Asymptotics of partial sums of the Dirichlet series of the arithmetic derivative

Pentti Haukkanen ${ }^{1, *}$, Jorma K. Merikoski ${ }^{1}$ and Timo Tossavainen ${ }^{2}$
${ }^{1}$ Faculty of Information Technology and Communication Sciences, FI-33 014 Tampere University, Finland
${ }^{2}$ Department of Arts, Communication and Education, Lulea University of Technology, SE-97 187 Lulea, Sweden

Received January 10, 2019; accepted November 25, 2019

Abstract

For $\emptyset \neq P \subseteq \mathbb{P}$, let D_{P} be the arithmetic subderivative function with respect to P on \mathbb{Z}_{+}, let $\zeta_{D_{P}}$ be the function defined by the Dirichlet series of D_{P}, and let $\sigma_{D_{P}}$ denote its abscissa of convergence. Under certain assumptions concerning s and P, we present asymptotic formulas for the partial sums of $\zeta_{D_{P}}(s)$ and show that $\sigma_{D_{P}}=2$. We also express $\zeta_{D_{P}}(s), s>2$, using the Riemann zeta function.

AMS subject classifications: 11N37, 11N56
Key words: Abscissa of convergence, arithmetic derivative, Dirichlet series

1. Introduction

Let $n \in \mathbb{Z}_{+}$. There exists a unique sequence of nonnegative integers (with only finitely many positive terms)

$$
\left(\nu_{p}(n)\right)_{p \in \mathbb{P}}
$$

where \mathbb{P} stands for the set of primes, such that

$$
n=\prod_{p \in \mathbb{P}} p^{\nu_{p}(n)}
$$

We use the approach mostly from $[1,3,5,7]$. Let $\emptyset \neq P \subseteq \mathbb{P}$. The arithmetic subderivative of n with respect to P is

$$
D_{P}(n)=n_{P}^{\prime}:=\sum_{p \in P} n_{p}^{\prime},
$$

where n_{p}^{\prime} is the arithmetic partial derivative of n with respect to $p \in \mathbb{P}$, defined by

$$
D_{p}(n)=n_{p}^{\prime}=n_{\{p\}}^{\prime}:=\frac{\nu_{p}(n)}{p} n .
$$

[^0]http://www.mathos.hr/mc
© 2020 Department of Mathematics, University of Osijek

The arithmetic derivative of n is

$$
D(n)=n^{\prime}:=n_{\mathbb{P}}^{\prime}=\sum_{p \in \mathbb{P}} n_{p}^{\prime} .
$$

We define the (arithmetic) logarithmic subderivative, logarithmic partial derivative, and logarithmic derivative of n, respectively, as follows:

$$
\operatorname{ld}_{P}(n)=\frac{n_{P}^{\prime}}{n}, \quad \operatorname{ld}_{p}(n)=\frac{n_{p}^{\prime}}{n}, \quad \operatorname{ld}(n)=\frac{n^{\prime}}{n} .
$$

Let f be an arithmetic function. There exists $\sigma_{f} \in \mathbb{R} \cup\{ \pm \infty\}$ such that its Dirichlet series

$$
\sum_{n=1}^{\infty} \frac{f(n)}{n^{s}}, \quad s \in \mathbb{C}
$$

converges if $\Re(s)>\sigma_{f}\left(\Re\right.$ denotes the real part) and diverges if $\Re(s)<\sigma_{f}$ (see [6, p. 108, Theorem 3]). We call σ_{f} the abscissa of convergence of this series and define the function ζ_{f} by

$$
\zeta_{f}(s)=\sum_{n=1}^{\infty} \frac{f(n)}{n^{s}}, \quad \Re(s)<\sigma_{f} .
$$

For example, let the function u be identically one. The Riemann zeta function is

$$
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}=\zeta_{u}(s), \quad \text { and } \quad \sigma_{u}=1
$$

