correlated positively with the number of macrophages
and the degree of necrosis.
Our study is not without limitations. Firstly, due to the

periprosthetic tissue being sampled only at the time of
revision surgery, it is difficult to say about the natural
history of ARMD. Secondly, tissue samples were
analyzed by one observer only. However, multiple micro-
tome sections of each sample were made and analyzed
by a senior musculoskeletal pathologist well acquainted
with ARMD histopathology. Thirdly, we did not perform
a priori sample size calculation. Our study was retro-
spective of nature and patients were included on an
“all-comer” basis. However, a posteriori power analysis

revealed that our study has 90% power (10% beta) to de-
tect 0.35 correlation (medium effect size) with a type I
error probability of 5% (alfa). Fourthly, although we con-
secutively recruited patients, not all patients who under-
went surgery because of ARMD during the recruitment
period were included due to refused consent, missing
tissue samples and missing wear data on some patients.
Thus, our patient series is not completely consecutive.
However, the number of excluded patients was low in
comparison to the number of consecutive patients in-
cluded. Indeed, the large number of patients included is
a major strength of our study. Another strength is that
we only included patients revised for ARMD and with
identical hip resurfacing implants. Thus, our data specif-
ically describes patients with ARMD while minimizing
the confounding effect from having different implant
designs or failure modes other than ARMD. Also, there
was no confounding effect from possible trunnion wear
debris as in the case of THRs since we only investigated
the effects of bearing wear debris.
Metal debris originating from the bearing surfaces

and/or trunnion has been shown to have cytotoxic ef-
fects [31–34]. It has been suggested that the cytotoxicity
of metal debris further leads to tissue destruction and
macrophage recruitment to clear the tissue and metal
debris [3, 21]. In support of this, we observed a correl-
ation between implant wear and the number of macro-
phages as well as the degree of necrosis but not with the
number of lymphocytes. Similar findings were made in a
study by Grammatopoulos et al. [13]. Langton et al.
however did not find correlation between wear and the
amount of macrophages or necrosis [6]. We also ob-
served that the presence of granulomas was associated
with increased total wear volume. Granulomas are
thought to form in response to high number of wear
particles and our results support this idea [35]. High
wear, or high WB metal ion concentrations, have been
associated to macrophage-dominated tissue responses in
other studies as well [8, 16, 17]. Metal hypersensitivity
leading to type IV response with strong lymphocytic in-
filtration has been suggested as a cause of failure in
those patients with low wear [8, 16, 17]. Contrary to our
hypothesis, this was not observed in our study. In fact,
patients with heavy lymphocytic infiltration had higher
wear rate than patients with lower numbers of lympho-
cytes. These findings suggest that excessive metal debris
accumulation was the cause of lymphocytic infiltration
in these patients, not metal hypersensitivity. Grammato-
poulos et al. also did not find correlation between wear
and lymphocytic infiltration, but noted the presence of a
patient subgroup with hypersensitivity-related histo-
pathological findings and simultaneous low bearing wear,
suggesting metal hypersensitivity as a cause of failure in
those patients [13].

Table 3 Wear rates according to lymphocyte cuff thickness

Lymphocyte
cuff <2

Lymphocyte
cuff 2 or 3

P-value

Median wear rate (mm3/year) 8.1 14.5 0.054

Range (mm3/year) 1.1 … 99.8 3.7 … 48.0

Table 4 Wear volume and rate: comparison between patients
with one or more granulomas and those without granulomas

Granuloma present Granuloma absent P-value

Median total wear
volume (mm3)

106.5 31.0 0.016

Range (mm3) 10…378 7…541

Median wear rate
(mm3/year)

16.3 8.1 0.035

Range (mm3/year) 1.6…99.8 1.1…86.4
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There are several reasons that likely contribute to the
inconsistency of findings between different histopatho-
logical studies. It is possible and probable that some pa-
tients have both high-wearing implants and an
underlying hypersensitivity response that would have
evoked even in the presence of a low-wearing implant.
This combination may result in a mixed-type tissue re-
sponse that has the characteristics of both wear-related
foreign-body response and hypersensitivity-related type

IV tissue responses and therefore makes it difficult to
distinguish between the two based on implant wear or
WB metal ion levels alone. Also, threshold for the onset
of adaptive immune response is likely variable between
individuals [13]. This would explain why some patients
tolerate extensive amount of wear debris and some pa-
tients develop ALVAL in the presence of a low wearing
MoM hip replacement. In addition to patient suscepti-
bility, differences in implant types among studies may

Table 5 Spearman rho correlation coefficients and associated p-values for correlations between total wear volume, wear rate,
indirect markers of wear (whole blood and synovial fluid metal ion concentrations) and histopathological grading (Natu and ALVAL)

Natu grading ALVAL grading

Lymphocytic
cuffing

Macrophage
sheet thickness

Grade of
necrosis

Inflammatory
infiltrate score

Synovial lining
score

Tissue organization
score

Total ALVAL
score

Total wear volume rho = 0.11
p = 0.32

rho = 0.25*
p = 0.020

rho = 0.35*
p < 0.01

rho = 0.13
p = 0.23

rho = 0.37*
p < 0.01

rho = 0.25*
p = 0.023

rho = 0.31*
p < 0.01

Wear rate rho = 0.17
p = 0.12

rho = 0.20
p = 0.069

rho = 0.42*
p < 0.0001

rho = 0.16
p = 0.15

rho = 0.48*
p < 0.0001

rho = 0.35*
p < 0.01

rho = 0.40*
p < 0.001

WB Cr rho = 0.089
p = 0.51

rho = 0.30*
p = 0.024

rho = 0.45*
p < 0.001

rho = 0.19
p = 0.26

rho = 0.54*
p < 0.001

rho = 0.33*
p = 0.015

rho = 0.48*
p < 0.001

WB Co rho = 0.18
p = 0.18

rho = 0.29*
p = 0.029

rho = 0.51*
p < 0.001

rho = 0.26
p = 0.055

rho = 0.60*
p < 0.001

rho = 0.40*
p < 0.01

rho = 0.55*
p < 0.001

SF Cr rho = 0.30
p = 0.12

rho = 0.16
p = 0.40

rho = 0.48*
p < 0.01

rho = 0.25
p = 0.19

rho = 0.56*
p < 0.01

rho = 0.34
p = 0.070

rho = 0.53*
p < 0.01

SF Co rho = 0.49*
p < 0.01

rho = 0.17
p = 0.37

rho = 0.54*
p < 0.01

rho = 0.44*
p = 0.017

rho = 0.47*
p = 0.011

rho = 0.38*
p = 0.045

rho = 0.57*
p < 0.01

Values that are statistically significant are flagged with *

Fig. 3 The difference in median total wear volume (head and cup) in patients with low-grade necrosis (grades 1 and 2) versus patients with
high-grade necrosis (grades 3 and 4), p < 0,001
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play a role. Substantially higher failure rates have been
reported for ASR XL THRs in comparison with ASR hip
resurfacings [5, 19]. ASR XL and ASR have similar
bearing couples, but in the ASR XL there is trunnion-
interface between the titanium stem and CoCr head that
serves as an additional source of metal debris. It has
been shown that wear from the trunnion is different
in nature compared to bearing surface wear and may
lead to lymphocytic and necrotic tissue responses
[14, 36, 37], possibly contributing to the inconsisten-
cies between other recent histopathological studies.
Natu et al. suggested that the lymphocytic immune re-

sponse in patients with MoM implants is a dynamic
process, beginning with perivascular lymphocytic aggre-
gates and leading to formation of lymphoid follicles with
germinal centers, also termed as tertiary lymphoid or-
gans (TLOs) [2]. TLOs are capable of forming new B
and T cells locally. TLOs are seen in affected tissues of pa-
tients with chronic autoinflammatory diseases such as
rheumatoid arthritis, Sjogrens syndrome and Hashimoto’s
thyroiditis and are considered to be formed as a response
to a persistent antigen that cannot be eliminated [38].
Mittal et al. demonstrated the presence of TLOs and asso-
ciated chemokines in tissues of patients with failed MoM
hip implants and suggested that these patients form a
specific pathological subset [39] in addition to the well-
established foreign-body response [3, 13] and ALVAL re-
sponse [8, 20, 40]. In keeping with findings by Natu et al.
and Mittal et al., we found that a minority of the patients
displayed lymphoid follicles with germinal centers. Fur-
ther, all tissue samples displaying germinal centers had
grade 4 necrosis. This suggests that the formation of
TLOs in periprosthetic tissues is associated with tissue de-
struction, possibly accelerating the process of implant fail-
ure. In line with this is a finding that the presence of
TLOs has been associated with tissue destruction and loss
of function in autoimmune diseases [38]. In the present
study, we also observed that even in the absence of germi-
nal center containing lymphoid follicles, the thickness of
lymphocytic cuffs correlated with the grade of necrosis.
Whether the lymphocytic immune response, also termed
ALVAL, is a dynamic process leading to formation of
TLOs as Natu et al. suggested [2] or whether patients with
TLOs define their own distinct pathological subset as Mit-
tal et al. suggested [39] requires further research. However,
due to the cross-sectional nature of histopathological
studies, it is difficult to investigate the natural history of
ARMD.
ALVAL grading introduced by Campbell et al. [8] has

been used in several studies [9, 16, 18, 41] but other grad-
ing systems have been used as well [2, 13, 21, 22, 36]. This
makes comparison between studies difficult. In the
present study, all tissue samples were analyzed according
to two grading criteria: ALVAL grading and grading

principles established by Natu et al. [2]. ALVAL grading is
relatively restricted compared to the Natu grading as it
only includes inflammatory infiltrate score, synovial lining
score and tissue organization score. Moreover, as dis-
cussed by Ricciardi et al., both synovial lining score and
tissue organization score reflect the degree of necrosis
[21]. A strong correlation between these scores and the
Natu score for necrosis was observed in our study. ALVAL
score was originally designed to help distinguish failures
related to high wear from failures related to suspected
hypersensitivity (ALVAL) response. Although necrosis is
often seen with ALVAL response, it is not specific for
ALVAL as it is also seen with macrophage-dominated
foreign body reactions with possible related cytotoxicity
[3, 13]. This leaves only the inflammatory infiltrate score
in ALVAL grading specific for ALVAL response. In the
present study, a strong correlation between lymphocyte
cuff thickness and inflammatory infiltrate score was ob-
served. This indicates that the inflammatory infiltrate
score is useful in distinguishing lymphocyte-dominated re-
sponses from those that are not lymphocyte-dominated.
Phillips et al. also concluded that ALVAL scoring is useful
for distinguishing between macrophage and lymphocyte
responses [42]. Inflammatory infiltrate score involves
evaluation of both lymphocytic and macrophagic compo-
nents. However, both lymphocytes and macrophages are
often seen in periprosthetic tissues. Grammatopoulos et
al. suggested that an easier method to identify ALVAL re-
sponses from wear-related responses would be to measure
only the thickness of lymphocytic cuffing, termed Oxford-
ALVAL score in their study [13]. We agree with Gramma-
topoulos et al. and find that separate scores for evalu-
ation of macrophage and lymphocyte infiltration
provide more information about the failure mechan-
ism and lead to easier comparison between histo-
pathological studies.
In the present study, WB metal ion levels had a strong

correlation with bearing wear volume, wear rate and a
moderate correlation with several histopathological
features. SF metal ion levels also correlated with bearing
wear volume, wear rate and some of the histopatho-
logical features, but the correlations were weaker. Wear
rate had a stronger correlation with WB and SF metal
ion levels than total bearing volume. Wear rate, WB and
SF metal ion levels likely reflect the recent burden of
metal debris whereas total wear volume reflects the
amount of total wear accumulated during implantation
time. In a study by De Smet et al. both WB and SF metal
ion levels were found to correlate well with linear wear
of the femoral component [43]. Langton et al. also noted
a correlation between wear volume and WB metal ion
levels [6]. Interestingly, WB metal ion levels had stron-
ger correlation with histopathological findings compared
to SF metal ion levels in the present study. This is
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supported by a recent study by Reito et al. who found
that SF metal ion levels had relatively poor correlation
with histopathological findings [12]. SF aspiration is an
invasive procedure and the measurement does not seem
to provide any additional information compared to WB
measurement. Measurement of WB metal ion levels is a
reliable, indirect way to gain information of the in-situ
wear process, inflammation and tissue destruction. Clini-
cians should use WB metal ion levels in the follow-up of
patients with MoM hip implants and closely monitor
those patients with elevated metal ion levels. A
schematic diagram for the relationships between wear,
histology of the periprosthetic tissues, WB metal ion levels
and follow-up of the patients is presented in Fig. 4.

