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ABSTRACT 

Juho-Pekka Mattila: Simulation of inventory investment and delivery reliability – Comparison 
of configure-to-order and make-to-order 
Master of Science Thesis, 90 pages, 9 appendices 
Tampere University 
Master’s Degree Program in Industrial Engineering and Management 
April 2020 
 

This thesis studied the differences between a configure-to-order (CTO) and a make-to-order 
(MTO) approach to order fulfillment. The aim of the study was to identify and compare the different 
processes’ characteristics in terms of the investment in inventories and delivery reliability. The 
goal was to investigate what impact demand uncertainty, capacity level and supply lead time have 
on the processes’ inventory investment and delivery reliability. 

The product studied in this process is an automated material-handling solution produced by 
the case company. The product utilizes a modular product structure which enables customizing 
the solution to different customer needs. The manufacturing process currently in use is the CTO 
approach. It was deemed valuable to study another possible approach to identify and evaluate 
the advantages and disadvantages of both approaches. 

The study was conducted by creating a simulation model which modelled two processes. The 
first mimicked the current CTO process in use at the case company and the second how the 
process would operate if the company utilized an MTO approach. The simulation was run in mul-
tiple scenarios which differed from each other by demand, capacity level and component supply 
lead times. The results of the scenarios were then analyzed to discern answers to the research 
questions. 

The results of the study show that the inventory investment needed in CTO is many times 
more than in an MTO environment. This is because more buffer inventories are kept in the CTO 
process both at component and at the module level. However, the delivery reliability was found 
to be better in the CTO process. The positioning of the order penetration point in the CTO process 
enables a more flexible production schedule and the increased buffering means that deliveries 
can be fulfilled quicker. This makes the CTO process less reliant on capacity buffers and more 
robust against demand fluctuation.  

The most important factor when determining the inventory investment needed was clearly the 
supply lead time. Delivery reliability was mostly dictated by the capacity level, but it was noted 
that increasing the capacity level over a certain threshold quickly starts to provide diminishing 
benefits to delivery performance. 

 
Keywords: configure-to-order, make-to-order, simulation, delivery reliability, inventory 

investment 
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Tämä tutkimus tutki tilauksesta valmistavan (make-to-order, MTO) ja tilauksesta konfiguroivan 
(configure-to-order, CTO) toimitusprosessin eroja. Työssä tunnistettiin ja vertailtiin näiden pro-
sessien eroja varastoihin sitoutuneessa pääomassa ja toimitusvarmuudessa. Toinen tavoite oli 
tutkia, miten kysynnän epävarmuus, kapasiteettipuskuri ja komponenttien toimitusaikojen muu-
tokset vaikuttavat näihin kahteen prosessiin. 

Tuote, jota tutkimuksessa tutkittiin, on automaattinen materiaalinhallintajärjestelmä, joka voi-
daan konfiguroida erilaisiin asiakastarpeisiin sen modulaarisen tuoterakenteen avulla. Tällä het-
kellä tuotetta valmistetaan CTO-periaatteella siten, että moduuleja valmistetaan varastoon. Kun 
toimituspäivä lähestyy, moduulivarastosta keräillään tarvittavat moduulit lähetyksiin, mikä laukai-
see täydentävien moduulien kokoamisen. Kohdeyrityksessä todettiin, että olisi mielenkiintoista 
tutkia vaihtoehtoisen prosessin toimintaa ja verrata sitä nyt käytössä olevaan prosessiin. 

Tutkimus toteutettiin luomalla simulaatiomalli, joka jäljitteli kahta tutkittavaa prosessia. CTO-
prosessi mallinnettiin vastaamaan nykyistä prosessia ja MTO-prosessilla yritettiin imitoida sitä, 
miten yrityksen prosessit toimisivat, jos ne toteutettaisiin MTO-periaatteiden mukaisesti. Simulaa-
tiomallilla luotiin useita eri skenaarioita, jotka erosivat toisistaan kysyntätasojen, komponenttien 
toimitusaikojen, sekä kapasiteettipuskurien osalta. Skenaarioiden tuloksista pyrittiin analysoi-
maan vastauksia tutkimuskysymyksiin. 

Tutkimuksen tulokset osoittavat, että CTO-prosessin vaatima varastopääoma on moninkertai-
nen MTO-prosessiin verrattuna. Tämä johtuu isommista varmuusvarastoista sekä komponentti- 
että moduulitasolla. CTO-prosessin toimitusvarmuuden todettiin kuitenkin olevan huomattavasti 
parempi simulaatiossa käytetyillä muuttujilla. Sijoittamalla tilauksen kohdentamispiste lähemmäs 
toimitusta, voidaan osa tuotantoprosessin vaiheista tehdä ennusteperusteisesti, mikä mahdollis-
taa joustavamman tuotantoaikataulun. Lisäksi puskurivarastot prosessin eri vaiheissa nopeutta-
vat toimituksia. MTO-prosessin todettiin olevan riippuvaisempi kapasiteettipuskureista ja hei-
kompi vastaamaan kysynnän epävarmuuteen. 

Isoin vaikutus varastoon sitoutuneeseen pääomaan oli komponenttien toimitusajoilla. Toimi-
tusvarmuuteen eniten vaikutti kapasiteettipuskurit. Toimitusvarmuuden tuloksista huomattiin kui-
tenkin, että tietyn raja-arvon jälkeen kapasiteettipuskurin lisäämisen luomat hyödyt vähentyvät 
merkittävästi. 

 
Avainsanat: tilauspohjainen valmistus, tilauspohjainen konfigurointi, simulaatio, 

toimitusvarmuus, varastoon sitoutunut pääoma 
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1. INTRODUCTION 

1.1 Research background and motivation 

As Cristopher and Holweg (2011) state, it has become almost a cliché to begin a re-

search paper by stating how the business world is becoming increasingly global, cus-

tomers are more demanding than ever and uncertainty in the markets is increasing. 

These changes create challenges to which companies must respond. (Christopher & 

Holweg 2011) 

Mass customization (MC) is one answer and it has been a very popular subject for re-

search and in practice since the late 1980s. (Fogliatto et al. 2012) The aim of mass 

customization is to try and gain the benefits of high volume production while providing a 

customized product offering (Duray et al. 2000). Common ways to achieve the benefits 

are for example a modular product architecture and postponing the differentiation of 

products (MacCarthy 2013). These methods allow differentiating products after the cus-

tomer order which reduces the risk of inventory obsolescence (Yang & Burns 2003). 

This thesis was done to the Agilon-department of Konecranes. Agilon is a material han-

dling system which can be configured to fit each customers’ need to provide more trans-

parent and smooth material flows in e.g. manufacturing or maintenance equipment. The 

configurability makes the order fulfillment very complex as each delivery is likely to differ 

from the earlier deliveries and the number of needed resources varies a lot. 

The current order fulfillment process in place is a type of configure-to-order (CTO) pro-

cess. A CTO keeps semi-finished products or modules in inventory to provide more 

standardized manufacturing processes, better customer delivery speed and variety in 

the offering at the cost of the increased inventories (Cheng et al. 2002). The CTO pro-

cess has worked well due to the dilemma of the speed of customer delivery as a market-

ing asset and the rather long manufacturing lead time needed to assemble the modules. 

However, due to the relatively large amount of capital the CTO-process ties up in inven-

tories, it was deemed important to compare this process to a different approach. The 

competing approach is a make-to-order (MTO) approach. This approach can reduce in-

ventories because work in progress is eliminated, but the delivery speed and reliability 

might suffer (Vollmann et al. 2005, pp. 456-457). 
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It was decided that an appropriate way of researching the differences in the approaches 

is a simulation study. A simulation can give powerful insights into the problem at hand. It 

enables studying the performance of the system in multiple scenarios and in a short 

amount of time. Most importantly the simulation study doesn’t interfere with the daily 

operations of the company but still offers approximate results on how the different ap-

proaches behave. (Laguna & Marklund 2013) 

While the research provides useful insights into the processes of the case company, it 

also falls quite well into the suggested future research topics of a couple of prior re-

searches. For example, Su et al. (2010) suggest studying the impact of demand, produc-

tion capacity and degree of delaying differentiation on lead-time in a configure-to-order 

environment. Nyaga et al. (2007) studied the effects of demand uncertainty and config-

uration capacity in a configure-to-order environment and stated that similar research in 

a make-to-order environment could give more insights. 

1.2 Research questions and goals 

The aim of the thesis was to challenge and evaluate the CTO order fulfillment strategy 

in use at the company. The competing approach is an MTO process where no work in 

progress is kept in inventory. The research was based on one primary research question 

with one secondary research question focusing the direction of the study.  

The primary research question was: How does a CTO strategy differ from an MTO strat-

egy in terms of capital tied up in inventories, capacity utilization and delivery reliability? 

The secondary question was: How do different levels of capacity buffers, supply lead 

times and demand uncertainty affect the processes’ inventory investment and delivery 

reliability? The research questions are shown in table 1. 

Table 1: The research questions 

Primary How does a CTO process differ from an MTO process in 

terms of inventory investment and delivery reliability? 

Secondary How do different levels of capacity buffers, supply lead 

times and demand uncertainty affect the processes’ inven-

tory investment and delivery reliability? 

 

The research questions enforced the goal of evaluating the company’s processes well. 

The main research question was worded quite loosely as it aimed to get a broad under-

standing of the differences in the processes and to evaluate them from multiple angles. 
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The focus was on scenarios which resemble the current situation of the Agilon business 

at the start of the year 2020, as well as some possible future scenarios. 

The secondary question was more focused to gain insights of more specific interactions 

in the processes. This was done to attain an understanding of the impact of these factors 

and their relative strength in determining the performance of the processes’.  

1.3 Research Approach 

The aim of the research is to understand and evaluate the constructs currently in place 

at the company which determine the way the company goes about its daily business. 

Therefore, the purpose of this study is exploratory. An exploratory study strives to under-

stand the current situation and gain some new insights into the problems at hand. Also, 

as the aim is not to incur changes in the processes but rather study them, the study was 

conducted from a regulatory perspective. (Saunders et al. 2009, pp. 119-120, 139) 

In this study, the fundamental nature of the phenomena under scrutiny was interpreted 

to be independent of social actors and determined by the observable data and pro-

cesses. Therefore, the ontology of this research was positivism. A positivistic approach 

sees that perceivable phenomena can be explained by the data they provide and seeks 

to reduce them to their simplest components. The purely quantitative nature and objec-

tivistic point of view of the study enforces the adoption of positivism. (Saunders et al. 

2009, pp. 119) This is particularly true in the creation of a simulation model. Simulations 

are always just an approximation of the actual situations they emulate (Klee & Allen 

2011, pp 3; Laguna & Marklund 2013, pp. 99). However, they can provide insights into 

the problem and in this study the simulation is seen as a valid means to turn the collected 

data into legitimate findings which can be objectively analyzed. 

Due to the objectivistic nature and regulatory perspective of the research, the research 

paradigm used was the functionalist paradigm. A research which operates with the func-

tionalist paradigm seeks to give rational explanations to the studied phenomena. The 

case company was seen as a rational entity which has rational problems that can be 

solved with rational explanations. (Saunders et al. 2009, pp. 120-121) 

The time horizon of the research is mostly cross-sectional with some longitudinal ele-

ments. The simulation model was based on the processes of the company in early 2020, 

which enforces a snapshot-based perspective. However, simulations are often used in 

compressing time to model the continuous behavior of a process in a short time-frame 

(Laguna & Marklund 2013, pp. 254). To create a truly longitudinal time-horizon to the 
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research would require the assessment of the results against the actual performance of 

the company, which is not feasible due to the narrow timeframe of the study. 

The study was conducted as a mono-method simulation study. The primary data used 

was the product structure of the Agilon system, which included all of the possible config-

urations of the modules and components which make up the systems. The data was 

processed through the pre-set simulation model with the chosen scenario variables.  

The simulation approach was chosen as its advantages were enabled by the scope and 

time-horizon of the study. A simulation can experiment a large number of scenarios over 

long time-periods in a matter of seconds and give concrete estimates of differences in 

the performance of processes without interrupting the operations or needing changes in 

infrastructure (Robinson 1994, pp. 7; Laguna & Marklund 2013, pp. 100-101). 

The simulation model was created by mimicking the current order fulfillment process in 

use at the company, and then approximating how the other approach would be operated 

with the resources available. The information needed to create the model was gathered 

through researching the appropriate equations and laws from literature, observations of 

daily processes and conversations with different employees at the case company. 

The simulation model was programmed with the Python programming language and 

without a ready-made simulation library. This was done to achieve the most freedom of 

design and simplicity for the model, as the use of an actual simulation software can be 

more expensive, less flexible and harder to use. These advantages were seen to out-

weigh the disadvantages of self-programmed simulations, which in addition to the afore-

mentioned are mainly the possibility of more time spent on creating and validating the 

model. (Robinson 1994, pp. 11-12) The limiting factors of the simulation are discussed 

more in the next section and the more in-depth decisions made when creating the model 

are elaborated on in chapter 5. 

1.4 Research limitations 

The focus of this study was the order fulfillment process of the case company in the 

Agilon factory in Tampere. This contains the processes from the customer order until the 

order is delivered to customer site. As the study focused on the operations in the Agilon 

factory, the actual installation was excluded as it is performed at the customer site often 

by external technicians. Figure 1 depicts the steps of the process. The steps marked in 

blue are included in the scope of the study. The simulation focuses on the steps inside 

the light blue box. The order processing and delivery are outside the box since they were 
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only the connecting points between the simulation and the outside operators in the sup-

ply chain. The customer order and installation are performed by outside actors and there-

fore are not a part of the study. 

 

Figure 1: The order fulfillment process 

As seen in figure 1, the focus is on procurement, assembly and the picking process. For 

the purposes of the study, procurement encapsulates all the daily purchasing and inven-

tory handling procedures. Assembly represents the actual assembly of the modules 

which are needed in each delivery. The picking process includes the gathering and pack-

ing all the modules and needed components and preparing them for delivery. 

It is highly impractical and time-consuming to try and make a simulation track every sin-

gle detail of a real-life process (Laguna & Marklund 2013). This means that only parts of 

the process should be simulated in detail. The scope of the simulation is also so wide 

that some of the simpler details must be compressed to get a good approximation of the 

performance measures in the overall process. 

The main parts of the process which were included in the simulation in detail are the 

above-mentioned production of modules, purchasing and picking the deliveries. The or-

dered component deliveries are tracked in daily amounts and the production of modules 

and delivering systems in weekly amounts. Many things are also not tracked in the sim-

ulation. For example, order processing, inventory handling and delivering systems were 

made to happen instantaneously. The BOMs of the modules were also flattened to just 

one layer for simplicity. A complete list of assumptions and generalizations can be found 

in chapter 5. 

1.5 Thesis structure 

The thesis will start with a literature review of the main topics relevant for this research. 

The literature review focused on explaining the key points of related theory having to do 

with different aspects of and external factors affecting the order fulfillment processes of 

a company. The first topic is an overview of the uncertainties a company faces in its 

operations. Demand uncertainty is elaborated on as it is the type of uncertainty the sim-

ulation imitates. The second topic is mass customization, where the main concepts under 
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scrutiny are a modular product architecture and delayed differentiation. Lastly, an over-

view is given on the different order fulfillment strategies a company can utilize. Make-to-

order and configure-to-order strategies are explained in more detail as they are the ap-

proaches which are compared in the simulation. 

The Agilon system is introduced in chapter 3. The aim of the chapter is to create an 

understanding of the modularity of the systems and the extensive number of configura-

tions which can be created from the modular product structure. Understanding the prod-

uct structure is important to clarify the concepts and operations modelled in the simula-

tion. The chapter consists of two sections. The first section lists the different modules 

that make up the Agilon units. The second section showcases the types of systems Agi-

lon can be configured. 

The two material handling concepts are presented in the fourth chapter. The chapter first 

explains some common things and compares e.g. the order penetration points in the 

different approaches. The CTO process emulates the actual operations in use at the 

case company while the MTO process tries to approximate the operations as they would 

be operated if the company utilized an MTO process. 

The 5th chapter first explains the basis on which the simulation was created and then 

explains on its limitations and inner workings further. Key things are demand and system 

modelling, key variable calculation and the simulation’s flow logic. An important aspect 

of creating the model was also to validate its results. This was done by running the sim-

ulation multiple times with different test-variables and analyzing whether it created con-

sistent results. Also, it was analyzed if the results adhere to the real-life performance of 

the process. Lastly, the 5th chapter elaborates on the structure of the simulation. 

The sixth chapter lists the results of the simulation. The results are first analyzed from 

the point of view of inventory investment. First the section gives an overview of the in-

ventory investment and compares the processes’ results. After that the individual impact 

of the simulation’s input variables is analyzed by conducting a regression analysis. The 

second part of the chapter analyzes the delivery reliability results in terms of percentage 

of late deliveries, delivery times and capacity utilization. 

The seventh chapter consists of the evaluation of the results and discussion how the 

results match up to the theories and concerns in the literature review. The discussion 

with the literature aimed to identify notions and ideas which enforce or supplement the 

prior research done on the subject. The research was then critically evaluated to identify 

possible shortcomings. Lastly, the section provides managerial implications and direc-

tions for future research. 
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2. THEORY BACKGROUND 

This chapter consists of a literature review of the most significant theory concepts behind 

this research. The intention was to present topics which have an impact on a company 

which produces complex configurable systems in an environment with a high degree of 

demand uncertainty. This was carried out by going through the topics in a progressive 

manner, starting from the more abstract external forces and proceeding to the more con-

crete actions and strategies for a company in this type of environment. 

In practice this means that first section 2.1 gives an overview of the variation and uncer-

tainty a company faces in its business environment. The subsections give more insights 

about demand uncertainty, which is the main type of variation occurring in the simulation 

model. The details of the simulation are discussed in chapter 5. Section 2.2 then explains 

the concept of mass customization, which is a way to competitively provide variable prod-

ucts. The subsections 2.2.1 and 2.2.2 dive deeper into the tactics of achieving successful 

MC through lowering costs and dealing with uncertainty. Section 2.3 goes through the 

different strategies by which a company strives to fulfill customer demand. The first sub-

sections elaborate on how positioning the order penetration point affects a company’s 

operations. The subsequent subsections describe the theory behind the order fulfillment 

strategies used in the simulation. A summary of the theory background is synthesized 

based on the main principles of this research in section 2.4. Lastly, section 2.5 discusses 

the implications of the theory from the point of view of the case company. 

2.1 Supply chain uncertainty 

A company faces multiple types of variation in its operations. Simangunsong et al. (2011) 

describe supply chain uncertainty as the uncertainties and risks which can take place at 

any point in the global supply chain network. This section will first give an overview of 

the types of uncertainty a company has to deal with and how this uncertainty can be 

handled. First a broad overview is given, and the scope is then narrowed down to the 

factors which are the most relevant for this research. 

In their literature review Simangunsong et al. (2011) give an extensive view on the un-

certainties a company faces. They conclude that supply chain uncertainty is caused by 

the following three types of factors: 

• Internal organization uncertainties 

• Internal supply-chain uncertainties 
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• External uncertainties 

The internal organization uncertainties consist of uncertainties originating from the com-

pany in question, e.g. the company’s manufacturing processes and product characteris-

tics. The internal supply-chain uncertainties are uncertainties that arise from things that 

are controlled by the company or its supply chain stakeholders. These include for exam-

ple end-customer demand and supplier performance. Lastly the external uncertainties 

are factors from outside the supply chain such as government regulation or natural dis-

asters. (Simangunsong et al. 2011) 

A pioneering article written by Davis (1993) identified that the three main sources of un-

certainty in a company’s supply chain are: suppliers, manufacturing and customers. 

