

ANIL BOLAT

CLOUD-NATIVE REALIZATION OF
NETWORK CONFIGURATION

PROTOCOL

 Master of Science Thesis
Faculty of Information Technology and Communication Sciences

 Kari Systä
 Tapio Elomaa
 March 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Trepo - Institutional Repository of Tampere University

https://core.ac.uk/display/322611442?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

i

ABSTRACT

Anil Bolat: Cloud-Native Realization of Network Configuration Protocol
Master of Science Thesis, 36 pages
Tampere University
Master’s Degree Programme in Information Technology
March 2020

Many of the telecommunication companies aim to support Network Configuration Protocol
(NETCONF) to manage their large network in cloud-native environment. The NETCONF protocol
provides automation and security using permanent SSH and TLS connections as well as cloud-
native brings scalability advantages. However, supporting the NETCONF protocol in cloud-native
environment represents challenges since the NETCONF protocol is not stateless.

The thesis implements a proof of concept for cloud-native Network Configuration Protocol and
investigates issues of such an implementation. The approach in this thesis is to have two imple-
mentations of standard Network Configuration Protocol and Network Configuration Protocol Call
Home in cloud-native environment. A solution is applied together with these implementations by
terminating the permanent established sessions in the end of messaging. The evaluations are
made by analysing changing number of connections and events per connection in the both im-
plementations.

Based on the evaluation of the proof of concept, the results indicate that terminating the es-
tablished NETCONF sessions in the end of messaging is an operable solution. However, it is also
observed that throughput and CPU could be limitations for such an implementation in cloud-native
environment. In addition, it must be considered that authentication time is affected based on cho-
sen security provider.

Keywords: Cloud-native, NETCONF, scalability, network management, stateless

The originality of this thesis has been checked using the Turnitin OriginalityCheck service.

ii

PREFACE

I have shared good memories and learned a lot during my time at Tampere University.

I would like to thank Nokia, and especially Miia Forssell for her continued support and

our regular discussion meetings during the writing process of the thesis. I would also like

to thank my thesis supervisor Kari Systä for his continued feedbacks and guidance.

I would like to thank my family for their great support during my studies and the thesis. I

feel grateful for them.

Tampere, 1 March 2020

Anil Bolat

iii

CONTENTS

1. INTRODUCTION .. 1

2. THEORETICAL BACKGROUND... 3

2.1 Network Configuration Protocol (NETCONF) 3

2.1.1 NETCONF Event Notifications .. 6

2.1.2 NETCONF Call Home ... 8

2.2 Cloud-Native .. 10

2.3 Scalability ... 11

2.4 Problems Cloud-Native Brings to NETCONF 12

3. IMPLEMENTATION .. 13

3.1 Software Overview ... 13

3.2 NETCONF Event Notification Application ... 14

3.2.1 Agent Application .. 15

3.2.2 Manager Application ... 16

3.3 NETCONF Event Notification Using Call Home Feature 18

3.3.1 Agent Application .. 19

3.3.2 Manager Application ... 20

4. EVALUATION AND RESULTS ... 21

4.1 Test Environment and Test Cases ... 21

4.2 Measurements of The First Test Case ... 22

4.3 Measurements of The Second Test Case .. 24

5. CONCLUSIONS .. 28

6. REFERENCES ... 30

iv

LIST OF FIGURES

Figure 1. The NETCONF protocol layers .. 4
Figure 2. The NETCONF <get> request message [1] ... 4
Figure 3. The NETCONF <get> response message [1] ... 5
Figure 4. NETCONF Event Notifications sequence diagram 6
Figure 5. Hello message example with the event notification capability 7
Figure 6. A subscription request example with NETCONF stream 7
Figure 7. Notification message example ... 8
Figure 8. NETCONF Call Home sequence diagram .. 9
Figure 9. High-level view of the proof of concept architecture 14

v

LIST OF SYMBOLS AND ABBREVIATIONS

LTE Long-Term Evolution
NETCONF Network Configuration Protocol
IETF Application Programming Interface
API Internet Engineering Task Force
RPC Remote Procedure Call
XML Extensible Markup Language
SSH Secure Shell
TCP Transmission Control Protocol
TLS Transport Layer Security
IaaS Infrastructure as a Service
IETF Internet Engineering Task Force
IaaS Infrastructure as a Service
PaaS Platform as a Service
SaaS Software as a Service
NMS Network Management System
NE Network Element
JNC Java NETCONF Client
CLI Command-Line Interface

1

1. INTRODUCTION

Along with the advancements of 5G in telecommunication industry, 5G network will pro-

vide serious speed and latency improvements over existing LTE technologies. Addition-

ally, the changings will affect network size, endpoint devices, and network traffic. It is

predicted that network will be dramatically expanded and grown. The significant growth

in network means that the number of endpoint devices will be increased extremely, and

larger networks will surround people. Hence, the large networks need to be supported

by the communication companies to serve their customers well.