Conclusions
In the present study with failed ASR hip resurfacings,
total wear volume, wear rate and WB metal ion concen-
trations correlated with the number of macrophages and
the degree of necrosis, but not with the amount of lym-
phocytes. Most tissue samples evinced macrophages but
little to no lymphocytes typical of a non-specific foreign-
body response. A minority of the samples evinced strong
lymphocyte infiltration combined with high amount of
necrosis, typical of an ALVAL response. However,
contrary to our hypothesis, this type of response was not
associated with low implant wear in the present study.
The significance of patient susceptibility in the develop-
ment of ARMD is poorly understood and it is not
currently known which factors lead to the adaptive
lymphocytic response seen in some patients. Future
studies should be directed to understand the patho-
physiological mechanisms behind different types of

tissue responses seen in patients with MoM hips. WB
metal ion levels correlated with total wear volume,
wear rate and histopathological findings. Measure-
ment of WB metal ion levels is useful in the follow-
up of patients with hip resurfacings as it provides
information of the wear process, inflammatory re-
sponse and tissue destruction.
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Abstract

Adverse Reaction to Metal Debris (ARMD) is a major cause of implant failure leading to revi-

sion surgery in patients with metal-on-metal (MoM) hip arthroplasties. However, the patho-

genesis and its association to implant wear are poorly understood and previous studies

have yielded discrepant results. We sought to investigate the associations between histo-

logical findings, whole blood and synovial fluid metal ion concentrations and periprosthetic

tissue metal concentrations in patients with MoM total hip replacements and hip resurfa-

cings revised for ARMD. 107 hips in total were included in our study. Of these, 87 were total

hip replacements and 20 were hip resurfacings, respectively. We found that whole blood,

synovial fluid and periprosthetic tissue metal concentrations correlated poorly with histologi-

cal findings. We suggest that the lack of a clear association between histological findings

and wear measures in the present study as well as in previous studies is mostly influenced

by variability in patient susceptibility. However, patients presenting with perivascular lym-

phocytic infiltration had lower chromium concentration in their periprosthetic tissues than

patients with no perivascular lymphocytic infiltration. This may reflect the role of metal hyper-

sensitivity in implant failure in these patients. Patients with total hip replacements evinced

more necrosis and lymphocytic infiltration in their tissues than patients with hip resurfacings.

This suggests that trunnion wear debris is more cytotoxic and/or immunogenic than bearing

wear debris leading to higher failure rates seen in patients with total hip replacements.

Introduction

Adverse Reaction to Metal Debris (ARMD) is a major cause of implant failure leading to revi-

sion surgery in patients with metal-on-metal (MoM) hip arthroplasties [1–5]. The term

ARMD is an umbrella term describing periprosthetic soft-tissue reactions caused by metal
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wear debris that include metallosis, extra-articular pseudotumors (inflammatory, benign soft-

tissue masses), overall inflammatory response of the tissue and variable amounts of necrosis

seen as caseotic substance on macroscopic level. The term aseptic lymphocytic vasculitis-asso-

ciated lesions (ALVAL) is more specific and was originally used to describe lymphocytic and

necrotic tissue responses [6]. In recent literature terms ALVAL and ARMD have often been

inappropriately used interchangeably [7]. The pathogenesis of these adverse reactions is poorly

understood, but at least two different mechanisms have been suggested: 1. a non-specific,

wear-particle induced cytotoxicity with foreign-body response [8,9] and 2. a specific, type IV

hypersensitivity response involving recruitment of lymphocytes in the tissues around failed

MoM hip replacements, manifesting as ALVAL [6,10].

Literature regarding implant wear and ARMD is inconclusive. Adverse reactions have been

observed both in patients with high- and low-wearing hip replacements [11–15]. Several stud-

ies have investigated the associations between wear of the retrieved implants, or indirect mark-

ers of wear, and the histopathological findings of periprosthetic tissue taken at the revision

surgery, but the results have been discrepant. Lymphocyte-dominated type IV response has

been suggested as a cause of failure in patients with low-wearing implants [12,16–18] and cyto-

toxic response leading to macrophage recruitment in patients with high-wearing implants

[8,12,16]. However, conflicting findings not supporting these hypotheses have been published

as well [3,15,19–21]. To the best of our knowledge, there has only been one small-scale study

that has directly measured the amount of metal in the periprosthetic tissues and analyzed its

association with histopathological findings. In that study, Lohmann et. al found that high

metal content in the periprosthetic tissue was associated with lymphocyte-dominated, and low

metal content was associated with macrophage-dominated response [19]. These findings do

not support the hypothesis of metal hypersensitivity as a cause of failure in low-wearing hips

and foreign-body cytotoxic response in high-wearing hips.

Studies investigating wear, or indirect measures of wear, and histopathological findings

have been inconclusive. The pathogenesis of ARMD and its association to implant wear is

poorly understood as well as the potential difference between bearing surface wear debris and

taper wear debris in the development of ARMD. Therefore, we aimed to investigate the associ-

ations between periprosthetic tissue metal content, whole blood (WB) metal ion concentra-

tions, synovial fluid (SF) metal ion concentrations, and histopathological findings in patients

with failed MoM total hip replacements compared to patients with failed MoM hip

resurfacings.

Materials and methods

We recruited a pilot patient for our study in June 2013 followed by the recruitment of consecu-

tive patients between February 2014 and August 2016. In total, 134 hips with MoM implants

were revised for ARMD at our institution during the period of recruitment. Of these, two hips

were not included due to infection, two hips due to inadequate tissue sample and 23 hips were

not included as they were operated on by surgeons who did not participate in recruitment and

sample collection. Thus, 107 hips in total were included in our study. Of these, 87 were total

hip replacements (THR) and 20 were hip resurfacings, respectively. Whole blood sample was

available for 106 patients and synovial fluid sample for 90 patients. In addition to patients

undergoing revision surgery, two further patients who had undergone primary hip arthro-

plasty and whose tissue samples had been retrieved from osteoarthritic synovium were

recruited as controls for tissue metal analysis. Surgery was performed by or under the direct

supervision of 14 senior orthopedic surgeons. Patient demographics and revised components

are presented in detail in Table 1. All patients gave written informed consent to participate in

Association between periprosthetic tissue, WB and SF metal ion levels and histopathological findings
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this study, and the study was also approved by the institutional ethical committee (Ethics

Committee of Pirkanmaa Hospital District, decision R11196).

Revision surgery was considered, as previously described [2,22–24], if 1) a clear pseudotu-

mour (Imperial class 2A, 2B or 3) [25] was observed on cross-sectional imaging regardless of

symptoms or whole blood metal ion levels; or 2) the patient had elevated whole blood metal

ion levels and hip symptoms despite normal findings in cross-sectional imaging; or 3) the

patient had a continuously symptomatic hip or progressive symptoms regardless of imaging

findings or metal ion levels. Symptoms included hip pain, discomfort, sense of instability, and/

or impaired function of the hip and sounds from the hip (clacking, squeaking). Whole blood

metal ion levels were regarded as being elevated if either chromium or cobalt exceeded 5 ppb.

Postoperatively, failure was classified as being due to ARMD and included in our study if the

following criteria were met: 1) there was presence of metallosis or macroscopic synovitis in the

joint; and/or 2) a pseudotumor was found during revision; and/or 3) a moderate to high num-

ber of perivascular lymphocytes along with tissue necrosis and/or fibrin deposition was seen in

the histopathologic sample; and 4) perioperatively there was no evidence of component loos-

ening or periprosthetic fracture. In addition, infection was ruled out by obtaining multiple (at

least five) bacterial cultures during revision surgery.

Metal analysis of the periprosthetic tissue

During every revision surgical procedure, samples of the inflamed synovia and/or pseudotu-

mor were obtained for both histopathological and metal content analysis. For metal content

analysis, a subsample (approx. 0.3 g) was cut from the tissue sample, weighed, and transferred

Table 1. Patient demographics and implant designs.

Patient demographics

Mean age at the time of revision 66.8 years (SD 7.5 years)

Mean follow-up time between index and revision operation 7.1 years (SD 2.5 years)

Gender ratio: 42 females (42%) and 57 males (58%)

Revised implants

Total hip replacements Amount

Femoral component Acetabular component
DePuy Summit DePuy ASR 32

DePuy Summit DePuy Pinnacle 10

Biomet Bimetric Biomet M2A38 10

Biomet Bimetric Biomet ReCap 5

DePuy Corail DePuy ASR 4

Smith-Nephew Synergy Smith-Nephew R3 4

Zimmer ZMR Zimmer Durom 2

Zimmer M/L Taper Zimmer Durom 2

Wright Medical Profemur Wright Medical Conserve Plus 2

Other Other 16

Total = 87

Hip resurfacings

DePuy ASR 9

Smith-Nephew BHR 6

Zimmer Durom 2

Biomet ReCap 2

Smith-Nephew BHR—TM Revision shell 1

Total = 20

https://doi.org/10.1371/journal.pone.0197614.t001
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into a teflon vessel. Samples were first decomposed with 5 ml suprapur HNO3 (Merck) by

microwave digestion technique using a CEM MDS-2000 Microwave System (CEM corpora-

tion, Matthews, NC, USA) and then diluted to 10 ml with Milli Q-water. The digests were ana-

lyzed for Al, Cr, Co, Ti, Mo, and V with a Inductively Coupled Plasma Optical Emission

Spectrometer. Thermo Electron iCAP 6600 Duo View equipped with Cetac ASX-520Hs and

autosampler was used (Thermo Fisher Scientific, Waltham, MA, USA). Detection limits for

Al, Cr, Co, Ti, Mo, and V were 9.0, 0.2, 0.2, 3.0, 0.2 and 3.0 μg/g, respectively. NIST SRM

1576b (Bovine liver) was used as certified reference material to ensure the performance of ana-

lytical procedure for tissue samples.

Histopathological analysis of the periprosthetic tissue

For histopathological analysis, each tissue sample was formalin fixed and embedded in paraf-

fin. Several 10 μm microtome sections were made. Standard hematoxylin and eosin staining

was used. The sections were examined histologically under normal light with a Nikon Eclipse

50i (Nikon Corporation, Shinagawa, Tokyo, Japan). The samples were graded by a senior mus-

culoskeletal pathologist (JP) using grading described by Natu et. al [10]. The grading consisted

of following parameters: 1) lymphocyte cuff thickness, 2) whether diffuse lymphocytic infiltra-

tion was present, 3) presence of germinal centers, 4) histiocyte sheet thickness, 5) metal particle

load within histiocytes, 6) Grade of tissue necrosis, 7) presence of plasma cells and 8) presence

of granulomas. Lymphocytic cuff thickness was calculated using a 1mm eyepiece graticule.

Calculations were done using 10x magnification. An average of five measurements was taken

and graded as 0–3 (absent, 0.25 mm, 0.25–0.75 mm, >0.75 mm). Macrophage sheet thickness

was also calculated using a graticule and graded 0–3 (absent, <1 mm, 1–2 mm, >2mm). Metal

particle load within macrophages was graded as 0–4 as done in the assessment of iron decom-

position in liver cells [26,27]. The extent of overall tissue necrosis in a sample was graded

based on the surface necrosis typing according to Davies et al. [28]. Type 1 surface contains

intact synovial epithelium. Type 2 surface shows loss of synovial epithelial cells without fibrin

deposition. In type 3 surface there is fibrin deposition and in type 4 surface there is extensive

necrosis and loss of architecture. The extent of type 4 surface necrosis was used to grade the

overall tissue necrosis in a given sample, as described by Natu et al. [10]. In grade 4 necrosis,

more than 75% of the tissue sample showed type 4 surface necrosis. In grade 3 necrosis,

between 25% and 75% showed type 4 surface necrosis. In grade 2 necrosis either less than 25%

of the tissue showed type 4 surface necrosis or the tissue showed type 3 surface. In grade 1

necrosis, the sample consisted of type 2 surface.

Whole blood and synovial fluid metal analysis

Since January 2012, WB metal ion (Co and Cr) concentrations have been routinely measured

as a part of the systematic follow-up program for patients with MoM hip replacements at our

institution. All patients underwent WB analysis of Co/Cr following sampling from the antecu-

bital vein using a 21-gauge needle connected to a Vacutainer system (Becton, Dickinson and

Company, Franklin Lakes, NJ, USA) and trace-element blood tubes containing sodium ethyl-

enediaminetetraacetic acid (EDTA). Standard operating procedures were established at the

Finnish Institute for Occupational Health for Co and Cr measurement using dynamic reaction

cell inductively coupled plasma (quadripole) mass spectrometry (Agilent 7500 cx, Agilent

Technologies, Santa Clara, CA, USA). The laboratory technicians were blinded to all clinical

outcomes. The samples were preserved in +6 ˚C to +8 ˚C prior to analysis.

Since October 2011, our MoM hip revision protocol has involved perioperative SF aspira-

tion, which is always taken before opening the deep fascia using a standard 18- to 20-gauge

Association between periprosthetic tissue, WB and SF metal ion levels and histopathological findings
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needle connected to a Vacutainer system (Becton, Dickinson and Company, Franklin Lakes,

New Jersey) and trace element tubes containing sodium EDTA. Similar procedures were used

for SF metal ion concentration measurement as described above for WB.