These can be derived to the three main types of uncertainty: supply, process and de-

mand uncertainty. (Davis 1993) The first two are part of the internal supply-chain uncer-

tainties and therefore are only partially in control of the focal company. The process un-

certainty represents the internal uncertainties. 

The uncertainty in a company’s processes is detrimental because it creates costs in the 

form of stock-outs, excess capacity and inventory buffers (Christopher & Holweg 2011). 

Uncertainty is also the main culprit behind the late deliveries, machine breakdowns and 

order cancellations a company faces in its daily operations. Basically, inventories are 

kept only to account for uncertainty (Davis 1993) 

Angkiriwang et al. (2014) divide the means to mitigate uncertainty into two categories: 

proactive and reactive strategies. Simangunsong et al. (2011) categorized them into 

strategies which try to cope with uncertainty and strategies which attempt to reduce un-

certainty. These approaches have a similar ideology behind them: Some strategies try 

to proactively reduce uncertainty and other strategies strive to improve the ability to live 

with and react to the effects of uncertainty. The strategies have an interesting antagonis-

tic relationship. The proactive strategies can be linked to the waste-eliminating philoso-

phies of Lean and JIT, while the reactive strategies are trying to increase buffers and 

waiting periods into the processes to create stability. 

The proactive strategies try to redesign an organization’s operations to reduce the en-

countered level of variation. Some examples of uncertainty reducing strategies are: Lead 

time reduction, setup time reduction, postponement, outsourcing and subcontracting. 

The reactive strategies are often trying to add buffers to a company’s processes to ac-

count for variability. Classic examples of reactive coping strategies include safety stock, 

capacity buffer and safety lead times. (Angkiriwang et al. 2014) These strategies don’t 

come without a cost, however. Battling uncertainty increases costs and therefore a good 
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compromise between the costs, actions and the benefits is needed to succeed (Davis 

1993) 

2.1.1 Demand uncertainty 
The operations and processes of a company are dictated to a very high degree by the 

demand for its products. The demand patterns steer the production planning and pur-

chasing and variations in demand make planning operations increasingly difficult. 

(Nyaga et al. 2007) 

Balancing supply and demand is a considerable problem for all manufacturing compa-

nies. Companies need to prepare for future demand quite a bit in advance. This creates 

risks if e.g. demand forecasts differ from the actual demand. (Heikkilä & Ketokivi 2005, 

pp. 117, 119) Deviations from the forecasts cause for example increases in inventories, 

increased risk of component or end-product obsolescence (Zäpfel 1998) 

The variation in demand can present itself in multiple ways. The mean volume of de-

mand, the variability between the highest and lowest demand and the demand mix of the 

end products can differ greatly from period to period. (Harrison & Skipworth 2007) In the 

case of configurable products the uncertainty regarding the product mix can be defined 

as configuration uncertainty as the product is the same but the configuration is different 

(Chen-Ritzo et al. 2010). 

As forecast-errors are a big factor in demand uncertainty, a good way to increase robust-

ness against demand variation is to increase the accuracy of forecasts. This can be 

achieved by reducing the time-horizon of forecasts by postponing the differentiation of 

products. (Yang et al. 2004) Another approach to reducing demand uncertainty is post-

poning the manufacturing processes until the customer has placed an order. Customer-

order based delivery processes can eliminate almost all the demand uncertainty. (Zäpfel 

1998) However, this often comes at the cost of longer delivery times which the customer 

doesn’t always tolerate. (Yang & Burns 2003) There are many ways of trying to cope 

with uncertainty. The next subchapter discusses some of these answers in more detail. 

2.2 Mass customization 

Stevenson (2011, pp. 150) states that companies like producing standardized products 

because they enable high product volumes with relatively low costs. However, because 

customers prefer a wide variety of products with low prices, standardization doesn’t al-

ways cut it. Therefore, manufacturing companies need to try and solve this dilemma. For 
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some companies, the answer is mass customization. (Stevenson, W. J. 2011, pp 149-

150) 

It is generally accepted that the concept of mass customization was first coined by Stan-

ley M. Davis in 1987. (e.g. Duray et al. 2000; Partanen & Haapasalo 2004; Guo et al. 

2019) It has since been researched and utilized extensively from multiple perspectives. 

The literature review done by Fogliatto et al. (2012) identified the fundamental principle 

in mass customization as the co-existence of customized products and economies of 

scale in production. 

As stated above, the basic need for mass customization arises from the need to simul-

taneously provide customized products and to keep the company’s operations efficient. 

While there are multiple ways to define it, MC is a way to provide customized products 

that fit individual customers’ needs while taking advantage of the benefits of mass pro-

duction. (Partanen & Haapasalo 2004; Haug et al. 2009) 

There are many ways to achieve mass customization. Generally, the actions have some-

thing to do with modularity, postponement or both. (e.g. Duray et al. 2000; Salvador et 

al. 2002; Stevenson, W. J. 2011, pp 150; MacCarthy 2013) While there are many types 

of modularity and postponement, for the purposes of this research the focus will be on a 

modular product architecture and delayed differentiation of a product. These actions are 

elaborated on in the following sections. 

2.2.1 Modular product architecture 
A modular product architecture enables manufacturers to create a large variety of prod-

ucts from a smaller set of parts (Duray et al. 2000). This is achieved by creating modules 

by grouping components into subassemblies. The modules can then be combined in 

different ways to create end products with different capabilities and appearances. (Ste-

venson, W. J. 2011, pp 150) Figure 2 shows how a modular product architecture creates 

an hourglass shape as the variation is smaller on the module level than on the compo-

nent or product variant levels. 
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Figure 2: Illustration of the hourglass shape created by a modular product structure 
(adapted from: Heikkilä et al. 2002, pp. 13) 

Ulrich (1995) describes that product architecture is defined by the following three ele-

ments: 

• The arrangement of functional elements 

• The mapping from functional elements to physical components 

• The specification of interfaces among interacting physical components 

As the name implies, the functional elements combine to create the function of the prod-

uct. The arrangement of the functional elements means the way they are connected to 

perform the tasks they are intended to perform. Some elements only interact with differ-

ent functional elements while others interact with external entities, such as the environ-

ment in which the product is used. (Ulrich 1995) 

The mapping of functional elements to physical components determines the sets of com-

ponents which implement the different functional elements of the product (Ulrich 1995). 

These sets of components will make up the modules which are then combined to create 

the product. 

Lastly, the specification of the interfaces shows how the modules interact with each other 

(Ulrich 1995). The interfaces in a product determine how the modules fit together, con-

nect and communicate. (Baldwin & Clark 1997) These interfaces are essential for real-

izing the benefits of modularity as they make the mixing and matching of different mod-

ules possible. (Sanchez & Mahoney 1996)  
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Ulrich (1995) lists three different types of modularity: slot-modular, bus-modular and sec-

tional-modular. These types differ from each other by the way the interactions between 

modules is coordinated (Ulrich 1995). The three different types are illustrated in figure 3. 

 

Figure 3: The three types of modularity (adapted from: Ulrich & Eppinger 2012, 
pp. 186) 

In the Slot-modular architecture the different functional elements have a slot in which 

they can be set into. The modules can’t be interchanged due to the slots having different 

types of interfaces, as seen in figure 3. (Ulrich & Eppinger 2012, pp. 186) The slots can 

accommodate different styles of modules if the interface is the same. For example, a 

computer can have different graphic cards as long as the connection to the rest of the 

system is standardized. 

The bus-modular architecture connects the modules with a common bus. The connecting 

interfaces are uniform so the modules can be attached to the bus in any arrangement. 

An example of this is an expansion card for a pc. (Ulrich & Eppinger 2012, pp. 186) The 

card can have e.g. several USB-ports to which external USB-devices can be attached in 

any order.  

In a sectional-modular architecture there is no single connecting module as in the earlier 

two types. The modules are connected to each other by identical interfaces which allows 

for multiple end-product variants. Piping systems are an example of sectional modularity. 

(Ulrich & Eppinger 2012, pp. 187) 

Ulrich and Eppinger (2012, pp. 187) state that the slot modular architecture is the most 

common one as most of the time the individual modules demand different styles of inter-

faces. This is because of the unique interactions the different functional modules are 

meant to perform. The other two types are better when the end products need to have 

wide variety but can be connected uniformly. (Ulrich & Eppinger 2012, pp. 187)  

The modular architecture also comes with many benefits. Product modularity has been 

found to reduce costs, improve quality and make production more flexible (Jacobs et al. 

2007). As different end products share some common modules, the modules can be 

produced in bigger volumes. (Ulrich & Eppinger 2012, pp. 189) This standardization and 
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its effects is at the core of mass customization as companies strive to achieve the ben-

efits of mass producing. 

While it enables standardization of processes while providing variety, the modular prod-

uct structure can technically restrict the variety when compared to products which are 

assembled from the component level, as there are less building blocks from which the 

product is assembled (Stevenson, W. J. 2011, pp 150-151) Another possible downside 

of modular product architecture is that the system-level design phase is of utmost im-

portance (Ulrich & Eppinger 2012, pp. 191). If something goes wrong there, the company 

might not be able to realize the benefits. 

2.2.2 Delayed differentiation 
Delayed differentiation, also called form postponement, is a strategy which allows greater 

standardization of operations and reduces uncertainty in a company’s manufacturing 

process. (Su et al. 2005) It means processing some of the uniform steps in a product 

family’s manufacturing process first and delaying the differentiating steps until later parts 

in the supply chain. (Stevenson, W. J. 2011, pp. 150)  

Delaying differentiation is in part enabled by a modular product structure. Ulrich and Ep-

pinger (2012, pp. 199-200) give a fitting example of this. In the case of an electrical 

device marketed to different countries a different power supply is needed for some coun-

tries. If the power supply is integrated to the design, every country needs a different 

manufacturing process for the product. If the power supply is a module in a modular 

product architecture, the whole manufacturing process can be standardized to a point in 

which only the power supply is added prior to final packaging. (Ulrich & Eppinger 2012) 

MacCarthy (2013) also notes that if the degree of customization wanted by the customer 

can be achieved through modular product structure and postponement, it can be a very 

good operational strategy to implement. 

As Pagh and Cooper (1998) state, a classic example of delayed differentiation is painting 

the products only after the customer has decided which color is the best. Therefore, all 

the other production steps can be done before this in a standardized way. (Pagh & 

Cooper 1998) If the components would be painted before assembling the final product, 

the number of different components would be considerably larger as there would be a 

need for each component in each color. 

Harrison and Skipworth (2007) list three things that should be considered when planning 

a manufacturing process which implements delayed differentiation to get the best results: 
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• Previously added value should not be decreased during the delayed differentia-

tion process. 

• The postponed processing time should be short compared to the total manufac-

turing process time. 

• The number of generic products should be kept to a minimum and each variant 

should have high volume demand and low demand variability. 

The first argument implies that if reworking is needed due to the postponement the ben-

efits are easily lost. Secondly, if the differentiation processes are very long and diverge 

from each other a lot, the benefits of the common processes can turn out to be too small 

to be profitable. The third argument stems from the fact that the target is to benefit from 

extensive standardization and if the number of generic products becomes too large, the 

level of standardization might remain too low to be beneficial enough. (Harrison & Skip-

worth 2007) 

As stated before, postponing the differentiation of product reduces the number of differ-

ent components which need to be kept in inventory. For producing a large variety of 

products, delaying the differentiation has been shown to reduce the capital tied-up in 

inventories greatly. (Pagh & Cooper 1998; Appelqvist & Gubi 2005)  

In addition to reducing inventories and providing a more standardized way to produce 

variety, delayed differentiation can also fulfil another basic customer need, the speed of 

delivery. Performing production steps in advance will naturally decrease the time a cus-

tomer has to wait after placing an order. Delaying differentiation can likely decrease the 

delivery time to just a fraction of what a non-postponed manufacturing process can 

achieve. (Appelqvist & Gubi 2005; Harrison & Skipworth 2007) 

2.3 Different approaches to order fulfillment 

Order fulfillment is the process of responding to and delivering customer orders. Steven-

son (2011, pp. 682-683) lists the following four approaches as some of the most common 

strategies: 

• Engineer-to-order (ETO) 

• Make-to-order (MTO) 

• Assemble-to-order (ATO) 

• Make-to-stock (MTS) 
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The key difference between these approaches is the point at which the demand becomes 

defined by the customer rather than a forecast (Olhager 2003). This point is usually 

called either the order penetration point (OPP) or customer order decoupling point 

(CODP), and it is the point where the customer is involved in the process (Vollmann et 

al. 2005, pp. 20). The OPP positions of the different strategies are illustrated in figure 4. 

The dotted lines represent forecast based operations and the continuous lines operations 

that are based on customer orders. 

 

Figure 4: Position of the order penetration point in the different order fulfillment 
strategies (adapted from: Olhager 2003) 

The ETO strategy involves the customer all the way from the engineering phase. The 

products are designed and produced to fit the customers’ specifications. (Stevenson, W. 

J. 2011, pp. 682) The ETO processes often deal with large and complex project deliver-

ies, such as construction projects. As with often with large project-based products, the 

common characteristics of an ETO-environment are a rather long delivery time, high level 

of difference between deliveries and a need for a flexible delivery process. (Gosling & 

Naim 2009) In an engineer-to-order the materials needed for the end-product are not 

clear at the start of the project and they need to be defined as the design process pro-

gresses (Vollmann et al. 2005, pp. 23) 

In the make-to-order approach the customer order launches the production of a product. 

While the products can range a wide variety, the processes of procuring the needed 

materials and producing the product are defined before the customer order. (Vollmann 

et al. 2005, pp. 23) As such in the MTO-process, forecasting involves the types of prod-

ucts the customers might want and how they are produced. 

An assemble-to-order process is a hybrid between the make-to-order and make-to-stock 

strategies (Cheng et al. 2002). It is often associated with delayed differentiation. The 

end-products are assembled to customer order from a prefabricated set of subassem-

blies. ATO-processes often take advantage of a modular product structure to achieve 
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this. The production steps done before the OPP allow for a compromise between variety 

and speed of delivery. (Olhager 2003; Atan et al. 2017) 

The make-to-stock process is often used for standardized products with predictable de-

mand patterns. The OPP is at the point of delivery so the products are kept at the finished 

state and the service level is defined solely by whether the item is in stock or not, as the 

delivery time is usually negligible. (Vollmann et al. 2005, pp. 21-22) As an MTS-process 

often focuses on a rather narrow product range and the focus of the production is to 

compete with cost-efficiency as the process can be optimized to a high degree in terms 

of capacity and inventories. (Olhager 2003) 

2.3.1 The significance of positioning the order penetration point 
As stated before, the order penetration point separates decisions based on speculation 

on future demand from commitment against actual orders (Wikner & Johansson 2015). 

Positioning the OPP has a big impact on the attributes and requirements of a company’s 

order fulfillment process. 

The positioning of the OPP is often dictated by the requirements in the markets. If cus-

tomers require a short delivery time, the OPP cannot be shifted too far backwards. On 

the other hand, if the customers demand a big variety of products, shifting the OPP too 

far forwards can result in huge investments in inventories to keep the required variety in 

stock. (Olhager 2003) 

The commanding factor ruling the OPP position is the ratio between the supply lead time 

and delivery lead time (P/D-ratio). If the delivery lead time requirements are shorter than 

the supply lead time the supply chain is capable of, some process steps need to be done 

in advance of the customer order. This can occur if the products have a long manufac-

turing lead time or if the components have a long delivery time. The component-based 

difference can be accounted for by keeping component inventories, but the longer man-

ufacturing lead time requires some manufacturing steps to be done in advance. (Wikner 

& Johansson 2015) 

Olhager (2003) states that the choice of fulfillment strategy is also influenced by the vol-

atility of demand, as in how much the demand tends to deviate from the mean demand. 

Figure 5 depicts how the different fulfillment strategies fit in terms of demand volatility, 

P/D-ratio. Low demand volatilities can be seen to fit MTS strategies, while higher demand 

volatilities need more customer-based approaches. The P/D-ratio of less than one indi-

cates that a MTO approach could be beneficial while, as mentioned before, P/D-ratio 

over one requires that part of the production is done based on speculation. 
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Figure 5: The applicable order fulfillment processes in terms of demand volatility 
and P/D ratio (adapted from: Olhager 2003) 

Positioning the OPP has a big impact on the delivery process. Shifting the OPP forward 

can reduce the customer lead time and enable better optimization of processes. The 

downsides are that production will rely more on forecasts, product customization can 

become more expensive and a probable increase in work-in-process inventory. Alterna-

tively, shifting the OPP backwards has the opposite effect. Lead times might increase, 

and optimizing processes is harder. However, reliance on forecasts is reduced, easier 

customization is enabled, and inventories reduced. (Olhager 2003) 

The buffer-inventories in a company’s supply chain are usually kept at the OPP. This is 

due to the downstream operations being driven by the customer orders and therefore 

don’t need to buffer against demand variation. (Saeed et al. 2016) Also, the inventory at 

the OPP enables the upstream operations to focus on efficiency as it buffers against 

demand fluctuations and therefore the upstream processes don’t have to drastically react 

to them and risk compromising performance (Wikner & Johansson 2015). 

Before the OPP the aim is to optimize and stabilize the process. However, after the OPP 

the goal is to offer high variety and customization. (MacCarthy 2013) The findings of 

Harrison & Skipworth (2007) add to this notion as they conclude that if the downstream 

activities don’t have enough excess capacity for responding to the demand mix uncer-

tainty, the delivery reliability of the whole process will suffer. 

2.3.2 Make-to-order strategy 
Due to the increasing demand for customized products many companies have their focus 

to producing products after a customer order rather than producing to stock (Chen-Ritzo 

et al. 2010). As discussed in the previous chapter, this is accomplished e.g. by utilizing 
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a make-to-order strategy. This section will elaborate on the concepts and dimensions of 

this approach. 

The MTO strategy is characterized by wide variety of end-products, production orders 

being launched by the customer order and often rather long delivery times (Vollmann et 

al. 2005, pp. 456) As the products are largely customized according to the customers 

specifications, the MTO strategy is quite similar to the ETO strategy. Usually companies 

don’t rely only on one or the another, but often provide a set of MTO products while 

designing some bigger projects with customers. (Willner et al. 2014) 

However, in MTO the products are configured from a pre-determined set of designs, and 

therefore there is no need for as much engineering and design work. The design and 

development phase for MTO products is conducted beforehand according to market fore-

casts. The customer involvement is usually interactions also limited to only the order 

specification phase and delivery. (Willner et al. 2014) 

While the designs of the products are pre-determined, the processes of producing them 

are often not standardized. The customization leads to different material and production 

requirements and different job-routings on the shop-floor. (Stevenson, M. et al. 2005) As 

the demand is quite well defined at the production state, the uncertainty in MTO is often 

not the quantity or timing of the demand but rather the resources needed to produce the 

specified products (Vollmann et al. 2005, pp. 26) 

While the delivery lead times can be long, they can be improved by overlapping sched-

ules due to the different requirements and timetables of the delivery projects. Excess 

capacity in different parts of the process can also help in scheduling the deliveries to 

make the required delivery dates. (Vollmann et al. 2005, pp. 456-457) 

Reliability of delivery is quite hard due to the customized products and long delivery pro-

jects. The delivery accuracy is quite important as lateness in deliveries might cause extra 

costs and early deliveries can be quite inconvenient. (Vollmann et al. 2005, pp. 456-457). 