The business needs of telecommunication industry go towards managing these large

networks. Network companies and service providers focus on reducing cost, time and

human interaction as far as possible in network element configuration. Service oriented

approach is considered to have in network element management to increase effective-

ness and automation. Besides that, vendor independence and security are the other es-

sentials in the business needs of the industry. Majority of customers in the industry want

to securely manage the configurations of their network devices. Therefore, the vendors

ask the Network Configuration Protocol (NETCONF) to be used since it supports en-

crypted connections using Transport Layer Security (TLS) and Secure Shell (SSH) and

is reliable and automated. On the other hand, the telecommunication companies plan

supporting management of the large network via cloud-native environment due to scala-

bility advantages.

Supporting the NETCONF protocol in cloud-native environment becomes problematic

since, first, the protocol is not stateless. Permanent established connections are needed

for each network element in the NETCONF protocol system. So, the NETCONF interface

is based on a dedicated secure session and this is rather incompatible with cloud princi-

ples. There are serious concerns about scalability of such a solution from network man-

agement system point of view.

In this work, the aim is to analyze the behavior of NETCONF from network management

system perspective in cloud-native environment with large networks. In this thesis, find-

ing the answers to the following research questions are studied:

2

• What are the actual problems and challenges of NETCONF in cloud-native envi-

ronment?

• How should NETCONF Event Notifications in cloud-native environment be sup-

ported from network management system perspective in case of large networks?

• What are needs and limitations in the environment on scalability?

Two proof of concept implementations are developed to investigate the research ques-

tions. The first implementation is for standard NETCONF Event Notifications and the

another one is with NETCONF Call Home featured of NETCONF Event Notifications. By

comparing these implementations and their test results, limitations and needs are stud-

ied and stated.

The thesis is divided into 5 sections. Section 1 is introduction where the research ques-

tion and structure of the thesis are provided. Section 2 presents the NETCONF protocol

and event notifications, cloud-native and scalability topics, and problems between the

NETCONF protocol and cloud-native. Section 3 explains details about the implementa-

tions. In section 4 evaluations and findings of the thesis are presented. Conclusion is

given in section 5.

3

2. THEORETICAL BACKGROUND

This chapter discusses fundamentals of the NETCONF protocol, NETCONF Event Noti-

fications, cloud-native, scalability and the problems which cloud-native brings to

NETCONF. The study in this thesis is specifically related to the NETCONF in cloud-

native environment. Therefore, this chapter focuses on topics which are important in or-

der to understand the concepts of the NETCONF protocol with Event Notifications on

cloud environment.

In the first section 2.1, basics of NETCONF is introduced. NETCONF Event Notifications

are presented as well as NETCONF Call Home are discussed. The second section 2.2

gives a brief overview of cloud-native topic. The third section 2.3 goes through scalability.

The fourth section 2.4 presents the problems and challenges of working with cloud-native

and NETCONF.

2.1 Network Configuration Protocol (NETCONF)

The NETCONF protocol or The Network Configuration Protocol is a standard interface

for installing, deleting and modifying the configuration data on network devices. It is a

protocol defined by Internet Engineering Task Force (IETF) in RFC-6241. The

NETCONF protocol is developed to standardize remote configuration of network devices

via an application programming interface (API). The protocol implements the API to be

exposed by the network devices. The NETCONF API is used to manage configuration

data of the network devices by network manager applications [1]. In the terminology of

NETCONF, the client indicates a NETCONF manager and the server is a NETCONF

agent which is a network element as well.

The NETCONF protocol is defined with four layers as shown in Figure 1 [1].

