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Icebreaking activity and seasonal ice propose challenges for marine traffic prediction in the Baltic Sea. 

Traffic prediction is a vital part in the planning of icebreaking activities, but it remains largely as a manual 

task. The aim of this thesis is to examine factors influencing marine traffic modelling in ice-covered waters 

and propose a novel A*-based method for modelling traffic in ice. The current state of the marine traffic 

modelling and factors affecting vessel movement are concluded by examining the literature and historical 

vessel tracks. 

The field of traffic modelling research is growing rapidly. Currently the biggest challenges are evaluation 

of results and the lack of publicly available datasets. Moreover, the current approaches to model vessel 

movement in ice are promising but fail to capture how icebreaking activity influences vessel routes.  

The proposed model consists of sea, maneuverability, route and speed modelling. The model uses historical 

AIS data, topography of the sea, vessel type and dirways as main data inputs. The model is trained with 

summer tracks and dirways are used for modelling the ice channels kept open by icebreakers. The accuracy 

of the model is evaluated by examining route, speed, traffic and ETA (estimated time of arrival) prediction 

results separately. Moreover, the area between the actual and predicted route is introduced as an accuracy 

measure for route prediction.  

The model shows that winter route prediction can be improved by incorporating dirways to the modelling. 

However, the use of dirways did not affect the speed, traffic or ETA prediction accuracy. Finally, the da-

tasets and source code used in this thesis are published online. 

Keywords: Marine traffic, AIS, Route Prediction, Trajectory prediction, ETA Prediction, Traffic Predic-

tion, Winter Navigation 

The originality of this thesis has been checked using the Turnitin OriginalityCheck ser-

vice. 
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LIST OF ABBREVIATIONS AND TERMS 

AIS  Automatic Identification System, used for collecting vessel 

tracking data. 

CONT Container ship. 

Dirway A set of directed waypoints through which vessels should 

travel in order to get icebreaking assistance. 

ESRI Environmental Systems Research Institute, provider of geo-

graphic information systems. 

Fairway  Navigable channel near port, river or shallow waters 

GC  General cargo vessel. 

GDAL  Geospatial Data Abstraction Library. 

IBNet  A distributed winter navigation system, used for coordinat-

ing icebreaking activities in the Baltic Sea. 

IMO  International Maritime Organization. 

MMSI Maritime Mobile Service Identity number unique to a vessel. 

Used to identify vessels in AIS-messages. 

NM Nautical mile . 

PAS Passenger ship.  

RORO Roll-on/roll-off vessel used for vehicle transport. 

Safety zone  Area which is not safe for vessels to travel. 

SPA  Shortest Path Algorithm. 

T  Tanker ship. 

Voyage  A journey of a vessel from one port to another. 

VTS  Vessel Traffic Service.
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1 INTRODUCTION 

Maritime transport is the most cost-effective method of transport and accounts around 

80% of the volume of all global trade (UNCTAD 2018). Countries around the Baltic Sea 

are dependent on the sea for trade. In Finland, maritime transport accounts for over 85% 

of the gross national income (Toivola 2016).  

The Baltic Sea is one of the most travelled waterways where ice conditions in winter 

affect maritime transport. Seasonal ice means that icebreaking is needed to combat the 

seasonal variation in trade (Lépy 2013). In Northern Baltic Sea, all ports freeze and be-

come unreachable during typical winter without icebreaking activities. The background 

of marine navigation and specialities of winter navigation are explored in Chapter 2. 

Operating the icebreaking fleet efficiently can lead to safer and faster transportation to 

ports and reduce fuel costs for both icebreakers and merchant vessels. One of the tools in 

the operational planning of icebreakers is prediction of traffic situation. However, the 

number of vessels travelling to different ports in an area size of the Baltic Sea means there 

is a need for an automatized way to predict vessel positions. The previous research about 

vessel movement prediction is described in Chapter 3. 

This thesis leverages data collected during years 2017 – 2019. The data consists of his-

torical vessel positions, vessel metadata, port locations, dirways and map data. The col-

lection and processing of data is described in detail in Chapter 4. The data is collected 

from IBNet which is developed to enhance icebreaking cooperation between Finland and 

Sweden. IBNet is in use on all Finnish and Swedish icebreakers (Berglund et al. 2014).  

The prior literature does cover vessel movement prediction in ice only partially. Thus, a 

novel approach for traffic prediction in ice is proposed. The proposed method combines 

modelling of sea, traffic, speed and open ice channels using grid-based methods and A* 

algorithm. The proposed method is described in Chapter 5. The results and conclusions 

are discussed in Chapters 6 and 7.  

The goal of this thesis is to examine the current state and requirements of winter marine 

traffic modelling and to create a novel method for year-round modelling of marine traffic 



 

2 

 

in the Baltic Sea. The method is intended to be used as a starting point for further research 

and to evaluate the viability of marine traffic modelling in ice. The method is evaluated 

separately in summer and winter conditions. 

The thesis aims to respond to the following questions: what factors affect vessel move-

ment in ice and what are the key components of modelling of marine traffic. 
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2 MARINE NAVIGATION IN THE BALTIC SEA 

This chapter explores the aspects of marine navigation and seasonal ice relevant to traffic 

prediction in the Baltic Sea. The chapter aims to give a frame of reference for the remain-

ing of the thesis and highlight the complex nature of modelling winter navigation. 

2.1 Background of Marine Navigation 

This section describes marine navigation in general and identifies the specialities of ma-

rine traffic in the Baltic Sea. The information has been gathered by exploring the current 

literature and the data gathered during icebreaking season 2017 – 2018.  

Marine navigation has unique characteristics when compared to vehicle movement on 

different substances such as land or air (Guinness et al. 2014, Tu et al. 2018, Ueno et al. 

2009). Three major differences can be identified. First, ship cannot suddenly stop, turn or 

reverse like land vehicle. Second, ship movement happens on a plane whereas an aircraft 

or a submarine moves in a three-dimensional space. Third, turning a vessel is costly in 

terms of time and fuel usage which leads to vessels minimizing course changes (Mon-

tewka et al. 2017). 

Although vessels typically move quite freely on the ocean, vessel movement can be re-

stricted by the following factors: shallow waters, safety zones, fairways, ice and capacity 

of ports (Guinness et al. 2014, Lai and Shih 1992, Löptinen and Axell 2014, Seong et al. 

2011). All the factors except ice and port capacity are largely related to the depth of the 

sea. Port capacity restriction can mean that a vessel must wait near the port before enter-

ing. The effect of ice to vessel routes is described in Sections 2.2 and 2.3. 

The Baltic Sea is shallow compared to other seas (Finnish Meteorological Institute 

2020a). The average depth of the Baltic Sea is 55 meters whereas the average depth of 

the Mediterranean Sea is 1500 meters (Schroeder 2019). In addition, the Baltic Sea con-

tains many archipelagos where vessel movement is highly restricted as depicted in Figure 
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1. In shallow waters such as near port or in an archipelago, vessels typically follow fair-

ways to avoid running ashore. 

2.2 No Two Winters Are the Same 

In this section, the variance in ice coverage and formulation between winters is examined. 

This section aims to highlight how differences in ice coverage and formulation can affect 

vessel routes. 

Typically, seasonal ice starts to extend from the Northern Bay of Bothnia towards the 

south of the Baltic Sea around mid-November and lasts until early May. In the last 10 

years, the ice coverage in the Baltic Sea has ranged from 14% to 82% of the total area of 

the Baltic Sea (Finnish Meteorological Institute 2020b). The highest and the lowest ice 

coverages in the last 10 years are visualized in Figure 2.  

As ports start to freeze, the maritime authorities begin to issue port-specific restrictions 

called traffic restrictions. Traffic restrictions describe the minimum requirements for a 

vessel to fulfil in order to safely and efficiently travel to a specific port. Finnish and Swe-

dish traffic restrictions are updated through the IBNet based on the prevalent ice-

Figure 1. Historical vessel movements (black) combined with fairways (magenta) around the Turku archi-

pelago. 
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conditions (Berglund et al. 2014). The active restrictions in the Baltic Sea are published 

daily on the internet (Guinness et al. 2014).  

Traffic restrictions are based on the ice class rules that classify a vessel’s capability to 

navigate through ice (Riska and Kämäräinen 2011, RMRS 2019). In the Baltic Sea, two 

different ice class rules are used: the Finnish-Swedish Ice Class Rules (FSICR) and the 

Russian Maritime Register of Shipping (RMRS) Ice Class Rules (Non-Arctic Sea Area 

Requirements). The FSICR rules are more prevalent as majority of the restricted ports 

belong to Finland and Sweden (BIM 2018). The ice classes could be used in the modelling 

of vessel’s speed in ice. 

The ever-changing ice-conditions dictate that vessels can’t travel the same routes on win-

ter as they do in the summer since icebreakers can only keep open a limited number of 

routes (Guinness et al. 2014, Löptinen and Axell 2014). Furthermore, an open ice channel 

can change multiple times during a winter based on the movements of ice and the changes 

in ice ridges, compression and concentration.  

Figure 2. Highest (left) and lowest (right) ice-coverage in the Baltic Sea in the last 10 years (Finnish 

Meteorological Institute 2020b) 
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The differences in vessel routes between a summer and a winter can be seen in Figure 3. 

The division into the summer and the winter routes is based on the official start and end 

dates of the icebreaking season 2017 - 2018 (Arctia 2018). Icebreakers are filtered out of 

the data. The winter routes in the Northern Bay of Bothnia differ the most from the sum-

mer routes as the area was most affected by the seasonal ice. 

In summary, seasonal ice is the primary factor that affects vessel routes in winter. The 

model for the winter routes cannot be extracted from a single winter alone since all win-

ters are different and even winters with similar ice coverage can vary vastly depending 

on how the ice field develops during the winter. 