2.3.3 Configure-to-order strategy 
Configure-to-order (CTO) is a slight variation of the assemble-to-order strategy. The dif-

ference to ATO is that instead of choosing from a standardized list of products, the cus-

tomer can configure a customized product which consists of the available modules in 

arbitrary multiples. (Cheng et al. 2002; Chen-Ritzo et al. 2010) The differences between 

CTO and ATO are quite small. This makes many of the attributes of ATO environments 

applicable to CTO environments. 
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In CTO, inventory is kept at the module level. This can enable fast customer delivery 

times and variable products. CTO is most suitable when the end-product assembly time 

is short compared to either the production time or the replenishment time of individual 

components. (Cheng et al. 2002)  

Due to the final assembly process being relatively short, the delivery reliability can often 

be better than in MTO. This is due to some of the production steps being standardized 

and done in advance. The delivery speed can be improved by reducing the lead times of 

the final assembly steps. (Vollmann et al. 2005, pp 456-457) 

As mentioned in the OPP section, the flexibility of processes downstream of the OPP is 

important. In the case of CTO, it is often called configuration capacity. In high demand 

uncertainty situations, the capacity to produce the complex products needed by the cus-

tomer is crucial. (Closs et al. 2010) Another important aspect is the processing and con-

figuration of the orders. In the face of variable demand, the quick processing of orders is 

needed to keep the customer service level high. (Nyaga et al. 2007) 

The customization options cause the product structure of CTO products to vary between 

deliveries. This results in an uncertain BOM and more difficult planning of purchasing. 

The accuracy of forecasts and planning can be done by implementing variable quantities 

for components in the bills of material and thereby aggregating the demand to be on the 

level of product families instead of fully configured end-products. (Chen-Ritzo et al. 2010) 

The final assemblies are determined only after the customer demand is known (Vollmann 

et al. 2005, pp. 448-449). 

2.4 Theory summary 

Companies’ face a lot of uncertainties in their processes. The uncertainty affects all as-

pects of the operations ranging from supply, internal processes and demand (Davis 

1993). The uncertainty creates risks which differ a lot in their gravity. Some can be very 

unlikely but have great implications such as natural disasters, while others can be some-

thing as usual as the fluctuations in some manufacturing processes lead time 

(Simangunsong et al. 2011). 

The type of uncertainty studied in this thesis is demand uncertainty. It can appear as 

quantity and mix uncertainty. The quantity of customer demand varies and because a 

company often offers multiple products the shares of the individual products varies in the 

overall demand. (Harrison & Skipworth 2007) In the case of configurable products the 

mix uncertainty is often referred as configuration uncertainty (Chen-Ritzo et al. 2010). 
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To respond to the variations in demand, a company can apply both reactive and proac-

tive measures. The reactive strategies involve buffering against the variation in some 

way, such as adding a safety stock to inventories. The proactive strategies include post-

poning differentiation of products until customer demand is known.  (Angkiriwang et al. 

2014) While these actions help in mitigating uncertainty, they also come with downsides. 

Buffer inventories lead to higher inventory costs and postponement can e.g. lengthen 

the customer delivery time. The response to uncertainty is always a compromise. 

A well-researched approach to providing customized products with close to mass pro-

duction performance is called mass customization. The ways to implement mass cus-

tomization provide ways to respond to highly variable demand with relatively low costs 

and in an adequate time. (Duray et al. 2000) The two main ways of mass customizing 

products for this research are a modular product architecture and delayed differentiation.  

The modular product architecture and delayed differentiation often go hand-in-hand. The 

key is to enable production of standardized products and differentiate them only after the 

customer has placed an order to ensure that the right number of products is produced. 

This allows for standardized manufacturing processes and wide product offering. (Harri-

son & Skipworth 2007) 

The order fulfillment process of a company is dictated by the requirements of the cus-

tomers as well as the production process. If the demand is simple and can be easily 

forecasted, it is often best to try and take advantage of producing standardized products 

to stock with an MTS approach. The other extremity is an ETO process customers re-

quire unique systems which call for different processes and materials for each project. 

(Vollmann et al. 2005, pp. 21-23) 

The strategies used in this research are located between the extremities and include 

some parts of both standardization and customization. MTO processes create custom 

products when the customer orders a product. All the production steps are done after 

the customer order. However, the product is not truly customized as the attributes are 

chosen from a set of pre-designed options, which were engineered beforehand accord-

ing to a forecast. This allows for a high level of customization and reduced inventories 

but entails a longer customer lead time. (Vollmann et al. 2005, pp. 23; Willner et al. 2014) 

A CTO process tries to provide shorter delivery times by producing standardized mod-

ules in advance from which the final product is configured according to the customers’ 

needs. The lead times can be shortened quite a lot, but the company will have to rely 

more on forecasts and invest more into work-in-progress inventories. (Cheng et al. 2002) 
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3. OVERVIEW OF THE AGILON-SYSTEM 

Agilon is an automated material-handling solution which gives the customer a transpar-

ent view of the material flows in the system in real time. Agilon consists of an automated 

warehouse system and the supporting web-applications. This study focuses on the man-

ufacturing process of the warehouse systems.  

An example of an Agilon warehouse system is shown in figure 6. The main elements of 

the system are the robot which can be seen in the cutoff at the top of figure 6 and the 

access point, located in the bottom-right corner of figure 6. 

 

Figure 6: An Agilon warehouse 

Agilon systems are configured to all customers individually. The product is based on a 

modular structure which allows for a high level of versatility. The amount of access points 

and robots as well as the dimensions of the system can be determined to fit the cus-

tomer’s needs. This makes it so that each Agilon-delivery uses the same basic modules 

but the contents of each delivery changes depending on the configuration. 

The modular product structure of an Agilon system is shown in figure 7. The green boxes 

indicate that the module has a fixed bill of material (BOM) and it doesn’t change depend-

ing on the dimensions of the system. The blue boxes are modules that have differing 

bills of material based on the dimensions and features of the system. 



22 
 

 

 

Figure 7: The different modules in an Agilon system 

While the access point and robot have fixed product structures, the number of these 

modules can vary between systems. On the other hand, each Agilon system only has 

one frame module, which includes some fixed and some variable elements. An Agilon 

frame is shown in figure 8 and the rest of the modules are displayed in Appendix A. 

The robot is the most complex module in an Agilon system. It consists of a lifter and a 

capsule. The lifter moves on the drive rail in the ceiling of the Agilon and adjusts the 

height of the capsule to access the items in the warehouse. An agilon can have either 1 

or 2 robots. The robots handle the packages inside the Agilon. 

The access point works as the interface between the robot and the user. It is used to 

access the packages inside the Agilon. An access point consists of a loading station and 

a mask. The mask and loading station can be changed individually, but the whole module 

doesn’t work without both. For the purposes of this study, the access point is handled as 

a single module. 

As seen in figure 7 some of the contents of the frame module depend on the configuration 

of the system, while the others are fixed. The fixed frame parts are the components that 

an Agilon frame always has. These include the winch rail and its components, and the 

power supply for the conductor rail from which the robot draws electricity. However, the 

fixed parts of the frame make up quite a small percentage of the total parts in a frame, 
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as most of the components naturally depend on the size of the frame. These include for 

example the vertical frame poles, cover sheets and the shelves. The cover sheets are 

the sheets which create the outside walls. The number and configuration of the shelves 

depends on what type of items the customer is going to store in the system. An Agilon 

frame with 1 access point is shown in figure 8. 

 

Figure 8: A standard Agilon system 

Retail units tend to be a lot smaller than industrial units. The frames in retail units are 

also a bit sturdier than in their industrial counterparts to protect from vandalism but most 

of the functional elements are very much the same. The access point mask is designed 

to allow usage by people with disabilities. A retail unit is show in figure 9. 
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Figure 9: A retail Agilon 

The Agilon can be configured to meet the customer needs with some additions to the 

frame module. For example, when two or more parallel units next to each other con-

nected by a 180-degree rail curve, it is called a stacked Agilon. The stacking allows for 

more efficient usage of floor space. An Agilon can also have an underpass which can 

get the system over e.g. walkways or conveyor systems while utilizing the empty space 

above those for storage space. Different Agilon storage units can also be linked with 

connection tubes. The tubes can be fitted with curves and slopes to allow the connection 

even in complicated situations. Example pictures of these additions can be found in ap-

pendix B. 
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4. THE PROCESSES 

The two different order fulfillment processes are explained in this chapter. First, a brief 

overview of the processes and the factors influencing them is given. The following sub-

sections describe the processes more closely and explain the policies in place in the 

purchasing of components. The main factors, strategies and performance metrics are 

depicted in figure 10. The blue boxes are present in both approaches while the orange 

box, postponement, only affects the CTO approach. The performance metrics will be 

elaborated on in chapter 5. 

The external effects influencing the processes in the simulation are the variation in quan-

tity and configuration of the demand. This is the only type of uncertainty present in the 

simulation as supply and manufacturing lead times are set to be constant. 

 

Figure 10: The factors influencing the processes (adapted from: Angkiriwang et al. 
2014) 

The proactive measures to account for the demand uncertainty stem largely from the 

modular product architecture. In both approaches the sharing of components and mod-

ules helps in standardizing the processes and reduces the number of components 

needed. The main difference in the proactive strategies is that the CTO approach utilizes 

delayed differentiation while the MTO approach does not. The common modules be-

tween pretty much all the systems, robots and access points, are manufactured before 

the customer order according to a forecast. For the terms of this simulation it should help 
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especially if the assembly processes would face congestion due to large orders in sub-

sequent weeks. 

The main reactive strategies are capacity buffering and safety stocks. The capacity buff-

ering is done similarly in both strategies. Determining the size of the buffers is done 

similar to the approaches of Nyaga et al. (2007) and Closs et al. (2010). They set the 

lowest level at the capacity to meet the mean demand, and two levels at set intervals 

higher. Closs et al. (2010) set the buffers as follows: first 100% of mean demand, second 

at 150% and third at 200% of the capacity needed to satisfy the mean demand. Nyaga 

et al. (2007) set the levels at 100%, 125% and 150% respectively.  

The appropriate buffer-levels for this simulation were seen to be in between those ex-

amples, and only the lower and upper limit were needed as the simulation chooses ran-

dom variables between the limits. The lower limit was set at 120% and the upper limit at 

200% of the capacity needed to meet the mean demand. Later in this study the capacity 

levels are marked as percentages of the maximum demand, which means they are 60% 

and 100% respectively, as the maximum demand is double the mean demand in this 

research. 

Keeping safety stock is a good method to account for uncertainty in demand quantity 

(Vollmann et al. 2005, pp. 487). While both approaches utilize them, the safety stock 

policies differ a lot. The MTO process only keeps buffers for the items which have a 

longer supply delivery time than the promised customer delivery time. This means that 

all the items with a shorter supply lead time are ordered only after the customer order is 

set. The MTO process does not keep modules in inventory. The CTO process keeps 

buffer stocks for the modules and all the components, except the highly variable frame 

components with a relatively short lead time. This is done to keep the module inventories 

at the wanted levels to provide delivery reliability. 

As probably evident from the safety stock policies, the OPP is positioned rather differ-

ently between the processes. Figure 11 depicts the positioning of the OPPs in the pro-

cesses. The grey arrow indicates that the process steps are done based on a forecast, 

while the blue arrow shows the steps which are done according to the actual customer 

order. The OPP is set at purchasing phase in the MTO process. This means that most 

of the purchasing and all of the manufacturing is done after the customer order. 
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Figure 11: Positioning of the OPP in the processes 

The CTO process has the OPP a lot more downstream. The OPP is set at the picking 

phase, which means that all the assembly phases which are done at the factory should 

be done before the customer order and the order is configured and picked from the com-

ponent and module inventories. However as mentioned before, some high variance 

frame parts are purchased after the order. Also, if there is a high peak in demand, the 

OPP might creep upstream towards the module assembly phase due to module inven-

tories decreasing below the set levels. 

4.1 Configure-To-Order Process 

The CTO process follows the actual processes of the case company quite closely. The 

process buffers against the demand variance with component and finished goods inven-

tories which hold a set number of modules and components which are then assigned to 

deliveries. The finished module buffer can be set depending on the forecasted demand 

levels and thus leveling out spikes in demand that would otherwise strain the production. 

The basic outline of the process is shown in figure 12. 
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Figure 12: The outline of the CTO process 

As seen in picture 12, the first thing that launches the process is the sales order. The 

sales order is then processed into a picking list, which has the BOM of the ordered sys-

tem. The items needed in the picking list come from three different sources. The first is 

the module inventory, which is the inventory for the robots, loading stations and masks. 

Component buffer is the actual component inventory. Lastly, the supplier network pro-

vides the parts which vary a lot depending on the configuration of the system e.g. the 

frame poles and shelves. 

When an order is placed, the needed modules and components are taken from the com-

ponent and module inventories which triggers replenishment orders and production sug-

gestions upstream. This can be seen in figure 12 as the lines which have demand-based 

replenishment next to them. The component buffer is replenished from the supplier net-

work as items are used up in assemblies and deliveries. The module factory also replen-

ishes the module inventory as modules are assigned to deliveries. As there usually is no 

need to assemble modules for deliveries, the order can be picked and ready to deliver 

to the customer site for installation quite quickly. 

The maximum level of module inventory is tied to the weekly production capacity of a 

module. This makes the size of the module inventory consistent with the input variables 

of the simulation scenarios. It also means that less module inventory is kept in the sce-

narios with less capacity. The value of the module inventory is calculated by values which 

include the work needed in the assembly process. 

The basic concept of statistical inventory management was created in the classic article 

written by Wilson in 1934. He broke the inventory control issue into two parts: order 
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quantity and reorder point. (cited by: Hopp & Spearman 2000, pp. 64) This is a simple 

and effective way to handle the inventory control problem, and therefore the CTO pro-

cess the orders for the buffered components are done with a reorder point approach. 

Also, this type of rate-based material planning works well upstream of the OPP, where 

the production is standardized with a limited set of end-products. (Vollmann et al. 2005, 

pp. 457-459; Saeed et al. 2016) 

For the purposes of the simulation the reorder point, safety stock and lot size calculations 

were kept as simple as possible, disregarding the possible differences inventory holding 

costs and setup costs make. The more in-depth calculations for these variables can be 

found in chapter 5. 

When using the reorder point method, a batch of items is ordered when the inventory 

level of an item drops below the set reorder level, which is called the reorder point. The 

goal is to place an order when the inventory at hand is enough to satisfy the demand for 

the components supply lead time. (Stevenson, W. J. 2011, pp. 578) 

The reorder point calculation also includes the safety stock. The safety stock is used to 

maintain an adequate service level and to reduce the possibility of a component stocking 

out. (Vollmann et al. 2005, pp. 145) The service level in the simulation is set at 95%. 

The lot-sizing policy for the buffered components is a fixed reorder quantity (FOQ). The 

fixed order quantity approach can yield optimal results if the demand for components is 

quite uniform. This can happen if it is used to order lower level components which can 

be used in a variety of end-products, as is the case in this process. (Stevenson, W. J. 

2011, pp. 524-525) 

In practice the FOQ approach means that when the inventory level drops below the re-

order point, a pe-determined quantity is ordered. The order frequency will fluctuate de-

pending on the variations in demand. (Vollmann et al. 2005, pp. 144-145) If the safety 

stock has been utilized to satisfy the demand in one period, the deficiency needs to be 

added to the lot quantity. This is done to replenish the safety stock back to the determined 

level. (Hopp & Spearman 2000, pp. 129) 

The non-buffered items are ordered with a lot-for-lot policy. They have a rather short 

delivery time and due to their high variability keeping them in stock is not sensible. The 

lot-for-lot ordering policy minimizes the inventory kept due to the exact order sizes mak-

ing sure that no extra inventory is kept (Hopp & Spearman 2000, pp. 125). 
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4.2 Make-To-Order Process 

The MTO process aims to reduce the inventory needed by delaying the ordering of the 

components needed until the customer order has been received. The process is not a 

pure MTO process as it does buffer some components to keep the customer delivery 

time reasonable, but otherwise it resembles a classic MTO process very closely. The 

process is presented in figure 13. 

 

Figure 13: The outline of the MTO process 

This process has the same elements as the CTO with one key part missing as in this 

process the modules are assembled after the order has been placed there is no module 

inventory. The process starts similarly with the sales order and picking list which state 

which components and modules are needed to fulfil the order. 

The picking list triggers the component orders for the parts which have a shorter delivery 

time than the promised system delivery time. It also launches production orders for the 

different modules, but the assembly is not done before the ordered parts arrive. To keep 

the system lead time reasonable, the parts which have a longer delivery time than the 

promised system delivery time need to be buffered. Some components have quite long 

delivery times, so the component buffer needs to be large enough to account for that. 

After all the modules are assembled and the other components arrived, the system can 

be delivered to the customer for installation. 

In the MTO-process, no module inventory is kept, and all the components are ordered 

with a lot-for-lot policy. This enables the minimizing of inventory  as the exact need for 

the components is known when the orders are placed (Hopp & Spearman 2000, pp. 125; 

Stevenson, W. J. 2011, pp. 524). 

The component buffer inventories are kept at levels which will enable an adequate ser-

vice level. They are calculated in a similar way to the CTO process with the goal to reduce 
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the probability of stocking out. The buffer inventory is essentially set at a level which the 

process is likely to use up during the difference between the supply lead time and the 

delivery lead time. 

4.3 Summary 

This chapter summarizes the differences between the processes. The main difference is 

that the CTO process keeps buffer inventories at both the component level and finished 

module level, while the MTO process manufactures everything only after the customer 

order. The differences are summarized in table 2. 

 

Table 2: Summary of differences in the processes 

 CTO MTO 

OPP Picking Purchasing 

Purchasing Reorder point Customer order 

Lot-sizing (normal 

components) 

Fixed order quantity Lot-for-lot 

Buffer inventories Most components, Shuttles, APs Components with long lead times. 

Production strategy 

upstream of OPP 

Pull. FG deficiencies launch pro-

duction orders for assemblies. 

None 

Production strategy 

downstream of 

OPP 

Push. Customer orders launch 

order picking from inventories. 

Push. Customer orders launch 

module assemblies and delivery 

picking. 

 

In the MTO process, the OPP is set at purchasing. The customer order launches the 

purchasing of the needed components. In the CTO process, the OPP is set at picking. 

At this point the variable frame parts are ordered and the other items are picked from the 

inventories, if available. The purchasing of the rest of the components is triggered by the 

reorder points set for the components. If after a module assembly the inventory level of 

a component dips below the reorder point, a replenishment order is placed. 

The lot-sizing is fixed order quantity for CTO and lot-for-lot for the MTO process. The 

fixed order quantity was chosen due to its advantages in rate-based operations upstream 

of the OPP. In MTO, the lot-for-lot was chosen to minimize inventories. The variable 
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frame components are ordered lot-for-lot in both processes as it is the most sensible 

option for items which have high variance and short supply lead time. 