4

Figure 1. The NETCONF protocol layers

Network management system, which is client, and network element, which is server, are

the actors of the NETCONF protocol. First, the network management system initiates the

communication towards the network element. The communication starts with a request

for a secure connection between these two parties. According to the protocol, a secure

transport layer needs to be established to provide a persistent connection, authentication

and encryption. Then a Remote Procedure Call (RPC) based communication or a notifi-

cation is applied between a client and a server. An Extensible Markup Language (XML)

encoding is used for both the configuration data and the protocol messages in the

NETCONF protocol. During the communication, a NETCONF client encodes the data in

XML format and sends it over a secure connection-oriented session. The other party,

which is a NETCONF server, receives the data and replies the request with a response

encoded in XML. Since both the request and the response are fully described in XML

format, the message contents are recognizable. An RPC message contents below are

both examples of request and response of the NETCONF <get> method [1].

<rpc message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
 xmlns:ex="http://example.net/content/1.0">
<get/>
</rpc>

Figure 2. The NETCONF <get> request message [1]

5

<rpc-reply message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
 xmlns:ex="http://example.net/content/1.0">
<data>
<!-- network configuration contents here... -->
</data>
</rpc-reply>

Figure 3. The NETCONF <get> response message [1]

The NETCONF protocol provides a set of base operations by default with regards to

configuration data manipulation and session termination. The base operations of the

NETCONF protocol are shown in Table 1 [1]. The base operations could be extended by

additional NETCONF capabilities. Event notification, partial locking configurations and

monitoring are some of the additional capabilities supported by the NETCONF protocol

for further operations. The additional capabilities are also defined in their own RFCs.

The following procedures take place for a secure NETCONF session from session es-

tablishment to closing session.

1. An SSH session is set up between manager and agent, and the manager initiates
NETCONF as an SSH subsystem called "netconf".

2. The supported capabilities are exchanged by sending hello packets between
manager and agent.

Table 1. The NETCONF protocol base operations

Base Operation Description

get Retrieve running configuration and device state infor-

mation.

get-config Retrieve all or part of a specified configuration datas-

tore.

edit-config Edit a configuration datastore by creating, deleting,

merging or replacing content.

copy-config Create or replace an entire configuration datastore

with the contents of another complete configuration

datastore.

delete-config Delete a configuration datastore.

lock Lock the entire configuration datastore system of a

device.

unlock Release a configuration lock, previously obtained with

the <lock> operation.

close-session Request graceful termination of a NETCONF session.

kill-session Force the termination of a NETCONF session.

6

3. For configuration management purposes, a request is sent by manager to agent.
4. As a response of the request, a reply is sent by agent to manager.
5. Once the required operations are done, a request is sent to end the NETCONF

session.
6. A response is sent by agent and the NETCONF session is ended.

2.1.1 NETCONF Event Notifications

The event notification capability in the NETCONF protocol aim to provide an asynchro-

nous message notification service. This capability was added on top of the base

NETCONF definition and defined by Internet Engineering Task Force (IETF) in RFC-

5277 [3]. An event notification indicates that some configuration changes exist in the

NETCONF agent where the changes might be new configurations, deleted configura-

tions, or modified configurations.

A sequence diagram of NETCONF Event Notifications is given in Figure 4 [3].

Manager Agent
| |
| <hello>(capability exchange) |
|<----------------------------->|
| |
| <create-subscription> |
|------------------------------>|
|<------------------------------|
| <rpc-reply> |
| |
| <notification> |
|<------------------------------|
| <notification> |
|<------------------------------|
| <notification> |
|<------------------------------|

Figure 4. NETCONF Event Notifications sequence diagram

As soon as SSH and NETCONF sessions are established, hello messages must be sent

for a capability exchange. The NETCONF Event Notifications capability must be added

in the content of the hello messages. During the supported capability exchange between

the NETCONF agent and manager, the both sides indicate that they support the event

notification capability with the adding.

7

 <hello xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <capabilities>
 <capability>
 urn:ietf:params:xml:ns:netconf:base:1.0
 </capability>
 <capability>
 urn:ietf:params:netconf:capability:notification:1.0
 </capability>
 </capabilities>
 <session-id>1</session-id>
 </hello>

Figure 5. Hello message example with the event notification capability

The NETCONF manager needs to create a subscription request and send it to the

NETCONF agent to indicate which events the manager wants to receive. A parameter

called ‘stream’ in the subscription request shows the event of interest and its value must

be ‘NETCONF’ to receive the event notifications.