Figure 3. Visualization of the differences in summer and winter routes during years 2017 - 2018. Summer 

routes are coloured in orange and winter routes in blue. 
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2.3 Operational Challenges 

In this section, the operational challenges that affect marine traffic are examined. The 

operational challenges in the Baltic Sea can be divided into two types: general and winter 

related operational challenges (Montewka et al. 2017, Sormunen et al. 2018). The oper-

ational challenges affect both the speed of a vessel and the route of a vessel. The opera-

tional challenges are depicted in Figure 4.  

Many of the operational challenges are not well researched and their effect to vessel 

movement remains unclear. However, the presence of ice, icebreakers and dirways have 

been shown to affect vessel movement in winter (Guinness et al. 2014, Montewka et al. 

2017, Riska and Kämäräinen 2011). These factors are examined in detail in the following 

sections. 

2.3.1 Vessel Routes in Ice 

In winter, when a ship is travelling to a port with a traffic restriction, icebreakers, mari-

time and VTS authorities direct it through a dirway (Guinness et al. 2014, Montewka et 

al. 2017). The current traffic situation and the ice conditions inform the dirway creation 

process. The main inputs from the traffic situation are the number of vessels that are pre-

dicted to require assistance. The prediction is done using the locations and destinations 

of vessels heading towards or out of frozen ports. The main inputs from the ice conditions 

are the current and the predicted ice thickness, pressure and drift. Furthermore, the depth 

Figure 4. The operational challenges affecting speed and route of a vessel (Guinness et al. 2014, 

Montewka et al. 2017, Sormunen et al. 2018). 
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of the sea influences waypoint selection, as icebreakers avoid navigating in shallow wa-

ters where the risk of accidents increases.  

Dirways are created and maintained by icebreaker captains since they have the expertise 

in travelling through ice, the latest information about the ice field and the viability of 

different routes. The decision to direct a ship is based on the vessel’s ice class and the 

crew’s experience in navigating through harsh ice conditions (Guinness et al. 2014). The 

vessels that are not directed often also benefit from using dirways as the dirways are trav-

elled repeatedly and thus they are more likely to be traversable. 

The distance between two waypoints in a dirway can be tens of nautical miles and the 

navigation though waypoints is left to the vessel crew (Guinness et al. 2014). Dirways 

can be valid for weeks but in a typical winter are often updated in 2-3-day intervals. The 

change in dirways during winter 2019 is depicted in Figure 5. 

Lehtola et al. 2019 compared actual routes of vessels through ice in the Baltic Sea against 

the planned routes by a seasoned ice navigation specialist. The specialist had access to 

the latest ice and weather forecasts and observations. They noted that the presence of 

dirways had the biggest effect to the vessel path in ice. The same outcome can be seen in 

Figure 5. Change in dirways (blue) and vessel routes (red) inside two weeks during icebreaking 

season 2018 - 2019.  
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the Figure 5 where most of the vessel routes towards the north of the Bay of Bothnia 

follow the dirways. 

Kotovirta et al. (2009) reported that merchant vessel captains are not eager to use optimal 

ice routing software in the Baltic Sea because ships must follow dirways in order to re-

ceive assistance as fast as possible. If a ship deviates from the given waypoints, it will be 

placed on the bottom of the icebreakers’ assistance queue (Guinness et al. 2014). Thus, 

the vessels that might require assistance tend to follow the given dirways. 

To conclude, this section has described how the presence of dirways, properties of the 

icefield, the topography of the sea, the ice class of a vessel and the crew’s experience in 

ice affect vessel routes. Dirways appear to model the vessel routes in the Baltic Sea most 

accurately as vessels are often required to follow them. In addition, they indirectly en-

compass many of the other factors affecting vessel movement in ice.  

2.3.2 Vessel Speed in Ice 

The prior research of vessel performance and speed in ice is more complete than the lit-

erature of vessel routes. The theoretical ice speed has been modelled and the effect of 

traffic in ice has been explored thoroughly (Kotovirta et al. 2009, Guinness et al. 2014, 

Löptinen and Axell 2014, Montewka et al. 2017, Sormunen et al. 2018). 

Ice concentration, compression and level have been shown to affect the speed of a vessel 

(Kotovirta et al. 2009). Ice concentration C can be used to approximate vessel transit 

speed in ice using the following formula: 

 𝑣tr = {

𝑣ow, 𝐶 ≤ 𝐶0
(𝐶1−𝐶) 𝑣ow+(𝐶−𝐶0)𝑣i,eq

(𝐶1−𝐶0)
, 𝐶0 < 𝐶 < 𝐶1

𝑣i,eq, 𝐶 ≤ 𝐶1

            ( 1 ), 

where 𝐶0=70%, 𝐶1=95%, 𝑣ow is open water speed and 𝑣i, eq is speed affected by ice level 

and ridges. 

Although the formula has been shown to model the theoretical ice speed well, the formula 

might not be able to capture ice speed accurately when vessel is travelling through a dir-

way or is assisted by an icebreaker. Sormunen et al. (2018) compared theoretical ice 

speeds of vessels to the ice speeds collected from AIS data in the Baltic Sea. They 
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discovered that the available resolution of the ice forecasts is not good enough for accu-

rate ice speed calculation. This is most notable when vessel is travelling through a dirway 

as the ice properties of the dirway can differ vastly compared to the surrounding ice field.  

When a vessel is stuck on ice or has high probability of besetting, icebreaker will assist 

the vessel through the ice field by leading or towing (Goerlandt 2017). The waiting time 

for a vessel to get assistance depends on the length of the icebreaker’s assistance queue.  

Icebreakers often gather several ships in a convoy for efficiency (Montewka et al. 2017, 

Goerlandt 2017). However, this can lead to vessels needing to wait until a critical mass 

of vessels is gathered around the same area and are travelling to the same destination. 

Convoy can also be formed if an icebreaker is heading to assist a vessel that is stuck in 

ice and at the same time leads another vessel to that direction. Screenshot from the IBNet 

visualizing forming of a convoy is presented in Figure 6. When travelling in a convoy, 

vessels tend to travel slower in order to minimize the risk of collisions and to save fuel. 

Although the factors influencing the waiting time of a vessel are known, the approxima-

tion of it is a complex task. The accurate approximation would require information that 

is not easily available such as the assisting icebreaker, length of the assistance queue, is 

the icebreaker going to use convoys or assist vessels one by one, how far the icebreaker 

Figure 6. Icebreaker Urho (yellow) leading one vessel (red-white) while going to help another vessel 

(white-blue) that is stuck on ice. The vessels are not following the dirway (green) closely. 
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will assist the vessels in the queue and the ice speeds of the icebreaker and the vessels in 

the queue. 

In summary, it is evident that the presence of ice, dirways and icebreakers affect the vessel 

speed significantly. However, the prior literature doesn’t reliably describe how vessel ice 

speed can be modelled in operational situations. Still, the effect of ice should be consid-

ered when modelling ice speed if the properties of the ice field are known. Lastly, the 

accuracy of the ice speed modelling should increase as more accurate ice forecasts be-

come available. 
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3 TRAFFIC MODELLING  

This chapter is structured as follows: first, an overview of the literature related to traffic 

modelling is given. After that, the remaining chapter is divided into two sections based 

on the underlying method used in the research. The sections are artificial neural networks 

and shortest path algorithms. The covered methods were chosen based on the amount and 

merit of the prior literature. Nonetheless, there are other approaches such as clustering 

based methods (Pallotta et al. 2013, Vries and Someren 2009) and ant colony algorithm 

(Choi et al. 2015) that have been used to model vessel routes.  

3.1 Overview 

Marine traffic modelling can be divided into four subcomponents: sea modelling, ma-

noeuvrability modelling, route estimation and speed prediction (Tu et al. 2018). Although 

only few studies about the prediction of marine traffic exists, the subcomponents are re-

searched more thoroughly. Topics covered in this chapter relate to traffic modelling or 

one of its subcomponents. The covered topics are traffic prediction, route estimation, path 

planning, arrival time estimation, anomaly detection and speed prediction. 

Path planning or route estimation relates to predicting the optimal path for a vessel to 

travel (Guinness et al. 2013, Topaj et al. 2019, Tu et al. 2018). The optimal path is often 

modelled in terms of time, safeness or fuel usage. The route estimation and the path plan-

ning methods have many similarities with traffic modelling and often the methods could 

be used to predict traffic situation with minor changes. The notable difference to traffic 

modelling is that in route estimation one is only interested in modelling the route of the 

vessel, not the speed along the route. 

Estimated time of arrival prediction can be done either by modelling the whole route of a 

vessel to a port and calculating the travel time for the vessel (Alessandrini et al. 2018) or 

by predicting the arrival time based on the current position of the vessel without route 

estimation (Bodunov et al. 2018).  
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Anomaly detection refers to constructing a model of the normal traffic flow and building 

a method for detecting objects that deviate from the model (Osekowska et al. 2014). 

Anomalies can be related to position, speed or time of a vessel (Tu et al. 2018). 

The frequency of AIS based research has increased rapidly in the recent years as shown 

in Figure 7. The AIS data is often linked with additional data sources as the AIS data is 

not usually enough for accurate analysis of complex topics like ship performance analysis 

or maritime safety and risk analysis (Lensu and Goerlandt 2019).  

3.2 Artificial Neural Networks 

In this section, artificial neural networks (ANNs) are described in general and the ap-

proaches using ANNs are presented and evaluated. ANNs can be used in modelling of 

non-linear systems, regression and time series forecasting (Kaastra and Boyd 1996, Zissis 

et al. 2015, Tu et al. 2018). ANNs can be used at modelling complex datasets like en-

riched history AIS data without any additional mathematical modelling or prior infor-

mation. Artificial neural networks can be used to model traffic without modelling any of 

the subcomponents (Zissis et al. 2016). 