Both processes keep buffer inventories at the component level. On the MTO side the 

buffer inventories are held to enable shorter customer lead times. The CTO process 

keeps them to enable pull-based module inventory replenishment. The CTO process 

also keeps module inventories for smoother capacity utilization and faster delivery times. 

The CTO process utilizes rate-based pull production strategy upstream of the OPP and 

a push strategy downstream. Upstream the assemblies are triggered by the need for 

module inventory replenishment and downstream the customer order pushes the picking 

of deliveries into the schedule. The customer order launches both the assemblies and 

picking of deliveries in the MTO process. 
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5. SIMULATION 

The simulation was implemented by creating a model that emulates the processes of the 

Agilon factory. The simulation model was created with a python script. The script simu-

lates a set number of weeks during which the demand of Agilon systems is randomly 

generated within the set minimum and maximum demands. During the simulated weeks 

the Agilon factory works to meet the demand by assembling the needed modules and 

keeping inventories at set levels. The factory has a predetermined capacity to produce 

different modules each week. 

The configurations of the systems that the demand consists of are based on the currently 

installed Agilon systems and predictions of future demand. The different modules that 

make up the systems will have simplified one-layer BOMs. The components in the BOMs 

are the most used and valuable items to get an approximation of the capital investment 

needed in different situations. 

The simulation comprises of two different processes which were introduced in the previ-

ous chapter. The simulation includes several sets of starting variables that predict the 

possible future scenarios that the Agilon unit might face. Each scenario will be executed 

several times with both processes to get an appropriate approximation of the circum-

stances and possibilities (Robinson 1994, pp. 169). 

The script keeps track of the inventory levels, produced modules and delivery reliability. 

It saves the accumulated data to Microsoft Excel-workbooks which will be used to ana-

lyze the results of the different scenarios. This chapter describes the different aspects of 

the simulation. 

The inventory values in this chapter were substituted with ratios by dividing the inventory 

values with an arbitrary number. This provides a way to compare the values shown in 

this research. The ratios are consistent throughout the thesis. This was done to exclude 

any confidential information from the final version of the thesis. 

5.1 Limitations 

Because simulating the real world with perfect detail is nearly impossible, several simpli-

fications and assumptions need to be made to make the simulation practical (Klee & 

Allen 2011, pp 3; Laguna & Marklund 2013, pp. 99).This chapter goes through these  to 

create an understanding of the scope of the simulation. 
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The data required to accurately model a probability distribution for demand is usually not 

readily available, as is the case in this study (Chen-Ritzo et al. 2010). Due to this, the 

demand was set to be randomly distributed between the minimum and maximum de-

mands for each week. The data of the past demand simply is not comprehensive enough 

to give a good enough approximation of the demand distribution, especially when it would 

need to be projected to the scenarios with vastly higher maximum demand. 

The simulation assumed that the suppliers have unlimited capacity and supply lead times 

remain constant. The simulation focused on the operations in the Agilon factory, and 

therefore the supplier’s performance was not relevant. This was due to the research fo-

cusing on demand-variability. 

The manufacturing lead time of the different modules was also constant. There were no 

complications in the production apart from delays caused by possible stockouts. If the 

needed components were available and there was capacity left on the week, the module 

could be produced. If not, the module was not manufactured and the eligibility for as-

sembly was checked again the following week. 

Because the frames are assembled after the delivery at the customer site, the frame-

modules were handled a bit differently to the access points and robots. The weekly man-

ufacturing capacity of all the different frame types was infinite as they are only picked 

from inventory and little to no other production steps are needed. 

The module assemblies were set to happen at the end of the week and as such the 

inventories changed on a weekly basis. This enabled benefiting from the advantages of 

discrete-event nature of the simulation, e.g. simpler structure and time-compression (La-

guna & Marklund 2013, pp. 257-259). 

The order processing, inventory handling and picking was assumed to happen instantly. 

For example, when a lot of items arrives, it is immediately placed into available stock. 

Similarly, the deliveries that have all the needed modules are instantly taken away from 

the finished goods inventory and marked to be delivered. 

The promised delivery times might change depending on the current order situation or 

for example if the customer orders the system to be delivered a couple of months from 

now. In the simulation the customer delivery times were constant, and the system was 

marked as late if this time is exceeded. 

The inventory capacity of the Agilon factory is assumed to also be infinite. This is done 

because the aim of the simulation is to see how the inventory value will fluctuate in the 

different scenarios and restricting the inventory levels might affect the results.  
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5.2 Modelling uncertainty 

This chapter goes through how the simulation mimics demand uncertainty. The systems 

the simulation creates for the demand are based on the currently installed Agilon sys-

tems. The demand uncertainty can be divided to demand mix and demand quantity un-

certainty.  

The quantity of weekly system demand is based on a uniform distribution ranging from 

zero to the maximum demand in each scenario. In practice it means that if the maximum 

weekly demand of a scenario is for example 4, the weekly demand can be 0, 1, 2, 3 or 

4. The possibility for each is therefore 20%, as there are five options. This is a simple yet 

effective way to emulate the fluctuation of weekly demand, as there is not enough data 

to project past demand to the higher demand scenarios in a reasonable way. 

In this simulation the mix uncertainty derives from the way the system configurations are 

modelled. Simplifications were made to decrease the complexity of the system model-

ling. The more unusual features of the installed systems such as tubes and underpasses 

were deemed redundant for the purposes of this study. 

Chen-Ritzo et al. (2010) note in their simulation study that a relatively reliable distribution 

for the product configurations can be determined with data from the previous deliveries. 

This method was utilized to calculate the probability distributions which determine how 

the simulation creates configurations for the systems. 

The two Agilon product types are industrial and retail. Based on the number of installed 

systems, the ratio of product type demand was determined to be roughly 75% to 25%. 

This means that about three quarters of the systems are likely to be industrial systems 

and the rest retail systems. 

Considering the simplified structure for the systems in the simulation, the three distinct 

factors making up an Agilon system are the dimensions of the frame and the number of 

robots and access points. The calculations for these factors are shown next.  

It should be noted that because there is much less variation in the configuration of retail 

units the simulation only creates retail units have 1 robot and 1 access point. This is true 

for all but one installed retail unit. The size of the average retail frame was calculated 

from all of the installed retail units. 

The industrial frame sizes were generalized into three groups. These three are small, 

medium and large frames. The dimensions for them were determined by dividing the 

previously installed industrial systems into three roughly equal-sized groups by their 

length and calculating the average height and length in each group. One type of retail 
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system was decided to be enough for the simulation as there is a smaller number in-

stalled and less variation in the configurations. The dimensions and probabilities of the 

frame types are shown in table 3. 

Table 3: Dimensions and probabilities of the frame types 
 

Height (m) Length (m) Probability 

Small 5,6 8 25,75% 

Medium 5,6 14 25,75% 

Large 5,1 24 23,5% 

Retail 3,1 4 25% 

 

The dimensions were used to define the number of the variable components needed to 

build them. The probabilities for the different industrial frames were calculated from the 

number of units in each group. The percentages are not the same due to the number of 

installed units not being divisible by 3. They add up to the 75% of total systems, which 

was the probability of a system being an industrial system. 

The access point count in currently installed systems ranges from 1 to 5, but the range 

was limited from 1 to 3 as systems that have more than 3 are rare with less than 10% of 

the systems having more than 3 access points. Due to this, the systems which have 

more than 3 access points were seen as having 3 for the purposes of the calculations in 

this section. The distributions for the number of access points in different frame types 

are shown in table 4. 

Table 4: Probability of the number of access points depending on the frame size 

Access points 1 2 3 

Small 74 % 26 % 0 % 

Medium 39 % 43 % 17 % 

Large 52 % 33 % 14 % 

Retail 100 % 0 % 0 % 
 

Table 4 shows that small systems can only have 1 or 2 access points, while the larger 

units can have any of the three options. The probabilities for the number of access points 

in medium and large systems are quite similar. This is due to the number of access points 

generally being dictated by the intended use of the system rather by its size. 

The robot count in the installed systems can be either 1 or 2. The likelihood of having 

two robots increases in the systems with more access points. As before, the probabilities 

were calculated from the installed systems. The distributions of robots in the systems by 

access point count can be seen in table 5. The total values are used in calculating the 

module demand for robots. 
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Table 5: Probability of the number of robots depending on the number of access 
points 

              Robots 
APs 1 2 

1 100 % 0 % 

2 69 % 31 % 

3 43 % 57 % 

Total 88,7% 11,3% 

 

As table 5 shows, systems with only one access point can only have 1 robot as it would 

be rather nonsensical since adding more would not increase the speed of the system as 

the robots would need to wait for each other to clear the access point area before getting 

to drive past or access the access point. 

With the parameters showcased in this section, there are 13 possible end-product con-

figurations. The configurations are shown in figure 14. The possible configurations can 

be derived by following the arrows. For example, a small industrial unit can only have 

one or two access points while the larger industrial frames can have 1, 2 or 3. The same 

can be seen from table 4. 
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Figure 14: All possible Agilon configurations in the simulation 

The total probabilities in figure 14 are calculated with the probabilities from tables 3, 4 

and 5. The same graph with the possibilities next to the choices can be found in appendix 

D. The probabilities of the choices are multiplied to get the result. An example calculation 

for an industrial unit, which has a medium frame, two access points and one robot, is 

shown in table 6. The example route is highlighted in figure 14 with a green color. 
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Table 6: Example calculation for configuration probability 

Choice Probability 

Medium frame in an industrial system (Table 3) 25,75% 

Two access points in a medium frame (Table 4) 43% 

One robot in a system with two access points (Table 5) 69% 

Total probability 7,7% 

 

To generate the average industrial system models for capacity and purchasing planning, 

the previously presented distributions were used to calculate the average amounts of 

robots and access points for an industrial and a retail system. The average amounts are 

shown in table 7. These numbers work as a pseudo-planning BOMs as the aggregate 

system demand forecasts are multiplied by these factors to get predictions for the corre-

sponding number of robots and access points. The actual calculations for the capacity 

and purchasing can be found in section 5.4.2. 

Table 7: PBOM multipliers for robots and access points 

System Robots Access points 

Industrial 1,15 1,55 

Retail 1 1 

Total 1,11 1,41 

 

As seen in table 7, the average robot count for the industrial Agilon units is 1,15. Most of 

the systems have only one robot. The average for access points if 1,55 which means 

that the systems are likely to have either one or two access points. Due to the 25%-75% 

split between retail and industrial system demand, the weighted averages of the total 

multipliers are closer to the industrial values. 

5.3 Modelling the bills of material 

This section describes how the Agilon BOM was simplified to make it practical to manage 

and how the components were rated in order to pick the most impactful ones to be 

tracked in the simulation. The item and BOM data used in the simulation was gathered 

mainly from the company’s ERP-system. For each component in the modules’ BOMs, 

the price and delivery time were collected. Also, the values for assembled APs and ro-

bots were drawn from the ERP-system. The assembled frame values were estimated 

from different sized frames, due to no exact precedents being available. 

Due to the ERP-system being quite new, all the items didn’t have up-to-date information 

yet. The missing information was gathered either from recent purchase info records and 
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the system used before the current ERP or generalized from the supplier’s usual price 

level and delivery performance. 

The BOM of each module consists of multiple subassemblies. Simulating the production 

of each subassembly is not practical and the scope of the simulation calls for a more 

simplified approach. Therefore, the BOMs were flattened to just a list of all the compo-

nents used in assembling the module and its subassemblies. 

To keep the simulation as simple as possible, the BOMs assigned to the modules needed 

to be fixed BOMs. The robot and the two access point types have a fixed BOM, which 

could be used without any changes.  

The frames require variable quantities of components depending on the dimensions, 

which made determining the BOM harder. An existing BOM with the exact dimensions 

detailed in table 3 was utilized for the retail frame. There were no exact matches for the 

dimensions of the industrial frame types, so a variable BOM was approximated from 

previously delivered systems’ frames. Required quantities of variable components were 

averaged for each frame size to turn the variable BOM into the fixed form needed in the 

simulation. 

It has been shown that the Pareto principle, also called the 80-20 rule, can be applied to 

predict the distribution of many things. The division of invested capital between different 

components in a company’s inventories is no exception. Basically, it means that a small 

fraction of the components held in inventories make up almost all the value. (Hopp & 

Spearman 2000, pp. 587) The Agilon factory is also not an exception, as all the modules 

have dozens, even hundreds, of components, most of which are quite insignificant to the 

overall cost of the module and the total capital tied up in inventories. Therefore a reason-

able approach is to focus the inventory control efforts based on the relative importance 

of the items (Stevenson, W. J. 2011, pp 563). 

The lists were refined with a method closely resembling the multiple-criteria ABC analysis 

method detailed by Vollmann et al. (2005, pp. 157-159). Two criteria were used: price 

and supply lead time. Supply lead time was decided to be the most pragmatic choice for 

the second factor as using other non-cost criteria can be quite complex. Also, the cost 

and the order interval of a component dictate the average investment in inventories, 

which fits the focus of the study well. (Vollmann et al. 2005, pp. 140, 158) 

When refining the item lists, first all the bulk items such as screws and bolts were dis-

carded. These components fall into the C-category, which makes up for most of the ac-

tual number of components, but only a fraction of the cost. They are also managed in 

bulk, which means that individual delivery times and prices were not readily available. 
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All the items were evaluated as they appeared in the data gathered from the ERP, with 

one exception. The cover sheets used in covering the frames come in a multitude of 

sizes and shapes in addition to the basic sheet. Individually the less used cover sheets 

would not be significant, but together they make up a big portion of the total cost due to 

the high amount needed in a system. Also, they all come from the same supplier with 

the same supply delivery time. They were decided to be clumped together with the basic 

sheet with an average price to get a better estimation for the impact of the total invest-

ment in cover sheets. 

After this the actual component selection was performed for each module. To consider 

both criteria, the prices and supply lead times were multiplied together to get a single 

value which indicates the components relative importance. If the module required more 

than one component of the same item, the price was multiplied with the required number. 

In the case of the variable frame components, the average quantity needed was used 

for this selection. 

The values were then sorted in ascending order. A threshold value was determined for 

each module individually to select an adequate number of components which resemble 

most of the value. The 80-20 rule worked as a rough guideline for deciding the threshold. 

Figure 15 shows the distribution of robot components according to the decision criteria. 

The values have been normalized by dividing with the mean of each category. Majority 

of the components is clumped at the bottom of the graph close to the origin of the graph. 

It also shows that the decision clearly manages to select the items with either a long 

supply lead time, a high price or both, while excluding the least significant items.   

 

Figure 15: The distribution of components in a robot 
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The threshold values were determined individually instead of a single value for all mod-

ules to make sure that all modules got a decent sized list of components to be tracked. 

Table 8 shows that the percentage of number of components chosen and the percentage 

of the total value of the components roughly fits the pareto principle for each module. 

Table 8: The component decision variables for the modules 
 

% of items chosen % of total value 

Robot 23 % 75 % 

AP 25 % 75 % 

Retail AP 23 % 79 % 

Retail frame 30 % 76 % 

Industrial frames - - 

 

The industrial frames don’t have the percentages marked in table 8 due to the BOM 

being an approximation and therefore an unambiguous value could not be determined. 

Most of the total value was still definitely tracked. 

5.4 Calculating key variables in the simulation 

This section goes through how the simulation calculates the reorder points, lot sizes, 

safety stock levels for the individual components. However, before explaining them the 

preliminary demand calculations are explained as they are needed to calculate the in-

ventory control variables as they are calculated differently in each scenario based on the 

demand level. 

5.4.1 Module demand 
This chapter explains the concepts of average and maximum module demand as they 

play a major role in the subsequent calculations. The simulation uses the weekly demand 

values for its calculations. In this chapter the maximum demand means the service level 

adjusted maximum demand. 

An important notion in this section is the difference between independent and dependent 

demand. The independent demand is the demand which comes from the customer while 

the dependent demand is the demand for the components which make up the end prod-

ucts (Hopp & Spearman 2000, pp. 110). In this study the system demand is the inde-

pendent demand for whole Agilon systems and module demand is the dependent de-

mand which is derived from the system demand.  

As the independent system demand distribution is uniform, the average system demand 

is half of the maximum system demand. The average dependent demand for the mod-

ules can be derived by multiplying the average system demand with the probabilities of 
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the system including the module, which can be found in tables 3 and 7. Table 9 shows 

an example of the average module demand for a scenario in which the weekly max de-

mand is 8 and the average system demand is therefore 4. 

Table 9: Average weekly module demand levels in a scenario where average sys-
tem demand is 4. 

Module Multiplier Average demand 

Robot 1,11 4,44 

AP 0,75*1,41 = 1,0575 4,23 

Retail-AP 0,25 1 

Frame-S 0,2575 1,03 

Frame-M 0,2575 1,03 

Frame-L 0,235 0,94 

Frame-R 0,25 1 

 

For example, the industrial access points multiplier is the product of the probability of an 

industrial system, which is 75%, and the average number of access points an industrial 

system has (Table 7). Similarly, as every system has at least one robot, the average 

system demand is multiplied with the average number of robots in a system (Table 7). 

The maximum dependent module demand used in the calculations is adjusted to meet 

the service level of 95%. The method used to set the maximum demand is derived from 

the stockout probability  method presented by Vollmann et al. (2005, pp. 144-145) Ser-

vice level is used to create a compromise between the probability of stocking out and 

inventory investment. Buffering against the full variation can be very impractical and 

costly. (Vollmann et al. 2005, pp. 144-145) The basic idea of the method is to utilize a 

maximum demand value for which there is a 95% probability for the weekly demand not 

to exceed it. 

The demand probability distribution is needed to adjust the maximum demand (Vollmann 

et al. 2005, pp. 144). The module demand distributions can be derived analytically, but 

it is quite laborious. Calculating the distribution can be done in a similar way for all the 

modules except the industrial access point. The reason for this is that the other modules 

have two options in any one system, 1 and 2 for robots and 0 and 1 for frames, while the 

number of access points can range between 0 and 3.  

Due to these reasons the probability distributions used in the simulation were decided to 

be approximated with a numerical method. This method could be generalized to fit all 

the modules and all demand scenarios, and it gives an approximation which very closely 

resembles the corresponding theoretical distribution. 
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This section focuses on describing the numerical method and only a brief overview of 

the analytical method is given. The way to derive the analytical solution and the compar-

ison between the numerical and analytical methods can be found in section 5.7.5.  

The total probability distribution for a module’s weekly demand can basically be calcu-

lated as the sum of (n+1) equally probable binomial distributions, where n is the maxi-

mum system demand in the scenario. A binomial distribution is formed by a series of 

yes/no questions where the probability of a yes-answer is constant. The probability for 

each number of yes-answers can be calculated which forms the distribution. (Florescu & 

Tudor 2013, pp. 92) 

In the case of industrial access points there are more than two possible outcomes, as 

the number of access points can range between 0 and 3. Due to this the distributions 

used are not binomial but rather multinomial. A multinomial distribution is a generalization 

of the binomial distribution where the number of dimensions can be more than 2. They 

work with the same principle but with a different equation to calculate the result as the 

set of possible outcomes is larger than 2. (Florescu & Tudor 2013, pp. 219) For the 

purposes of the numerical method this doesn’t make a difference, since the weekly de-

mand can be drawn from 4 choices as easily as 2. 

To mimic the distribution, the simulation calculates an arbitrarily large set of weekly de-

mand patterns, which can then be used to determine the probability for each eventuality. 