Statistical analysis

Spearman rank correlation was used to study the associations between tissue metal contents,

WB and SF metal ion concentrations, and histopathological measures due to these variables

being non-normally distributed. Medians were calculated for the tissue metal contents and the

histopathological measures. Mann-Whitney U-test was used for comparing medians. When

analyzing the correlation between WB metal ion concentrations and other factors, we only

included patients with unilateral hip replacements (69 patients with total hip replacement and

9 patients with hip resurfacing) to avoid the confounding effect of metal ions being released to

the blood from a second source. The internal validity of our study was investigated by correlat-

ing the microscopically visible metal particles with the tissue metal content. We should observe

significant association to have a valid method for metal content assessment. The threshold for

statistical significance was set to 0.05. The analyses were conducted using IBM SPSS version

21.

Results

Chromium had the highest concentration of all metals in the periprosthetic tissue in both the

HR and THR groups (Table 2). In whole blood, however, cobalt ions were present in higher

concentrations than chromium ions (Table 3). Titanium was elevated above the detection

limit in nine patients with hip resurfacing and in 29 patients with THR. The concentrations

for aluminum and vanadium did not reach the detection limit in any of the patients and were

thus omitted from the analyses. There were no statistically significant differences in peripros-

thetic tissue metal concentrations between THR and hip resurfacing groups (Table 2). In

whole blood, median cobalt concentration was approximately twice as high in the THR group

compared to hip resurfacing group (Table 3). There was no difference in whole blood chro-

mium ion concentration between the groups (Table 3). In the tissue samples of the two control

Table 2. Median values with respected p-values and ranges for periprosthetic tissue metal concentrations in patients with total hip replacements (n = 87) and hip

resurfacings (n = 20).

Metal Total hip replacement Hip resurfacing

Median concentration in tissue (μg/g) Range (μg/g) Median concentration in tissue (μg/g) Range (μg/g) P-value

Chromium 39.2 0.4–1955.0 43.8 0.6–922.1 0.60

Cobalt 6.4 0.2–262.0 3.2 0.2–248.8 0.189

Molybdenium 1.8 0.2–174.6 0.5 0.2–32.4 0.080

Titanium 5.8 3.0–118.9 4.9 4.9–25.3 0.10

https://doi.org/10.1371/journal.pone.0197614.t002

Table 3. Median values, respected p-values and ranges for whole blood metal ion concentrations in patients with unilateral total hip replacement (n = 69) or hip

resurfacing (n = 13) patients.

Metal Total hip replacement Hip resurfacing

Median concentration in whole blood (μg/l) Range (μg/l) Median concentration in whole blood (μg/l) Range (μg/l) P-value

Chromium 3.7 0.4–29.9 3.9 1.5–7.2 0.60

Cobalt 11.0 0.6–108.5 3.9 1.5–16.2 0.001

https://doi.org/10.1371/journal.pone.0197614.t003
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patients, only the concentration of chromium exceeded the detection limit (0.3 μg/g and

0.5 μg/g, respectively).

Lymphocyte cuff thickness score was higher in patients with THRs versus hip resurfacing

(Table 4) and the difference was statistically significant (p = 0.011). Macrophage sheet thick-

ness between hip resurfacing and THR groups did not differ significantly (Table 4, p = 0.65).

The grade of tissue necrosis was higher in the THR group compared to hip resurfacing group

(Table 4, p < 0.0001).

Correlations between histological variables, periprosthetic tissue metal concentrations,

whole blood metal ion levels and synovial fluid metal ion levels are presented in Table 5. Of

all the variables, only metal particle load within macrophages had statistically significant but

weak correlations with metal ion levels in tissues and whole blood in the THR group. In the

resurfacing group, only the synovial fluid chromium and metal particle load had a statistically

Table 4. Lymphocyte cuff thickness, macrophage sheet thickness and grade of necrosis in total hip replacement group (n = 87) and hip resurfacing group (n = 20).

Total hip replacement Hip resurfacing P-value

Lymphocyte cuff thickness 0 (absent) 33 (37.9%) 15 (75%)

1 (0–0.25mm) 41 (47.1%) 4 (20%)

2 (>0.25mm) 13 (14.9%) 1 (5.0%)

0.011

Macrophage sheet thickness 0 (absent) 1 (1%) 0 (0%)

1 (<1mm) 68 (78.2%) 18 (90%)

2 (1-2mm) 16 (18.4%) 2 (10%)

3 (>2mm) 2 (2.3%) 0 (0%) 0.65

Grade of necrosis 1 3 (3.4%) 8 (40%)

2 19 (21.8%) 4 (20%)

3 12 (13.8%) 1 (5%)

4 53 (60.9%) 7 (35%)

<0.001

https://doi.org/10.1371/journal.pone.0197614.t004

Table 5. Correlations between histological findings, periprosthetic tissue metal concentrations, whole blood metal ion levels (WB) and and synovial fluid (SF)

metal ion levels in total hip replacement group (n = 87) and hip resurfacing group (n = 20). Cells containing statistically significant values are colored in gray.

Total hip replacement Hip resurfacing

Lymphocytic
cuffing

Macrophage sheet
thickness

Grade of
necrosis

Metal particle
load

Lymphocytic
cuffing

Macrophage sheet
thickness

Grade of
necrosis

Metal particle
load

Tissue chromium rho = -0.20

p = 0.063

rho = 0.022

p = 0.84

rho = -0.13

p = 0.22

rho = 0.34

p < 0.01

rho = -0.36

p = 0.12

rho = 0.12

p = 0.63

rho = -0.28

p = 0.23

rho = 0.29

p = 0.22

Tissue cobalt rho = -0.072

p = 0.51

rho = 0.031

p = 0.78

rho = -0.001

p = 0.99

rho = 0.30

p < 0.01

rho = -0.35

p = 0.13

rho = 0.09

p = 0.72

rho = -0.28

p = 0.23

rho = 0.26

p = 0.27

Tissue
molybdenium

rho = -0.071

p = 0.514

rho = 0.060

p = 0.584

rho = -0.069

p = 0.53

rho = 0.25

p = 0.019

rho = -0.29

p = 0.21

rho = 0.03

p = 0.90

rho = -0.34

p = 0.15

rho = 0.30

p = 0.20

Tissue titanium rho = -0.017

p = 0.88

rho = -0.036

p = 0.74

rho = -0.035

p = 0.74

rho = 0.11

p = 0.30

rho = -0.16

p = 0.51

rho = -0.030

p = 0.60

rho = -0.13

p = 0.58

rho = -0.077

p = 0.75

WB Cr rho = -0.092

p = 0.45

rho = 0.043

p = 0.73

rho = 0.011

p = 0.92

rho = 0.21

p = 0.085

rho = -0.34

p = 0.25

rho = 0.29

p = 0.35

rho = 0.14

p = 0.66

rho = 0.32

p = 0.29

WB Co rho = -0.088

p = 0.47

rho = -0.053

p = 0.67

rho = 0.10

p = 0.41

rho = 0.39

p < 0.01

rho = -0.11

p = 0.72

rho = 0.29

p = 0.35

rho = 0.33

p = 0.27

rho = 0.53

p = 0.067

SF Cr rho = -0.096

p = 0.39

rho = 0.020

p = 0.86

rho = -0.077

p = 0.49

rho = 0.15

p = 0.18

rho = -0.46

p = 0.22

rho = 0.00

p = 1.00

rho = 0.11

p = 0.78

rho = 0.77

p = 0.016

SF Co rho = 0.053

p = 0.64

rho = 0.12

p = 0.30

rho = 0.17

p = 0.12

rho = 0.17

p = 0.14

rho = -0.43

p = 0.25

rho = 0.21

p = 0.59

rho = 0.19

p = 0.62

rho = 0.59

p = 0.096

https://doi.org/10.1371/journal.pone.0197614.t005
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significant correlation. Correlation between lymphocyte cuff thickness and periprosthetic tis-

sue chromium concentration trended towards significance in the THR group (ρ = -0.20,

p = 0.063).

In the THR group in tissues with no lymphocyte infiltration at all, median chromium con-

centration was higher than in tissues with lymphocyte infiltration present (Table 6). In regard

to cobalt and molybdenium there were no statistically significant differences. In the hip resur-

facing group, there was a trend towards lower concentrations of chromium and cobalt in those

tissues with lymphocytes present but these differences did not reach statistical significance

(p = 0.11 and p = 0.12, respectively) (Table 7).

Periprosthetic tissue chromium and cobalt concentrations correlated weakly with whole

blood and synovial fluid chromium and cobalt concentrations in THR group (Table 8). In

resurfacing group, only synovial fluid cobalt concentration reached statistically significant cor-

relation with periprosthetic tissue cobalt concentration (Table 8).

Discussion

In the present study, we analyzed periprosthetic tissue metal concentrations, whole blood

metal ion concentrations, synovial fluid metal ion concentrations and performed thorough

histological analysis of periprosthetic tissue using grading described by Natu et al. [10].

Patients with THR evinced significantly higher amounts of lymphocytes and necrosis in their

tissues compared to patients with hip resurfacings despite similar metal concentrations in peri-

prosthetic tissues. Also, patients with total hip replacements had higher whole blood cobalt ion

concentrations compared to patients with hip resurfacings. Histological findings that reflect

the inflammatory response and necrosis of the tissues correlated poorly with any of the metal

Table 6. Median metal concentration in tissues with lymphocytes present and tissues with no lymphocytes present in the total hip replacement group (n = 87).

Median concentration in tissue (μg/g) Lymphocytes present No lymphocytes present P-value

Chromium 30.1 67.4 0.045

Cobalt 6.4 6.1 0.43

Molybdenium 1.7 1.8 0.38

https://doi.org/10.1371/journal.pone.0197614.t006

Table 7. Median metal concentration in tissues with lymphocytes present and tissues with no lymphocytes present in the hip resurfacing group (n = 20).

Median concentration in tissue (μg/g) Lymphocytes present No lymphocytes present P-value

Chromium 8.0 79.3 0.11

Cobalt 1.2 4.2 0.12

Molybdenium 0.3 0.69 0.20

https://doi.org/10.1371/journal.pone.0197614.t007

Table 8. Spearman rho correlation coefficients between tissue metal concentrations, whole blood (WB) and synovial fluid (SF) metal ion concentrations in total hip

replacement (n = 87) and hip resurfacing (n = 20) groups.

Total hip replacement Hip resurfacing

Tissue chromium Tissue cobalt Tissue chromium Tissue cobalt
WB chromium rho = 0.32, p<0.01 rho = 0.48, p = 0.10

WB cobalt rho = 0.31, p<0.01 rho = 0.24, p = 0.43

SF chromium rho = 0.29, p<0.01 rho = 0.63, p = 0.067

SF cobalt rho = 0.34, p<0.01 rho = 0.70, p = 0.035

https://doi.org/10.1371/journal.pone.0197614.t008
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ion measurements. However, periprosthetic tissues with lymphocytic infiltration present had

lower amounts of chromium than tissues with no lymphocytic infiltration present.

This study is not without limitations. Firstly, although we performed consecutive recruit-

ment of patients, not all patients who underwent surgery because of ARMD during the recruit-

ment period were included in our study due to some surgeons not participating in the

recruitment and some patients being excluded due to infection or inadequate tissue sample.

Thus, our series of patients is not completely consecutive. Secondly, we performed semiquanti-

tative histological grading of the samples using grading described by Natu et al. [10]. Grading

was done by one observer only. Thirdly, tissue samples used for metal ion measurement were

rather small (approx. 0.3g) and may not have completely reflected the average metal concen-

tration of the whole synovium. Also, we were not able to differentiate between metal ions, met-

als bound to proteins and larger metal particles in the measurement of tissue metal content.

Chromium was the most prominent metal in the periprosthetic tissue in both study groups,

which is in line with previous research [19,29–32]. Median concentrations of chromium in the

periprosthetic tissue exceeded those of cobalt by more than six-fold in both study groups. On

the contrary, in whole blood cobalt ion concentration was higher than that of chromium in the

total hip replacement group. Chromium is known to accumulate in the tissues to a high degree

while cobalt ions are rapidly transported to the blood and eliminated in the urine [33,34]

which explains why chromium concentration is higher than cobalt in periprosthetic tissues

and cobalt concentration higher than chromium in whole blood. However, in the hip resurfac-

ing group the cobalt and chromium concentrations in whole blood were similar. This could be

due to the small sample size of the hip resurfacing group. Cobalt concentration in whole blood

was approximately twice as high in THR group compared to hip resurfacing group while chro-

mium concentrations did not differ between implant groups. Similar findings have been pub-

lished [35–37]. The excess cobalt in patients with a THR is likely due to material loss at the

trunnion surface [38,39]. Periprosthetic metal concentrations correlated poorly with whole

blood and synovial fluid metal ion concentrations. The only exception was the good correla-

tion between synovial fluid and periprosthetic tissue cobalt concentrations. We suggest that

the overall poor correlations are due to tissues reflecting the accumulated metal load while

whole blood and synovial fluid reflect the amount of wear that has been generated more

recently. Also, in whole blood and synovial fluid only metal ions are measured whereas in tis-

sues all forms of metal, including particles, ions and metallo-organic complexes, are included

in the total amount of metal. Titanium was elevated in 29 patients implying its release from the

stem, acetabular cup, or head-neck trunnion. Since this elevation was also seen in patients

with hip resurfacings, release from the outer surface of acetabular cup seems probable. Vendit-

toli et al. found that serum titanium concentrations were indeed higher in hip resurfacings

than THRs [40]. In the present study, we did not observe a statistically significant difference in

titanium levels between THR and hip resurfacing groups.