<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="1">
 <create-subscription xmlns="urn:ietf:params:xml:ns:netconf:notifi-

cation:1.0">
 <stream>NETCONF</stream>
 </create-subscription>
</rpc>

Figure 6. A subscription request example with NETCONF stream

Thus, the procedure of NETCONF Event Notifications begins with the creation of sub-

scription request by the NETCONF manager and sending to the NETCONF agent to

receive event notifications. Then, the NETCONF agent sends a subscription response

to the NETCONF manager if the subscription is successful.

Once the subscription has been set up, the NETCONF agent sends the event notifica-

tions to the NETCONF manager asynchronously over the connection when events of

interest has occurred. The event notifications are sent at the end of a successful config-

uration operation as one message that shows the set of changes rather than showing

individual messages for each line that is changed in the configuration. The event notifi-

cations will be sent by the NETCONF agent until the NETCONF session is terminated

[3].

8

<notification xmlns="urn:ietf:params:xml:ns:netconf:notification:1.0"
 <eventTime>2019-05-22T10:24:48.422488-026:00</eventTime>
 <netconf-config-change xmlns="urn:ietf:params:xml:ns:yang:ietf-netco
nf-notifications">
 <changed-by>

 <username>admin</username>
 <session-id>1</session-id>
 <source-host>127.0.0.1</source-host>
 </changed-by>
 <datastore>running</datastore>
 <edit>
 <target xmlns:notif="http://tail-f.com/ns/test/notif">/notif:

test</target>
 <operation>replace</operation>

 </edit>
 </netconf-config-change>
</notification>

Figure 7. Notification message example

2.1.2 NETCONF Call Home

In the NETCONF protocol, the communication flow starts with the NETCONF manager’s

secure connection initialization request and continues until the established sessions are

closed or killed by the parties. The NETCONF communication steps are listed and ex-

plained in section 2.1 in detail. However, in a few certain circumstances, the NETCONF

manager may not trigger the communication flow. Possible reasons are listed below [4].

• A firewall might not allow the NETCONF manager to connect the NETCONF
agent.

• The NETCONF agent might not have any open ports for the management con-
nections.

• The NETCONF agent may be deployed behind a firewall that implements Net-
work Address Translation for all internal network IP addresses.

• It is reliable, secure and easy to maintain to open one port in the NETCONF
manager-side rather than opening one port on each NETCONF agent.

The listed bullet points specify communication problems in the NETCONF protocol. In

order to solve these problems, NETCONF Call Home is defined by Internet Engineering

Task Force in RFC-8071 [4]. NETCONF Call Home specifies a standard way to initialize

a NETCONF session by the network element. NETCONF Call Home brings a solution

by reversing the communication initialization. When the agent is deployed behind a fire-

9

wall that doesn’t allow any management access to the network, the communication can-

not be initialized by the manager. By reversing the direction with NETCONF Call Home,

the communication can happen without adjusting the firewall configurations.

NETCONF Call Home provides a security enhancement on top of standard NETCONF

protocol. In NETCONF Call Home protocol, the manager has one open port to make the

NETCONF communication available and the agents send the initial requests to this port.

Hence, the NETCONF agents do not need to open any ports and listen to them for mak-

ing NETCONF communications. In addition to that, the manager is also able to manage

the multiple agents using this one open port with the NETCONF protocol. So, NETCONF

Call Home helps for centralized management system for the operators.

A sequence diagram of NETCONF Call Home is given in Figure 8 [4].

 Agent Manager
 (Network Element) (Network Management System)

 | |
 | 1. TCP |
 |---------------------------->|
 | |
 | |
 | 2. SSH/TLS |
 |<----------------------------|
 | |
 | |
 | 3. NETCONF |
 |<----------------------------|
 | |

Figure 8. NETCONF Call Home sequence diagram

The following steps are taken place in NETCONF Call Home.

1. The manager listens for TCP connection requests at 4334, which is the recom-
mended port for NETCONF Call Home protocol.

2. A TCP connection request is sent by the agent towards the manager.
3. The manager accepts the TCP connection request and sends a TCP response

to the agent.
4. The manager initializes the SSH connection towards the agent.
5. The SSH session is established once cipher negotiation and key exchange are

completed between the parties.
6. The manager starts NETCONF session towards the agent.
7. The supported capabilities are exchanged by sending hello packets between the

manager and the agent.