Table 10 represents an example distribution of dependent robot demand in a scenario 

with the maximum system demand is 8.  

The total demand was calculated total of 117000 times, 13000 for each independent 

system demand level. This means e.g. that there were 13000 pairs of values for each 

demand level which show how many systems had 1 robot and how many had 2 robots 

that week. The probability of a system having 1 or 2 robots is 88,7% and 11,3% respec-

tively, as shown in the total value row in table 5. 
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Table 10: Data from the example simulation of weekly robot demand 

Demand Systems Robots Probability Cumulative 

0 13000 13000 11,11 % 11,1 % 

1 13000 11566 9,9 % 21,0 % 

2 13000 11565 9,9 % 30,9 % 

3 13000 11849 10,1 % 41,0 % 

4 13000 11576 9,9 % 50,9 % 

5 13000 11707 10,0 % 60,9 % 

6 13000 11603 9,9 % 70,8 % 

7 13000 11699 10,0 % 80,8 % 

8 13000 11738 10,0 % 90,9 % 

9 0 7298 6,2 % 97,1 % 

10 0 2636 2,3 % 99,3 % 

11 0 656 0,6 % 99,9 % 

12 0 100 0,1 % 99,99 % 

13 0 7 0,01 % 100 % 

14 0 0 0 % 100 % 

15 0 0 0 % 100 % 

16 0 0 0 % 100 % 

 

Few examples to clarify the results in table 10:  

• As there was 13000 weeks where the system demand is 0, there was also 

13000 weeks where the robot demand is 0. The probability of robot demand 

being 0 is therefore 11,11%.  

• 13000 weeks where the system demand is 1 were also simulated, but there 

was only 11566 weeks where the robot demand was 1. This occurs because 

the single system which needs to be delivered on that week can also have 2 

robots instead of just 1. 

• The theoretical maximum demand of robots with this level of system demand 

is 16, but the probability of that is very low. That’s why the simulation did not 

create even one week with that level in the whole run. The largest number of 

robots needed in a single week was 13, with 7 occurrences and a probability 

of one-hundredth of a percent. 

Figure 16 represents the probability distribution. The distribution is quite uniform until 8, 

and then drops of quickly. This is also evident from the data in table 8. 
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Figure 16: Probability distribution of robot demand in the example scenario 

The way to determine the service level adjusted maximum demand is shown in figure 

17. It shows the data from table 10 as a cumulative function. The service level adjusted 

maximum demand is met when the cumulative line crosses the orange line which repre-

sents the 95% mark. 

 

Figure 17: Cumulative robot demand distribution function of the example 

The lines cross between 8 and 9. This means that according to this approximation, there 

is less than 5% chance of the demand being higher than 9. Therefore, the maximum 

robot demand that needs to be considered is 9. Table 11 shows the service level ad-

justed and theoretical maximum demand levels the other modules get assigned in a sce-

nario with maximum demand of 8. 
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Table 11: Example of the maximum dependent demands for all the modules when 
the maximum independent system demand is 8 

Module Theoretical Service level adjusted (95%) 

Robot 16 9 

AP 24 11 

Retail-AP 8 3 

Frame-S 8 3 

Frame-M 8 3 

Frame-L 8 3 

Frame-R 8 3 

 

The similar service level adjusted values for retail access points and the frames are ex-

plained by the rather similar probabilities for a system to have one, roughly one fourth 

for each. Because there is the most variation in the number of industrial access points in 

a system, it is assigned the highest maximum dependent demand. 

5.4.2 Inventory control 
Calculating the inventory control variables is quite simple after the average and maxi-

mum demands have been determined. The variables are the lot sizes, reorder points 

and safety stocks for the individual components. 

The weekly average and maximum demands for a component is derived from the de-

mand of the modules which include the component. Multiple modules can require the 

same component, so the individual quantities required are added together to get the total 

number needed. 

The reorder point is only used in the CTO process. The reorder point consists of two 

components: safety stock and the required level of inventory to meet the average de-

mand in a period.  

The safety stock is used to account for the possibility of a higher demand level in a period 

(Vollmann et al. 2005, pp. 144). In this case the reorder point is set at the point where 

the maximum module demand calculated in the last section will be satisfied, which 

means that there is only a 5% probability for a stockout in the reorder period. 

𝑅𝑂𝑃 = 𝐷 ∗ 𝑡,         (1) 

where D is the service level adjusted maximum demand for the component and t is the 

component’s supply lead time. 
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The lot sizes in lot-for-lot approach are the exact number of components needed for the 

ordered system and therefore don’t require calculation. The fixed order quantity lot sizes 

are calculated as follows: 

𝐿𝑆 = (𝑑 ∗ 𝑡) + 𝑆𝑆𝑑,         (2) 

where d is the average demand for the component, t is the supply lead time and 𝑆𝑆𝑑 is 

the deficiency from the safety stock. The safety stock deficiency means the number of 

components the current stock level is less than the set safety stock level. If the stock is 

higher than the safety stock, then the deficiency is 0.  

Safety stock is used to buffer component inventories in both the CTO and the MTO pro-

cesses. The safety stock for a component is calculated from the lot size and the reorder 

point as follows: 

𝑆𝑆 = ROP − (d ∗ t),         (3) 

where ROP is the reorder point, d is the average demand and t is the supply lead time 

for the component. (Vollmann et al. 2005, pp. 144) While it is not actually used in calcu-

lating the reorder point, calculating the safety stock is relevant in finding out whether the 

safety stock is deficient. All the values calculated with the formulas shown in this section 

are rounded up to the closest integer. 

5.5 Inputs & Outputs 

A simulation takes a set of input variables and predicts the corresponding level of output 

variables (Robinson 1994, pp. 6). This chapter goes through the inputs and outputs of 

the simulation used in this research. 

The main input variables are the modules’ BOMs and the scenario variables. For the 

purposes of this research the BOMs stay mostly constant but allowing for changes in the 

BOMs enables the studying of the impact of single components to the overall system. 

The scenario consists of three variables: maximum demand, capacity modifier and sup-

ply lead time modifier. The different scenarios are elaborated on in chapter 5.8. 

The level of module inventory can also be adjusted, but it is not regarded as a full-blown 

input variable. This is due to it being tied to the weekly capacity in most of the simulations. 

As mentioned in chapter 4.1, the default value for the module inventory for robots and 

access points is the weekly production capacity. This will always be the case if not oth-

erwise mentioned. 

The simulation tracks multiple aspects of the Agilon factory’s operations and therefore 

produces a lot of data. The tracked variables act as the outputs for the simulation. The 
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main measures which are tracked are the inventory levels, delivery information and the 

weekly production variables. 

The weekly inventory levels are tracked for each component and each module individu-

ally. This can be derived to the total weekly inventory values for the total value or the 

modules and components separately. This enables the estimation of the total capital tied 

up in inventories for either the whole inventory or a subset of the inventory. It also makes 

identifying the most critical components possible. 

The production variables are tracked weekly for each module. They are the production 

amount and the demand level. These variables enable studying the utilization in the dif-

ferent scenarios, which gives insights into the delivery process and its performance. The 

delivery information is essential for studying the performance and delivery reliability of 

the order fulfilment process. The configuration and delivery time of each system is saved. 

The overall service level and tardiness can be calculated from this data. 

5.6 Flow logic 

This chapter goes through the simulation flow logic. The first section explains the initial-

ization and how the scenarios are cycled through. The key points are the creation of 

demand and calculating the key variables according to the rules distributions and formu-

las presented in the previous sections of this chapter. They explain how the week cycle 

is modified to match each scenario. 

Section 5.6.2 dissects the week cycle into smaller sequences for more understandable 

explanation. Disconnecting the pieces of the flowchart into separate entities can be con-

fusing at times, so it is recommended to occasionally check how the parts combine from 

the full flowchart. The full flowcharts for the CTO and MTO week cycles can be found in 

appendices D and E respectively. 

The markings for the flowchart are done in a uniform way: 

• The blue boxes represent a point in which an action is done where the state 

of one or multiple variables changes.  

• The yellow diamond-shaped boxes indicate a choice. The flow can divert into 

two different paths depending on the answer.  

• The orange boxes are a way to compress a complex pattern into a single box 

to maintain the scope and simplicity of the flowchart. An example of this can 

be seen in appendix C, where the whole week cycle is compressed into one 

box to keep the scenario cycle flowchart simple and readable.  
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• Lastly, the grey boxes mark points which connect the parts to the higher-level 

orange boxes. An example of this is the grey boxes in figure 18 which connect 

to the orange box in appendix C. These connections are not always obvious, 

but they are always detailed in the paragraphs before or after a figure con-

taining an orange or grey box. 

• The white boxes with grey outlines are comments and not actually a step in 

the flowchart. They mark some important pieces of information for the step 

which they connect to. 

5.6.1 Initialization & Scenario cycle 
The initialization sequence flow chart is shown in Appendix A. The simulation starts by 

reading the BOM data from an excel file. The data consists of a list of items which have 

an ID, price, supply lead time in days and a list of modules it is used in with the individual 

requirements for each. 

When the simulation begins, it is given a set of scenarios to be run. The scenarios are 

combinations of the demand level, supply lead time modifier and the level of capacity 

buffering. It then creates lists of demands for each scenario. The lists are created with 

the demand level and the rules and probabilities from section 5.4. Each scenario can 

have an arbitrary number of demand lists. The demand patterns are created in advance 

to enable the use of the same lists for both CTO and MTO simulations which are going 

to be carried out. The implementation logic is elaborated on in section 5.8. While the lists 

are created in advance, the actual “customer orders” become available for the Agilon 

factory periodically throughout the week cycle. 

After the demand patterns are created, the simulation calculates the key variables 

needed for the scenario in question. The service level adjusted max demand levels are 

simulated as explained in section 5.4.1 and after that the corresponding safety stock is 

set for each component with formula 3. 

The supply delivery times of each component are adjusted according to the delivery time 

modifier of the scenario. The starting stock is determined differently in CTO and MTO. 

The MTO starting stock is only the safety stock of the buffered items. In CTO the starting 

stock also includes a cycle stock with enough components to respond to demand during 

the different components supply lead times. This means that the inventory starts in a 

state in which every component is at the reorder point. 

After the initialization is done, the week cycle is carried out. When the week cycle has 

run its course, the data is saved. If there are more scenarios to run, the variables and 
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data structures are reset. If the demand level doesn’t change, the previously calculated 

demand values can be used again, otherwise they are calculated again. Then the cycle 

continues until each scenario has been run. After everything the last things are written 

to file and the simulation ends. 

5.6.2 Week cycle 
The week cycle is the part of the simulation which mimics the operations of the Agilon 

factory. A simplified illustration of the week cycle is shown in figure 18. The week cycle 

consists of three parts: Incoming order handling, production & purchasing and the end-

of-the-week sequence. The cycle continues until the end of the week sequence decides 

that there are no more weeks left and ends the scenario. 

 
Figure 18: The simplified week cycle 

The incoming order handling tracks incoming orders daily and adds them to stock if some 

arrive. The days are incremented by one after the incoming orders are checked. When 

seven days have passed, the production & purchasing phase starts. The incoming order 

handling is illustrated in figure19. 
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Figure 19: Incoming order handling 

Production & purchasing sequence, shown in figure 20, conducts the production activi-

ties for the week and records the changes in inventory levels and weekly capacity. The 

weekly need is calculated by checking which systems in the demand list are ordered. 

These are basically the production orders for the week. A system is applicable to be 

produced when its delivery week is less than the delivery time away from the current 

week. This enables the tracking of the customer delivery time and tardiness. 

 
Figure 20: Production & purchasing sequence 
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In the CTO process, the module inventory is replenished before the need is calculated. 

To fulfill the weekly need, the modules are taken from the module inventory first, and 

then remaining capacity is then used to produce modules. This can be seen from the 

slight differences between figure 20 and the same part of the CTO flow chart in appendix 

D. 

There orange produce tile in figure 20 represents the production tasks portrayed in the 

lower right corners of appendices D and E. This means that for example when the CTO-

process reaches the orange box in figure 20, the steps depicted inside the corresponding 

production task -box are taken next, before returning to follow the flow in figure 20. The 

production tasks differ a little due to the purchasing practices. In CTO, reorders are sent 

when a component’s stock drops below the reorder point. The reorder point and lot sizing 

are done with formulas 1 and 2 from section 5.4.2. 

The production is basically done by checking if there are enough components in stock 

and then reducing the stock with the corresponding quantities. The module’s weekly pro-

duction capacity is also reduced by 1 and the module is placed into the module inventory. 

This is repeated until all the module production orders, which are listed in the calculate 

need -phase. 

After production the finished modules are assigned to deliveries and deliveries are deliv-

ered if they have all the needed modules. Then new orders for the week are checked. If 

there is new due four weeks from the current week, orders are placed for them. In CTO 

only the variable frame items are ordered while in MTO the order includes every compo-

nent needed in the system. 

When all the production is done and orders are placed, the end-of-the-week sequence 

commences. It is detailed in figure 21. It begins with calculating the warehouse value. 

This includes calculating the total value and the values of the component and module 

inventories. The data of the week’s production, deliveries, inventory levels and inventory 

values are written to an excel file at the end of the week. The week counter is then 

incremented by 1. If there are still weeks left, a new week is started. Otherwise the sce-

nario is ended, and the flow continues as shown in appendix C. 
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Figure 21: End-of-the-week sequence 

The flow of the simulation is quite complex. Therefore, making sure it works correctly 

and consistently is important. The different aspects of the simulation are critically evalu-

ated in the next section. 

5.7 Validation 

This chapter evaluates the validity and the performance of the simulation. This is not an 

easy task. For example Sterman (2000, pp. 846, 850) states that validating or verifying 

a simulation model is impossible, as all models are inherently flawed and limited repre-

sentations of reality. He does add that this does not mean that efforts to validate a model 

shouldn’t be undertaken. When using a model to help in decision making, rigid validation 

can help in showing the model’s usefulness and revealing the limitations it has. This 

information can be then utilized when analyzing the results of the model. (Sterman 2000, 

pp. 846, 850) 

While the validating the simulation is not easy as there is little applicable data available 

to compare the simulation results to, there are still ways to evaluate the validity of the 

simulation model (Robinson 1994, pp. 142). As stated by Sterman (2000, pp. 850), a 

model should be tested by seeking ways to compare the model to the real world and 

utilizing a wide range of test. 
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This chapter strives to provide a brief overview of the tests conducted in validating and 

evaluating the usefulness of this simulation model. The first section in this chapter com-

pares the simulation’s inventory investment results to a recent inventory conducted in 

the case company. The second section evaluates the correctness of the inventory cal-

culations against the theoretical values. Next, the consistency of the simulation results 

is evaluated by running the simulation a large amount of times and studying the spread 

of the results. Then the stability of the processes is studied. Both methods are comple-

mented throughout with the face validity analysis. Lastly, the validity of calculating the 

service level adjusted maximum demands with the simulation method is evaluated 

against the analytical method. 

In addition to the tests described in this chapter, the model was carefully scrutinized at 

each step of the model creation process, testing each implemented functionality thor-

oughly. The model was run countless times with different sets of input variables and 

BOM structures to seek out deficiencies and to adjust the operation to provide useful 

insights into the problems laid out by the research questions. 

5.7.1 Comparison to the real system 
A good way to validate a simulation is to compare it to the real system it is trying to mimic 

(Robinson 1994, pp. 143). Comparing the simulation with the real system is not easy, as 

there is no continuous data of the past component stock levels available. However, the 

Agilon factory recently carried out an inventory which gives a snapshot estimation of the 

actual component stock levels. 

This comparison can’t give an absolute answer to the accuracy of the simulation, but it 

provides some evidence that the scale of the results compares adequately to gain prac-

ticable information. Therefore, it is quite essential to the validation of the simulation. 

10 simulation runs were carried out with the characteristics of the current situation. To 

compare the value given from the simulation to the real one, the inventory levels need to 

be adjusted as not all the items are tracked. This can be done by calculating an estima-

tion of the distribution of how much the different modules’ components take up in the 

inventory. This estimation can then be divided by how much of the value in a module is 

tracked, which can be found in table 8. A dummy value of 0.75 was used for industrial 

frames. 

A more detailed breakdown of the results of this test was available during the assess-

ment of the thesis but it was redacted from the final version. Table 12 shows the differ-

ences between the simulation test runs and the real system. 
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Table 12: Comparison of the simulation with the real values. 
 

Difference 

Total component value 2 % 

Total inventory value -1 % 

Module inventory % -2 % 

 

As table 12 shows, the values are exceptionally close to the real values. This definitely 

doesn’t imply that the simulation is only wrong by a couple of percent every time. For 

example, the inventoried value of the real system is only a snapshot, so the value of the 

real average inventory might differ from it. However, with the current demand levels the 

difference is likely to not be drastic. 

5.7.2 Comparison to a deterministic model 
Another way to evaluate a simulation model is to compare it against a deterministic math-

ematical model. This means that the performance of the model is evaluated with minimal 

variability. This method is useful in validating the model and making sure that it works in 

the intended way when there is little to no variation included. (Robinson 1994, pp. 144) 

To achieve this, the model was run with the same minimum and maximum demand. The 

test was run using the CTO process as it utilizes all the equations shown in section 5.4. 

The weekly maximum system demand was set as 4, and therefore the minimum system 

demand was also set at 4, instead of the usual 0. 

Table 13 shows the key variables which the simulation calculated for two example items. 

The variables match the theoretical values calculated with formulas 1, 2 and 3 exactly. 

Some values were redacted in table 13 from the final version of the thesis. 

Table 13: Key variables calculated by the simulation 
 

Item 1 Item 2 

Maximum demand (System) 4 

Maximum demand (Robot) 6 

Average demand (Robot) 4,44 

SS 15 101 

ROP 56 387 

Lot size 41 286 

 

Figure 22 shows the weekly inventory levels for the example items. The graph is con-

sistent with the variables shown in table 13. It also shows that the simulation works as 

expected with stable demand. Exactly 4 robots are assembled every week, so the com-
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ponent usage is constant. The supply lead time is much shorter for item 1, so the replen-

ishment interval is a lot shorter. This is also consistent with the principles of a similar 

example shown by Vollmann et al. (2005, pp. 140) 

 

Figure 22: Consumption & Replenishment of the example items 

While it looks like the lower limit of Item 2 is way higher than the calculated safety stock 

of 101, the graph is slightly deceiving. The inventory level would meet the safety stock 

level, but because the lot arrives before the weekly assemblies are done, the inventory 

level seems to stay higher. This can be seen also from when the lot arrives the inventory 

is roughly at 150, and when it is added it is just above 400. The discrepancy of almost 

30 when compared to the lot size comes from the assemblies done that week and ex-

plains why the inventory level seemingly stays above the safety stock. 

Figure 23 shows the consumption of the same components when there is variability in-

cluded. The values are from a simulation run with otherwise the same starting variables 

but with a demand set created with the minimum demand being 0, as it will be in the 

actual simulation runs. Therefore, the weekly production numbers fluctuate, and the com-

ponent usage is not consistent. This creates differences in the reorder interval and shows 

the importance of safety stock. 
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Figure 23: Consumption & Replenishment with variation 

Figure 23 shows that the model works consistently with variability too. The inventory 

levels for item 2 stay quite consistently high due to the buffering warranted by the possi-

bility of much higher consumption with a low probability. 