Our paper originates from three results due to Barbeau [1]. The first one gives an upper bound for n^{\prime} using n :

Lemma 1 (see [1, p. 118] or [7, Theorem 9]). Let $n \in \mathbb{Z}_{+}$. Then

$$
n^{\prime} \leq \frac{n \log n}{2 \log 2}
$$

In the next theorem, the first and second formula describe the asymptotic behavior of

$$
\sum_{1 \leq n \leq x} \operatorname{ld}(n) \quad \text { and } \quad \sum_{1 \leq n \leq x} n^{\prime}:
$$

Theorem 1 (see [1, pp. 119-121] or [7, Theorem 24]). Asymptotically,

$$
\sum_{1 \leq n \leq x} \operatorname{ld}(n)=C x+O(\log x \log \log x)
$$

and

$$
\sum_{1 \leq n \leq x} n^{\prime}=C \frac{x^{2}}{2}+O\left(x^{1+\delta}\right)
$$

Here

$$
\begin{equation*}
C=\sum_{p \in \mathbb{P}} \frac{1}{p(p-1)}=0.749 \ldots, \tag{1}
\end{equation*}
$$

and $\delta>0$ is arbitrary.

In the proofs cited above, actually $x \in \mathbb{Z}_{+}$, but they can easily be extended to hold for $x \in \mathbb{R}, x \geq 1$.

Our goal is to find asymptotic formulas for the partial sums of $\zeta_{D_{P}}(s)$, in other words, for the sums

$$
\begin{equation*}
\sum_{1 \leq n \leq x} \frac{n^{\prime}}{n^{s}} \text { and } \sum_{1 \leq n \leq x} \frac{n_{p}^{\prime}}{n^{s}} \text { and, more generally, for } \sum_{1 \leq n \leq x} \frac{n_{P}^{\prime}}{n^{s}}, \tag{2}
\end{equation*}
$$

where $s \in \mathbb{R}$. As a corollary, we will see that $\sigma_{D}=\sigma_{D_{p}}=\sigma_{D_{P}}=2$. For $s=1$ and $s=0$, the formulas concerning the first sum are already given in Theorem 1. Lastly, we express $\zeta_{D_{P}}(s), s>2$, using the values of ζ.

Our main tool is the following Abel's summation formula:
Lemma 2 (see [6, p. 3, Theorem 1]). Let $\left(a_{n}\right)$ be a sequence of complex numbers, let $x>1$, and let $g:[1, x] \rightarrow \mathbb{C}$ be a continuously differentiable function. Then

$$
\sum_{1 \leq n \leq x} a_{n} g(n)=\left(\sum_{1 \leq n \leq x} a_{n}\right) g(x)-\int_{1}^{x}\left(\sum_{1 \leq n \leq t} a_{n}\right) g^{\prime}(t) \mathrm{d} t .
$$

2. Partial sums of $\zeta_{D}(2)$

In this section, we consider the first sum of (2) with $s=2$. We obtain the following result:

Theorem 2. Asymptotically,

$$
\sum_{1 \leq n \leq x} \frac{n^{\prime}}{n^{2}}=C \log x+O(1)
$$

Proof. Applying Lemma 2 to

$$
a_{n}=\frac{n^{\prime}}{n}, \quad g(x)=\frac{1}{x}
$$

we obtain

$$
\sum_{1 \leq n \leq x} \frac{n^{\prime}}{n^{2}}=\sum_{1 \leq n \leq x} \frac{n^{\prime}}{n} \frac{1}{n}=H(x)+K(x)
$$

where

$$
H(x)=\left(\sum_{1 \leq n \leq x} \frac{n^{\prime}}{n}\right) \frac{1}{x}, \quad K(x)=\int_{1}^{x}\left(\sum_{1 \leq n \leq t} \frac{n^{\prime}}{n}\right) \frac{1}{t^{2}} \mathrm{~d} t
$$