3.2.1 Description 

A multilayer feed forward ANN has three layer types: an input layer, a hidden layer and 

an output layer as depicted in Figure 6 (Kaastra and Boyd 1996). Multilayer feed forward 

Figure 7. History of Scopus-index articles using AIS data. Only articles with a focus on operational use, 

e.g. marine traffic monitoring or collision avoidance, are selected (Lensu and Goerlandt 2019). 
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neural network refers to an ANN where information moves only one direction (Svozil et 

al. 1997). Network can have multiple hidden layers, but only one input and output layer.  

The input layer takes several input signals and transmits them to the neurons of the hidden 

layer. The number of neurons in the hidden layer can vary although several rule-of-thumb 

methods exists for selecting the number of neurons in the hidden layer (Berry and Linoff 

2004, Boger and Guterman 1997, Gougoulidis 2008, Huang and Babri 1998, Sheela and 

Deepa 2013). In addition, several algorithmic ways to select number of neurons have been 

proposed (Sheela and Deepa 2013).  

The hidden layer uses an activation function to compute and map the results to the output 

layer. Finally, the neurons in the output layer sum up all the inputs from the hidden layer 

and give the output of the network. When the network is trained the weights of the neural 

networks are adjusted until the network produces desirable outputs. A basic structure of 

an artificial feed-forward neural network is depicted in Figure 8. 

Figure 8 Basic structure of an artificial feed-forward neural network. Modified from Svozil et al. (1997). 
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In general, the advantages of ANN approach are that they are studied thoroughly, perfor-

mance is generally good, and they can be applied to variety of different problems. ANNs 

have a strong fitting ability and therefore don’t require any prior information (Tu et al. 

2018). Nonetheless, disadvantages of ANN are that the training process requires a large 

dataset, can be time consuming and in most cases the network architecture must be deter-

mined empirically based on the prediction task. 

3.2.2 ANNs in Intelligent Maritime Systems 

ANNs have been employed to solve variety of different problems in maritime systems.  

Kim and Lee (2018) present a deep learning method for predicting marine traffic in a 

small area. Goal is to give VTS operators a tool for monitoring future traffic in a caution 

area where ship collision risk is high. Method uses AIS data and can predict traffic for 

the caution area 20 to 50 min intervals. Training data consisted of 8 million observations. 

The method shows promise as it improves the accuracy compared to the benchmark meth-

ods. However, the method is only able to predict how many vessels are inside the caution 

area, not the actual positions of the vessels. 

Mao et al. (2018) used extreme learning machine (ELM) to predict vessel routes for 20-

minute and 40-minute time periods. Error for the predictions was 0 - 2.5 nautical miles 

for the 20 min interval and 0 – 6 nautical miles for the 40 min interval. Error was measured 

as surface distance between the predicted position and the real position. Error was calcu-

lated using Haversine formula. The primary goal of the research wasn’t to improve exist-

ing approaches but to establish a standardized AIS database for maritime modelling and 

big data research. 

Daranda (2016) proposes a traffic prediction approach which uses combination of AIS 

data, clustering and ANN for prediction. The AIS data was enriched with turning points 

of the vessels which are calculated by detecting when vessel course changes. After that, 

the turning points are filtered by clustering. Finally, an ANN is used to predict vessel 

routes by predicting the next turning points. Although the results seem promising, the 

accuracy was measured by visualizing three predicted routes on top of the actual route. 

No quantitative accuracy measurements were given. 
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Zissis et al. (2016) developed an approach utilizing ANN for real-time vessel route pre-

diction. In contrast to the traditional way of training an ANN where the ANN is trained 

asynchronously, and the model is used to do vast number of predictions, the ANN was 

trained per vessel in real time on user request. The data used to train the ANN consists of 

the last 72 hours of AIS data in 15-minute steps. The approach demonstrates the usability 

of ANNs for traffic prediction even with a limited dataset. The approach can predict ves-

sel positions up to 124 hours into the future. Although the research included both quali-

tative and quantitative accuracy measures, the size of the validation set was 3-5 vessels. 

The size of the validation set is estimated from the figures and tables used in the research 

as the exact number was not given. 

In summary, the prior literature about ANNs in marine applications is few and far between 

even though the results are promising. The main reason for the lack of research has been 

the absence of standardized and publicly available AIS datasets (Zissis et al. 2015, Mao 

et al. 2018). Furthermore, there is no standardized way of measuring accuracy and the 

prediction horizons are often short. 

3.3 Shortest Path Algorithms 

Shortest path algorithms (SPAs) solve the shortest path problem by finding the optimal 

path from a network of connected nodes using a cost function or a static weight between 

points (Ahuja et al. 1990). Nodes are represented as a graph.  

In intelligent maritime system research, SPAs are commonly used in route estimation and 

path planning. Furthermore, SPAs are prevalent in other domains such as car and pedes-

trian navigation (Lauther 2004, Van Toll et al. 2012, Zhan and Noon 1998). 

3.3.1 Description 

There are multiple different SPAs that can be applied to marine traffic prediction. The 

most common algorithms are Dijkstra’s (Zhu et al 2016, Topaj et al. 2019), A* and var-

iations of the A* (Chabini and Lan 2002, Guinness et al. 2014, Kotovirta et al. 2009, 

Lehtola et al. 2019, Montewka et al. 2017, Topaj et al. 2019).  
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SPAs are based on the dynamic programming theory (Fu et al. 2006). The dynamic pro-

gramming theory refers to a heuristic used in computer science to solve complex prob-

lems by dividing them into subproblems (Bellman 1954). The subproblems are solved 

once and their solutions stored. If the algorithm encounters already solved subproblem 

again, it looks up the solution instead of solving it again and thus saving computation 

time. 

The shortest path between two nodes in a graph can be found by going through the graph 

from the origin node to the destination node using a recursive cost function. The cost 

function refers to a function which selects the cheapest route by minimizing the distance 

or weight between nodes (Fu et al. 2006). The cost function can take many different in-

puts. An example result of a SPA is pictured in Figure 9. 

In the maritime domain, the graph for a SPA is usually constructed by dividing a sea area 

into a grid and connecting the cells inside the grid (Chabini and Lan 2002, Guinness et 

al. 2014, Kotovirta et al. 2009, Lehtola et al. 2019, Montewka et al. 2017, Topaj et al. 

2019). This approach allows the use of additional location-based data in the cost function 

if it can be represented as points or cells. 

Figure 9. Result of a shortest path search. Modified from Fu et al. 2006. 
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All of SPA implementations are not suitable for real-time predictions in traffic networks 

(Fu et al. 2006). For example, the Dijkstra’s algorithm is simple outward search technique 

that doesn’t use any prior knowledge of the position of the origin and destination nodes 

which makes the algorithm inefficient when the graph is large. To that end, most of the 

SPAs try to solve this issue by using one or more of the following strategies: limiting the 

search area, decomposing the search problem or reducing the links (Fu et al 2006). 

In general, the main benefits of SPAs are that they are well researched, have been em-

ployed to traffic and route prediction and the cost function can be easily adjusted to take 

into account additional information sources such as map and weather data (Fu et al. 2006, 

Topaj et al. 2019, Tu et al. 2018). Furthermore, the use of SPAs in winter navigation 

applications is well researched (Guinness et al. 2014, Kotovirta et al. 2009, Lehtola et al. 

2019, Montewka et al. 2017, Tarovik et al. 2017, Topaj et al. 2019).  

3.3.2 SPAs in Intelligent Maritime Systems 

SPAs in winter navigation research are used mainly for path planning (Guinness et al. 

2014, Kotovirta et al. 2009, Lehtola et al. 2019, Tarovik et al. 2017, Topaj et al. 2019). 

Few of the studies even consider how icebreaking activities affect the vessel movement 

in ice. The geographical areas of interest are the Baltic Sea and the Arctic Ocean. Besides 

winter navigation, other points of interests are route estimation in general, prediction of 

estimated time of arrival (Alessandrini et al. 2018) and anomaly detection (Osekowska et 

al. 2014). 

Guinness et al. (2014) propose a modified A* algorithm to predict optimal ice routes in 

the Baltic Sea. The algorithm optimizes travel time by modelling the Baltic Sea, vessel 

manoeuvrability, vessel ice speed and icebreaker assistance. The dataset comprised of 

AIS data enriched with ice forecasts from the Finnish Meteorological Institution. Alt-

hough the dataset contained AIS data, the method did not model historical vessel routes 

in any way. The vessel manoeuvrability modelling allowed more realistic representation 

of vessel movement inside the graph compared to the traditional adjacent neighbour mod-

elling. The optimal routes were not tested in simulation or by having a vessel to travel the 

routes. 
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Tarovik et al. (2017) used a similar approach as Guinness et al. (2014) to predict optimal 

ice routes in the Arctic Ocean. The method used A* algorithm, icebreaker assistance and 

modelling of the sea. In addition, their implementation used pre-defined routes such as 

fairways and internal port routes that vessels are obligated to follow. The dataset com-

prised of historical AIS data enriched with weather data. In contrast to Guinness et al. 

(2014), the predicted optimal routes were tested in simulations. The study highlights the 

need for multidisciplinary approach when developing a winter navigation system. 

Topaj et al. (2019) continue the work of Tarovik et al. (2017) by adding icebreaking 

assistance as a key component to the route optimization. The approach considers the 

amount of icebreaking assistance that is needed for a single vessel and the time for an 

icebreaker to reach the point where the vessel would need assistance. The approach was 

tested in simulations and was shown to be able to estimate the amount of icebreaking 

assistance needed and the optimal route for a vessel. However, the authors note many 

uncertainties regarding the results. 

In a similar research, Montewka et al. (2017) propose a method for modelling winter 

maritime traffic in the Baltic Sea. To model the traffic, the authors use a hybrid model 

which combines A* algorithm, AIS data, ice forecasts and ship manoeuvrability model-

ling. The method can predict vessel speed in ice accurately but fails to predict the vessel 

route in a meaningful way. The vessel route prediction fails to consider how the icebreak-

ing activities affect the vessel routes. Furthermore, the authors note that the ice forecast 

data differed from the real conditions and failed to capture the effect of wind closing ice 

channels. The testing was qualitative and comprised of examination of one voyage in ice. 