5.7.3 Consistency 
To evaluate the consistency of the results, a simulation was run was conducted which 

ran the simulation a thousand times with the same starting variables. This was done two 

times for both CTO and MTO, first with the same demand pattern each time and the 

other with differing demand patterns. In the scenario used in these runs the demand was 

8, capacity modifier 0,9 and supply lead time modifier 1. 

When the simulation is simulated with the same demand pattern as well as the other 

starting variables, the results are always the same. This proves that the simulation works 

the same way every time and that it doesn’t break down or change the variables in a way 

which is not wanted. 

When a different demand pattern was created for each of the thousand runs, the results 

naturally varied. This is expected as the level of uncertainty in the simulation creates 

different circumstances. The spread of average inventory values is shown in figure 24. 

The average inventory value was chosen because it indicates the performance of the 

overall process well. 
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Figure 24: Distribution of average inventory values in the CTO consistency test 

The distribution in figure 24 indicates that while there is variation, the simulation results 

are quite consistent. Over half of the average inventory values land into the four catego-

ries closest to the total average values. The results of the MTO consistency test, shown 

in figure 25, indicate a similar pattern to a bit smaller extent. 

 

Figure 25: Distribution of average inventory values in the MTO consistency test 

While the distribution is more spread out, five closest categories to the total average still 

represent over half of the total sample size. The larger spread is likely explained by the 

less consistent buffer inventories present in the MTO process, which makes the inventory 

values fluctuate more compared to the rather stable variation shown for example in figure 

24. Overall the results were shown to be quite consistent as even the variation between 
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the highest and lowest average inventory values is quite small when compared to the 

total level of inventory. 

5.7.4 Stability 
The stability of the process is important as it ensures that the processes work consist-

ently and there are no extreme situations or breakdowns which might tarnish the results 

of the simulation. 

To evaluate the stability, the simulation was run 3 times for 500 weeks in both CTO and 

MTO. The example scenario was the same as the one used in section 5.7.2, so the 

demand was 8, capacity modifier 0,9 and supply lead time modifier 1. A comparison run 

of the normal 50 weeks was implemented with the same starting variables. Some overall 

inventory variables from the CTO test runs are shown in table 14. The values shown are 

the averaged from the 3 runs. 

Table 14: Inventory variables from the CTO stability test 

Weeks Average inventory Standard deviation Min inventory Max inventory 

50 0,79 0,06 0,68 0,92 

500 0,80 0,05 0,64 0,95 

Difference -0,03 % 6,56 % 5,62 % -3,82 % 

 

In table 14 it can straightaway be seen that the average inventory value is reasonably 

similar. The difference between minimum and maximum inventory values is larger in the 

500-week run, which is natural as more weeks will more likely include more extreme 

circumstances. The standard deviation is lower in the 500-week run however, which 

means that the simulation stayed stable even when run over a longer period. 

Table 15: Inventory variables from the MTO stability test 

Weeks Average inventory Standard deviation Min inventory Max inventory 

50 0,22 0,04 0,14 0,31 

500 0,22 0,04 0,12 0,33 

Difference 0,94 % 4,35 % 11,69 % -8,07 % 

 

The MTO test results in table 15 are comparable to the CTO test results. The average 

inventory differs a bit more but still the difference is very small. The standard deviation 

difference is even lower than in CTO, which means that the MTO process also works in 

a very stable way. The minimum and maximum inventory levels also don’t stray too far 

away from the 50-week run levels. 
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5.7.5 Module demand approximation 
This section describes how the distribution for a module’s weekly demand can be derived 

analytically and how the analytical and numerical approaches compare to each other. 

As mentioned in section 5.4.1, the total probability distribution for a module’s weekly 

demand can be calculated as a sum of binomial distributions. The binomial distribution 

is basically a series of yes/no questions with the same probability. The probability for 

each number of yesses, also called successes, can be calculated with 

𝑃(𝑦𝑒𝑠) = (𝑛
𝑘

)𝑝𝑘(1 − 𝑝)𝑛−𝑘,        (4) 

where n is the number of experiments, k is the number of yes-answers and p is the 

probability of the answer being yes. To get the distribution, formula 4 is then repeated 

for each k from 0 to n. (Florescu & Tudor 2013, pp. 92)  

For calculating the module demand, the binomial distributions for each system demand 

level are needed. For this example, they were calculated for a scenario where the max-

imum demand is 8. The binomial distributions are shown in table 16 where each column 

depicts a system demand level and each row marks the number of successes. In this 

case a success is a system with one robot while a failure is a system with two robots. 

Table 16: Binomial distributions for each system demand level 

     N 
K 0 1 2 3 4 5 6 7 8 

0 100 % 11,3 % 1,28 % 0,14 % 0,016 % 0,002 % 0,0002 % 0,00002 % 0,000003 % 

1 
 

88,7 % 20,05 % 3,34 % 0,512 % 0,072 % 0,0098 % 0,00129 % 0,000166 % 

2 
  

78,68 % 26,67 % 6,028 % 1,135 % 0,1924 % 0,03044 % 0,004586 % 

3 
   

69,78 % 31,54 % 8,911 % 2,0138 % 0,39824 % 0,072003 % 

4 
    

61,90 % 34,97 % 11,856 % 3,12606 % 0,706490 % 

5 
     

54,90 % 37,226 % 14,7229 % 4,436509 % 

6 
      

48,701 % 38,5228 % 17,412319 % 

7 
       

43,1981 % 39,051144 % 

8 
        

38,316775 % 

 

The data in table 16 shows the probabilities for each individual scenario and therefore 

the values in each column add up to 100%. To get the actual probability, each value is 

divided by 9 to account for the probability of each scenario. Table 17 shows the adjusted 

values. 
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Table 17: Distributions from table 10 adjusted to consider the probability of the sys-
tem demand level 

    N 
K 0 1 2 3 4 5 6 7 8 

0 11,11 % 1,26 % 0,14 % 0,016 % 0,0018 % 0,0002 % 0,00002 % 0,000003 % 0,0000003 % 

1 
 

9,86 % 2,23 % 0,38 % 0,057 % 0,008 % 0,0011 % 0,00014 % 0,000019 % 

2 
  

8,74 % 2,96 % 0,67 % 0,13 % 0,021 % 0,0034 % 0,00051 % 

3 
   

7,75 % 3,50 % 0,99 % 0,22 % 0,044 % 0,008 % 

4 
    

6,88 % 3,89 % 1,32 % 0,35 % 0,078 % 

5 
     

6,10 % 4,14 % 1,64 % 0,49 % 

6 
      

5,41 % 4,28 % 1,93 % 

7 
       

4,80 % 4,34 % 

8 
        

4,26 % 

 

In table 17, all the values add up to 100%, which shows that it details the total distribution 

for the weekly module demand. Because for the robots a yes-answer represents a sys-

tem with 1 robot and a no-answer a system with 2, the actual number of robots each cell 

represents can be calculated with multiplying the number of failures with 2 and adding 

the successes and failures together. A formula for this is therefore 

𝑁(𝑆ℎ𝑢𝑡𝑡𝑙𝑒𝑠) = (𝑛 − 𝑘) ∗ 2 + 𝑘.       (5) 

For example, the highlighted cell in table 17 shows that there is a 0,22% chance of a 

week with 6 systems requiring (6-3) * 2 + 3 = 9 robots (formula 5). Table 18 shows the 

numbers of robots each cell represents. The cell which was just discussed is highlighted 

in table 18 too. 

Table 18: The level of robot demand each cell represents 

            N 
K 0 1 2 3 4 5 6 7 8 

  0 0 2 4 6 8 10 12 14 16 

1 
 

1 3 5 7 9 11 13 15 

2 
  

2 4 6 8 10 12 14 

3 
   

3 5 7 9 11 13 

4 
    

4 6 8 10 12 

5 
     

5 7 9 11 

6 
      

6 8 10 

7 
       

7 9 

8 
        

8 
 

The total probabilities of each robot demand level can be derived from the data from 

tables 17 and 18. The table in appendix G shows how the total values are calculated. 

The same cell is highlighted as in the previous two tables for reference.  

The distribution of total values is also shown in figure 26, where the different colors indi-

cate different weekly system demands. As stated earlier if the maximum system demand 
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is 8, the possible demand for robots ranges from 0 to 16, but the higher the demand, the 

lower the possibility. 

 

Figure 26: Theoretical robot demand distribution with the different system demand 
levels differentiated by colors 

Figure 26 shows quite well why the probability of having 0 robot demand is higher than 

the rest. If the weekly demand is 1 (bright red color), some of the systems have 2 robots, 

and therefore the weeks which have only 1 system with 1 robot is lower than 0. Table 19 

details the comparison between the numerical and analytical methods. The values for 

the numerical and analytical methods are from tables 10 and appendix G respectively. 

Table 19: Comparison between the numerical and theoretical distributions 

Demand Numerical Analytical Difference 

0 11,11 % 11,11 % 0 % 

1 9,9 % 9,85 % 0,02 % 

2 9,9 % 9,99 % 0,02 % 

3 10,1 % 9,98 % 0,02 % 

4 9,9 % 9,98 % 0,008 % 

5 10,0 % 9,98 % 0,04 % 

6 9,9 % 9,98 % 0,02 % 

7 10,0 % 9,98 % 0,01 % 

8 10,0 % 9,98 % 0,03 % 

9 6,2 % 6,21 % 0,01 % 

10 2,3 % 2,30 % 0,006 % 

11 0,6 % 0,54 % 0,002 % 

12 0,1 % 0,081% 0,0007 %  

13 0,01 % 0,008 % 0,0002 % 

14 0 % 0,0005 % 0,0005 % 

15 0 % 0,00002 % 0,00002 % 

16 0 % 0,0000003 % 0,0000003 % 
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The difference between the methods is miniscule, fractions of a percentage at most. 

Therefore, it is justifiable to utilize the numerical method, especially when considering 

the more general applicability and ease of use. 

5.8 Implementation 

This chapter explains the implementation of the simulations. The first section showcases 

the scenarios used and the number of runs conducted. The simulation sets consist of 

multiple runs of each scenario to increase the accuracy of the results. Especially in op-

erations planning a number of runs is needed to discern the range of possible outcomes 

for each scenario as there is a lot of possibilities for the output variables (Robinson 1994, 

pp. 169). 

A single simulation run consists of a warmup period of 16 weeks and then the actual 

simulation of 50 weeks. The warmup period eliminates the effects of the starting stock 

levels and therefore gives a better understanding of the actual performance of the system 

(Robinson 1994, pp. 159; Miclo et al. 2019) The 50 week run was decided on because it 

represents roughly the amount of time the factory is operational in a year. 

5.8.1 Main simulation 
The main simulation included multiple different scenarios to gain insight into the impact 

of the different input variables. There is one main and two secondary input variables 

which make up the scenarios. The main input variable is the level of demand. The two 

secondary variables are modifiers to capacity and supply lead time. 

Table 20 shows the different demand levels the scenarios will include. These levels 

mimic possible current and future demand levels for the Agilon factory. The demand level 

is determined as the max weekly level. The minimum weekly demand is 0. 

Table 20: Demand scenarios 

Max/week Average/week Average/year 

2 1 50 
3 1,5 75 
4 2 100 
6 3 150 
8 4 200 

10 5 250 
16 8 400 

 

The demand level is the main variable because it determines the level of uncertainty in 

the simulation. The higher the demand is, the more uncertainty there is. 
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As mentioned above, the secondary input variables are modifiers to capacity and supply 

lead time. This means that e.g. the supply lead times of all the components are multiplied 

with the modifier. 

Capacity modifier is used to adjust the number of modules which can be produced in a 

week. It affects the production of robots and access points, as the capacity to pick the 

frames was determined to be infinite for the purposes of the simulation. Table 21 shows 

the limitations of secondary input variables. 

Table 21: The limitations of secondary input variables 

 Supply lead time Capacity 

Lower limit 0,75 0,6 

Upper limit 1,25 1 

 

The secondary input variables will act as a type of sensitivity analysis to discern the 

effects of the corresponding factors. To achieve this, the simulation creates 100 pairs of 

capacity and lead time modifiers which are then assigned to each of the 7 demand levels. 

That comes up to a total of 700 simulation runs for both strategies. The pairs are ran-

domly generated between the limits. However, to get consistent ranges for the simula-

tions one of the pairs always consists of the lower limits and another of the upper limits 

of the secondary variables.  

Lastly, while the demand patterns and input modifiers differ from each other, it should be 

noted that both processes were run with the same parameters. This means that both 

processes were run exactly the same number of times with exactly the same input vari-

ables and demand patterns. This is an important consideration as to reinforce the credi-

bility and usability of the results which the simulation produces. 
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6. RESULTS 

This chapter goes through the results of the simulation runs. First, the results are ana-

lyzed from the tied-up capital point of view and afterwards in terms of delivery reliability. 

Lastly, a summary of the results is gathered to give a concise overview of the findings. 

The main variables used to analyze the results are the ones determined in the secondary 

research question: capacity, supply lead time and demand uncertainty. The capacity and 

supply lead time are measured with the modifiers each scenario included. The demand 

uncertainty is measured by the percentual deviation from the average demand. This 

measure does not encompass the demand uncertainty fully, but it is the best approxima-

tion available due to more detailed demand pattern analyzing being impossible with the 

data available. The inventory data in this chapter is substituted by ratios similarly the 

previous chapter. 

6.1 Tied-up capital 

This section gives an overview of the inventory investment results in the main simulation. 

As stated in section 5.8.1, each demand level was run 100 times with different input 

variables and demand patterns. First, the section strives to give a rough understanding 

of the levels of tied-up capital needed for the processes. The next section tries to explain 

the influence of the different input variables more closely by conducting regression anal-

yses of the results in the different demand scenarios. Lastly, a summary of the inventory 

investment results is given. 

Table 22 shows the results for the CTO process. The minimum and maximum inventory 

values are the lowest and highest average inventory values for each demand level. The 

average value and the module inventory percentage was calculated by calculating the 

averages for all 100 runs of each level. 

Table 22: Tied-up capital results for the CTO process 

Scenario Min Avg Max %-of module inventory 

2 0,23 0,29 0,35 22,30 % 

3 0,31 0,39 0,48 23,83 % 

4 0,36 0,46 0,57 26,36 % 

6 0,51 0,63 0,75 28,79 % 

8 0,64 0,82 0,99 28,58 % 

10 0,82 1,00 1,20 28,97 % 

16 1,24 1,56 1,87 29,46 % 
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The average inventory value of the CTO process constantly grows by roughly 0,08 units 

when the demand increases by 1. Interestingly the difference between minimum and 

maximum values gets bigger when the demand increases. This is due to the impact of 

the input variables get bigger when the demand increases. For example, the supply lead 

times change equally with the different modifiers, but the number of components needed 

for a time period is higher. Also, the difference between module inventory levels, which 

is dictated by the capacity modifier, is bigger in the higher-demand scenarios. 

The module inventory percentage generally gets higher when demand rises. However, 

the increase is relatively modest as it stays between 20% and 30%. This is most likely 

since the component buffers get comparatively smaller as meeting the theoretical maxi-

mum demand gets less and less likely when the demand increases. At the same time 

the module buffers increase quite linearly. due to more work in progress (WIP) being 

created as some modules are waiting for components when some have already been 

assembled. 

Table 23 shows that in the MTO process, the increase of average inventory per demand 

is a bit more sporadic, but on average it is roughly 0,016 units. This is roughly one fifth 

of the increase in the CTO process. The difference is naturally due to less components 

being buffered, and no module inventory being kept. Figure 27 illustrates this discrep-

ancy well. 

The difference between going from 2 to 3 and 3 to 4 is explained by how the maximum 

demands are calculated. In the 2-demand scenarios the maximum demand for frame-

modules and retail AP component buffering is 1, but in 3 and 4 it is 2. Therefore, the 

buffer is set at similar levels in 3 and 4, but 3 has less demand so the average inventory 

stays higher. 4-demand scenarios still have higher average inventories due to more buff-

ering for robots and industrial APs. This shows the importance of accurate forecasting. 

Table 23: Tied-up capital results for the MTO process 

Scenario Min Avg Max %-of module inventory 

2 0,08 0,12 0,15 9,46 % 

3 0,09 0,14 0,19 10,58 % 

4 0,10 0,15 0,19 13,30 % 

6 0,13 0,17 0,22 16,53 % 

8 0,16 0,21 0,28 16,86 % 

10 0,18 0,25 0,32 17,45 % 

16 0,25 0,37 0,46 17,53 % 

 

Like in the CTO process, the module inventory gets higher as the demand increases in 

the MTO process. This is probably due to more WIP accumulating as some modules are 
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being assembled for a system while other modules are still waiting for components to 

arrive. The percentage and especially the actual value are lower than in the CTO process 

as module inventory is not held regularly. 

 

Figure 27: Average inventory investment comparison 

As seen in from tables 22 and 23, starting from demand level 6, the module inventory 

value of the CTO process is higher than the total value of the MTO process inventory. 

Also, when maximum weekly demand is 2, the CTO tied-up capital is a bit over two times 

the MTO equivalent while at the 16 level it’s almost four times more. the difference is due 

to the bigger increments in the CTO process. 

Table 24 shows the average inventory investment needed for one average weekly sys-

tem demand. For example, when the max demand is 2, the average weekly demand is 

1 so the average inventory is wholly spent to on average produce 1 system, so the value 

is the same as the average inventory. Similarly, in the case of maximum demand of 16, 

the average demand is 8, so the average inventory was divided by 8 to get the inventory 

investment needed for one system. 

Table 24: Average inventory investment needed for one system 

Scenario CTO MTO 

2 0,29 0,08 

3 0,26 0,06 

4 0,23 0,05 

6 0,21 0,04 

8 0,21 0,04 

10 0,20 0,04 

16 0,19 0,03 
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The investment needed for one system decreases in both processes when the demand 

increases. This is likely again due to relatively less buffering needed in the higher-de-

mand scenarios as the probability of the maximum demand being realized is significantly 

lower. The investment drops roughly 30% in the CTO process, while in the MTO process 

it drops about 60%. This is likely due to the buffers increasing less per demand level, so 

the impact of the division is higher. 

6.1.1 Regression analysis method 
Linear regression analysis was used to discern the actual effects of the input variables 

on the tied-up capital. The analysis was conducted for each different demand level sep-

arately. This created an individual regression formula for the processes in each demand 

scenario. The equation strives to describe the relative impact of the different input varia-

bles. (Montgomery et al. 2012, pp. 1) 

This section briefly goes over the procedure used and gives one example of the analysis 

process. Lastly, the section outlines a synthesis of the results and lists all the resulting 

formulas. IBM SPSS Statistics-software was used to conduct the analysis. 

The independent variables, also called regressors, considered in the regression analysis 

were the capacity, supply lead time and the percentual deviation from the average de-

mand in the scenario. The dependent variable or response is in this case the average 

inventory value of the scenario. The goal was not to create the most predictive model 

but rather to create an equation that describes how the input variables influence the 

simulation to create the observed values. 

To get a good impression of the effects all three variables have, the regression model 

creation loosely followed the backward elimination method. In the backwards elimination 

all the regressors are initially entered to the model and then their relative importance is 

evaluated. If some variables don’t meet the criteria of an important regressors, they are 

discarded, and a new model was created with the remaining variables. (Elliott & Wood-

ward 2007, pp. 101; Montgomery et al. 2012, pp. 346-347) The criteria used is that the 

statistical significance of a regressor needs to be over 0,1 in the model. This is default 

criteria in SPSS and the same which Montgomery et al. (2012, pp. 347) use as an ex-

ample. However, this makes it possible that if all variables are deemed statistically sig-

nificant, they are all accepted into the model. 