We found that periprosthetic tissues retrieved from patients with total hip replacements

evinced more severe necrosis and more lymphocytes compared to tissues retrieved from

patients with hip resurfacings. Taper wear debris has been suggested to be more immunogenic

and cytotoxic than bearing wear debris [41,42]. Xia et al. compared tissues from patients with

dual-modular non-MoM implants, MoM THR and MoM hip resurfacings [42]. In dual-mod-

ular implants there are two modular junctions which serve as a source of trunnion wear,

whereas in THR there is one modular junction and in hip resurfacing there are no modular

junctions at all and all wear debris originates from the bearing surfaces. Xia et al. found that

tissues from patients with dual-modular implants had highest amounts of lymphocytes and tis-

sue destruction, tissues from THR patients having lower amounts and ultimately tissues from

hip resurfacing patients having the lowest amounts. This was despite the fact that tissues from
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patients with dual-modular non-mom implants had de facto lowest amount of metal debris.

Also, patients with dual-modular implants had shortest time to failure. The authors concluded

that trunnion wear is likely more immunogenic and cytotoxic than bearing wear debris, lead-

ing to rapid failure. Our results support these findings and suggest that taper wear may cause

more tissue destruction than bearing wear manifesting as substantially higher failure rates for

THRs than hip resurfacings despite similar amounts of metals in periprosthetic tissues.

In the present study, periprosthetic tissue, whole blood and synovial fluid metal concentra-

tions had poor correlations with histological findings. Several retrieval studies have been con-

ducted to study the relationship between implant wear and histopathological findings.

Campbell et al. investigated the amount of implant wear and type of tissue response in patients

with failed MoM hips and found that low wear was associated with a hypersensitivity type lym-

phocytic response [12]. Conversely, high component wear was associated with a macrophage-

dominated response suggesting non-specific wear-related cytotoxicity. Slightly differently,

Grammatopoulos et al. found that implant wear was associated with the number of macro-

phages but not with the number of lymphocytes [8]. In their study, all patients with a pseudo-

tumor and a low-wearing implant had a high ALVAL score suggesting a hypersensitivity

response. However, most pseudotumors were associated with highly worn prostheses. A recent

study by Paukkeri et al. found that whole blood chromium and cobalt ion correlations, indirect

markers of wear, were higher in patients with macrophage-dominated response and lower in

patients with lymphocyte-dominated response. On the contrary, Liow et al. found no correla-

tion between whole blood metal ion levels and histological findings in periprosthetic tissue. To

the best of our knowledge, only one previous study has investigated the periprosthetic metal

content in relation to histopathological findings in patients with failed MoM hip arthroplasties

[19]. Lohmann et al. found that high periprosthetic tissue metal content (chromium, cobalt

and nickel combined and separately) was associated with a lymphocyte-dominated response

and low metal content with a macrophage-dominated response. We would like to address

some weaknesses in the study which may have affected the outcome. Firstly, the small number

of cases in that study is likely to be a limiting factor. There were only five patients in the macro-

phage-dominated group and 22 patients in the lymphocyte-dominated group. The high inci-

dence for the lymphocyte-dominated response compared to the macrophage-dominated

response is neither supported by previous studies [8,10,12] nor the results of our study. Fur-

thermore, mean values for tissue metal concentration were calculated and compared between

the two groups. With nonparametric variables, this is not a valid statistical method. In conclu-

sion, literature regarding the association between histological findings and wear or indirect

measures of wear is very discrepant. A recent review suggested that periprosthetic tissue metal

concentrations may correlate more accurately with the histology than serum metal ion levels

[7]. Our results do not support that hypothesis. We found that tissue metal concentrations as

well as whole blood and synovial fluid metal ion concentrations had poor correlations with his-

tological findings. However, tissues with lymphocytic infiltration had lower amounts of chro-

mium compared to tissues with no lymphocytic infiltration. This finding alone supports the

hypothesis of hypersensitivity as a cause of failure in patients with low-wearing MoM hip

implants. However, there was no correlation between the amount of lymphocytes and peri-

prosthetic chromium concentration, which makes it difficult to draw conclusions in light of

the overall results.

Associations between histological findings and wear or indirect measures of wear has been

inconsistent and weak in previous studies as well as the present study. In the literature, the his-

topathology of ARMD tissues has mainly been categorized into a wear-related foreign-body

response or a supposedly hypersensitivity-related lymphocyte-type response or a mix of both.

It is possible and probable that some patients have both high-wearing implants and an
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underlying hypersensitivity-type response that would have evoked even in the presence of a

low-wearing implant. This combination may result in a mixed-type tissue response that has

the characteristics of both wear-related innate immune responses and hypersensitivity-related

adaptive tissue responses and therefore makes it difficult to distinguish between the two based

on the tissue metal content or some other measure of wear. This may also explain why we did

not find correlation between tissue metal concentrations and lymphocytes, but did find a dif-

ference in concentration of metals between those with no lymphocytes versus those with lym-

phocytes present. It is possible that the differences between different lymphocyte scores are too

subtle and vulnerable to error for a statistically significant correlation to be detected between

these scores and metal concentrations in tissues. In contrast, dividing the patients in two

groups: those with perivascular lymphocytes and those without, may thus reflect the associa-

tion between inflammatory response and tissue metal concentration more clearly. Also, trun-

nion wear from THR appears to elicit different tissue responses than bearing wear, which

makes comparison between studies difficult. In numerous previous studies, patient susceptibil-

ity has been suggested as an important factor contributing to the development of ARMD

[12,14,15,17]. Patient susceptibility means that patients can elicit different types of responses

to the metal debris at different levels of metal load in their tissues. We suggest that variability

in the threshold level of metal debris needed to cause significant tissue responses explains the

weakness and inconsistency between histological findings and wear measurements. The role of

patient susceptibility in the pathogenesis of ARMD warrants further research.

Conclusions

In conclusion, periprosthetic tissue metal concentrations had poor correlation with histologi-

cal findings or metal ion levels in whole blood and synovial fluid. We suggest that this is mostly

due to variation in patient susceptibility manifesting as individually different levels of reactivity

to metal debris. Despite the similar metal concentrations in periprosthetic tissues, patients

with THR evinced more lymphocytes and necrosis in their tissues compared to patients with

hip resurfacings. We suggest that taper wear debris from THR is more immunogenic or cyto-

toxic compared to bearing surface wear debris, leading to higher failure rates in patients with

THRs compared to hip resurfacings. In THR, tissues with lymphocytic infiltration had lower

amounts of chromium than tissues with no lymphocytic infiltration. Similar trend was

observed in hip resurfacings, but this did not reach statistical significance. These findings

alone support the hypothesis of metal hypersensitivity as a cause of failure in a subgroup of

patients with low-wearing hip implants. Interestingly, however, we did not observe correlation

between lymphocyte scores and periprosthetic tissue chromium concentrations. Thus, it is dif-

ficult to draw solid conclusions regarding the role of metal hypersensitivity as a cause of failure

in patients with low-wearing hip implants.
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Abstract 25 

We aimed to establish latent subtypes of histopathological patterns in failed metal-on-metal hip 26 

replacements. Tissue samples of the synovia from the neocapsule were retrieved from 284 27 

revised ASR hip replacements and analyzed histologically. Hierarchical cluster analysis and 28 

polytomous latent class analysis were performed to establish the underlying structure and 29 

relationships of the histological observations and to find similar cohorts of cases. Clustering 30 

analyses suggested four distinct subtypes that could be readily and reasonably labeled and 31 

mapped against a recent consensus statement. The first two subtypes showed synovial necrosis, 32 

lymphocyte sheets and abundant or thin histiocyte sheets. In addition, the first subtype showed 33 

abundant germinal centers and no metal particles either extra or intracellularly. Metal particles 34 

were, however, seen in the second subtype. Hence, the first subtype was labeled “immunologic 35 

type IV neosynovitis” and the second subtype “abrasion induced inflammatory lymphocytic type 36 

I neosynovitis”. The third and fourth subtypes showed no perivascular and diffuse lymphocytes, 37 

but a higher number of metal particles intra and extracellularly. The third subtype had synovial 38 

necrosis along with granulomas and was labeled “abrasion induced necrotic Type I 39 

neosynovitis”, whereas the fourth subtype had readily intact synovial lining, and this subtype 40 

was labeled “abrasion-induced foreign body type I neosynovitis”. Histopathological findings in 41 

failed MoM hips are not just one wide entity. These hips evince four different histological 42 

patterns that also differ at the macroscopic level. Moreover, the often stated “ALVAL-type 43 

reaction” seems to be dualistic in nature, which is a novel finding.  44 

Keywords: metal-on-metal, hip replacement, histology, neosynovitis, ALVAL 45 
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Introduction 49 

Soft tissue reactions in traditional non-metal-on-metal (MoM) hip replacements are very rare and 50 

most reoperations are due to other reasons, such as aseptic loosening, dislocation, osteolysis, 51 

hardware failure, and infection. In patients operated on with MoM hip replacements, adverse 52 

reaction to metal debris (ARMD) has become the most common reason for revision surgery(1)–(3). 53 

The manifestation of the adverse soft tissue reactions seen in failed MoM hip replacements is 54 

very variable both at the macroscopic and the microscopic level. Moreover, there is no universal 55 

consensus as to what constitutes ARMD.  56 

 57 

Histological findings in failed MoM hip replacements are variable. Aseptic lymphocyte-58 

vasculitis associated lesion (ALVAL) reaction can be seen in failed MoM hip replacements (4). 59 

Since then “ALVAL-type reaction” has been used as an umbrella term for a specific spectrum of 60 

histological findings. However, no robust attempts have been made to subdivide this histological 61 

reaction. Cases with ALVAL-reaction include infiltration of perivascular T-lymphocytes in 62 

postcapillary venules, synovial destruction and fibrin exudation, and variable numbers of diffuse 63 

lymphocytes (4)–(6). Macrophage-dominated foreign body reaction is also commonly seen in 64 

failed MoM hip replacements (7)–(9) . Related to this conceptually dualistic nature of 65 

histopathology, a 10-point ALVAL-score system has been proposed to distinguish between 66 

wear-related and hypersensitivity-related failures in MoM hip replacements (6). Some authors 67 

have, however, suggested an additional histopathological subtype that involves synovial necrosis 68 

with macrophage-dominated inflammatory response without notable perivascular lymphocyte 69 

infiltration (9),(10). Further contradicting the dualistic behavior, other histological patterns have 70 



 

 

been seen in subsets of patients with failed MoM hip replacements that include sarcoid-like 71 

granulomas and lymphoid aggregates (7),(11).  72 

Due to the extreme versatility seen at both the macroscopic and microscopic level in patients 73 

with failed MoM hip replacements, it is very unlikely that these adverse soft tissue reactions are 74 

the result of only one or two different cascades of events starting from molecular interactions 75 

that may lead to severe macroscopic soft tissues changes (12). It is important therefore to 76 

understand all the possible subtypes of histopathological responses in failing MoM hips because 77 

patients with different types of responses may have a very different prognosis and may require a 78 

different type of follow-up. 79 

 80 

The purpose of our study was to investigate the underlying patterns of histopathological findings 81 

seen in failed MoM hip replacements and to ascertain possible histopathological subtypes 82 

according to the histopathological consensus classification of joint implant related pathology (13) 83 

. To achieve this aim, we performed an exploratory cluster and latent class analysis to identify 84 

possible clusters of cases and observations suggestive of different subtypes of histopathological 85 

findings seen in the synovia of patients with failed MoM hip replacements. 86 

 87 

Materials and Methods 88 

Study population 89 

One thousand and thirty-six ASR MOM hip replacements were performed on 887 patients at our 90 

institution between March 2004 and December 2009. All living and non-revised patients were 91 

subjected to a screening protocol starting in September 2010. The aim of the screening protocol 92 

was to detect articulation-related soft tissue reactions in these patients. All patients were referred 93 



 

 

for cross-sectional imaging and whole blood chrome and cobalt ion measurement. Imaging 94 

findings were graded using the Imperial classification (14).  95 

Revisions and revision procedures 96 

As of January 2015, a total of 334 hips in 301 patients had undergone revision surgery since the 97 

beginning of the screening. In 296 of the 334 revision surgeries, a tissue sample was retrieved for 98 

histopathological analysis ARMD being the most common reason for revision surgery (Figure 99 

1).  The diagnosis of ARMD was based on pre- and perioperative findings as previously 100 

described (15),(16). In each revision surgery performed due to non-infectious reasons, 1 to 5 101 

samples of synovial and/or pseudotumor (PT) tissues were routinely collected for histological 102 

analysis. 99 hips had evidence of PT prior to revision surgery. The primary site of the sample 103 

was the PT capsule (ie. PT sac or bursae wall), and if such tissue was not present, a sample was 104 

taken from the pseudocapsule. A synovial fluid sample was also taken in order to assess the 105 

chrome and cobalt ion levels in the fluid.  106 

Histology 107 

Each tissue sample was formalin-fixed and embedded in paraffin. Several 10 µm microtome 108 

sections were made. Standard hematoxylin and eosin staining was used. The sections were 109 

examined histologically under normal light Nikon Eclipse 50i microscope (Nikon Corporation, 110 