Still, the study highlights the variety of factors influencing the winter vessel routes in the 

Baltic Sea. 

Finally, Lehtola et al. 2019 model optimal ice routes in the Baltic Sea by using A* algo-

rithm, ice speed modelling, AIS data, ice forecasts and modelling of artificial ice chan-

nels by using historic AIS data. The optimal routes were validated against the AIS data 

and two routes planned by an ice navigation specialist. The optimal routes and the spe-

cialist routes differed significantly from the real AIS routes. The authors noted that the 

approach fails to consider how dirways and icebreaking activity affect optimal routes in 

ice. 
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3.4 Discussion 

The intelligent maritime systems are relatively new development which is apparent in the 

current literature. The principles governing vessel movement are well known but their 

affect to marine traffic and optimal routes are not well studied. The future research could 

benefit from multidisciplinary approach where domain experts and marine scientists are 

included in the modelling process. 

The validation of path planning research is a difficult task as it requires either real world 

test sailings of routes or accurate simulations which do not currently exist. Thus, often 

the validation is done only by visually comparing the planned routes to the historical AIS 

tracks. This evaluation approach can give meaningful results if the aim is to produce more 

efficient routes. However, if the goal is to improve safety of navigation or minimize be-

setting probability, the approach often fails to validate results. Same observation has been 

done by Guinness et al. (2014). In addition, the visual accuracy examination does not 

scale for evaluating large validation sets. 

The topic of traffic modelling has not been covered extensively by the prior literature. 

Still, the path planning research provides a good starting point for traffic modelling as the 

underlying methods could be used to model traffic as well (Montewka et al. 2017). The 

accurate modelling of winter traffic in the Baltic Sea requires considering the icebreaking 

activity as integral part of the modelling. 

The prior literature of ANNs shows promise but they have not been used to predict vessel 

movement in ice. SPAs have been more rigorously studied and the benefits and limita-

tions are better understood. 

Finally, the lack of standardized datasets can hinder the replicability results. In addition, 

the collection of AIS and additional data is a time-consuming task (Lensu and Goerlandt 

2019). This can make starting a completely new research more difficult as AIS data is 

often enriched with additional data sources such as weather, ice and map data. Although 

Lensu and Goerlandt (2019) have created a database containing AIS and ice forecast data 

from the last 9 years, it has not been made publicly available. A comparable database 

would provide a good base for further winter navigation research. 
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4 DATA PROCESSING 

Data processing can be regarded as one of the most important and time-consuming steps 

in any machine learning application (Zanin et al. 2016). Thus, data processing is explored 

thoroughly in this chapter. Methods of data visualization and description are used as they 

are crucial when trying to understand complex and big datasets (Porter and Heppelmann 

2014, Vassakis et al. 2018). This chapter examines separately the collection and the prep-

aration of the data. 

The use of open data sources and publishing of datasets is often overlooked in the big 

data research (Boyd and Crawford 2011, Bruns 2013, Mao et al. 2018). This is evident in 

the prior literature covered in the previous section also. Thus, the validity and proves of 

AIS analytics research can be difficult to assess. To improve the availability of datasets, 

the raw AIS data including the training and validation sets used in this thesis are published 

online (Hakola 2020a). 

4.1 Automatic Identification System (AIS) 

This section describes the implementation of Automatic Identification System (AIS) and 

the properties and quality of the data it produces. AIS is an automatic vessel tracking 

system that was introduced to promote safe and efficient maritime navigation (Interna-

tional Maritime Organization 2001, Harati-Mokhtari et al. 2007). One of the goals was to 

improve the quality of vessel traffic surveillance. Furthermore, AIS provides crucial data 

for understanding the maritime traffic domain and the data can be used to analyse move-

ment patterns of vessels (Lensu and Goerlandt 2019, Mao et al. 2018, Tu et al. 2018).  

The International Maritime Organization (IMO) requires AIS to be active on all passenger 

ships and ships with gross tonnage (GT) above 300 tons. AIS gives information about 

vessel’s identity, location and the current voyage. This information is transmitted through 

VHF radio channels between AIS systems such as base stations, buoys, vessels and VTS 

centres (International Maritime Organization 2003). 
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Contents of AIS transmissions can be divided into static, dynamic and voyage infor-

mation (International Maritime Organization 2003). Contents of the different information 

types are presented in Figure 10. AIS data is not sent in one transmission but is divided 

into different message types. The most common AIS message types are 1, 2, 3 and 5. 

Messages 1, 2, 3 contains the dynamic information and the vessel’s MMSI. The message 

5 contains both the static and voyage related information. The division helps to reduce 

the amount of data sent as the static data is not sent alongside the frequently updated 

dynamic data.  

Although the sending of AIS data is automated, only the dynamic information is read 

directly from ship’s navigational sensors (Harati-Mokhtari et al. 2007). The static and the 

voyage data is manually entered by the ship crew which can affect the validity of the data. 

The dynamic data can also have errors due to problems with integrations to ship’s sensors 

(Banyś et al. 2012). Still, the dynamic data is significantly more reliable than the static 

and voyage data. 

Harati-Mokhtari et al. (2007) report that the static and voyage data is often erroneous. 

They reported problems such as 56 percent of vessel types being wrong and dimensions 

Figure 10. Different AIS information types and their contents (International Maritime Organization 

2003). 
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being incorrect in 47 percent of messages. In addition, the destination and ETA fields 

were not updated frequently or contained wrong information due to input errors.  

4.2 Data Collection 

The AIS, port location, dirway and map data used in this thesis are collected from IBNet. 

Nearly all parts of the dataset can be gathered from open data sources. Similar AIS data 

is available through multiple sources (Digitraffic 2020, Marinetraffic 2020, Aishub 

2020). In addition, similar port location, dirway and vessel metadata is also publicly avail-

able (Digitraffic 2020). 

The collection area for the AIS data is a rectangle that covers most of the Baltic Sea. The 

area’s most southwest point is 53.5 latitude and 9.4 longitude and most northeast point is 

66.1 latitude and 36.1 longitude. The collection rate of the AIS data in different sea areas 

can vary as IBNet receives AIS data from multiple sources with different AIS coverages. 

Map data is taken from the official S-57 map materials provided by Finnish and Swedish 

governments for the development of IBNet. S-57 refers to a map format used in maritime 

charts. S-57 material is composed of vectors representing the S-57 object model and has 

been developed by the International Hydrographic Organisation (GDAL 2019). Traficom 

provides Finnish S-57 maritime charts as open data (Avoindata 2019). The map material 

is unofficial, and the data might differ from the data used in this thesis. Swedish map 

material is not publicly available. 

The S-57 map data is converted to ESRI shapefiles as an intermediate step. The ESRI 

Shapefile refers to a vector data format containing geospatial and geographic information. 

(ESRI 1998) The specification is developed by ESRI to improve data compatibility 

among geographic information systems. The conversion is done using an open-source 

python library (Schylberg 2019) which uses GDAL and OGR libraries to convert the map-

data. The shapefile extraction process is visualized in Figure 11. 
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The shapefiles used in this thesis are the land area of the Baltic Sea and the shallow water 

area. The shallow water area is a subset of the Baltic Sea where the depth of the sea is 

less than 10 meters. The shapefiles are used in the modelling of the sea described in Chap-

ter 5. 

4.3 Data Preparation 

The AIS data is merged with the vessel metadata using the MMSI number. The metadata 

fields are appended to each observation. Then, the AIS dataset is divided into training and 

validation sets. The preparation of the training and validation sets are described individ-

ually in the following sections. 

4.3.1 Training Set 

In this section, the selection and the creation of the training set is described. The AIS 

observation time periods for the training set are 01.11.2017 – 20.12.2017 and 25.05.2018 

– 21.10.2018. Since vessel movement in winter does not represent the typical vessel 

movement behaviour as discussed in Chapter 2, the data from winter is left out. Winter 

data could distort the normal vessel routes and affect the accuracy of the model.  

Each observation in the AIS data includes time, coordinate, course, heading and speed 

information. To avoid skewing the model towards a speed of zero, the dataset is filtered 

down to observations where speed is greater than 0.1 knots. Average speed of the vessels 

is not affected by removing observations where the vessel is not moving.  

Figure 11. Process of creating map of the Baltic Sea as shapefiles from multiple S-57 materials. 
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Some vessel types have observations that differ vastly from the rest of the training set. 

For example, the difference between the type “OTHER” and the rest of the training set is 

visualized in Figure 12. To reduce the observation amount and simplify the modelling, 

the five most common vessel types are selected. The remaining vessel types are:  

• GC (General Cargo),   

• T (Tanker), 

• PAS (Passenger ship),  

• CONT (Container) and  

• RORO (Roll-on, Roll-off ship).  

Finally, the resulting training set contains nine million observations from 18 thousand 

different vessels. There are notable differences between the mean speeds of the selected 

vessel types. The mean speeds are visualized in Figure 13. 

Figure 12. The difference in vessel movements between vessel type OTHER (left) and rest of vessel types 

(right). 
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4.3.2 Validation Sets 

The time periods for the validation sets are 01.02.2019 – 28.02.2019 and 11.05.2019 – 

09.06.2019. The first validation set is referred as the winter set and the latter as summer 

set. As with the training set, only the five most common vessel types are considered. 

As the voyage and port visit data in AIS messages has been deemed to be unreliable in 

Section 4.1, the voyage data is derived from the historical vessel positions. To do this, a 

simple algorithm is developed that uses the AIS data, haversine distance and port loca-

tions to generate voyages (see Algorithm 1). The calculated voyages are used for meas-

uring the accuracy of the model. In short, the algorithm iterates through the AIS observa-

tions vessel by vessel and detects voyages by examining if a moving period is between 

two consecutive stop periods and the stop periods are inside different port areas. 