After an eligible model has been found, the model was then critically evaluated. This was 

done as Elliot and Woodward (2007, pp. 102) instruct by assessing the R-squared values 

and using residual analysis. However, the model selection process was not carried out 

in an overly strict manner, as the aim was not finding a model which perfectly depicts the 
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impact of the variables but rather get a grasp of how the input variables might act in 

comparison to each other. All in all, the goal was to find a simple regression equation 

which describes the effects of the input variables on the inventory investment. Table 25 

shows an example model created by SPSS with the specifications which were discussed 

earlier. The standard error of the estimate was modified like the other inventory variables. 

Table 25: Example regression model summary 

Model R R Square 
Adjusted R 

Square 
Std. Error of 
the Estimate 

1 .989a 0,979 0,978 0,012 

a. Predictors: (Constant), cap, deviation, dt 
b. Dependent Variable: average total value 

 

The relationship between the regressors and the response should also be confirmed with 

a statistical test (Elliott & Woodward 2007, pp. 100). SPSS automatically does this by 

conducting an analysis of variance (Anova) test to study the significance of regression. 

The test came out statistically significant for the candidate model. This means that there 

is at least some linear relationship between the variables and therefore the model can 

likely be used to predict the value. (Montgomery et al. 2012, pp. 84-85) Table 26 shows 

the important characteristics of the model in more detail. The unstandardized coefficients 

and the confidence intervals have been modified to the same ratio scale as the other 

inventory values in this thesis. 

Table 26: Example regression model coefficients 

Variable 

Unstandardized  
Coefficients 

Standardized  
Coefficients 

t Sig. 
95,0% Confidence  

Interval for B 

B Std. Error Beta 
  

Lower Bound Upper Bound 

(Constant) 0,23193 0,01163   19,94 6,53E-36 0,2088 0,2550 

Deviation -0,00087 0,00013 -0,098 -6,57 2,61E-09 -0,0011 -0,0006 

Supply lead 
time 

0,00508 0,00008 0,962 64,25 1,07E-80 0,0049 0,0052 

Capacity 0,00096 0,00011 0,132 8,88 3,88E-14 0,0007 0,0012 

a. Dependent Variable: Average total value (8) 

 

As shown in table 26, all the variables have a very low significance (Sig.) value, which 

conversely means they all are significant, and therefore they all are eligible for the model. 

They all also have a high t-score which also indicates significance. This significance is 

likely due to these variables being the main differences between the creation of the data-

points and therefore they naturally have an impact on the output of the model. 

Table 26 also shows the error and the confidence intervals and the standard error esti-

mates. The coefficients in table 26 show the influence of the variables. The constant is 

the X-intercept of the regression formula. The standardized beta shows the relative im-

pact of the variables and therefore it can be used to compare the models against each 

other. (Montgomery et al. 2012, pp. 67-68) 
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The unstandardized B, as in beta, shows the actual multiplier for the regression formula 

for the constant and the variables. (Montgomery et al. 2012, pp. 67-68) They can be 

interpreted as when the delivery time modifier increases by 1%, the average inventory 

kept increases on average by a bit over 0,005 units. The formula for this scenario is 

therefore as follows: 

Average inventory =  −0,0009 ∗  Deviation − % +  0,005 ∗  SLT Modifier +  0,001 ∗  Capacity modifier +  0,23 

After the model was created, residual analysis was conducted to identify faults or devia-

tions in the model. The summary variables such as the r-squared don’t always tell the 

full truth of the validity of the model. Residuals are the deviations of the observed points 

to the regression line. The conditions to show a valid model which the residuals can 

prove are as follows: 

• The error term has zero mean. 

• The errors have a constant variance. 

• The errors can’t be correlated 

• The errors need to be normally distributed. (Montgomery et al. 2012, pp. 129) 

The mean of 0 and the normality of the residuals is confirmed by the distribution in ap-

pendix H. While not perfect, the shape does resemble a normal distribution. Montgomery 

et al. (2012, pp. 136) also state that small deviations from the normality clause don’t 

affect the validity of the model in a big way. 

The constant variance and correlation can be investigated by plotting them in a scatter 

plot with the predicted Y values. The scatter plot should not show any recognizable pat-

terns, such as curves and variance should be roughly even throughout the spread. The 

figure in appendix H shows a reasonably even spread, which therefore reinforces the 

assumptions second and third assumption on the residuals. (Montgomery et al. 2012, 

pp. 131) 

As none the needed tests and assumptions were failed, it can be concluded that the 

model is valid and can be used to estimate the impact of supply lead time on the inventory 

level and to conclude that the deviation and capacity don’t contribute significantly in the 

result. Figure 28 show a graph where the model is fitted with the observed values. The 

predicted values are not linear due to the graph being squashed into just 2 dimensions. 
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Figure 28: Example regression model compared to the observed values 

While the fit is very good, some values do differ from the model a bit. However, if the 

difference would have been significant enough for the data points to be deemed to be 

outliers, they would have been detected in the residual analysis (Montgomery et al. 2012, 

pp. 130-131). Also, even the biggest deviations are slightly less than 0,04 units which 

conforms to the confidence intervals and is quite irrelevant when considering the overall 

accuracy of this study. 

6.1.2  Regression analysis results 
This section goes through the regression models. The regression models are displayed 

in two different tables for both processes, one table with some overall characteristics and 

the standardized coefficients and one table with the unstandardized coefficients. These 

tables are 27 and 29 for the CTO and 28 and 30 for the MTO process respectively. The 

results of the regression turned out to be so that all models included all the variables. As 

discussed earlier, this is likely due to them being essentially the only variables which can 

be tracked, and which individualize the scenarios. 

The overall characteristics shown are the R squared values which represent how well 

the model captures the variation in the dataset and standard errors which indicate the 

size of the error, which shows the size of an average error in the model. 

It should be noted that there were in total 14 datapoints which were considered as outli-

ers by SPSS. These were discarded as failures of the measurement tool as they might 
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skew the model results (Montgomery et al. 2012, pp.152). This was not deemed to be a 

problem as the total dataset includes 1400 results, so the discard rate was only just 1%. 

The standardized coefficients are useful in comparing the models to each other because 

they have been standardized to extract the magnitude of the coefficient and to just dis-

play the relative effects of the coefficients. However, one should be cautious when ana-

lyzing these kinds of partial regression coefficients as they display the effects of the var-

iables only when the other variables are constant. However, they can give useful insights 

to the model. (Montgomery et al. 2012, pp. 68, 114-115) 

 

Table 27: Model characteristics and standardized coefficients for the CTO regres-
sion models 

CTO R Square Std. Error Cap DT Dev 
2 0,990 0,003 0,076 0,987 -0,065 

3 0,987 0,005 0,086 0,987 -0,072 

4 0,983 0,006 0,098 0,981 -0,080 

6 0,985 0,008 0,114 0,990 -0,107 

8 0,979 0,012 0,132 0,962 -0,098 

10 0,980 0,014 0,149 0,952 -0,111 

16 0,979 0,022 0,159 0,973 -0,111 

 

The R-squared values in table 27 and 28 indicate that in both processes the models 

explain the variance in the datasets very well. In the MTO process the R-squared values 

decrease as the demand increases which might be an indication that the importance of 

factors which are not explained well by the input variables, such as demand patterns, 

increases as demand increases. The standard errors increase as the demand increases 

which is natural as the variance of the data also increases as seen in tables 22 and 23. 

The standardized coefficients show that the delivery lead time modifier is by far the most 

influential of the three variables. However, it can also be seen that the influence of the 

other two also increases as the demand increases. The capacity modifiers’ importance 

doubles when going from the lowest to the highest demand. 

The MTO process shows similar trends which can be seen in table 28. The supply lead 

time is the most important but not as dominant especially in the high-demand scenarios. 

The relative importance of the capacity modifier and the deviation from average demand 

show a big increase as the demand rises. 
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Table 28: Model characteristics and standardized coefficients for the MTO regres-
sion models 

MTO R Square Std. Error Cap DT Dev 
2 0,945 0,005 -0,099 0,949 -0,131 

3 0,955 0,006 -0,093 0,956 -0,130 

4 0,947 0,006 -0,163 0,939 -0,137 

6 0,906 0,008 -0,215 0,906 -0,292 

8 0,920 0,009 -0,184 0,875 -0,231 

10 0,875 0,014 -0,214 0,815 -0,273 

16 0,853 0,019 -0,247 0,825 -0,331 

 

Interestingly the capacity modifier has an inverse effect when compared to the CTO pro-

cess. This is likely due to the capacity modifier enabling more efficient deliveries but 

increasing the module inventory in the CTO process. The efficient assembly capacity 

means that the deliveries can be fulfilled quickly as the components arrive and therefore 

less inventories are being kept both at the component and the module level. 

The unstandardized coefficients indicate the strength of the variables and considers the 

magnitude of their effects. The data in table 29 shows that for example 1% increase in 

supply lead time increases the average inventory by 0,002 units in the 2 demand sce-

narios and almost 0,0096 units in the 16 demand scenarios. These are of course average 

values and the error margins of the models create uncertainty in the actual results. How-

ever, they can give good insights. Interestingly as seen by the relative increase in table 

27, the magnitude of the capacity and deviation increases to roughly 10 times the value 

from demands 2 to 16, while the supply lead times effect increases only 5 times in the 

same range. 

Table 29: Unstandardized coefficients for the CTO regression models 

Demand Constant Cap DT Dev 

2 0,0657 0,0002 0,0020 -0,0002 

3 0,0943 0,0003 0,0027 -0,0003 

4 0,1227 0,0004 0,0031 -0,0004 

6 0,1784 0,0006 0,0040 -0,0007 

8 0,2319 0,0010 0,0051 -0,0009 

10 0,2672 0,0014 0,0063 -0,0012 

16 0,4228 0,0022 0,0095 -0,0018 

 

The results for the MTO process show similar patterns. The values are just quite a lot 

lower, even to the point of all but the supply lead time being less than zero. This is pos-

sible as the supply lead time value is so much higher, and it gets values from 75% to 

125%. The absolute values are consistently lower than in the CTO process except for 

deviation, which seems to indicate that the deviation from average demand affects both 
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processes in a similar way, but the effect is stronger for the MTO process because the 

overall inventory investment is lower. 

Table 30: Unstandardized coefficients for the MTO regression models 

Demand Constant Cap DT Dev 

2 -0,0017 -0,0002 0,0013 -0,0003 

3 -0,0153 -0,0002 0,0017 -0,0003 

4 0,0162 -0,0004 0,0016 -0,0004 

6 0,0631 -0,0005 0,0015 -0,0008 

8 0,0679 -0,0005 0,0018 -0,0008 

10 0,1006 -0,0007 0,0021 -0,0011 

16 0,1753 -0,0011 0,0027 -0,0019 

 

In the higher demand scenarios, the increasing impact of the capacity and deviation can 

be seen well. The values grow almost to the same levels as the supply lead time. This is 

a bit misleading however, as in the unstandardized coefficients the range of the input 

values should be considered when the coefficients are analyzed. In this case the average 

input value is highest for the supply lead time, so the coefficient is multiplied on average 

more than the other values. 

6.1.3 Inventory investment result summary 
 

Overall the results show that in the CTO process, the inventory investment is a lot higher 

than in the MTO process. This is quite an obvious conclusion as the CTO process simply 

keeps more buffer inventories. The magnitude of the difference is the interesting factor 

in this matter. The difference starts by CTO inventories being just over 2 times more in 

the 2 demand scenarios to almost 4 times more in the high-demand scenarios. 

The supply lead time is the dominant factor by which the tied-up capital is dependent on. 

This is quite a natural conclusion as the supply lead time modifier is the main component 

when calculating the buffer inventories for each component in the simulation. The abso-

lute effect shown by the unstandardized coefficients is much more powerful in the CTO 

process as there are more components which have buffers dictated by the supply lead 

time.  

Also, the effects of the deviation are consistent between the processes. When the de-

mand is higher than the average demand by which the buffers are determined, the aver-

age inventories naturally lower. As mentioned in the previous section, this effect is rather 

similar for both processes, as the absolute effect quite consistently stays at the same 

levels. Yet, the relative effect is higher for the MTO process due to the overall lower 

inventories. 
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As mentioned earlier, the capacity has an inverse effect between the processes. It is 

likely that in both processes the higher capacity enhances the delivery process perfor-

mance which makes for better circulation of parts and less modules waiting for deliveries. 

However, it seems that in the CTO process this effect is outdone by the fact that the 

module buffers increase as the capacity increases as the maximum module inventories 

are tied to the weekly module assembly capacity. 

6.2 Delivery reliability 

The delivery reliability was measured by calculating the percentage of late deliveries. 

After an initial analysis of the main simulation results, it was noted that a supplementary 

simulation would complement the main simulation in regard to the delivery reliability. 

Therefore, a supplementary simulation was conducted to gain a broader understanding 

of the impact of the capacity modifier on the CTO process. 

This section first goes through the main simulation results. After this, the main simulation 

results are combined with the supplementary simulation and the combined results are 

analyzed. Lastly a summary of the delivery reliability results concisely goes through the 

insights gathered during the analysis. 

6.2.1 Main simulation 
The results of the main simulation in table 31 show that on each demand level the late 

percentages for both processes are very low. On average 1,5% of deliveries in the MTO 

process are late while virtually no deliveries are late in the CTO side with the input vari-

ables in the main simulation. This seems to indicate that in similar conditions the MTO 

process as it is set up in this simulation tends to perform worse than the CTO process 

when it comes to delivery reliability. 

Table 31: Delivery reliability results from the main simulation grouped by demand 
level 

Demand Late % CTO Late % MTO 

2 0,08 % 1,74 % 

3 0,00 % 2,28 % 

4 0,02 % 0,71 % 

6 0,19 % 0,99 % 

8 0,01 % 1,73 % 

10 0,00 % 1,33 % 

16 0,00 % 1,10 % 
 

However, it should be noted that as is the case in the inventory investment, the different 

input variables have differing impacts on the delivery reliability. This is shown very well 
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for the MTO process in appendix E. While the results are rather inconclusive for the CTO 

process, it does show that under these conditions, the CTO process manages to fulfill 

almost every order perfectly. 

In the MTO process, the deviation from average demand seems to increase the amount 

of late deliveries, which is quite a natural progression, as when there is less deliveries, it 

is easier to fulfill them. The supply lead time modifier and shows an opposite interaction, 

where the delivery reliability gets better when the modifier increases. This is likely due to 

there simply being more buffering for the different components, which helps in respond-

ing to the differences in demand. 

However, the neither of those input variables show as strong an interaction as the ca-

pacity. Most of the late deliveries come from the scenarios which have the lowest capac-

ity modifiers. This reinforces the natural notion of capacity being of the utmost importance 

in deciding the delivery reliability of an order fulfillment process. 

Table 32 shows the distribution of delivery times for the late deliveries. It should be noted 

that the absolute values for the late deliveries in the processes is different as there is a 

lot more late deliveries in the MTO process as shown by table 31. Therefore, the values 

in table 32 for the CTO and MTO process represent the roughly 0,1% and 1,8% of late 

deliveries respectively. 

Table 32: Delivery times for the late deliveries in the main simulation 

Delivery time (weeks) CTO MTO 

5 97,6 % 82,7 % 

6 2,4 % 15,5 % 

7 0,0 % 1,8 % 

 

Table 32 shows that while there was a couple of deliveries which were 2 weeks late in 

the CTO process, almost all of them were just one week late. In the MTO process there 

is a lot more deliveries which were 2 weeks late and even a couple which were late by 3 

weeks.  

6.2.2 Supplementary simulation 
The results of the main simulation were a bit deficient for the CTO process due to the 

lack of late deliveries. Therefore, a supplementary simulation run was needed. Due to 

the highest impact of the capacity input variable, the range of the capacity modifier was 

increased for the second simulation. The simulation was specified otherwise similarly to 

the main one, but with the capacity modifier going from 0.3 to 0.6. 
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The rather drastic decrease in the capacity modifier predictably brought with it a drastic 

increase in late deliveries. This doesn’t mean that the processes don’t perform well but 

rather reveal their limitations. Table 33 shows the results when both simulations are con-

sidered. As expected, the lower capacity modifiers bring about a lot more late deliveries, 

and actually seem to form a trend where the delivery reliability gets worse when the 

demand increases. This is likely explained by the increase in demand uncertainty and 

the decrease in the absolute capacity values.  

Table 33: Delivery reliability results grouped by demand level for the extended simu-
lation 

Demand Late % CTO Late % MTO 

2 10,67 % 20,51 % 

3 10,03 % 19,86 % 

4 13,13 % 23,58 % 

6 14,71 % 25,07 % 

8 14,77 % 25,17 % 

10 17,05 % 26,91 % 

16 17,26 % 27,17 % 

 

In the CTO Process the percentage of late deliveries increases from around 10% to a bit 

over 17%, while the results for the MTO process are roughly 10% higher for each de-

mand scenario. It should be noted that the difference between the values in tables 31 

and 33 come solely from the supplementary simulation, so it can already be seen that 

the capacity reduction has a very big impact on the delivery reliability. 

Figure 29 showcases the impact of capacity well. Up to the 0.6 capacity modifier the 

reliability is almost perfect for both processes, but when it drops below 0.6 the MTO 

process’s percentage starts to grow almost exponentially. A similar development can be 

seen for the CTO process but with the spike starting from the 0.5 margin. It should be 

noted that the 0.5 modifier marks the capacity which corresponds to the average demand 

in the process. 
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Figure 29: Extended delivery reliability results grouped by capacity 

The deviation shows similar behavior as in the main simulation. Figure 30 shows that the 

increase can be seen in both processes. It should be noted that the scale is not even as 

the deviation scale is normally distributed, the data has more representation on values 

close to 0. The number of data points was evened out by increasing the range of the 

more far out values. Even then, the amount of representation is larger in the middle of 

the figure, which might skew the +10% category to be the highest. However, overall the 

delivery reliability decreases when the system demand increases. 

 

Figure 30: Impact of demand deviation on delivery reliability 

While both processes responded quite similarly to the two input variables discussed 

above, the supply lead time doesn’t give quite as obvious results, as seen in figure 31. 

In the CTO process the general trend seems to be that there is an increase in late deliv-

eries when the supply lead time increases. The lowest point is at the 1.1 mark, however. 

MTO doesn’t quite follow the same logic as there is a big increase in the 0.9 category, 
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and there are no obvious trends. The lowest point is at the 1.1 modifier as in the CTO 

process. 

 

Figure 31: Impact of the supply lead time modifier on delivery reliability 

The sporadic impact of supply delivery time modifier is likely due to the fundamental role 

it plays when determining the buffer inventories. In the MTO process the decision on 

keeping buffer inventories is dictated by whether the supply delivery lead time of a com-

ponent is longer than the customer delivery time. Therefore, if there are big groups of 

components with similar supply characteristics, they behave in the same way when the 

supply lead time goes over certain boundaries. This makes it so that at certain intervals 

even small changes to the supply lead time can change the characteristics of a simula-

tion run in a big way. 