Shinagawa, Tokyo, Japan). For investigational purposes, all available samples were 111 

retrospectively analyzed by a pathologist with more than 10 years of experience in the field (JP) 112 

according to principles described by Natu et al. (17). Necrosis was classified from Grade I to IV 113 

according to Natu et al. Natu grading of necrosis is based on loss in synovial integrity described 114 

by Davies et al. (5). Davies Type 1 synovial surface is intact epithelium. Type 2 synovial surface 115 

has loss of cellular lining but without fibrin exudation. Type 3 synovial surface has both loss of 116 



 

 

synovial cell lining and fibrin exudate is present. Type 4 synovial surface has gross disruption, 117 

fissuring, and fibrin exudates. In Natu Grade I necrosis, the synovial surface consisted of only 118 

Davies Type 1 or 2. Grade II consisted of Davies Type 3 or maximally 25% of Type 4. In Grade 119 

III necrosis, the surface consisted of between 25% and 75% of Davies Type IV. In Grade IV, the 120 

surface showed more than 75% of Davies Type IV synovial loss.  Lymphocytic cuff thickness 121 

was calculated using a 1 mm eyepiece graticule. Calculations were done using 10x 122 

magnification. An average of five measurements were taken and graded as 0 to 3 (absent, 0.25 123 

mm, 0.25 mm to 0.75 mm, >0.75 mm). The thickness of histiocyte sheets was calculated and 124 

graded 0 to 3 (absent, <1 mm, 1 mm to 2 mm, >2mm). Particle load within histiocytes was 125 

graded as used in the assessment of iron decomposition in liver cells as described by Natu et al. 126 

(17).  Extracellular metal particles were defined to be present if they were visible with only x10 127 

magnification or with the naked eye in the section. Diffuse synovitis was defined as described by 128 

Natu et al. Similarly, the presence of germinal centers was noted. Plasma cell forming aggregates 129 

were also assessed.  130 

Statistics 131 

Two different cluster-based segmentation methods were used to detect the underlying latent 132 

groupings of cases. Latent class analysis (LCA) and cluster analysis with hierarchical approach 133 

(HCA) were used (18),(19). Between-group differences in clinical variables after HCA were 134 

compared using either Kruskal-Wallis -test or Chi-squared test. 135 

Cluster analysis 136 

Our main interest was to find clusters of cases (hips) based on their dissimilarity. Since our data 137 

comprised binary and ordinal variables, we chose the Gower method to form the distance matrix 138 

(20). After the selection of the appropriate dissimilarity measurement, clustering began by 139 



 

 

assigning each case to be an individual cluster forming a proximity matrix sized 284x284. The 140 

matrix reflected the closeness of each cluster. Each case began as an individual cluster and was 141 

gradually merged with the most closely related cluster (of cases). We used the complete linkage 142 

method. This process was repeated until one single cluster remained. Our aim was to identify any 143 

meaningful and histologically relevant clusters. Hence, we did not use solely the agglomerative 144 

approach, which is the most commonly used method, to establish the optimal number of clusters. 145 

The agglomerative process uses the agglomeration schedule in which the change in 146 

agglomeration coefficient is depicted as the distance between merged clusters. The higher the 147 

change in the agglomeration coefficient the higher is the dissimilarity between clusters. We 148 

interpreted the last stages of the clustering process to define the meaningful clusters of 149 

observations since five or less clusters were expected to be seen. “Natural break” was defined as 150 

the largest change in agglomeration coefficient producing meaningfully distinguishable clusters.   151 

Latent class analysis 152 

Latent class analysis (LCA) was also performed to further analyze the possible underlying 153 

structures in our data set. LCA also aims to identify meaningful groups or class memberships of 154 

cases according to their (dis)similarity. To identifying the optimal set of groups, latent class 155 

analysis was first performed with two groups, then three groups, and so on. Akaikes Information 156 

Criterion (AIC) indices were interpreted to assess the most suitable baseline model. As with 157 

cluster analysis, with latent class analysis we aimed to have both the optimal model suggested by 158 

the indices and to have a meaningful set of groups so that each group could be readily labeled.  159 

Validation analysis 160 

We aimed to validate our primary outcome after cluster analysis and LCA by first running a 161 

validation analysis using both techniques and then separately for both implant groups. The 162 



 

 

rationale for this was the different wear behaviors between stemmed total hip arthroplasties 163 

(THA) and hip resurfacings (HR). Bearing wear is seen in both implants, but taper corrosion is 164 

only seen in THA (21). If our segmentation techniques are robust against one major etiological 165 

factor, similar clusters and class memberships should be produced regardless of the implant type 166 

included in the analysis.  167 

 168 

Each cluster formed by validation clustering was matched against primary clusters. The 169 

distribution of cases among clusters obtained from validation cluster analysis was cross-tabulated 170 

against primary clustering to see whether discorcondant cases, i.e., negative matches among two 171 

different clustering processes, existed. Validation LCA was performed in an equal way using the 172 

same principle as with the study cohort (all cases included).  173 

 174 

Results 175 

Revision surgery was performed on 296 hips from which a tissue sample was retrieved for 176 

analysis. In twelve cases, the sample was destroyed or contained no viable tissue and was 177 

excluded. The final study cohort included 284 tissue samples. The distribution of histological 178 

findings divided by implant type is shown in Table 1. 179 

Number of subgroups 180 

In the HCA, the change in agglomeration coefficient and the value of the AIC in the LCA were 181 

interpreted to evaluate the number of meaningful subgroups (Figure 2). The highest change in 182 

agglomeration coefficient was seen if two subgroups were selected. This contradicted our pre-183 

study assumption, supported by the previous literature, of having >2 subgroups. The second 184 

highest change in the agglomeration coefficient was seen with the formation of four different 185 



 

 

subgroups. In the LCA, the AIC was lowest with both a four- and five-group solution. The 186 

difference was, however, minimal. The five-group solution was not supported in the HCA based 187 

on the change in the agglomeration coefficient. We considered the four-group solution to be the 188 

most informative, i.e., four clusters in HCA and four classes in LCA. 189 

Characteristics and labeling of the subgroups 190 

HCA and LCA resulted in four similar and meaningful subgroups (Table 2 and 3). Cluster 1 in 191 

HCA and Class 1 in LCA could be readily labeled as “abrasion-induced foreign body type I 192 

neosynovitis”. The characteristics of this subgroup were absent or mild necrosis, lack of diffuse 193 

synovitis, germinal centers, plasma cells, and granulomas. Perivascular lymphocyte cuffs were 194 

also mainly absent. Histiocyte sheets were mainly thin and particle load inside them was 195 

moderate. Cluster 2 in HCA and Class 2 in LCA were labeled as “abrasion induced necrotic 196 

Type I neosynovitis” (Figure 3). As in the foreign body reaction, diffuse synovitis, plasma cells, 197 

germinal centers, and perivascular lymphocytic cuffs were absent. However, granulomas were 198 

seen; histiocyte sheets were thicker; the level of necrosis was moderate; the particle load inside 199 

histiocytes was higher, and extracellular metals particles were present. Cluster 3 in HCA and 200 

Class 3 in LCA were similar. Plasma cells and germinal centers were prevalent; the level of 201 

necrosis was very high; lymphocytic cuffs were thick, and both particle load and extracellular 202 

metal content was low or absent. We labeled Cluster 3 in HCA and Class 3 in LCA as 203 

“immunologic type IV neosynovitis” (Figure 4). The remaining subgroups, i.e., Cluster 4 in 204 

HCA and Class 4 in LCA, were partly similar to the previous reaction, but plasma cells and 205 

germinal centers were less frequent and lymphocytic cuffs were thinner. Necrosis was, however, 206 

moderate or high and also diffuse synovitis was most frequent. Extracellular metal particles were 207 



 

 

commonly present and particle load within histiocytes was high, and hence these subgroups were 208 

labeled as “abrasion induced inflammatory lymphocytic type I neosynovitis”. 209 

 210 

The hips in the “immunologic neosynovitis” group were prominently hip resurfacings and they 211 

had the highest median level of cobalt ions in WB and synovial fluid (Table 4). Thick-walled 212 

PTs were most common in the “immunologic neosynovitis” and “inflammatory lymphocytic 213 

neosynovitis” groups. The lowest cobalt ion levels were seen in the “foreign body reaction” 214 

group.  215 

Interpretation of other subgroups in HCA 216 

HCA with three clusters indicated that clusters 1 and 3, i.e., the foreign body and cytotoxic 217 

reaction subgroups, were merged. Since these clusters evince very distinct characteristics, a 218 

three- subgroup solution was not deemed meaningful, as earlier described.  219 

Validation analysis 220 

In THA group, the HCA and LCA were done using four clusters and four classes. The 221 

characteristics of the these clusters and classes were similar to those when clustering the whole 222 

cohort. Thus, the same labeling was meaningful (see supplement A).  In HCA, a positive match 223 

regarding distribution of cases among clusters was seen in 143 of 206 cases (69.5%.) (Table 5). 224 

A mismatch was therefore seen in 75 hips, and the majority of these were due to 39 hips with a 225 

primary analysis that suggested “immunologic neosynovitis” group, but a sensitivity analysis that 226 

suggested “inflammatory lymphocytic neosynovitis” group. In the LCA validation analysis for 227 

THAs, a match was seen in 163 of 206 (79.1%) cases (Table 6). Due to the small absolute 228 

number of cases in the histological counts, validation analysis was not performed for HRs.  229 

 230 



 

 

Discussion 231 

The results of the hierarchical cluster and latent class analysis in the current study implied four 232 

distinct subtypes of histopathological findings in failed ASR MoM hip replacements (Table 7). 233 

We propose that in addition to traditional macrophage dominated foreign body type reaction, 234 

three other histological entities can be readily identified in failed MoM hip replacements, all of 235 

which also differ at the macroscopic level. Our results suggest that traditional and often 236 

acclaimed “ALVAL-type” responses may be present in two different histological entities, a 237 

finding that coincides with the recent consensus statement. These subtypes are naturally very 238 

similar in nature: both evince perivascular lymphocyte cuffs, and a high grade of necrosis. 239 

Furthermore, both diffuse lymphocyte infiltration, and plasma cells are commonly seen. 240 

Moreover, thick-walled PTs are a prominent manifestation in these subtypes. The major 241 

difference between these subtypes, based on the results of the current study, is the particle load 242 

within histiocytes and extracellular metal particles. One subtype lacked extracellular metal 243 

particles, and particle load within histiocytes was low or absent. This subtype also evinced a very 244 

high grade of synovial necrosis, and germinal centers were more common in this subtype than in 245 

other subtypes. We therefore suggest that this subtype represents the “immunologic type IV 246 

neosynovitis” reaction, i.e., true hypersensitivity type reaction. On the other hand, the other, 247 

“abrasion induced inflammatory lymphocytic type I neosynovitis”, can be regarded as an 248 

“ALVAL-type response” associated with wear. In this subtype, the histopathological findings are 249 

slightly milder compared with “immunologic type IV neosynovitis”. The other groups in our 250 

analysis that coincide with the consensus statement were “abrasion-induced foreign body type I 251 

neosynovitis” and “abrasion induced necrotic Type I neosynovitis”. Further study should validate 252 

our preliminary findings in another type of MoM hip replacements.  253 



 

 

 254 

Although the “immunologic type IV neosynovitis” group evinced a high median level of cobalt 255 

ions, it is noteworthy that hips in this group were dominantly HRs. Lehtovirta et al. reported that 256 

circulating metal ion levels correlate poorly with periprosthetic tissue metal content in HRs (22). 257 

THAs most commonly evince taper wear and material loss which is different from debris 258 

originating from the bearing surfaces. Bearing wear may be considered as more fine-grained 259 

resulting in an elevated circulatory level of metal ions but lower tissue metal content. It is 260 

possible that  HRs elicit  more easily an immunologic neosynovitis type reaction, whereas the 261 

coarser taper wear in THAs is associated with wear-type synovial responses, namely “foreign-262 

body”, “necrotic”, and “inflammatory lymphocytic” neosynovitis. It should be, however, noted 263 

that as recent simulator study showed, HRs with edge-loading and microseparation produce 264 

larger and coarser wear particles, possible even larger extracellular particle, compared to more 265 

normal wear conditions (23). Hence “foreign-body”, “necrotic”, and “inflammatory lymphocytic” 266 

neosynovitis are observed in HRs also.   267 

 268 

The current literature on the correlation between wear and ALVAL-reaction is inconsistent. 269 

ALVAL-reaction has been associated with low wear in several studies (6),(24). The authors who 270 

developed the ALVAL-score, which combines three histopathological domains, later showed 271 

that the ALVAL-score does not correlate with bearing wear, and thus contradicts the original 272 

suggestion of the dualistic response of the periprosthetic tissues to wear (25). Grammatopoulos et 273 

al. stated that ALVAL-reaction correlated moderately with increasing wear (24). In support of this 274 

general trend, we observed the highest median levels of metal ions in the immunologic type IV 275 

neosynovitis group, which resemble the “true” ALVAL-reaction. Moreover, Grammatopoulos et 276 