The distance of a vessel to a port is calculated by using the haversine distance which 

considers the curvature of the earth (Sinnot 1984). The formula for the calculation is 

𝑑((𝑥1, 𝑦1), (𝑥2, 𝑦2)) = 2𝑟0√sin2 (
𝑦2−𝑦1

2
) + cos(𝑦1) cos(𝑦2) sin2 (

𝑥2−𝑥1

2
)       (2), 

Figure 13. Mean speeds by vessel type in the training set. 
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where 𝑟0 refers to the radius of the earth in meters, 𝑥𝑖 refers to the latitude of the first and 

the second point and 𝑦𝑖 refers to the longitude values. Haversine distance is used to ap-

proximate the geographical distance. 

Algorithm 1 Simple voyage calculation 

Input: ais (AIS observations), ports (list of ports) 

1: port_radius ← 10 km 

2: max_time_between_messages ← 60 minutes 

3: voyages ← list() 

4: voyage ← dict (id: 0) 

5: for vessel, observations in ais do 

6:   prev ← observations[0] 

7:   for obs in observations do 

8:      obs.in_port, obs.port ← min_distance_to_port(obs, ports) < port_radius_km 

9:      if obs.time - prev.time > max_time_between_messages do 

10        voyage ← dict(id: voyage.id) 

11:       prev ← obs 

12:       continue 

13:     end if 

14:     if voyage.atd is not empty: 

15:        voyage.observations.append(obs) 

16:     end if 

17:     if prev.in_port and not obs.in_port and is_long_move(obs, observations): 

18:       voyage.atd = obs.timestamp 

  19:       voyage.start_port = prev.port 

20:     end if 

21:     if obs.in_port and is_moving(prev) and is_long_stop(obs, observations): 

22:        voyage.end_port ← obs.port 

23:        voyage.ata ← obs.timestamp 

24:        voyages.append(voyage) 

25:        voyage ← dict(id: voyage.id+1) 

26:     end if 

27:   end for 

28: end for 

29: return voyages 

The algorithm gives a rough approximation of the voyages. The start and end points of 

the resulting voyages are not precise. However, when testing the model, any subset of the 

voyage is good enough to test how the model predicts the journey between two points.  

The accuracy of the voyages is most dependent on how accurate and dense the AIS data 

is and how accurately the ports have been modelled. In the dataset, the ports have been 

modelled as points which does not accurately represent the port area. Ports usually have 
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multiple berths for vessels to stop. Preferably, the berths inside a port would be modelled 

as polygons so that the voyage could be more accurately generated. 

The voyage calculation mapped the voyages correctly in most of the cases. However, in 

some instances the algorithm failed to detect the stopping of a vessel to a port which 

resulted in a very long voyage. An example of an erroneous voyage mapping is visualized 

in Figure 14.  

The errors in voyage calculation were detected by comparing the calculated voyage dis-

tance to the distance between the start and end point of the voyage. The faulty voyages 

were filtered out by removing voyages with the length of the voyage being over 100 % 

longer than the haversine distance between the start and the end point. The filtering re-

sulted to removal of 15.2 % of the original voyages. 

Figure 14. An incorrectly calculated voyage. The calculation failed to detect the port visit of the vessel in 

the east which resulted in the addition of the return trip to the voyage. 
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Finally, the sea is divided into ten sea areas (see Figure 15) and the calculated voyages 

from summer are sampled without replacement by selecting 30 voyages ending to each 

sea area. The winter voyages are sampled without replacement by selecting 30 voyages 

ending or starting from the Bothnian Bay where ice was present during the collection 

period of the winter validation set. The resulting validation sets contain 121 thousand 

observations from 380 voyages. 

Figure 15. The sea areas used for creating the validation set. Modified from Helcom 

(2020). 
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5 METHODOLOGY 

In this chapter, a grid-based approach for winter marine traffic modelling is described. 

The model consists of the following submodels: sea, vessel manoeuvrability, route, speed 

and icebreaking activity model. The icebreaking activity is modelled through dirways as 

they have been shown, in Chapters 2 and 3, to affect vessel movement in ice. 

5.1 Model Structure 

In this section, the submodels of the proposed method are described. As in the previous 

chapter, different ways of describing and visualizing the method are used. The GitHub 

repository containing the source code of the approach also contains 17 Jupyter Notebooks 

that go through the whole modelling process in detail (Hakola 2020b). Jupyter Notebooks 

is an application for creating and sharing documents with live code and visualisations 

(Jupyter 2020). 

5.1.1 Sea Modelling 

A sea can be modelled by using the discretization of the sea (Guinness et al. 2014). The 

discretisation of the sea refers to a process where the sea is modelled by a set of points s 

and the number of points in the set is represented by m=|S|. The discretisation is a mean-

ingful way to model the sea if the goal is to link additional location-based data to the sea. 

The linked data in this case are vessel observations, dirways and depth of the sea. 

To construct the graph, first the area of the Baltic Sea is discretized into a grid of L x H 

square tiles. Second, the land areas are filtered out to avoid predicting impossible routes. 

Land areas are filtered by going through every tile in the grid and removing the tile if the 

tile is within a land area. As a result, a uniform grid containing only tiles representing an 

area of the sea is formed. 

After the sea has been modelled, a shallow area graph is created by going through every 

node in the sea graph and adding the node into the shallow graph if the node is inside the 

shallow water polygon created in the previous chapter. The resulting two graphs are vis-

ualized as points in Figure 16.  
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The number of tiles in the grid directly relates to the resolution available to model traffic 

patterns. However, as the resolution grows the computational requirements increase also. 

To balance the resolution, accuracy and computational requirements, two tile sizes are 

tested. The tile sizes are 5 km x 5km and 2.5 km x 2.5km.  

5.1.2 Manoeuvrability Modelling 

The grid constructed in the previous section does not yet contain any information about 

how a ship can move through it. To connect the tiles in the grid, a set of neighbours is 

defined for each of the tiles in the grid. The neighbours can be constructed by using the 

adjacent tiles, but this does not accurately model the manoeuvrability of a ship (Guinness 

Figure 16. The shallow water nodes (red) drawn on top of the sea graph (blue). 
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et al. 2014). Thus, ship manoeuvrability modelling modified from Guinness et al. (2014) 

is used to model ship’s movement options in the grid. The adjacent tile modelling is used 

as a benchmark for the manoeuvrability model. The different ways of modelling move-

ments options are depicted in Figure 17. 

Guinness et al. (2014) used a maximum of 56 neighbours for each tile if all the neighbours 

are traversable. Moreover, the model describes manoeuvrability when the tile size is 1 km 

x 1km and the maximum distance between two neighbours is approximately 10 kilome-

tres. Thus, the neighbourhood size is dependent on the dimensions of the tiles if the max-

imum distance is constant. 

In this thesis, larger tile sizes are used which decreases the size of the neighbourhood if 

the same maximum distance between neighbours is applied. To increase the neighbour-

hood size, a longer maximum distance is used with the 5 km x 5 km tile size. The maxi-

mum distance with 5 km x 5 km tiles is 18 kilometres and 10 kilometres with 2.5 km x 

2.5 km. The neighbourhood sizes are 36 for the 5 km x 5 km tiles and 52 for the 2.5 km 

x 2.5 km tiles. 

5.1.3 Route Modelling 

In modelling of traffic, we are interested in modelling the typical vessel movement pat-

terns. The traffic patterns are modelled by calculating a transition probability from one 

tile to another. In short, the probability describes how often a vessel has travelled between 

two grid tiles. Thus, the weight represents transition probability from one node to another. 

A weight from node i to node j is described as 

Figure 17. The maximum neighbourhoods of a single node with different ways of modelling. 
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𝑊(𝑖 → 𝑗), (3) 

The weights are calculated by going through vessel’s observations and detecting instances 

where the vessel moves from one tile to the next. The weight is a sum of all the transitions 

found in the dataset. The route modelling is visualized in Figure 18. 

The transitions are detected in two different ways depending on the manoeuvrability 

model used. When adjacent tiles are used, the transition is simply detected by checking if 

the next position is on a neighbouring tile. If the AIS data has big enough gap to cause 

the next observation to be in a tile that is not in the neighbourhood of the current one, the 

transition is discarded. One way to solve this issue would be to interpolate observations 

Figure 18. Result of route modelling drawn on top of the sea model 
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between two distant points. However, the dataset is dense enough and the tile sizes are 

big enough that the effect of discarded transitions to the weights is insignificant.  

When the ship movement model is used, the transitions are mapped using the Algorithm 

2. In short, the transition is mapped if the vessel has travelled from the current tile to the 

neighbour in a 45-minute time window. 

Algorithm 2 Transition detection using ship movement model 

Input: ais (AIS observations) 

1: time_window ← 45 minutes 

2. transitions ←list() 

3: for vessel, observations in ais do 

4:   node ← empty 

5:   for obs in observations do 

6:     if node is obs.node do 

7:       continue 

8:     end if 

9:     node ← obs.node 

10:   neighbours ← get_neighbours(observations) 

11    future_nodes ← observations.filter(obs.time < x <= obs.time + time_window) 

12:   future_nodes ← remove_duplicates(future_nodes) 

13:     for neighbour in neighbours do 

14:       if neighbour in future_nodes do 

15:         transitions.append([node, neighbour]) 

16:       end if 

17:     end for 

18:   end for 

19: end for 

20: return transitions 

5.1.4 Speed Modelling 

Once the traffic has been modelled as a graph, speed modelling can be performed. Mod-

elling of speed is used to predict vessel’s location along a predicted route.  