10

Since the communication protocol in NETCONF Call Home starts with NETCONF

agent’s TCP connection request, the NETCONF manager must listen incoming TCP con-

nections in the first place. The manager must support listening TCP connections on the

IANA-assigned ports [4]. In that case, this port number must be 4334 and 4335 for com-

municating NETCONF Call Home over SSH and TLS, respectively. However, this port

configuration can be changed to accept incoming TCP connections. After the TCP re-

quest is accepted by the NETCONF manager, using the already established TCP con-

nection, the NETCONF manager starts a secure connection. Once the secure connec-

tion is established, the NETCONF manager initiates NETCONF connection.

It should be noticed that the client and server initial roles are different in NETCONF Call

Home from standard NETCONF protocol. In standard NETCONF protocol, a network

element is the server. However, in NETCONF Call Home, the network element is the

TCP client since it initializes the TCP connection in the first place. After the initial role,

the next roles of the network element remain the same. The roles are the SSH/TLS

server for the secure transport-layer and the NETCONF server for the application-layer.

On the other hand, the NETCONF manager becomes the TCP server at first. In the se-

quel, its roles are the SSH/TLS client and the NETCONF client.

2.2 Cloud-Native

Cloud computing is the on-demand delivery of IT resources such as compute power,

storage, network, database, software applications, and other IT resources via the inter-

net. Cloud computing providers offer three main services which are Infrastructure as a

Service (IaaS), Platform as a Service (PaaS) and Software as a Service (SaaS). These

cloud computing services are provided with pay-as-you-go pricing model so that custom-

ers pay only for the resources which they consumed and used. With usage-based billing

option, in the first place, cloud computing reduces the business area’s cost. Additionally,

the cloud computing services are simply available and accessible over the internet. By

taking advantages of virtualization and accessibility in cloud computing, the cloud com-

puting services are expandable and reducible with adding or releasing extra infrastruc-

tural resources in a self-service mode quickly.

Along with the developments and popularity of cloud-computing, cloud-native term has

started to be used more often in the software engineering field. Cloud-native computing

has become a modern way of the software development in recent years. On top of that,

a foundation named the Cloud Native Computing Foundation was launched by the Linux

Foundation in 2015. The foundation aims building ecosystems and communities for high-

quality cloud-native projects.

11

The Cloud Native Computing Foundation defines, in short, cloud-native as building and

running scalable applications in modern and dynamic environments. More precisely,

cloud-native is a particular approach for designing, building and running applications

based on infrastructure as a service with modern tools such as continuous integration,

container engines and orchestrators. Cloud-native applications are running in a con-

tainer, building microservice architecture and using continuous integration and continu-

ous delivery.

Architectures of cloud-native utilize the on-demand delivery and provide significant im-

provements in software engineering, scalability, high availability, and cost savings.

Cloud-native approach gives advantages releasing software projects earlier from busi-

ness ideas to the market. This speed change provides incremental improvements and

efficiency to the business area.

One of the key attributes of cloud-native applications is that they are packaged as light-

weight containers. This aspect makes the applications independent service and scalable.

Hence, the applications can scale-out and scale-in rapidly. Another aspect is loosely

coupled design. The applications have loosely coupled services which discover each

other when the applications are up and running. The services exist independent of the

others [5].

The services use API calls via representational state transfer (REST) protocol. REST

APIs solve the problem about communications between different services. The APIs of-

fer an interface that can be called by way of a standardized protocol. Having a standard

way of communication help for interacting between services whether from another ser-

vice in the same application or one located across the internet [6].

Stateless is one of the key aspects of cloud-native and the thesis focus more on that

aspect. Stateless cloud-native applications exist independent of stateful applications.

When applications are stateless, it means that the applications do not have to remember

any data. Because, requests have all data which is needed to be responded.

Another important thing is that the cloud-native applications are deployed on elastic,

cloud infrastructure. With this type of an infrastructure, the applications can adjust their

resources dynamically in case the load is increased or decreased [5].

2.3 Scalability

Scalability refers to the capability of a system where its infrastructure can be expanded

to handle increased load without losing performance. In other words, it is a characteristic

12

of a system that presents the capacity of the infrastructure to meet a growing demand

for use.