 

 

al. found that hips with minimal wear and pseudotumour had the most severe ALVAL-reaction. 277 

Our results, which suggest that failed MoM hips pose different entities and not just ALVAL and 278 

foreign type, also varying in etiology, offer an explanation for the inconsistent findings between 279 

the wear and ALVAL response reported in previous studies. Firstly, ALVAL-response or 280 

ALVAL-type response may be the result of two different entities as suggested in our study, 281 

which may also differ in wear characteristics. Since an ALVAL-type response does not result 282 

from a single cascade of response, previous studies may have conflicting results. Secondly, as 283 

stated in the consensus statement, different types of neosynovitis are not pathognomic for 284 

different etiologies, such as toxic, inflammatory, and immunological ones. “Immunologic type 285 

IV neosynovitis” was the most common in our study.  It is unlikely that a pure hypersensitivity 286 

response, immunological or allergy, would have solely resulted in such a high number of cases 287 

with pure immunologic response. All our patients had been operated on with a recalled high-risk 288 

MoM hip replacement that was prone to high wear, and high wear is likely to be present in the 289 

majority of our failed hips. We suggest therefore that hypersensitivity and immunologic response 290 

to metal wear debris is an important cause of ALVAL-type and other responses. However, in a 291 

subset of patients, there is a certain threshold of wear required after which a traditional ALVAL-292 

type reaction starts to develop. 293 

  294 

Coagulative necrosis and perivascular lymphocytes are traditional finding in the ALVAL-type 295 

response seen in failed MoM hips. Howie and Vernon-Roberts observed that perivascular 296 

lymphocytes are recruited after an intraarticular injection of cobalt chrome particles (26). They 297 

suggested that these particles possibly cause a vasculitis-type process or blood vessel occlusion 298 

that results in ulceration of the synovial surface and then the recruitment of lymphocytes. This 299 



 

 

finding is contrary to a study by Witzleb et al. who found no association between the extent of 300 

surface necrosis and perivascular lymphocytes (9). Hence, these two finding may develop in 301 

isolation and are not pathognomic for each other. In our study, these two responses were seen in 302 

three subtypes in variable degrees. Our results also suggest that these three pathological 303 

conditions are different, and thus may differ in their etiology. Macroscopically, thick walled PTs 304 

were more common in the immunologic and inflammatory neosynovitis groups, whereas PTs 305 

were mainly absent in the necrotic neosynovitis group. It is important to realize, however, that 306 

two different histopathological phenomena can occur simultaneously. As Mahendra et al. have 307 

also suggested, a subgroup of patients may have both ALVAL-type and necrotic reactions that 308 

result in implant failure (10).  309 

 310 

A recent study from Ricciardi et al. was very similar to ours (7). The major difference was that 311 

they also included non-MoM hips and aimed to investigate the subtypes of histopathological 312 

findings related to the corrosion products released from a variety of hip replacements. They 313 

defined four subtypes based on the available literature. One of the four subtypes was the 314 

macrophage-dominated pattern. The second subtype was “mixed lymphocytic and macrophagic 315 

with or without features associated with hypersensitivity/allergy or response to particle toxicity”. 316 

This subtype is equal to the traditional ALVAL-type reaction that we suggested was dualistic in 317 

nature. Ricciardi et al. also suggested the division of this subtype based on the presence of 318 

hypersensitivity features. The third subtype described by Ricciardi was predominantly sarcoid-319 

like. Our analysis did not, however, suggest this as a separate entity. This could be due to several 320 

factors. Firstly, the majority of cases with sarcoid-like pattern were seen in the non-MoM hips 321 

with dual modular taper. We do not suggest therefore that sarcoid-like pattern would constitute a 322 



 

 

separate entity in MoM hips. Secondly, the segregation methods used in our study rely on the 323 

association of histopathological variables. Therefore, if the sarcoid-like granulomas develop in 324 

isolation, it is unlikely that this entity would be identified in the segregation analysis.  325 

 326 

We acknowledge some limitations in our study. The most important factor is the possibility that 327 

each revised hip may evince several different inflammatory responses. Therefore, there is some 328 

overlapping and inconsistencies when the distribution of each histological variable among 329 

clusters is interpreted. For example, there are cases with a minor grade of necrosis in the 330 

“Cytotoxic” group even though we suggested that the hallmark of this group is synovial necrosis. 331 

Cluster analysis does not allow overlapping groups. Hence, cases presenting more than one 332 

possible different response are forced to one of the remaining clusters. These cases cannot be 333 

identified during the clustering process, and they are merged to other groups. Since cluster 334 

analysis readily revealed different groups, however, we do not consider the overlapping of 335 

patterns to have been a significant problem.  The prevalence of histological variables may not, 336 

however, be representative of true prevalence since they do not develop in isolation from each 337 

other. Secondly, the samples obtained from soft tissues perioperatively might not represent the 338 

overall response of the synovia. It is not known to what extent one sample of synovia represents 339 

the actual type of histopathology in each case. Several samples would minimize this variation, 340 

but this approach has practical limitations since tissue preservation is important during revision 341 

surgery. Furthermore, there might be considerable variation of cell counts among different 342 

sections from the same sample. However, we think that this sampling bias was reduced 343 

significantly due to the large group of cases. Finally, we were not able to obtain wear 344 

measurements from all our hips. We have published before wear measurement in a subset of 345 



 

 

ASR patients (27). Median annual wear rate was 9.0 m3. These values are remarkably similar to 346 

those reported by Park et al. in a largest cohort of retrieved ASR hips (28). Hence it is unlikely 347 

that different wear patterns would have been present in our cohort. 348 

 349 

Our novel findings support the assumption that the microscopic tissue response of failed MoM 350 

hips is not just one wide entity with variable inflammatory response and synovial necrosis. 351 

Instead, these hips evince four different patterns of histopathological findings. Our study was 352 

exploratory in nature, and therefore it requires a follow-up study to investigate how our findings 353 

can be reproduced. Further research is also warranted to examine the clinical manifestation of 354 

different histopathological patterns in order to enlighten the etiopathogenesis of the adverse soft 355 

tissue reactions seen around failed MoM hips and to clarify the association of our findings with 356 

those seen in clinical decision making, i.e., blood metal ion levels, hardware related factors, and 357 

cross-sectional imaging findings. Additionally, the association between each failure pattern with 358 

wear characteristics must be investigated. 359 

 360 
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Figure legends 445 

Figure 1: Flow chart of case selection and indications for revision. Mechanical reasons indicate 446 

fracture, aseptic loosening and dislocation. Extra-articular reasons indicate osteonecrosis (HR 447 

only) and heterotopic ossification and rash. 448 

Figure 2: The upper graph shows the changes in agglomeration coefficient in hierarchical 449 

clustering for a defined number of clusters (groups). The middle graph shows the Akaikes 450 

information criterion for the defined number of latent classes (groups). 451 

Figure 3: An example of “abrasion induced necrotic Type I neosynovitis”. Synovial lining is 452 

destroyed, mild focal necrosis and disruption of synovial surface is seen, histiocytes contain a lot 453 

of nanometer scaled metal particles and only few diffuse lymphocytes are present. 454 

Figure 4: An example of ”immunologic type IV neosynovitis”. Metal particles and histiocytes 455 

are abundant. No extracellular metal particles are seen. Fibrin deposition and ulceration of 456 

synovial surface is present as are diffuse and perivascular lymphocyte aggregates. 457 
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Abstract

Background: Adverse Reaction to Metal Debris (ARMD) is a major reason for revision surgeries in patients
with metal-on-metal (MoM) hip replacements. Most failures are related to excessively wearing implant
producing harmful metal debris (extrinsic factor). As ARMD may also occur in patients with low-wearing
implants, it has been suggested that there are differences in host-specific intrinsic factors contributing to
the development of ARMD. However, there are no studies that have directly assessed whether the development of
ARMD is actually affected by these intrinsic factors.

Methods: We included all 29 patients (out of 33 patients) with sufficient data who had undergone bilateral revision of
ASR MoM hips (58 hips) at our institution. Samples of the inflamed synovia and/or pseudotumour were obtained
perioperatively and sent to histopathological analysis. Total wear volumes of the implants were assessed. Patients
underwent MARS-MRI imaging of the hips preoperatively. Histological findings, imaging findings and total wear
volumes between the hips of each patient were compared.

Results: The difference in wear volume between the hips was clinically and statistically significant (median difference
15.35mm3, range 1 to 39mm3, IQR 6 to 23mm3) (p < 0.001). The median ratio of total wear volume between the hips
was 2.0 (range 1.09 to 10.0, IQR 1.67 to 3.72). In majority of the histological features and in presence of pseudotumour,
there were no differences between the left and right hip of each patient (p > 0.05 for all comparisons). These features
included macrophage sheet thickness, perivascular lymphocyte cuff thickness, presence of plasma cells, presence of
diffuse lymphocytic infiltration and presence of germinal centers.

Conclusions: Despite the significantly differing amounts of wear (extrinsic factor) seen between the sides, majority of
the histological findings were similar in both hips and the presence of pseudotumour was symmetrical in most hips. As
a direct consequence, it follows that there must be intrinsic factors which contribute to the symmetry of the findings,
ie. the pathogenesis of ARMD, on individual level. This has been hypothesized in the literature but no studies have
been conducted to confirm the hypothesis. Further, as the threshold of metal debris needed to develop ARMD appears
to be largely variable based on the previous literature, it is likely that there are between-patient differences in
these intrinsic factors, ie. the host response to metal debris is individual.
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Background
Adverse Reaction to Metal Debris (ARMD) continues to
be a major reason for revision surgeries in patients with
Metal-on-Metal (MoM) hip replacements [1, 2]. ARMD
consists of very variable and heterogenous findings and
symptoms. Patients may experience strong pain and dis-
comfort or be completely asymptomatic [3]. Radiologically,
fluid-filled cystic lesions or solid inflammatory soft-tissue
masses termed pseudotumors can be found on some pa-
tients, both symptomatic and asymptomatic [4, 5]. Micro-
scopical findings in periprosthetic tissue range from mild
macrophage infiltration to deep soft-tissue necrosis with
heavy lymphocyte infiltration [6–8]. In summary, there is a
high between-subject variability with regard to symptoms,
clinical findings and histological presentation of the tissues
in patients with ARMD.
Factors that affect the development of ARMD can be

divided into extrinsic and intrinsic. The amount of wear
debris and physicochemical properties of the particles
are examples of extrinsic factors. Intrinsic factors, such
as individual differences in innate and adaptive immune
responses to metal wear debris, can be collectively re-
ferred to as host response [9]. Several retrieval studies
have investigated extrinsic factors, most importantly
implant wear, and their association to ARMD. Many
studies have shown that implant wear is a risk factor for
the development of ARMD [10–12]. However, adverse
reactions have also been observed in patients with low
wearing hip implants in several studies [8, 13–15]. In
their systematic review, Campbell et al. concluded that
no clear dose-response relationship between wear and
ARMD could be established due to the heterogeneity of
the findings in the included studies [16]. Studies that have
investigated association between the histopathological fea-
tures of ARMD and wear or indirect markers of wear, such
as synovial fluid or whole blood metal ion concentrations,
have also yielded inconsistent results [6, 8, 14, 17–23]. The
lack of a clear association between extrinsic factors and the
development of ARMD could be due to a remarkable role
of intrinsic factors affecting the pathogenesis. In fact, the
contribution of host-specific factors and presence of pa-
tient susceptibility has been suggested in numerous previ-
ous studies based on the between-subject discrepancy in
the amount of wear debris needed to result in ARMD and
implant failure [8, 13, 14, 24–28]. Further, it has been
suggested that women are more susceptible than men,
possibly due to previous exposure to metals from jewelry
[14, 15, 29]. However, to the best of our knowledge, there
are no studies that would have actually investigated
whether intrinsic factors affect the pathogenesis of ARMD
in patients with MoM hips.
In the present study, we aimed to indirectly investigate

whether host-specific intrinsic factors affecting the
pathogenesis of ARMD exist in a cohort of patients with

bilateral ASR hips, both of which were revised for
ARMD. Host response was investigated by comparing
both histological findings and the amount of bearing
surface wear volume (extrinsic factor) between each
patient’s left and right hips. Each hip served as a control
for the other. If the tissue response between the hips
was similar (low within-subject variability) despite differ-
ing amount of wear debris between the sides (difference
in an extrinsic factor), it would indicate the presence of
intrinsic factors contributing to the similarity of the tissue
response (Additional file 1). We had three hypotheses: 1)
there is significant congruence in histological findings
between the hips of each patient (low within-subject vari-
ability) despite differing amount of wear between the hips,
indicating the contribution of intrinsic factors in the
pathogenesis, 2) histological findings characteristic of the
innate immune response or direct cytotoxic effects of
metal debris (macrophages, granulomas and necrosis)
would differ between the sides in response to wear debris
and 3) components of the individual adaptive immune
response (lymphocytes, germinal centers and plasma cells)
would be congruent between the sides as a result of con-
tribution of intrinsic factors.