Speed is modelled by calculating the mean speed by vessel type in every node in the 

graph. If no vessel has passed through a node, the speed in the previous node is used. The 

winter observations and observations with a speed less than 0.2 m/s (~0.4 knots) are fil-

tered out. This is done so that vessels moored at waiting areas, fuel stations and port areas 

do not distort the speed modelling.  
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As the nature of the ship acceleration is slow, a friction is introduced to the speed model 

at the start of the predicted route. The real vessel speed at the start of the predicted route 

is more accurate than any velocity predicted by the model. Thus, the predicted speed will 

gradually fall towards the modelled speed from the starting speed. The speed function is 

𝑣𝑖𝑗  =
((𝑇𝑚𝑎𝑥−𝑇𝑐𝑜𝑢𝑛𝑡)𝑣𝑝𝑟𝑒𝑣+(𝑇𝑐𝑜𝑢𝑛𝑡−𝑇𝑚𝑎𝑥)𝑣type mean 𝑖𝑗)

 𝑇𝑚𝑎𝑥
  (4), 

where 𝑇𝑚𝑎𝑥 is the maximum number of transitions for which the friction is used, 𝑇𝑐𝑜𝑢𝑛𝑡 

is the number of transitions the model has predicted if the transition count is the equal or 

less than 𝑇𝑚𝑎𝑥 , otherwise it is 𝑇𝑚𝑎𝑥. Mean speed in the node for a vessel type is 

𝑣type mean 𝑖𝑗 and 𝑣prev is the speed in the previous node. The previous speeds are not 

stored in the graph but are kept in memory when doing the path prediction as described 

in Section 5.3. 

To conclude, the proposed approach for speed modelling is quite naïve and gives only a 

rough estimation of a speed in each node. The use of friction is introduced to give more 

weight to the actual speed. Additionally, the speed modelling could be improved by in-

corporating variables such as safe speeds, vessel’s maximum speed and ice forecasts to 

the modelling. 

5.1.5 Cost Function 

The cost function is the combination of a transition probability to the next node and the 

travel time from the next node to the destination. Distance to the destination is used to 

prevent selection of highly traversed routes that do not make sense in terms of travel time. 

For example, selecting a long path that is commonly used when a significantly shorter but 

less traversed route is available. 

Formula for the cost function is the following: 

𝐹𝑖𝑗 = 𝐺𝑖𝑗 + 𝐻𝑖𝑗                (5), 

where 𝐹𝑖𝑗 is the cost to travel to the next node with coordinates (i, j), 𝐺𝑖𝑗 is the transition 

cost from the current node to node (i, j) and 𝐻𝑖𝑗 is the cost from node (i, j) to the destina-

tion. 
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The transition cost 𝐺𝑖𝑗 is a sum of transition probabilities from the start node to the next 

node (i, j). The function is 

∑ (𝐷 →  0.05) ∧ (¬𝐷 →  𝑃(𝑖,𝑗) +  𝑆)
(𝑖,𝑗)
𝑘=start                 (6), 

where D represents the presence of a dirway in the next node,  𝑃(𝑖,𝑗) is the transition 

probability from the current node to the node (i, j) and S is a shallow water penalty. The 

constant dirway cost is introduced to model the winter lanes kept open by icebreaker. The 

value of the dirway cost has been selected by trial and error and might not suit all situa-

tions. 

The dirway cost cannot be zero as the dataset lacks information about which points of the 

dirway the vessel has been directed through. If the cost is zero, then the shortest path 

algorithm produces highly unusual routes. In addition, the chosen approach enables the 

use of dirway cost for every ship travelling through an area where dirways are present 

whether they are directed through the dirways or not. 

The shallow water penalty is introduced to avoid selecting routes near archipelagos or 

shores. As established in Chapter 2, vessels avoid travelling near a shore or an archipelago 

where the risk of getting stuck is high.  

The heuristic for modelling the time to the destination is modified from Guinness et al. 

(2014). They used the heuristic to predict optimal vessel routes in ice. The modified heu-

ristic 𝐻𝑖𝑗 is 

H𝑖𝑗 =
√(𝑥i−xend)2+(yj−yend)

2

𝑣𝑖𝑗 
   (7), 

where 𝑥𝑖   is the x-coordinate and 𝑦𝑗 is the y-coordinate of the next node (i, j), 𝑥end is the 

x-coordinate and 𝑦end is the y-coordinate of the destination node and 𝑣𝑖𝑗 is the predicted 

speed in the next node (i, j). 
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5.2 Route Prediction 

In this section, a short description of the route prediction method is given. In addition, the 

effect of different grid sizes and manoeuvrability models to the prediction result are ex-

amined visually. The route prediction method is not elaborated extensively as the python 

implementation of it is available online (Hakola 2020b). 

5.2.1 Description 

The route prediction is done using the A* algorithm which calculates the cheapest route 

from the origin node to the destination node according to the cost function described in 

the previous section (Hart et al. 1968).  

The A* algorithm was chosen because of the computational complexity is low compared 

to other shortest path algorithms such as Dijkstra's. In addition, it has been used exten-

sively in the previous research. However, any shortest path algorithm could be used. The 

Algorithm 3 describes the pseudo code for the route prediction.  
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Algorithm 3 Route Prediction 

Input: model (traffic model), start_coords, end_coords, v (speed), start_time 

1: open ← set() ← s 

2: closed ← set() 

3: start ← model.get_node(start_coords) 

4: end ← model.get_node(end_coords) 

5: while open is not empty do 

6:    current ← n in open with min(n.g) 

7:    if current is end then 

8:        path.add([end_coords, current.speed]) 

9:        while current.parent is not None do 

10:         path.add([current.coords, current.speed]) 

11:         current ← current.parent 

12:      end while 

13:      path.add([start_coords, v]) 

14:      return reverse(path) 

15:   neighbors ← model.edges[current] 

16:   for n in neighbors do 

17:     n.transitions ← current.transitions + 1 

18:     speed ← model.get_speed(current, type, n.transitions) 

19:     if n in closed then 

20:       continue 

21:     end if 

22:     n.speed ← speed 

23:     n.g ← current.g + model.transition_cost(current, n, speed) 

24:     n.h ← model.cost_to_end(n, end) 

25:     n.f ← n.g + n.h 

26:     if n not in open then 

27:       open.add(n) 

28:       continue 

29:     end if 

30:     for o in open do 

31:        if o.pos is n.pos and o.g > n.g then 

32:          o ← n 

33:          if n in closed then 

34:            closed.remove(n) 

35:            open.add(n) 

36:          end if 

37:        end if 

38:     end for 

39:   end for 

40:   open.remove(current) 

41:   closed.add(current) 

42: end while 
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5.2.2 Discussion 

In this section, the accuracy and performance of the route prediction method are discussed 

and examined visually. Focus is on how different tile sizes and manoeuvrability models 

affect the prediction results and how the use of dirways impact the prediction in winter. 

In addition, this section aims to highlight the shortcomings and strengths of the prediction 

method.  

To examine the summer route prediction, two example voyages have been selected from 

the validation set. The first test voyage is from Halmstad to Luleå and second from Kali-

ningrad to Kotka. The voyages have been selected to cover most of the sea areas depicted 

in Figure 14 in Section 4.3.2. 

The adjacent model and ship model produce good and similar results with the first voyage 

using the 5 km x 5 km tile size as can be seen in Figure 19. The adjacent model performs 

slightly better in the middle of the voyage whereas the ship model predicts the start and 

end parts of the voyage more accurately. 

The predictions of the first voyage differ slightly when the 2.5 km x 2.5 km tile size is 

used as evident in Figure 20. Even though the adjacent model gives almost the same result 

as with the bigger tile size, the start of the voyage in the Southern Sweden is less accurate 

Figure 19. Summer route prediction results visualized using the adjacent model (left) and the ship model 

(right). Tile size 5 km x 5 km. Voyage id in the validation set 802. 
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and has many sharp turns. In this case, the ship model yields highly inaccurate results in 

the middle and end part of the voyage.  

The second voyage predictions with the 5 km x 5km tile size are depicted in Figure 21. 

The figure shows that the adjacent model fails to predict the route in a meaningful way. 

Most likely, one of the high-volume traffic lanes from the Southern Baltic Sea to the 

Northern Baltic Sea, that are visible in Figure 18, distorts the prediction. However, the 

ship model is not affected by the high-volume traffic lanes and produces a significantly 

better prediction. 

Figure 20. Summer route prediction results visualized using the adjacent model (left) and the ship model 

(right). Tile size is 2.5 km x 2.5 km. Voyage id in the validation set is 802. 

Figure 21. Summer route prediction results visualized using the adjacent model (left) and the ship model 

(right). Tile size is 5 km x 5 km. Voyage id in the validation set is 5672. 
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The adjacent model produces slightly improved prediction when using the 2.5 km x 2.5 

km tile size which is clear from Figure 22. The ship model prediction has fewer sharp 

turns but the predicted route deviates more from the actual route compared to Figure 21. 

Next, the impact of dirways to winter route prediction is examined. Two voyages from 

the validation set have been selected to highlight instances where the use of dirways yields 

significantly better results. First, Figure 23 shows that the use of dirways improves the 

prediction greatly in the Northern Bay of Bothnia where the ice field is the thickest. 

Figure 23. Winter route prediction result comparison with dirways off (left) and on (right). Both predic-

tions have been done using the tile size 5 km x 5 km and the ship model. Voyage id is 97. 

Figure 22. Summer route prediction results visualized using the adjacent model (left) and the ship model 

(right). Tile size is 2.5 km x 2.5 km. Voyage id in the validation set is 5672. 
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The improvements from using dirways in the route prediction are present in Figure 24 

also. In this case, the vessel track differs significantly from a typical route to Kemi as it 

follows the dirways closely. The model using dirways predicts the vessel route accurately 

in ice. 

In conclusion, the visual examination highlights areas where the model suffers and excels. 

There are voyages and sea areas that are harder for the model to predict. When predicting 

winter routes, the use of dirways can improve the accuracy when the route goes through 

an icefield where dirways are present.  

5.3 Traffic Prediction 

The traffic prediction method is described in Algorithm 4. The implementation has the 

advantage of simulating the whole voyage which enables measuring prediction accuracy 

in different time instants quickly. The traffic prediction method does not consider a case 

where vessel has multiple port visits in the future. It is developed for the purposes of 

testing the voyages in the validation set. 