Scalability is one of the most valuable feature of cloud computing. One core benefit of

scalability in the cloud is that it facilitates performance. A scalable system has the ability

to handle the heavy workloads and network traffic.

For the companies, scalability makes cost-efficient system available for their business.

Because, the system can scale up or down to meet the demands of growing business. It

allows the systems to grow without making any expensive changes in the environment.

This reduces the cost of resources and makes scalability in the cloud very cost effective.

Therefore, while having applications working in the cloud, scalability becomes a neces-

sity to manage increased demands [7].

2.4 Problems Cloud-Native Brings to NETCONF

In the NETCONF protocol, an SSH session is set up between manager and agent, and

then the communication flows on the established SSH connection. Therefore, permanent

connections are needed before any data can be transferred. The connections should be

established from manager and kept open to receive the notifications from Agent. In case

of large network, thousands or millions SSH sessions must be kept permanently open

during NETCONF communication between managers and agents. For this reason, there

is a conflict between the NETCONF protocol based on SSH session and cloud-native

essentials.

Stateless is one of the key features of cloud-native applications. It means that when a

request is sent, it has all inputs that are needed, and response will be returned based on

the inputs provided. The application does not need to store either remember any data.

The application could be deployed in a cloud environment with multiple instances, and

the network traffic is spread towards the instances. If any of the instances are down, the

other instances continue to handle the requests.

However, with the NETCONF protocol, there must be permanent sessions to make the

communication successful. This way of working brings problems to the stateless manner.

Additionally, scalability becomes an issue since each agent must have a permanent ses-

sion to send a request. All these problems mean that more resources are needed on

network management side; not being exactly cloud-native and scalable.

13

3. IMPLEMENTATION

This chapter goes through the implementation of the proof of concept application and its

architecture. The chapter is structured as follows: section 3.1 provides software overview

of the implementations. Section 3.2 describes the first implementation, which is the ap-

plication of NETCONF Event Notifications, and section 3.3 also explains the second im-

plementation, which is the application of NETCONF Event Notifications using Call Home

feature.

Two different implementations were developed during the study of the thesis. In the first

phase of the implementation, the idea was to create an application to see the behavior

of working with NETCONF Event Notifications from network management perspective

on a cloud-native environment. For that purpose, a simulator of network element and a

network management system were implemented. A software application named ConfD,

which is provided by Tail-f [8], was selected to simulate network elements. Because, the

application supports the NETCONF protocol and it is important to have a simulator which

must generate realistic behavior on TCP/IP and SSH layers. Because, the focus is to

have many unique connections open and the impact of this on the manager-side. Two

bash scripts were written to work with the application to simulate network element. The

network management system was written in Java to communicate with the network ele-

ment simulator. The implementation details are explained in section 3.2.

The aim of the second part of the implementation is to create an application to work with

NETCONF Event Notifications within a NETCONF Call Home implementation on a cloud-

native environment. The network element simulator and the network management sys-

tem were written in Java in this implementation phase. The main difference here is that

the network element starts the initiation of the NETCONF connection. The implementa-

tion details are explained in section 3.3.

3.1 Software Overview

The aim of the thesis is to investigate how to design and support the NETCONF from

network management system perspective in cloud-native environment. Two proof of con-

cept applications were implemented to analyze the study. Both implementations were

designed with client-server architecture to accomplish the thesis.

14

 … …

 Network Separation

Figure 9. High-level view of the proof of concept architecture

Figure 9 shows a high-level view of the overall architecture for the proof of concept. In

the architectural design, the client and server-side roles are shared between network

element and network management system. Since the aim of the thesis is mainly to in-

vestigate the behavior of network management system with NETCONF, only network

management system is planned to deploy and run in cloud-native environment.

Java NETCONF Client (JNC) and Apache MINA SSHD Java libraries were used to de-

velop the implementations on network management system side. JNC is integrated in

the project to make NETCONF connections. On the other hand, Apache MINA SSHD

makes asynchronous connections available. ConfD is benefited for the simulation of the

network elements.

3.2 NETCONF Event Notification Application

This chapter describes the first implementation of proof of concept, which works with

standard NETCONF Event Notifications. As mentioned in section 3.1, the proof of con-

cept implementation was designed with client-server architecture. In the implementation

 SSH

 NE-1

 NE-2

 NE-3

 NE-X

Container-1

Container-2

Container-3

Container-Y

NETCONF Agents

(Network Elements)

NETCONF Managers (Cloud-native Network

Management System)

15

of NETCONF Event Notifications application, the server-side is network element as well

as the client-side is network management system. In other words, in NETCONF termi-

nology, network element is NETCONF agent and network management system is

NETCONF manager.