Methods
Study design
One thousand thirty-six Articular Surface Replacement
(ASR) MoM hip replacements (Depuy Orthopaedics,
Warsaw, IN, USA) were performed in 887 patients at
our institution between March 2004 and December
2009. By the end of September 2016, 316 patients had
been revised. Of these, 33 patients have undergone bilat-
eral revision. Four of these patients were excluded due to
missing tissue samples thus leading to 29 patients being
included in our study (58 hips). Flow chart of the patient
selection is available as a supplement (Additional file 2).
All patients had the same head-cup-combination on both
sides: five patients had bilateral ASR hip resurfacing and
24 patients had ASR XL stemmed total hip replacements
bilaterally. Simultaneous bilateral hip revision was per-
formed for two patients, and the remaining 27 patients’
bilateral revision surgeries were performed sequentially.
Revision operations have been described in detail in our
previous publication [30]. Patient demographics and indi-
cations for revision surgery are presented in Table 1.
Surgery was performed by or under the direct supervision
of 10 senior orthopedic surgeons. All patients gave written
informed consent to participate in this study that was ap-
proved by the ethical committee of Pirkanmaa Hospital
District (R11006).

Follow-up
After the recall of DePuy ASR hip arthroplasties and the
Medicines and Healthcare products Regulatory Agency
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(MHRA) medical device alert regarding MoM hip
arthroplasties, a systematic screening programme was
launched at our institution [31, 32]. All patients with
MoM hip arthroplasty were included in the programme.
Patients were given Oxford Hip Score questionnaire,
examined physically (including the Harris Hip Score)
and whole blood chromium and cobalt ion levels were
measured [33, 34]. Hip and pelvic radiographs were
taken before each visit. In addition, all patients were
referred for Metal Artifact Reduction Sequence MRI
(MARS-MRI), unless there were contraindications, in
which case patients were referred for ultrasound imaging
of the hips. Findings were classified using a previously
published pseudotumour classification [4]. For the
purposes of the study, pseudotumours were considered
as fluid-filled or solid soft-tissue masses adjacent to the
articulation (classes 1, 2A, 2B or 3).

Indications for revision surgery
Revision surgery was considered if 1) a clear pseudotumour
(class 2A,2B or 3) [4] was observed on cross-sectional im-
aging regardless of symptoms or whole blood (WB) metal
ion levels; or 2) the patient had elevated WB metal ion
levels and hip symptoms despite normal findings in
cross-sectional imaging; or 3) the patient had a continu-
ously symptomatic hip or progressive symptoms regardless
of imaging findings or metal ion levels; or 4) the patient
had progressively increasing blood metal ion levels, even
without symptoms or findings in cross-sectional imaging.
Symptoms included hip pain, discomfort, sense of instabil-
ity, and/or impaired function of the hip and sounds from
the hip (clacking, squeaking). WB metal ion levels were
regarded as being elevated if either chromium or cobalt
exceeded 5 ppb [35].

Bearing wear analysis
The volume of material loss from the cup and head
bearing surfaces was measured using a Zeiss Prismo
(Carl Zeiss Ltd., Rugby, UK) coordinate measuring ma-
chine (CMM). A total of 400 polar scan lines on each
surface were defined and up to 30,000 data points cap-
tured using a 2 mm ruby stylus; protocols for this
method have been previously published [36]. An iterative
least square fitting method was used to analyze the raw

data captured by the CMM and the unworn geometry of
the bearing surface was used to map regions of material
loss from which the total volumetric loss was calculated
for each component. Total wear volume was calculated by
combining head and cup wear volumes for each patient.

Histopathological analysis of the periprosthetic tissue
During every hip revision, samples of the inflamed synovia
or pseudotumor capsule were obtained. For histopatho-
logical analysis, each tissue sample was formalin fixed and
embedded in paraffin. Several 10 μm microtome sections
were made and stained with standard hematoxylin and
eosin staining. The sections were examined histologically
under transmitted light with a Nikon Eclipse 50i micro-
scope (Nikon Corporation, Shinagawa, Tokyo, Japan). The
sections were graded by a senior musculoskeletal patholo-
gist (JP) using scoring principles adopted from the study
by Natu et al. [7]. The pathologist was blinded from clin-
ical patient characteristics.
The Natu grading consisted of following parameters:

1) macrophage sheet thickness, 2) lymphocyte cuff thick-
ness, 3) degree of necrosis, 4) presence of plasma cells,
5) presence of diffuse lymphocytic infiltrate, 6) presence
of germinal centers, and 7) presence of granulomas.
Thickness of histiocyte sheets was calculated using a
graticule and graded 0–3 (absent, < 1 mm, 1–2 mm, > 2
mm). Lymphocyte cuff thickness was also calculated
using a graticule. An average of five measurements was
taken and graded as 0–3 (absent, 0.25 mm, 0.25–0.75
mm, > 0.75 mm). The extent of overall tissue necrosis in
a sample was graded based on the surface necrosis typ-
ing according to Davies et al. [37]. Type 1 surface con-
tains intact synovial epithelium. Type 2 surface shows
loss of synovial epithelial cells without fibrin deposition.
In type 3 surface there is fibrin deposition and in type 4
surface there is extensive necrosis and loss of architec-
ture. The extent of type 4 surface necrosis was used to
grade the overall tissue necrosis in a given sample, as
described by Natu et al. [7]. In grade 4 necrosis, more
than 75% of the tissue sample showed type 4 surface
necrosis. In grade 3 necrosis, between 25 and 75%
showed type 4 surface necrosis. In grade 2 necrosis
either less than 25% of the tissue showed type 4 surface
necrosis or the tissue showed type 3 surface. In grade 1
necrosis, the sample consisted of type 2 surface.

Statistical analysis
Statistical analyses were performed using SPPS software
(IBM Corp. Released 2012. IBM SPSS Statistics for
Windows, Version 21.0. Armonk, NY: IBM Corp.).
Medians, ranges and interquartile ranges were calcu-
lated for total wear volume in both hips (skewed distri-
bution). The statistical significance of the difference in
wear volume between the higher and lower wearing side

Table 1 Reasons for revision surgery

Reasons for revision surgery

Progressively elevating whole blood metal ion levels 22 hips (38%)

Symptomatic hip and elevated whole blood metal ion levels 14 hips (24%)

Symptomatic hip, not elevated whole blood metal ion levels 5 hips (9%)

Pseudotumor and elevated whole blood metal ion levels 14 hips (24%)

Aseptic cup loosening 3 hips (5%)

Total 58 hips (100%)
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was tested using Wilcoxon signed ranks test (related sam-
ples). Mann-Whitney U-test was used to test the difference
in wear volume distribution between the hips in patients
with symmetric versus asymmetric histological and imaging
findings (independent samples). The differences in histo-
logical findings between left and right hips were compared
and number of patients with identical findings, patients
with a difference of one point, difference of two points be-
tween the sides etc. calculated. The statistical significance
of the difference in histological findings between the sides
was tested with marginal homogeneity test except the dif-
ference in presence of germinal centers which did not fill
the test requirements and McNemar test was used instead
[38]. Whether presence of MRI-confirmed pseudotumour
was similar between left and right sides was tested using
McNemar test (related samples).

Results
Thirteen of the 29 patients included in the study were
females (45%). Mean age of the patients was 61.7 years
(SD 8.3 years) at the time of the first revision operation
and 63.1 years (SD 8.5 years) at the time of the second
revision operation, respectively. On average, the first hip
was revised 4.5 years (SD 1.29 years) and the second hip
5.8 years (SD 1.8 years) after the primary operation.
Component wear was available bilaterally for 17 (59% of

all) patients. Total wear volume in either hip ranged from
3mm3 to 94mm3 (median 13mm3, IQR 10 to 32mm3).
The median difference in wear volume between higher
and lower wearing side was 15.35 mm3 (range 1 to
39 mm3, IQR 6 to 23 mm3) (p < 0,001). This difference
is illustrated in Fig. 1. The median ratio of total wear
volume between the hips was 2.0 (range 1.09 to 10.0,
IQR 1.67 to 3.72). In 9 of the 17 (53%) patients with
wear data available, the ratio of wear was 2.0 or
greater, ie. there was at least two-fold difference in
the wear volume between the hips.
The variability of histological findings was high

(Table 2). Most hips evinced mild-to moderate macro-
phage and lymphocyte infiltration, while in some pa-
tients there was heavy infiltration of either macrophages
or lymphocytes but not both simultaneously. The degree
of necrosis was approximately evenly distributed in all
five grades. Majority of patients evinced no plasma cells,
diffuse lymphocytic infiltration, germinal centers or
granulomas.
The congruence of histological findings between the

left and the right hips is presented in Table 3. In major-
ity of the histological features and also in majority of the
patients, there were no differences between the hips
(p > 0.05 for all comparisons). These features included
macrophage sheet thickness, perivascular lymphocyte
cuff thickness, presence of plasma cells, presence of dif-
fuse lymphocytic infiltration and presence of germinal

centers. In lymphocyte cuff thickness the difference be-
tween the sides was at most 1 point. In macrophage
sheet thickness the findings were similar in 18 patients,
differed by 1 point in 9 patients and differed by 2 points
in 2 patients, respectively. The only histological findings
that statistically significantly differed between the hips
were grade of necrosis (p < 0.01) and presence of granu-
lomas (p = 0.025). In the grade of necrosis there was a
wide distribution in the difference between the sides. In
those patients with granuloma present on one side only,
the granuloma was always on the higher-wearing side.
When comparing all hips, those hips with a granuloma
(n = 5) had a median total wear volume of 35 mm3

(range 15.0 to 111.0) and those hips with no granuloma
(n = 39) had a median total wear volume of 15 mm3

(range 3.0 to 94.0) (p = 0.059 for comparison). In the
grade of necrosis, the higher grade was not always on
the higher wearing side. In any of the histological find-
ings, the symmetry or asymmetry of findings between
left and right sides was not associated with a difference
in the distribution of wear volume between the sides
(Table 4). All patients had at least two histological vari-
ables with similar findings on both hips. Majority of the
patients (75.9%) had four or more histological variables
with similar findings on both sides (Table 5). There were
no differences in the similarity or dissimilarity of histo-
logical findings between left and right hips in males ver-
sus females (Table 6).
Bilateral MRI classification for the presence of pseudo-

tumours was available for 25 patients (86% of all pa-
tients). 18 patients (72% of the classified) had either
bilateral pseudotumours or no pseudotumours at all on
either side, ie. the hips were symmetrical in regard to
pseudotumour. There was no statistically significant dif-
ference in the presence of pseudotumour between the
sides (p = 0.13). Of those 18 patients, 7 had pseudotu-
mour on both sides (of which two were identical by
exact classification) and 11 had no pseudotumour on ei-
ther side. Patients with asymmetrical pseudotumour
finding between the sides evinced similar distribution of
total wear volume between the sides as those patients
with symmetrical pseudotumour findings (Table 7). In
addition, there were no differences in the total wear vol-
umes of the hips in patients with pseudotumour on both
sides (median 20.0 mm3, range 9.0 to 111.0) versus no
pseudotumour on either side (median 16.30 mm3, range
3.0 to 51.0) (p = 0.28 for comparison).