Algorithm 4 Traffic prediction 

Input: model, vessel_positions, dirways 

1: voyages ← list()  

2: for obs in vessel_positions do: 

3:  voyage ← Route Prediction(graph, obs.pos, obs.end_pos, dirways, obs.speed) 

4:  voyages.extend(voyage) 

5: end for 

6: return calculate_timestamps(voyages) 

Figure 24. Winter route prediction result comparison with dirways off (left) and on (right). Both predic-

tions have been done using the tile size 5 km x 5 km and the ship model. Voyage id is 587. 
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In a real-world implementation of the traffic prediction algorithm, the timestamps for 

each node should be calculated in the route prediction as it is trivial to do and reduces the 

time-complexity of the algorithm. The detaching of timestamp calculation gives the ad-

vantage of changing the speed model without needing to predict every voyage in the val-

idation set again. 

The traffic prediction method could be altered to work in a real-time environment. One 

possible solution for real-time traffic prediction is described in Algorithm 5. Although 

the algorithm predicts a single position for each vessel, the use of a SPA means that the 

algorithm needs to calculate the whole route for the vessel before calculating the single 

position along the route. 

Algorithm 5 Traffic prediction real-time 

Input: model, observations, dirways, mins_to_future 

1:   predicted_positions ← list() 

2:   for obs in vessel_positions do: 

3:     portvisits ← find_portvisits[obs.mmsi] 

4:     start_pos ← obs.pos 

5:     start_time ← obs.timestamp 

6:     speed ← obs.speed 

7:     course ← obs.course 

8:     for p in portvisits do: 

9:       if start_time > time_now + mins_to_future do  

10:         break 

11:     endif 

12:    voyage ← Route & Timestamp Prediction (graph, start_pos, end_pos, start_time, 

dirways, speed, course) 

13:     start_pos ← p.pos 

14:     start_time ← p.etd (estimated time of departure) 

15:     speed ← 0 

16:     course ← 0 

17:   end for 

18:   if voyage is present do 

19      predicted_positions[obs.mmsi] ← interpolate_position(voyage, mins_to_future)  

20:   endif 

21: end for 

22:  

23: return predicted_positions 
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6 RESULTS 

This chapter is divided into sections based on the evaluated component of the model. 

These components are route, speed, traffic and ETA modelling. Results of each area are 

discussed in the sections. Lastly, conclusions are drawn from the results. 

6.1 Route Prediction Results 

Route prediction accuracy is measured by calculating the area between the actual route 

and the predicted route. The area between routes as prediction error is introduced as a 

numerical way to measure the route prediction accuracy to improve the deficiencies of 

prior literature described in Section 3.4. The area between routes has been visualised in 

the figures in Section 5.2.2. 

The ship model performs significantly better than the adjacent model in summer condi-

tions as can be seen from Figure 25. In winter, the ship model performs best without 

dirways but is the worst performer when dirways are used. Moreover, the use of dirways 

improves the winter results remarkably with every manoeuvrability model. This is in line 

with the visualisation of predicted routes in the previous chapter. 

Figure 25. Route prediction accuracy. 
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The summer route prediction results by sea area are shown in Table 1. The routes are 

divided into subroutes based on which sea area a part of a route belongs. The area error 

references to the route prediction accuracy measure described above. Standard deviation 

is abbreviated as SD.  The count indicates the number of routes inside a sea area. 

The predicted routes inside Saimaa are the most accurate by a vast margin. This is ex-

plained most likely by the smaller variance in vessel routes as Saimaa is significantly 

shallower than the Baltic Sea. 

The big variance in standard deviation illustrates areas where the route prediction has 

issues. The areas where the route prediction is the most stable are Saimaa, the Gdansk 

Basin and the Bothnian Bay. Winter results of the Bothnian Bay are shown in Table 2.  

Model Dirways Median   

Area Error  

Mean 

Area Error  

SD of Area 

Error  

Adjacent (2.5 km x 2.5 km) ON 269 km2 1094 km2 1909 km2 

Adjacent (5 km x 5 km) ON 367 km2 1376 km2 2275 km2 

Ship (5 km x 5 km) ON 367 km2 1303 km2 2186 km2 

Adjacent (2.5 km x 2.5 km) OFF 1589 km2 2819 km2 2960 km2 

Ship (5 km x 5 km) OFF 1717 km2 2856 km2 2861 km2 

Adjacent (5 km x 5 km) OFF 2122 km2 3068 km2 2884 km2 

Table 2. Winter route prediction error in the Bothnian Bay using 5 km x 5 km tile size and the ship model. 

Sea Area Median 

Area Error  

Mean  

Area Error 

SD of 

Area Error 

Count 

Saimaa 13 km2 31 km2 43 km2 21 

Gdansk Basin 82 km2 104 km2 73 km2 61 

Åland Sea 180 km2 1127 km2 2796 km2 121 

Bothnian Bay 213 km2 413 km2 460 km2 36 

Gulf of Riga 227 km2 1318 km2 2199 km2 33 

Gulf of Finland 292 km2 620 km2 787 km2 84 

Arkona Basin & 

Bomholm Basin 380 km2 3376 km2 7865 km2 113 

Gotland Basin 606 km2 2129 km2 3916 km2 182 

Bothnian Sea & 

The Quark 718 km2 1638 km2 2658 km2 79 

Northern Baltic 

Proper 981 km2 1584 km2 1774 km2 126 

Table 1. Summer route prediction error to and from different sea areas using 5 km x 5 km tile size and the 

ship model. 
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After removing the routes with area error over 5000 km2, the Table 3 shows that the mean 

and median error drop drastically in every sea area. The sea areas that are least effected 

by the big errors are the Åland Sea, the Bornholm Basin and the Bothnian Bay. The sea 

area results indicate that the prediction error is not related to the voyage length as the 

average voyage length increased as the results improved. 

The route prediction error increases steadily up to voyage length of 800 km length as seen 

in Figure 26. After 800 km, the rise stagnates and starts to fall.  

Route prediction accuracy was the most accurate for the vessel type ‘PAS’ as the Table 3 

shows. It also had the least big errors. The passenger ships travel the same routes repeat-

edly and thus the routes could be easier to predict.  

Type Mean  

Area 

Error 

(km2) 

SD of  

Area 

Error 

(km2) 

Mean  

Voyage 

Length 

(km) 

SD of  

Voyage 

Length 

(km) 

Big Errors  

(> 5000 

km2) 

% of  

Big Er-

rors 

Count 

PAS 1992 4834 339 111 8 8,3 % 96 

CONT 2903 2461 471 126 3 27,3 % 11 

GC 4176 7562 524 366 35 22 % 159 

T 6499 8199 684 400 16 37,2 % 43 

RORO 9808  8637 946 281 10 47,6 % 21 

Table 3.  Prediction error by vessel types using 5 km x 5 km tile size and the ship model. 

Figure 26. Median route prediction over voyage length in 200 km intervals different grid sizes and ma-

noeuvrability models. 
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6.2 Speed Prediction Results 

Speed prediction accuracy is measured by calculating the difference between the actual 

speed at every observation point of the actual voyage and the predicted speed on the pre-

dicted route. The mean speed prediction error is slightly smaller in summer compared to 

winter as seen in Figure 27. 

Figure 27. Mean speed prediction error during summer and winter using the 5 km x 5 km tile size and 

ship model. 

The speed model tends to over predict the vessel speed in summer as shown by Figure 

28. Even small errors in speed prediction can lead to big errors in traffic prediction with 

long voyages. 

Figure 28. The mean actual speed versus the mean predicted speed over voyage duration in summer using 

5 km x 5 km tile size and the ship model. 
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Overall, the speed prediction is more accurate in summer than in winter as seen in Figure 

29.  Moreover, the use of dirways does not make meaningful difference to the accuracy 

of speed prediction. 

Speed prediction performs better with tanker and general cargo vessel types than other 

types as seen in Figure 30. Interestingly, passenger vessels are the most difficult for the 

speed model to predict even though one could assume that they tend to travel the same 

speed from voyage to voyage as they travel the same routes repeatedly. 

Figure 30. Speed prediction accuracy as the mean difference between the predicted speed and the actual 

speed. Summer, adjacent model, 5 km x 5 km tile size. 

Figure 29. The median speed prediction error with summer and winter validation sets over voyage 

duration using 5 km x 5 km tile size and the ship model. 
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6.3 Traffic Prediction Results 

Traffic prediction accuracy is measured by calculating the difference between the actual 

and predicted position in a point in time in nautical miles. Traffic prediction accuracy is 

calculated for every observation in the validation set. 

The traffic model performs significantly better in summer than in winter as seen in Figure 

31. The use of dirways does not significantly affect the traffic prediction accuracy, despite 

the improvements to the route prediction described in Section 6.1. 

 

Figure 31. Median error in traffic prediction accuracy with different manoeuvrability models and valida-

tion sets. 

Traffic prediction accuracy varies between sea areas. Table 4 shows the traffic prediction 

error by sea areas with the summer validation set. In this case, a voyage is mapped to a 

sea area if it starts or ends from the sea area. The high standard deviation with many of 

the sea areas indicate that there are voyages where the route and speed predictions are not 

accurate.  
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Sea Area Median 

Error  

Mean  

Error  

SD of  

Error 

Median 

Voyage 

Duration 

Mean 

Voyage 

Duration 

SD of  

Voyage 

Duration 

Count 

Saimaa 3 nm 4 nm 4 nm 305 min 374 min 308 min 60 

Åland Sea 11 nm 18 nm 20 nm 530 min 630 min 466 min 50 

Gulf of Fin-

land 11 nm 19 nm 22 nm 666 min 822 min 649 min 86 

Gulf of Riga 12 nm 18 nm 20 nm 798 min 876 min 595 min 33 

Bothnian Sea 

& The Quark 12 nm 23 nm 28 nm 900 min 1036 min 758 min 56 

Gotland Basin 13 nm 21 nm 22 nm 585 min 762 min 621 min 77 

Northern Bal-

tic Proper 15 nm 20 nm 18 nm 409 min 585 min 533 min 47 

Arkona Basin 

& Bomholm 

Basin 16 nm 26 nm 29 nm 830 min 1092 min 925 min 96 

Gdansk Basin 18 nm 25 nm 28 nm 621 min 815 min 711 min 66 

Bothnian Bay 28 nm 38 nm 34 nm 1312 min 1534 min 1106 min 38 

Table 4. Traffic prediction error by sea areas with the 5 km x 5 km tile size, ship model and summer vali-

dation set. 