By Theorem 1,

$$
\begin{equation*}
H(x)=C+O\left(x^{-1} \log x \log \log x\right)=O(1) \tag{3}
\end{equation*}
$$

and

$$
\begin{aligned}
K(x) & =\int_{1}^{x}(C t+O(\log t \log \log t)) \frac{1}{t^{2}} \mathrm{~d} t \\
& =\int_{1}^{x} C \frac{1}{t} \mathrm{~d} t+\int_{1}^{x} O\left(t^{-2} \log t \log \log t\right) \mathrm{d} t \\
& =C \log x+O\left(\int_{1}^{x} t^{-2} \log t \log \log t \mathrm{~d} t\right)
\end{aligned}
$$

Further, since

$$
\log t \log \log t=O\left(t^{\delta}\right)
$$

for any $\delta \in(0,1)$, we have

$$
\begin{align*}
K(x)=C \log x+O\left(\int_{1}^{x} t^{\delta-2} \mathrm{~d} t\right) & =C \log x+O\left(x^{\delta-1}\right)+O(1) \\
& =C \log x+O(1) \tag{4}
\end{align*}
$$

Now, the claim follows from (3) and (4).
Corollary 1. It holds that $\sigma_{D}=2$.
Proof. By Lemma 1,

$$
\begin{equation*}
0 \leq \frac{n^{\prime}}{n^{s}} \leq \frac{n \log n}{2 n^{s} \log 2}=\frac{\log n}{2 n^{s-1} \log 2} \tag{5}
\end{equation*}
$$

If $s>2$, then the series

$$
\sum_{n=1}^{\infty} \frac{\log n}{n^{s-1}}
$$

converges. By using (5), we conclude that the series

$$
\sum_{n=1}^{\infty} \frac{n^{\prime}}{n^{s}}
$$

converges, too. Hence $\sigma_{D} \geq 2$. On the other hand, since by Theorem 2 the series

$$
\sum_{n=1}^{\infty} \frac{n^{\prime}}{n^{2}}
$$

diverges, we have $\sigma_{D} \leq 2$.
3. Partial sums of $\zeta_{D}(s), 1 \neq s<2$

Next, we study the first sum of (2) in the case of $1 \neq s<2$.

Theorem 3. Let $1 \neq s<2$. Asymptotically,

$$
\sum_{1 \leq n \leq x} \frac{n^{\prime}}{n^{s}}=\frac{C}{2-s} x^{2-s}+R(x)
$$

where $R(x)$ is defined as follows: If $1<s<2$, then $R(x)=O(1)$. If $s<1$, then $R(x)=O\left(x^{\delta-(s-1)}\right)$ for any $\delta>0$.

Proof. Assume first that $1<s<2$. We proceed as in the proof of Theorem 2 but take

$$
g(x)=\frac{1}{x^{s-1}} .
$$

Then

$$
\sum_{1 \leq n \leq x} \frac{n^{\prime}}{n^{s}}=H(x)+K(x)
$$

where

$$
H(x)=C x^{2-s}+O\left(x^{1-s} \log x \log \log x\right)=C x^{2-s}+O(1)
$$

and

$$
\begin{aligned}
K(x) & =\int_{1}^{x}(C t+O(\log t \log \log t)) \frac{s-1}{t^{s}} \mathrm{~d} t \\
& =C(s-1) \int_{1}^{x} \frac{\mathrm{~d} t}{t^{s-1}}+(s-1) \int_{1}^{x} O\left(t^{-s} \log t \log \log t\right) \mathrm{d} t \\
& =C \frac{s-1}{2-s} x^{2-s}+O(1)+O\left(\int_{1}^{x} t^{-s} \log t \log \log t \mathrm{~d} t\right) \\
& =C \frac{s-1}{2-s} x^{2-s}+O(1)+O\left(\int_{1}^{x} t^{\delta-s} \mathrm{~d} t\right) \\
& =C \frac{s-1}{2-s} x^{2-s}+O(1)+O\left(x^{\delta-(s-1)}\right)+O(1) .
\end{aligned}
$$