Discussion
In the present study, we found that there were notable
differences in the histological findings between patients
revised for ARMD, ie. the between-subject variability
was high. Heterogeneity has been characteristic for the
results of ARMD research [16]. Most importantly,
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however, we found no statistically or clinically significant
differences in most of the histological and imaging find-
ings between left and right hips of the same patient,
meaning that the within-subject variability in histological
and imaging findings was low. Further, majority of the
patients had similar findings on both hips in several key
histological variables. This was despite the fact that there
was a clinically and statistically significant difference in
the amount of wear volume between the sides, ie. there
was a difference in the extrinsic factor between the sides.
There are no clearly defined boundaries for abnormal
versus normal wear, but volumetric wear rates exceeding
1 mm3/year are generally considered abnormal [39]. As
the median difference of 15.4 mm3 in wear volume be-
tween the sides measured in our study translates into re-
markably abnormal yearly volumetric wear rate needed
to generate that difference, we thus feel safe to consider
the difference in median wear volume between the sides
clinically significant.
The contribution of host-specific factors in the patho-

genesis of ARMD has been suggested in numerous pre-
vious studies, likely observed as patient susceptibility of
different levels [8, 13, 14, 24–28]. However, to the best
of our knowledge there are no previous studies that
would have actually assessed the role of intrinsic factors
in the pathogenesis. On the contrary, there are many

studies that have investigated implant wear and the
development of ARMD, however, results of these studies
are very discrepant. High wear or high blood metal ion
levels resulting from high wear are associated with the
development of ARMD [10, 40]. However, adverse reac-
tions have been noted in patients with both high and
low wearing hip implants [8, 11, 13, 25, 41]. In a system-
atic review by Campbell et al. no clear dose-response
relationship between wear and ARMD could be estab-
lished [16]. We observed symmetry of histological find-
ings between left and right hips despite differing
amounts of wear. In addition, the distribution of wear
volume between the sides was similar in patients with
symmetrical versus asymmetrical histological and im-
aging findings. Further, patients with bilateral pseudotu-
mours had similar amounts of wear volumes in their
hips as did patients with no pseudotumour on either
side. Our finding suggests that there are intrinsic factors
that markedly contribute to the pathogenesis of ARMD,
dictating the type of tissue response and development of
pseudotumours, in addition to extrinsic factors such as
volume of the metal wear debris. Further, it is likely that
there are differences in these intrinsic factors between
patients as some develop aggressive tissue responses
despite low-wearing implant while some tolerate large
amounts of wear. Various terms have been used to

Fig. 1 The difference in total wear volume between higher and lower wearing sides
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describe this phenomenon, for example patient suscepti-
bility [13]. Clinicians should bear in mind that some pa-
tients with low wearing implants (low blood metal ion
levels) can still be at risk for ARMD due to higher than
average patient susceptibility.
A cohort of patients with bilateral MoM hips forms an

excellent research frame to investigate and compare the
role of intrinsic and extrinsic factors in the pathogenesis.
We are aware of only three previous studies that com-
pare characteristics of ARMD between the sides in pa-
tients with bilateral MoM hip replacements. Madanat et
al. compared MRI findings between left and right hips in
patients with bilateral MoM hip replacements [42]. They
found that the soft tissue reaction observed in MRI was
symmetrical between the sides in most patients, both in
sequentially and simultaneously implanted hips. In sup-
port of their findings, we report similar symmetry for
the presence of MRI-confirmed pseudotumour between
the sides. Another study by Pandit et al. consisted of
four revised patients with bilateral MoM hips [43]. All
patients had developed a necrotic pseudotumor in both
hips. In histopathological analysis, both hips of each
patient had similar findings (necrosis, macrophages,
lymphocytes). However, no wear data was included in
the study and the histology was descriptive, not semi-
quantitatively scored. A recent study by Uchihara et al.
included patients with both uni- and bilateral MoM
hips that had been revised for ARMD [44]. They com-
pared histological findings between left and right hips
in the bilateral patients as well as histological findings
between unilateral and bilateral patients. In addition,
time-to-failure was compared between these two
groups. The histological findings (necrosis, macro-
phages, lymphocytes) between left and right hips of the
bilateral patients were found to be symmetrical in ma-
jority of the cases, similar to the findings of the present
study. However, we observed that there were differ-
ences in the grade of necrosis between the sides while
Uchihara et al. did not semiquantitatively grade the ne-
crosis. Further, there were no differences in the histo-
logical findings or time-to-failure between uni- and

Table 3 Congruence in histological grading between left and right hips (within-subject)

Difference in histological grading between left and right sides

No difference 1 p 2p 3p 4p Scale

Macrophage sheet thickness 18 (62%) 9 (31%) 2 (7%) – 0–3 p

Lymphocyte cuff thickness 14 (48%) 15 (52%) – – 0–3 p

Degree of necrosis* 6 (21%) 10 (34%) 9 (31%) 1 (3%) 3 (10%) 0–4 p

Presence of plasma cells 26 (90%) 3 (10%) Yes/no

Presence of diffuse lymphocytic infiltration 19 (66%) 10 (34%) Yes/no

Presence of germinal centers 27 (93%) 2 (7%) Yes/no

Presence of granulomas* 24 (83%) 5 (17%) Yes/no

Percentages represent proportion of all patients. In variables marked with * there was a statistically significant (p < 0.05) difference between the sides (see results)

Table 2 Between-subject differences in histological findings

Histological finding Right hips Left hips

Macrophage sheet thickness

0 (absent) 1 (3.4%) 1 (3.4%)

1 (< 1 mm) 19 (65.5%) 24 (82.8%)

2 (1–2 mm) 7 (24.1%) 4 (13.8%)

3 (> 2 mm) 2 (6.9%) 0 (0.0%)

Lymphocyte cuff thickness

0 (absent) 13 (44.8%) 13 (44.8%)

1 (0.25 mm) 11 (37.9%) 11 (37.9%)

2 (0.25–0.75 mm) 5 (17.2%) 4 (13.8%)

3 (> 0.75 mm) 0 (0.0%) 1 (3.4%)

Degree of necrosis

0 6 (20.7%) 0 (0.0%)

1 4 (13.8%) 3 (10.3%)

2 8 (27.6%) 7 (24.1%)

3 7 (24.1%) 5 (17.2%)

4 4 (13.8%) 14 (48.3%)

Presence of plasma cells

No 23 (79.3%) 22 (75.9%)

Yes 6 (20.7%) 7 (24.1%)

Presence of diffuse lymphocytic infiltration

No 22 (75.9%) 20 (69.0%)

Yes 7 (24.1%) 9 (31.0%)

Presence of germinal centers

No 27 (93.1%) 29 (100%)

Yes 2 (6.9%) 0 (0.0%)

Presence of granulomas

No 23 (79.3%) 28 (96.6%)

Yes 6 (20.7%) 1 (3.4%)
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bilateral patients in their study. Uchihara et al. concluded
that the implantation of a MoM hip does not appear to
lead to sensitization to metal debris that would in turn
lead to poor clinical performance or different tissue re-
sponse in the second MoM hip. However, they did not
discuss the significance of their findings in the context of
intrinsic factors contributing to the similarity of the tissue
response between the hips in bilateral patients. Further,
their sample size was rather small (10 patients) and no
wear data of the MoM hips was presented in the study.
These three previous studies conducted on bilateral MoM
patients are in agreement with our findings and support
the hypothesis of an individual host response dictated by
intrinsic factors as a significant contributor in the
development of soft tissue reactions leading to failure of
the hip.
The pathogenesis of ARMD is poorly understood, but

at least three different mechanisms of failure have been
suggested: 1) type IV hypersensitivity response to metal
wear debris with adaptive immunity involvement, 2)
foreign-body response to metal wear particles reflecting
innate immunity and 3) direct cytotoxic effect of metal

ions [6, 8, 45]. To what degree the tissue response de-
pends on the amount of wear and to what degree on the
host-specific intrinsic factors is not well understood. We
hypothesized that components of the innate response
(macrophages, granulomas, necrosis) are more closely
related to extrinsic factors and components of the adap-
tive response (lymphocytes, germinal centers and plasma
cells) to intrinsic factors such as genetic predisposition
to metal hypersensitivity. We found that the grade of
tissue necrosis and presence of granulomas differed
between the sides in most patients. Granulomas were
always present on the higher wearing side. Further, when
analyzing all hips as a group, we found that there was a
trend for higher total wear volume in hips with a granu-
loma compared to those hips with no granuloma. How-
ever, this difference did not quite reach statistical
significance. Granulomas are considered to form as a re-
sponse to high numbers of metal particles in tissues
[46]. Our results support this idea. Still, in the present
study granulomas were not present in the majority of
the hips. We suggest that there is a certain threshold for
tissue metal content needed for granulomas to develop
as a response. Whether this threshold is dependent on
intrinsic factors, particle size, non-particulate metal deb-
ris or particle type is not understood and requires fur-
ther research. The metal ions released from implants are
known to cause dose-dependent cytotoxicity in-vitro
[47]. Also, we and others have previously shown that im-
plant wear correlates with necrosis of the periprosthetic
tissues [6, 48]. Thus, it seems likely that extrinsic factors,
mainly implant wear, are more important in the develop-
ment of tissue necrosis and granulomas than intrinsic
factors, ie. patient susceptibility. However, opposite to
our hypothesis, the grade of macrophage sheet thickness
did not differ between the sides. This would suggest that
the macrophage response (innate) is mostly determined
by host-specific factors instead of extrinsic factors such
as volume of the wear debris. However, there are limita-
tions in our methodology. We did not directly measure
the number of macrophages, instead, we measured the
thickness of the macrophage sheets. It is possible that
the infiltration penetrates deep in the tissue but is not
dense. We observed that there were no statistically sig-
nificant differences in the amounts of lymphocytes and
presence of plasma cells and germinal centers between
the hips, despite markedly different wear volumes in
most of these patients. These parameters belong to the
adaptive immune system which is considered host-specific.
Thus, it makes sense that they are expressed symmetrically.
In some studies, it has been found that low wear is
associated to adaptive lymphocytic response and high
wear to innate, macrophage dominated foreign-body
response [6, 8, 21]. These associations have been weak,
however. In addition, disagreeing findings have been

Table 5 The degree of similarity between the hips measured by
the number of histological variables with similar findings on
both sides in each patient

Histological variables with
symmetric findings on both sides

Number of
patients

Percentage of
patients

0 0 0%

1 0 0%

2 2 6.9%

3 5 17.2%

4 6 20.7%

5 6 20.7%

6 9 31.0%

7 1 3.4%

Total 29 Total 100%

Table 4 Median differences in total wear volumes between the
sides (mm3)

Histology between sides Symmetrical Asymmetrical P-value

Macrophages 9.0 18.7 0.40

Lymphocytes 18.0 12.7 0.89

Necrosis 32.0 12.7 0.35

Plasma cells 16.0 5.3 0.24

Diffuse lymphocytes 16.0 6.3 0.48

Germinal centers 15.7 23.0 0.71

Granulomas 15.35 16.1 0.70

Median differences in total wear volumes between the sides in patients with
symmetrical histological findings versus patients with asymmetrical histological
findings. Only patients with complete wear data are included (n = 17)
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published [19, 22]. We suggest that host-specificity of
the intrinsic factors leads to differences in the tissue
response between individuals no matter what the wear.
This likely contributes to the poor association between
the amount of wear and type of inflammatory tissue
response in previous literature.
Our study is not without limitations. First, the sample

size in our study is rather small. However, it is clearly
the largest in any published study dealing with this issue
so far. Second, not all hips were analyzed for bearing
wear volume. However, it must be noted that large pa-
tient cohorts with clinical information, laboratory and
imaging findings, tissue samples and also retrieval ana-
lyses available, are not easily available anywhere globally.
Further, our patient cohort is free of selection bias as all
patients have been primarily operated and followed-up
thereafter at our institution with no referrals from other
centers. Thirdly, we were not able to analyze the volume
of the material loss from the trunnion in those patients
with ASR XL hip implants. However, the volume of the
material loss from the trunnion is known to be less than
that from the bearing couple [49]. Fourth, we used surro-
gate markers (semiquantitative histology) to indirectly in-
vestigate the presence of intrinsic factors contributing to
the response. Measuring variability in signaling pathways

provide more direct evidence, but was out of the scope of
the current study. Besides, histological methods are
well-documented and there is vast amount of literature
regarding ARMD histology. However, it is not yet well
understood which signaling pathways are important in the
development of ARMD and thus a comprehensive study
of such would not be realistic. Our study offers novel
insight into the role of intrinsic versus extrinsic factors in
the pathogenesis of ARMD and is the largest bilateral
patient cohort published on the subject. Further, our study
is the first one to include wear data.

Conclusion
In conclusion, intrinsic host-specific factors most likely con-
tribute to the development of ARMD in addition to extrinsic
factors such as implant wear debris. Further, it is likely that
there are differences in these host-specific factors between pa-
tients, manifesting as susceptibility to metal debris of variable
degree. Clinicians should bear in mind that patients may have
different responses to the same amount of wear debris, usu-
ally measured as blood metal ion levels. Some patients may
tolerate high amounts of metal debris and some patients may
develop even severe adverse tissue responses in the presence
of a low-wearing hip implant. Also, bilateral MoM patients
with failure on one side will likely develop a similar tissue re-
sponse on the other side as well. This should be accounted
for in the follow-up of patients with bilateral MoM hip re-
placements. In future studies, it is important to search for
possible biomarkers that would predict the severity and type
of the intrinsic response, in other words, patient susceptibility.
Further, it is important to understand the true nature of
ARMD in order to be able to design safer bearing couples in
the future.

Table 7 Pseudotumour finding and wear volumes between the
sides

Pseudotumour Symmetrical Asymmetrical P-value

Median difference in total wear
volume between the sides (mm3)

12.7 13.5 0.79

The distribution of wear volume between left and right sides is similar in
patients with symmetrical and asymmetrical pseudotumour findings between
the sides. Only patients with complete wear data are included (n = 17)

Table 6 Comparison of similar versus not similar histological findings between the sides in males and females

Histological variable Symmetric findings on both hips Males Females P-value for the difference
between males and females

Macrophage sheet thickness Yes 11 (69%) 7 (54%) 0.46

No 5 (31%) 6 (46%)

Lymphocytic cuff thickness Yes 9 (56%) 5 (38%) 0.46

No 7 (44%) 8 (62%)

Degree of necrosis Yes 4 (25%) 2 (15%) 0.66

No 12 (75%) 11 (85%)

Presence of plasma cells Yes 14 (88%) 12 (92%) 0.58

No 2 (12%) 1 (8%)

Presence of diffuse lymph. Yes 12 (75%) 7 (54%) 0.27

No 4 (25%) 6 (46%)

Presence of germinal centers Yes 15 (94%) 12 (92%) 1.0

No 1 (6%) 1 (8%)

Presence of granulomas Yes 15 (94%) 9 (69%) 0.14

No 1 (6%) 4 (31%)
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