Table 34 shows the delivery time statistics for the extended simulation. Again, the values 

represent the roughly 13% and 24% of deliveries for CTO and MTO respectively, as the 

rest of the deliveries were delivered in the set 4 weeks. Right away it can be seen that 

the extension provides a lot more variability in the delivery reliability, as there are deliv-

eries which were over 10 weeks late. This might not be quite a realistic statistic in the 

real world as maybe the contract would be canceled if it ran that late. However, for the 

purposes of the simulation it was deemed interesting to see how long the delivery times 

would stretch. 
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Table 34: Delivery times for the late deliveries in the extended simulation 

Delivery time (weeks) CTO MTO 

5 22,1 % 13,4 % 

6 14,2 % 11,7 % 

7 10,6 % 10,2 % 

8 9,1 % 8,9 % 

9 7,2 % 8,1 % 

10 6,3 % 6,8 % 

11 5,0 % 6,0 % 

12 4,1 % 5,4 % 

13 3,6 % 4,4 % 

More 17,8 % 25,1 % 

 

It can be seen in table 34 that while some deliveries are extremely late, the majority is 

still just a couple of weeks late. The percentage decreases gradually the longer the de-

livery time. In the CTO process the percentage of deliveries which were just 1 or 2 weeks 

late is higher than in the MTO process, but after that the percentages are quite similar 

until the more-category. Also, it should be noted that almost all the late deliveries were 

created from the supplementary simulation. 

6.2.3 Capacity utilization 
As the delivery reliability was most clearly influenced by the capacity modifier, analyzing 

the differences in capacity utilization might give some insights on the differences be-

tween the processes.  

Two sets of scenarios were picked to represent the capacity utilization data, one with 

ample capacity and one with more constrained capacity. Table 35 shows key values from 

the example scenarios. The sets consisted of roughly 30 scenarios chosen and grouped 

by the capacity. 

Table 35: Key values from the capacity utilization examples 

 Demand 
Avg capacity 

modifier 

Maximum 
capacity 

Capacity utilization Late percentage 

CTO MTO CTO MTO 

High 8 0,75 7 55,88 % 55,88 % 0,01 % 0,34 % 

Low 8 0,50 5 77,72 % 77,38 % 1,95 % 22,16 % 

 

The overall capacity utilization is very close between the CTO and MTO processes in 

both examples due to the weekly capacity and the demand patterns being identical be-
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tween the processes. However, the delivery reliability shows very drastic differences es-

pecially in the low capacity example. Clues to why this occurs can be found by investi-

gating the weekly differences in the capacity utilization. Figure 32 shows the distribution 

of robot production numbers in weeks in the high capacity example. For example, there 

was on average roughly 8 weeks on which neither of the processes produced any robots 

and roughly 4 weeks when they both produced 1 robot. 

 

Figure 32: Capacity utilization in the high capacity scenarios example 

While the graph shows very similar behavior between the processes in the lower end of 

the production numbers, the interesting part is the two highest production numbers. The 

MTO process had 13 weeks of max capacity production while the CTO process only had 

8. Also, the second highest number is higher for the CTO process, so they had more 

weeks where they had floated excess capacity. Figure 33 shows the same statistics for 

the lower capacity example. 

 

Figure 33: Capacity utilization in the low capacity scenarios example 
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The differences between the processes are much smaller in the small capacity example. 

The MTO process has roughly 5 more maximum capacity days. Due to the lo modifier 

both processes had to work over half of the year on full capacity.  

However, the delivery reliability statistics shown in table 35 shows a big difference be-

tween the processes. There are two possible reasons for this. The first is that the inven-

tory handling in the MTO process performs worse. This is not likely as there is no evi-

dence for such behavior in the high-capacity scenarios of the main simulation.  

The other possibility is that the fact that some of the CTO processes full capacity weeks 

are possibly ones in which the demand was not quite at the maximum level and the 

modules were placed into the module inventory. This ability of spreading out the produc-

tion of the critical modules would explain the much better delivery reliability and less 

capacity-dependent performance of the CTO process. 

6.2.4 Summary 
 

The simulations show that the CTO process seems to be more reliable with deliveries 

both in situations where there is ample capacity and in more tight capacity scenarios too. 

The CTO process managed the main simulation with virtually no late deliveries, but the 

delivery reliability for the MTO process was also quite good at on average about 98% of 

deliveries were delivered on time. 

When analyzing the effects of the different input variables, the capacity modifier proved 

to be the most influential. The other variables show some command over the trends in 

the distribution of late deliveries, but when the capacity gets closer to the maximum de-

mand, the delivery reliability naturally increases close to perfect, especially when there 

is no manufacturing or supply uncertainty.  

As expected, the supplementary simulation showed a lot more variation in the delivery 

reliability in both processes. The impact of the capacity was reinforced even more, as 

the trends which the other variables seemed to bring about were outweighed even more 

by capacity. 

Deviation from average demand naturally seemed to decrease the delivery reliability 

when there was more demand. There were seemingly no clear trends created by supply 

delivery time, which is likely due to its sporadic effects on the BOM and how the BOM 

then inherently influences the inventory buffers of the MTO components. 
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The customer delivery times stayed quite reasonable in the main simulation with the 

MTO process having a couple of deliveries be three weeks late while the other late de-

liveries were mostly late by just a week. In the supplementary simulation the delivery 

times ranged all the way to over 10 weeks late. The really late deliveries were probably 

in the scenarios where the overall delivery reliability was close to 0 as the capacity was 

simply too low to keep up with the demand even at the beginning. 

The most interesting takeaway in the delivery reliability front was the differing capacity 

thresholds for the processes where the delivery reliability really started to suffer. For the 

MTO process the threshold was close to the average demand as in when the capacity 

to produce dips below the average demand, the delivery reliability starts to drop expo-

nentially. For the CTO process similar behavior can be seen at the 40% mark so the 

CTO process seems to be able to withstand the capacity deficiency better. 

The fact that the MTO process produced late deliveries even when there was ample 

capacity seems to indicate that either the inventory buffers help the delivery reliability a 

lot or that the MTO process is worse at handling and recovering from extreme demand 

patterns.  

The analysis of the capacity utilization shows that while the overall capacity utilization is 

very similar, the CTO process has a lot more weeks which there would be capacity left 

while the MTO process has more weeks where either 0 or the maximum amount was 

produced. This shows the rather obvious fact that the ability to spread the production out 

on more days would help a lot with delivery reliability. 
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7. DISCUSSION 

This chapter first reflects on the results of this study and compares them to the theory 

background on the subject. Afterwards some sources of error in this study are identified. 

In the next section, some managerial implications are gathered to provide a concise set 

of recommendations and things to consider when making decisions on matters within the 

scope of the research. The last section suggests some topics for further research based 

on the findings and limitations of this study. 

7.1 Conclusions 

This section evaluates how well the research managed to find answers to the research 

questions and compares the results to the literature. Overall the study succeeded in find-

ing reasonable answers for both research questions and providing valuable insights into 

the problems at hand. Also, the results of the study are quite comprehensively in line 

with the literature on the subject. The main theoretical contribution of this study is rein-

forcing many interesting findings from previous studies on the subject, as well as provid-

ing some additional context to some theories. 

The first research question was targeted to identify and measure differences between 

the processes in terms of inventory investment and delivery reliability. This was very 

successful in the scope of the research. The inventory investment results show that the 

CTO process requires a lot more inventories. This larger inventory investment require-

ments in CTO compared to MTO are well recognized in literature (e.g. Vollmann et al. 

2005, pp. 23; Willner et al. 2014). In addition to this, the results give interesting insights 

on the magnitude of this effect when processes similar to the ones modelled in this study. 

For the delivery reliability results, the CTO process was found to perform better under 

these circumstances. An interesting thing to note is that the CTO process should almost 

by definition be able to deliver products faster than a pure MTO process, as some pro-

duction steps are done in advance (e.g. Vollmann et al. 2005, pp. 22). For example, Su 

et al. (2010) mark this as one of the main benefits of a CTO process. This shows that 

the MTO process was by-design at a disadvantage in the delivery reliability portion of 

this research, which manifested itself in more constrained production capabilities and 

worse delivery reliability. However, as the CTO process was in the same vein likely 

forced to keep some of the already assembled products in inventory until the delivery 
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date, the inventory investment results could have been worse than what they might have 

been. 

The study’s findings provide ample evidence for the impact of the different input varia-

bles, which was the focus of the second research question. The notion that capacity is 

very tightly linked with delivery reliability is a natural conclusion and for example Harrison 

and Skipworth (2007) remark that the lack of sufficient excess capacity can cause seri-

ous delivery reliability complications. Closs et al. (2010) and Nyaga et al. (2007) find 

similar results, and this is also reinforced by the results of this study. 

Both Closs et al. (2010) and Nyaga et al. (2007) also come to the conclusion that in a 

CTO environment increasing capacity starts to provide diminishing returns when a cer-

tain threshold is passed. They both set the threshold at around 50% over the average 

capacity (Nyaga et al. 2007; Closs et al. 2010). This is very clearly reinforced by this 

study as seen in figure 29. After the capacity modifier goes over 0.5, which is the average 

capacity in this case, the delivery reliability is already almost perfect, so increasing the 

modifier doesn’t enhance the delivery performance that much anymore. 

Nyaga et al. (2007) state that the optimum capacity for a CTO process at 125% of the 

average capacity and if the capacity goes under the average demand, delivery reliability 

starts to suffer greatly. This is partly reinforced as the exponential spike in late deliveries 

starts roughly at the 50% mark for the CTO process. However, while this study did not 

strive to discern an optimum value for the capacity modifier, it can be seen that after that 

this process manages an almost perfect delivery record almost all the way to the average 

demand, which might indicate that the optimum value for this process is lower than that 

which Nyaga et al. (2007) studied. 

However, in their research on CTO processes Closs et al. (2010) found not relationship 

between inventory levels and order fill rate, as long as the inventory levels are sufficient 

to meet the demand. Similar findings could be theorized from the results of this study. 

The absence of a relationship between delivery reliability and supply lead time modifier 

combined with the very strong relationship between supply lead time modifier and inven-

tory investment seem to reinforce this theory. 

Another consideration in the delivery process is the OPP positioning, which dictates the 

production orders and inventories. This type of effect is stated by for example Olhager 

(2003) who contemplates the role of the OPP in the compromise between delivery lead 

time and reduction of inventories. As stated before, a similar trade-off is seen in this study 

between the delivery reliability and inventory investment. By enabling part of the manu-

facturing to happen even when a customer order is not yet placed, the capacity utilization 
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of the CTO process is much more relaxed, but the more continuous production require 

more inventory buffering.  

Another thing enabling the earlier production is the modular product structure, which re-

inforces the notion that a modular product structure and delayed differentiation enable 

quicker deliveries and in this case more reliable production as there is more room to 

spread the module assemblies out time-wise (Harrison & Skipworth 2007). 

It could also be noted that, on a more theoretical level, the inclusion of more uncertainty 

management strategies in the form of increased safety buffers and delaying differentia-

tion of the products enabled the CTO process to perform better in the presence of de-

mand uncertainty. Christopher & Holweg (2011) state that variability decreases perfor-

mance by causing poor capacity utilization and increased inventory buffers. Both can be 

detected in the simulation especially in the scenarios which performed well. 

7.2 Error evaluation 

As is the case with all simulations, the one used in this study has its shortcomings. This 

section elaborates on the things that should be considered when evaluating the results 

of the simulation. Much of the inconsistencies in the operations stems from the scope-

complexity dilemma which plagues all simulations. The more realistic and precise the 

simulation is, more work goes into creating and especially validating the model. However, 

overall the simulation provided consistent and reasonable results, but there naturally was 

a couple of disparities in its theoretical basis and operation. 

There are some very important things to consider when analyzing the results of the sim-

ulation. The fact that the only form of uncertainty implemented in the simulation is the 

demand uncertainty is one of the biggest considerations from a theoretical standpoint. 

While the scope of the study was to analyze the effects of demand uncertainty, it should 

be noted that including supply and process uncertainties into the model would change 

the results a lot. The buffer inventories would likely need to be adjusted and some type 

of safety lead times would need to be included in the weekly module assemblies. 

The power of the threshold values which arise from the intermittent supply delivery time 

spread of the components created some irregularities in the data, which likely increased 

the error values in the regression analysis and probably also muddied the results of the 

delivery reliability. This was touched on in section 6.2.2 when the seemingly sporadic 

effect of supply lead time on delivery reliability was discussed. The phenomenon arises 

when big groups of components go from non-buffered to buffered at certain supply lead 
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time boundaries which causes the inventory investment and the delivery reliability ben-

efits of buffers to increase by large leaps rather than incrementally. 

Also, similar threshold values were found to occur when the adjusted maximum demand 

values were calculated. This resulted in some inconsistencies in the inventory invest-

ment-section, as for example 2 and 3 demand scenarios had similar maximum depend-

ent demands for modules and then there was a big gap to the values in the scenarios 

which had demand of 4, as some modules and their components were determined to 

need more buffering. 

The effects of the aforementioned threshold-values were likely not too harmful to the 

overall precision of the simulation. More intricate decision-making could have diminished 

the influence of these thresholds but also made the simulation more complex which might 

have caused more problems of the same nature. 

The fact that the simulation did not resolve very late deliveries as lost transactions prob-

ably caused some degree of overestimation of the delivery reliability statistics towards 

the lower end of the capacity spectrum. Including a mechanism to degree a delivery lost 

and to free the already created modules back for usage in later deliveries would certainly 

change the statistics and maybe provide some deeper insights to delivery reliability. A 

mechanism was actually implemented for this purpose at an early stage of the simulation 

model creation, but it proved quite complex to implement and it was scrapped after some 

discussion to maintain the simplified structure of the simulation. 

It could also be argued whether the regression analysis was the most apt way of describ-

ing the inventory investment results. However, while the precision and statistical charac-

teristics of the analysis were on point, the aim of the regression analysis was to describe 

the dataset and not to predict the values the precision is not as important but rather the 

simplicity and clarity of the way the regression equations can explain the relationships in 

the dataset. Also, it should be noted that the results of the regression analysis should 

never be extrapolated as the regression provides no guarantees that the equations work 

outside the scope of the input variables (Elliott & Woodward 2007, pp. 96). 

7.3 Managerial implications 

The essential managerial implication of this study is the valuable insights it provides into 

the differences of the investigated processes. While some of the results may seem ob-

vious, the magnitude of the differences and the different behavior of the processes in 

different environments can contribute into creating a better understanding of the possi-

bilities a company has in its operations. 



89 
 

 

In the inventory investment the inventory values provided can be used to help in decision 

making as rough guidelines when planning future processes. Nevertheless, the fact that 

changes to the product structure or even the supply profile of some of the more impactful 

components can deviate the results quite a lot should not be overlooked. 

It can be seen from the results that if customer delivery time is an essential source of 

competitive advantage, the CTO process is probably the better option of the two, even 

at the cost of larger inventories. Also, if demand uncertainty is seen as a big factor, then 

the flexibility provided by the CTO process can prove itself invaluable. 

It should be noted that given ample capacity, the MTO process is able to perform at the 

same level of delivery reliability as the CTO process with much less inventories. How-

ever, as the simulation did not include e.g. supply or process uncertainty, the perfor-

mance of a company’s processes and suppliers should be critically evaluated case by 

case before taking these results as granted. 

7.4 Further research topics 

This study provided ample evidence of possible interesting avenues for future research. 

Many suggestions can be drawn from the limits of this research’s scope. A natural direc-

tion for research could be to implement different types of uncertainty into the study. This 

could be done for example by swapping out demand uncertainty and adding supply un-

certainty or adding another type of uncertainty into a model which already imitates de-

mand uncertainty. This could create a more realistic behavior for the model and maybe 

enable setting the inventory and lead time buffers at more precise levels. 

A longitudinal time-horizon on a research on this subject might provide some interesting 

insights into the study. A longer time-horizon would enable better demand distribution 

creation and a real-life comparison for the model validation. In addition, it could make 

modelling the aforementioned uncertainty patterns possible if the study could utilize lon-

gitudinal data on assembly and supply performance. 

As discussed in section 7.1, comparing CTO and MTO processes with the same delivery 

time requirements may not be the most insightful approach. Therefore, it could prove 

very interesting to compare the performance with a freer delivery window which could 

promote the studying of the discussed quicker delivery performance of the CTO process 

and how that would affect the inventory levels and delivery reliability. 

Implementing more intricate ordering policies could improve the precision of the study. 

Taking a cost perspective instead of the straight-up tied-up capital could give more val-

uable insights into the optimal ordering policies and create a better understanding of the 



90 
 

 

actual costs incurred by the different processes. This might also give a better view into 

the optimal inventory policies for the inventory buffers in both processes if the ordering 

costs would overweigh the inventory holding costs which might increase the optimal in-

ventory investment for either process. 
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APPENDIX A: THE AGILON MODULES 

Left to right: Robot, Access point, Industrial mask. 
 
 
 

   



 
 

 

APPENDIX B: AGILON SYSTEM EXAMPLES 

Left to right: A stacked Agilon, An Agilon with two underpasses and an Agilon with a connection tube connecting two units. 
 
 
 
 
 
 

  



 
 

 

APPENDIX C: INITIALIZATION AND SCENARIO CYCLE 
FLOW CHART 

 



 
 

 

APPENDIX D: COMPLETE CTO FLOW CHART  



 
 

 

APPENDIX E: COMPLETE MTO FLOW CHART  



 
 

 

APPENDIX F: SYSTEM CONFIGURATIONS AND PROBABILITIES 



 
 

 

APPENDIX G: TABLE OF THE CORRESPONDENCE BETWEEN SYSTEM AND ROBOT 
DEMAND AND THE TOTAL PROBABILITIES FOR ROBOT DEMAND 

 

      System 
Robot 0 1 2 3 4 5 6 7 8 Total 

0 11,11 % 
        

11,1111 % 

1 
 

9,86 % 
       

9,8556 % 

2 
 

1,26 % 8,74 % 
      

9,9974 % 

3 
  

2,23 % 7,75 % 
     

9,9814 % 

4 
  

0,14 % 2,96 % 6,88 % 
    

9,9832 % 

5 
   

0,38 % 3,50 % 6,10 % 
   

9,9830 % 

6 
   

0,02 % 0,67 % 3,89 % 5,41 % 
  

9,9830 % 

7 
    

0,057 % 0,99 % 4,14 % 4,80 % 
 

9,9830 % 

8 
    

0,002 % 0,13 % 1,32 % 4,28 % 4,26 % 9,9830 % 

9 
     

0,008 % 0,22 % 1,64 % 4,34 % 6,206 % 

10 
     

0,0002 % 0,021 % 0,35 % 1,93 % 2,303 % 

11 
      

0,0011 % 0,044 % 0,49 % 0,5383 % 

12 
      

0,00002 % 0,0034 % 0,078 % 0,0819 % 

13 
       

0,00014 % 0,008 % 0,0081 % 

14 
       

0,000003 % 0,00051 % 0,0005 % 

15 
        

0,000019 % 0,00002 % 

16 
        

0,0000003 % 0,0000003 % 



 
 

 

APPENDIX H: EXAMPLE REGRESSION RESIDUAL 
ANALYSIS RESULTS 

 

 

 

 

 



 
 

 

APPENDIX I: MAIN SIMULATION DELIVERY RELIABILITY RESULTS GROUPED BY THE 
INPUT VARIABLES 
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