We can restrict ourselves to $0<\delta \leq s-1$. Then $\delta-(s-1) \leq 0$, which implies that

$$
K(x)=C \frac{s-1}{2-s} x^{2-s}+O(1)
$$

and further,

$$
H(x)+K(x)=C\left(1+\frac{s-1}{2-s}\right) x^{2-s}+O(1)=\frac{C}{2-s} x^{2-s}+O(1)
$$

completing the proof in this case.
If $s<1$, then

$$
K(x)=C \frac{s-1}{2-s} x^{2-s}+O\left(x^{\delta-(s-1)}\right),
$$

and we can proceed as above.
Note that this theorem is a generalization of the latter part of Theorem 1; just set $s=0$.

4. Partial sums of $\zeta_{D_{p}}(1)$

We show that the asymptotic formulas for the partial sums of $\zeta_{D}(s)$ given in Theorems 1-3 have variants for those of $\zeta_{D_{p}}(s)$. In these variants, the coefficient C given in (1) is replaced by C_{p} defined as

$$
C_{p}=\frac{1}{p(p-1)}, \quad p \in \mathbb{P}
$$

Note that $C=\sum_{p \in \mathbb{P}} C_{p}$.
We begin the study of the partial sums of $\zeta_{D_{p}}(s)$ with $s=1$.
Theorem 4. Let $p \in \mathbb{P}$. Asymptotically,

$$
\sum_{1 \leq n \leq x} \operatorname{ld}_{p}(n)=C_{p} x+O(\log x) .
$$

Proof. It is easy to see that it is enough to consider the sum

$$
\sum_{k=1}^{n} \operatorname{ld}_{p}(k)=\operatorname{ld}_{p} \prod_{k=1}^{n} k=\operatorname{ld}_{p}(n!)
$$

We modify the proof of the first part of Theorem 1. By [2, Theorem 416],

$$
\begin{equation*}
n!=\prod_{q \in \mathbb{P}} q^{\mu_{q}(n)}, \tag{6}
\end{equation*}
$$

where

$$
\begin{equation*}
\mu_{q}(n)=\sum_{m=1}^{\infty}\left\lfloor\frac{n}{q^{m}}\right\rfloor=\sum_{m=1}^{\alpha(n)}\left\lfloor\frac{n}{q^{m}}\right\rfloor, \quad \alpha(n)=\left\lfloor\frac{\log n}{\log 2}\right\rfloor . \tag{7}
\end{equation*}
$$

Now, denoting by $\stackrel{(i)}{=}$ that the equation follows from the formula (i), we obtain

$$
\begin{aligned}
\operatorname{ld}_{p}(n!) & \stackrel{(6)}{=} \operatorname{ld}_{p} \prod_{q \in \mathbb{P}} q^{\mu_{q}(n)}=\frac{\mu_{p}(n)}{p} \stackrel{(7)}{=} \frac{1}{p} \sum_{m=1}^{\alpha(n)}\left\lfloor\frac{n}{p^{m}}\right\rfloor \\
& =\frac{1}{p} \sum_{m=1}^{\alpha(n)} \frac{n}{p^{m}}+\frac{1}{p} \sum_{m=1}^{\alpha(n)} O(1) \stackrel{(7)}{=} n \sum_{m=2}^{\alpha(n)+1} \frac{1}{p^{m}}+O(\log n) \\
& =n \sum_{m=2}^{\infty} \frac{1}{p^{m}}-n \sum_{m=\alpha(n)+2}^{\infty} \frac{1}{p^{m}}+O(\log n) \\
& =C_{p} n-\frac{n}{p^{\alpha(n)+1}(p-1)}+O(\log n) .
\end{aligned}
$$

It remains to study the complexity of

$$
A(n)=\frac{n}{p^{\alpha(n)+1}(p-1)}
$$

Since

$$
p^{\alpha(n)+1} \geq 2^{\alpha(n)+1}>n
$$

by (7), it follows that $A(n)=O(1)$, and the proof is complete.