The erroneous voyages are evident in histogram of voyage mean error in Figure 32. The 

figure shows the amount of cases where traffic prediction fails because of faulty route or 

speed prediction. 

Figure 32. Mean error of voyage histogram. 
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The mean prediction error over prediction time is visualized in Figure 33. There is no 

notable difference between the summer and winter validation sets with or without dir-

ways. As the Table 4 and Figure 32 suggested, the prediction accuracy increases signifi-

cantly when voyages with route prediction mean error over 5000 km2 are removed from 

the summer validation set. 

6.4 Estimated Time of Arrival Prediction Results 

Estimated time of arrival accuracy is measured by calculating the difference between the 

actual and predicted arrival time in hours. Overall, the model over predicted the estimated 

arrival time in summer with ship model and 5 km x 5 km tile size in 74 percent of voyages. 

The model predicted ETAs in summer more accurately than in winter as evident in Table 

5. However, the summer voyages were significantly shorter than the winter voyages.  

Model 

Median 

Diff 

Mean 

 Diff 

SD of  

Diff 

Median 

Voyage 

Dura-

tion 

Mean 

Voyage 

Dura-

tion 

SD of  

Voyage 

Dura-

tion Count 

Summer (ship) 1,7 h 2,9 h 3,7 h 18,6 h 23,7 h 16,9 h 330 

Winter (Dir-

ways OFF, ship) 6,4 h 4,6 h 5,6 h 56,7 h 48,9 h 24,1 h 80 

Winter (Dir-

ways ON, ship) 6,3 h 4,3 h 5,4 h 56,7 h 48,9 h 24,1 h 80 

Table 5. ETA prediction error results with summer and winter validation sets. 

Figure 33. Traffic prediction error comparison over prediction time with 5 km x 5 km tile size. Predic-

tion done using the ship model and 5 km x 5 km grid size. 
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The median error rises steadily with the duration of a voyage up to duration of 40 hours 

as seen in Figure 34. After 40 hours, the variance in error increases considerably. 

The performance of the proposed model is considerably worse than the benchmark study 

as can be seen in Figure 35. However, it is important to note that the vessel tracks in the 

Alessandrini et al. (2018) results are heading to only one port whereas the vessel tracks 

in the summer validation set are to 72 different ports and in the winter validation set to 

25 ports. In addition, the vessel tracks are from different seas and thus the vessel move-

ment patters between the two seas can vary. 

Figure 34. Median ETA prediction error over time averaged for all the voyages in the summer valida-

tion set. Prediction done using the ship model and 5 km x 5 km grid size. 

Figure 35. Comparison of ETA prediction error averaged over all the vessel tracks entering the port of Trieste 

(Alessandrini et al. 2018) and over all the vessel tracks in the validation set using the method described in this 

thesis. 
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The prediction error varies between voyages ending to different sea areas as shown in 

Table 6. These results indicate again that the performance is not only tied to voyage length 

or duration but also how complex the traffic is in the sea areas which the voyage passes.  

Sea Area 

Median 

Diff 

Mean 

 Diff 

SD of  

Diff 

Median 

Voyage 

Dura-

tion 

Mean 

Voyage 

Dura-

tion 

SD of  

Voyage 

Dura-

tion Count 

Saimaa 0,54 h 0,9 h 0,97 h 4,33 h 6,77 h 6,22 h 30 

Gulf of Fin-

land 0,91 h 2,02 h 2,66 h 19,91 h 22,04 h 11,43 h 56 

Arkona Ba-

sin & Bom-

holm Basin 1,14 h 3,03 h 5,04 h 14,78 h 21,44 h 17,63 h 66 

Northern 

Baltic 

Proper 1,46 h 1,45 h 1,27 h 13,09 h 15,39 h 10,42 h 17 

Gotland Ba-

sin 1,52 h 3,1 h 4,24 h 17,99 h 20,13 h 10,91 h 47 

Åland Sea 1,73 h 2,52 h 2,56 h 17,84 h 20,53 h 9,65 h 20 

Gdansk Ba-

sin 1,93 h 2,98 h 3,98 h 17,54 h 20,16 h 11,2 h 36 

Gulf of Riga 2,69 h 3,4 h 2,58 h 28,9 h 29,08 h 9,7 h 3 

Bothnian 

Sea & The 

Quark 3,04 h 3,86 h 4,36 h 30,05 h 33,38 h 16,15 h 26 

Bothnian 

Bay 3,45 h 5,61 h 5,68 h 50,98 h 48,56 h 23,57 h 8 

Table 6. ETA prediction error by sea areas with the 5 km x 5 km tile size, ship model and summer valida-

tion set. 

6.5 Discussion 

The winter results are only indicative of the model’s performance in ice as the ice-cover-

age during the selected winter was relatively small. There were no dirways present south 

of the Bay of Bothnia. A potential problem in harsh winters is that as the dirways do not 

contain information to which ports they are assigned, the model could overfit the route to 

follow dirways leading to different ports along the route. This problem could be resolved 

by using only the dirways that the vessel is directed through. However, this information 

is not publicly available although it is present in IBNet.  

The accuracy improvements from using the ship model are most likely result of two 

things. First, the ship model simulates the movement patterns of a ship more accurately 
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than the adjacent model. Second, the ship model produces routes with less turns than the 

adjacent model. The adjacent model routes could be improved by applying a smoothing 

algorithm to the routes. It would be interesting to see how much of the accuracy difference 

comes from the jaggedness of the adjacent model routes. 

The estimated time of arrival prediction could already be useful in the planning of ice-

breaking activities. One potential use-case for the ETA prediction would be to use it to 

predict arrival times to the edge of an icefield. This could give icebreaker captains and 

marine authorities valuable information about how many vessels are expected to be near 

an edge of an icefield at any time point in time. 

The effect of ice-class to the modelling accuracy was not examined due to the validation 

set being skewed in terms of ice-class. The validation set contained 71 vessels with ice-

class 1A and 9 vessels with ice-class 1A Super. As the 1A Super vessels can operate in 

ice without icebreaking assistance most of the time, it would be interesting to see if the 

use of dirways would improve the route prediction accuracy. 

The time complexity optimization of the proposed method was not in focus in this thesis. 

This is evident in the CPU run times shown in Table 7. The time complexity could be 

vastly reduced by using for example Pruned Landmark Labeling instead of A* (Akiba et 

al. 2013).  

Manoeuvrability 

Model Tile Size Run time Count 

Adjacent 5 km x 5 km 
11 min 

300 

Ship 5 km x 5 km 
1h 38 min  

300 

Adjacent 2.5 km x 2.5 km 
1h 23 min 

300 

Ship 2.5 km x 2.5 km 3h 49 min 300 

Table 7. The CPU run times of route prediction algorithm with summer validation set and different ma-

noeuvrability models and tile sizes. 
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7 CONCLUSIONS 

The domain of marine traffic modelling is complex, and the prior research is still in its 

infancy in many ways. Vast number of factors affect the route and speed of a vessel and 

all are not yet clearly established. Ice coverage in winter, numerous archipelagos and 

shallow water areas complicate the traffic modelling in the Baltic Sea compared to other 

seas. 

The domain suffers from a lack of standardised public datasets and the models are often 

not evaluated thoroughly. This thesis addressed these issues by publishing the dataset and 

source code used in this thesis (Hakola 2020a, Hakola 2020b). In addition, a novel meas-

ure for route prediction accuracy was introduced and the model was evaluated thoroughly. 

The main target of this thesis was to assess the viability of year-round modelling of ma-

rine traffic in the Baltic Sea and the results are promising. The results indicate that the 

use of dirways improves the route prediction accuracy in ice-covered waters. Moreover, 

the ship model improved both the route and the traffic prediction. 

The performance of the model varied between different sea areas significantly which in-

dicates underlying problems in the route and speed modelling. These issues should be 

addressed in future research for example by using a more comprehensive training set, 

dynamically sized graph or improving the cost function. In addition, the time complexity 

of the method is an issue that should be resolved for real-time predictions. 

As the long-term marine traffic prediction is not a well-studied issue, these results act as 

reference point for future research. Several directions for future research are available: 

validation of dirway model with AIS data from several winters, integration of ice forecast 

data into the model for more accurate vessel movement modelling and validation of the 

results against different shortest path and neural network approaches. 

Besides the Baltic Sea, the results could be utilized in the traffic modelling of the Arctic 

Ocean as it has substantial amount of icebreaking activity and numerous archipelagos and 

shallow water areas. Moreover, if the rise in Earth’s surface temperatures continues, the 

Arctic Ocean could soon host multiple major shipping routes where ice coverage varies 
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considerably between summer and winter. For maritime modelling research, data availa-

bility will be a crucial issue in the Arctic Ocean as the operating icebreakers are from 

multiple countries. 

Beyond the ice-covered seas, year-round traffic modelling is within reach. The grid-based 

methods have been shown to capture traffic flows accurately when ice is not present and 

the resolution requirements are low. Furthermore, the flexibility of grid-based methods 

might prove beneficial if specialities of different seas surface in the modelling process. 

Finally, marine traffic modelling holds tremendous potential for optimising maritime sup-

ply chains if integrated with other parts of the logistics chain. To accomplishing this, vast 

amount of new research and big advances in data availability are required. To make traffic 

modelling useful for practice, collaboration over academic, country and organisation bor-

ders is needed. 
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