5. Partial sums of $\zeta_{D_{p}}(s)$ and $\zeta_{D_{P}}(s)$

In this section, we continue by studying the second sum of (2), where $1 \neq s \leq 2$.
We first assume that $s=2$.
Theorem 5. Let $p \in \mathbb{P}$. Asymptotically,

$$
\sum_{1 \leq n \leq x} \frac{n_{p}^{\prime}}{n^{2}}=C_{p} \log x+O(1)
$$

Proof. The proof is analogous to that of Theorem 2. We apply Lemma 2 to

$$
a_{n}=\frac{n_{p}^{\prime}}{n}, \quad g(x)=\frac{1}{x},
$$

and use Theorem 4.
Corollary 2. Let $p \in \mathbb{P}$. Then $\sigma_{D_{p}}=2$.
Proof. Clearly, $0 \leq n_{p}^{\prime} \leq n^{\prime}$ for all $n \in \mathbb{Z}_{+}$. Since $\sigma_{D}=2$ by Corollary 1, we have $\sigma_{D_{p}} \geq 2$. On the other hand, since by Theorem 5 the series

$$
\sum_{n=1}^{\infty} \frac{n_{p}^{\prime}}{n^{2}}
$$

diverges, it follows that $\sigma_{D_{p}} \leq 2$.
Next, we consider the case of $1 \neq s<2$.
Theorem 6. Let $p \in \mathbb{P}$ and $1 \neq s<2$. Asymptotically,

$$
\sum_{1 \leq n \leq x} \frac{n_{p}^{\prime}}{n^{s}}=\frac{C_{p}}{2-s} x^{2-s}+R(x),
$$

where $R(x)$ is as in Theorem 3.
Proof. The proof is a simple modification of that of Theorem 3.
Corollary 3 (see Theorem 1). Let $p \in \mathbb{P}$. Then

$$
\sum_{1 \leq n \leq x} n_{p}^{\prime}=C_{p} \frac{x^{2}}{2}+O\left(x^{\delta+1}\right)
$$

for any $\delta>0$.
Our results about $\zeta_{D_{p}}(s)$ can be extended to concern $\zeta_{D_{P}}(s)$ if $P \subset \mathbb{P}$ is nonempty and finite (or if $P=\mathbb{P}$, see Theorem 3). Then C_{p} is replaced by

$$
C_{P}=\sum_{p \in P} \frac{1}{p(p-1)} .
$$

For example, Theorem 4 and Theorem $6(s=0)$ extend to

$$
\sum_{1 \leq n \leq x} \operatorname{ld}_{P}(n)=C_{P} x+O(\log x), \quad \sum_{1 \leq n \leq x} n_{P}^{\prime}=C_{P} \frac{x^{2}}{2}+O\left(x^{\delta+1}\right)
$$

and Corollary 2 extends to $\sigma_{D_{P}}=2$.

6. Reducing $\zeta_{D_{P}}$ to ζ

It is natural to expect that $\zeta_{D_{P}}$ has a close relation to the Riemann zeta function ζ. For $\zeta_{D_{p}}$, this relation is already known in the following lemma (originally with different terminology and notation):

Lemma 3 (see [4, Lemma 6]). Let $p \in \mathbb{P}$ and $s>2$. Then

$$
\zeta_{D_{p}}(s)=\frac{\zeta(s-1)}{p^{s}-p}
$$

We extend this to $\zeta_{D_{P}}$.
Theorem 7. Let $\emptyset \neq P \subseteq \mathbb{P}$ and $s>2$. Then

$$
\zeta_{D_{P}}(s)=\zeta(s-1) \sum_{p \in P} \frac{1}{p^{s}-p}
$$

Proof. We have

$$
\begin{equation*}
\zeta_{D_{P}}(s)=\sum_{n=1}^{\infty} \frac{n_{P}^{\prime}}{n^{s}}=\sum_{n=1}^{\infty} \frac{n \sum_{p \in P} \frac{\nu_{p}(n)}{p}}{n^{s}}=\sum_{n=1}^{\infty} \sum_{p \in P} \frac{\nu_{p}(n)}{p n^{s-1}} \tag{8}
\end{equation*}
$$

Since the series (8) converges and all its terms are nonnegative, we can change the order of summation. Therefore, by the simple calculation and applying Lemma 3 we obtain

$$
\begin{aligned}
\zeta_{D_{P}}(s) & =\sum_{p \in P} \sum_{n=1}^{\infty} \frac{\nu_{p}(n)}{p n^{s-1}}=\sum_{p \in P} \sum_{n=1}^{\infty} \frac{n \nu_{p}(n)}{p n^{s}}=\sum_{p \in P} \sum_{n=1}^{\infty} \frac{n_{p}^{\prime}}{n^{s}} \\
& =\sum_{p \in P} \zeta_{D_{p}}(s)=\sum_{p \in P} \frac{\zeta(s-1)}{p^{s}-p},
\end{aligned}
$$

completing the proof.
In particular,

$$
\zeta_{D}(s)=\zeta(s-1) \sum_{p \in \mathbb{P}} \frac{1}{p^{s}-p}
$$

7. Three further questions

In the case of $s \leq 2$, Theorems $1-3$ give asymptotic formulas for the first sum of (2), and Theorems 4-6 give those for the second. What about the case of $s>2$? Theorems 3 and 6 with $R(x)=O(1)$ hold also then, but since the main term has a smaller complexity than the error term, we get nothing reasonable out of them. The question about a nontrivial asymptotic formula for the second (and third) sum of (2) in the case of $s>2$ therefore remains open.

As noted at the end of Section 5, our results about $\zeta_{D_{p}}(s)$ can be extended to $\zeta_{D_{P}}(s)$ if $P \subset \mathbb{P}$ is nonempty and finite or if $P=\mathbb{P}$. Can they be extended also if $P \subset \mathbb{P}$ is infinite? This question remains open, too.

Using advanced number-theoretic methods, the error terms of our asymptotic formulas can probably be improved, i.e., their complexity can be decreased. How could this be done? This is our third question.

8. Acknowledgment

We thank the referees. Their suggestions improved significantly the presentation of our paper.

References

[1] E. J. Barbeau, Remarks on an arithmetic derivative, Canad. Math. Bull. 4(1961), 117-122.
[2] G. H. Hardy, E. M. Wright, An Introduction to the Theory of Numbers, Fifth Edition, Oxford University Press, Oxford, 1983.
[3] J. Kovič, The arithmetic derivative and antiderivative, J. Integer Seq. 15(2012), Article 12.3.8.
[4] N. Kurokawa, H. Ochial, M. Wakayama, Absolute derivations and zeta functions, Documenta Math., Extra Volume Kato (2003), 565-584.
[5] J. K. Merikoski, P. Haukkanen, T. Tossavainen, Arithmetic subderivatives and Leibniz-additive functions, Ann. Math. Informat. 50(2019), 145-157.
[6] G. Tenenbaum, Introduction to Analytic and Probabilistic Number Theory, Cambridge University Press, Cambridge, 1995.
[7] V. Ufnarovski, B. Åhlander, How to differentiate a number, J. Integer Seq. 6(2003), Article 03.3.4.

[^0]: *Corresponding author. Email addresses: pentti.haukkanen@tuni.fi (P. Haukkanen), jorma.merikoski@tuni.fi (J. K. Merikoski), timo.tossavainen@ltu.se (T. Tossavainen)