3.2.1 Agent Application

The NETCONF agent application was decided to be implemented with the available soft-

ware applications since the focus of the thesis is to study network management system

behavior. After researching multiple options, ConfD [8] was selected since it supports

NETCONF Event Notifications.

ConfD works with the NETCONF and RESTCONF protocols for providing unified, pro-

grammable management capabilities to network equipment providers and software ven-

dors. ConfD promises reducing the time and resources needed to implement northbound

network management applications and provide programmability to the network market.

Tail-f presents two versions of ConfD to be used by network equipment providers and

software vendors: ConfD Premium and ConfD Basic. ConfD Premium is the paid version

of the management agent software framework as well as ConfD Basic is the free version.

They support NETCONF, customer support, CLI and some other features [8]. ConfD

Basic was chosen to be used due to its NETCONF capability.

Basically, ConfD Basic is delivered as a tar file with documentation, and a few demo

applications regarding the protocols which are supported. These applications give initial

ideas regarding how to work with ConfD and guide the users to achieve implementation

of software applications. Among the example applications, the NETCONF Event Notifi-

cations example application was selected to be used in the thesis.

The application acts as a network element which is NETCONF agent and can establish

the NETCONF connections and sends the event notifications to a network management

system. It emulates the NETCONF agent and listens the defined port to make NETCONF

connections with the network management system.

The NETCONF Event Notifications example application is written in C. The application

has a Makefile that supports clean, all, start, cli and the NETCONF operation commands.

It has also a configuration file named confd.conf to adjust the values regarding the

NETCONF protocol such as enabler and tracing settings, SSH IP and port to be listened

by the application.

16

The application was modified to be used in the project. The idea is here to make config-

urable the payload size and number of event notifications per connection in the applica-

tion. Hence, the application of NETCONF Event Notifications could be taken advantage

by providing different values of these parameters during the test phase. These necessary

changes needed to be added into ‘notifier_builtin_replay_store.c’, which has the opera-

tional functions and the main function of the application.

The file was customized so that the application could take the payload size and number

of event notifications per connection as inputs. The payload size options per connection

was defined as follows: 1 KB, 2 KB, 3 KB and 4 KB. 1 KB was also determined as default

value in case of providing erroneous value for the payload size.

After the modifications have been done, two bash scripts were implemented to use the

application of NETCONF Event Notifications in this phase. The first script named

‘run_simulator.sh’ has the following tasks:

1. Initialize environment setup of ConfD Basic.
2. Wait for the payload size and number of events per connection as inputs.
3. After getting the inputs, start the application of NETCONF Event Notifications.

Another script named ‘send_notification.sh’ has the following tasks:

1. Get the payload size and number of events per connection as well as repeat
times as arguments.

2. Provide the payload size and number of events per connection to run_simula-
tor.sh script.

3. Repeat triggering sending event notifications as many as repeat times argument
in second.

First of all, the first script is run to initialize the agent, so that the network management

system application can send request and reach the simulator. Once connection estab-

lishments have been done, the second script is run immediately afterwards. The event

notifications are sent by initialization of the second script towards to the network man-

agement system.

3.2.2 Manager Application

A NETCONF manager application was implemented using Java programming language.

The application reads environment variables to be able to have information of execution

type and destination address information. In total, 7 parameters are provided in environ-

ment variables as follows: IP and port of destination, username and password to be used

17

to login as well as total number of sessions to be created and the name of event notifi-

cation stream to subscribe.

Java NETCONF Client (JNC) is a Java library provided by Tail-f to implement NETCONF

manager applications for making NETCONF connections with NETCONF agent. JNC

library provides software capability to create network management systems for any

NETCONF devices. It is widely used to manipulate configuration data as a means of

NETCONF Java components. The NETCONF Java components are benefited via using

Ganymed SSH-2 to communicate with the NETCONF agent.

Since it is stable and useful, JNC software library was selected to communicate with the

NETCONF Event Notifications application which is the NETCONF agent application ex-

plained in section 3.2.1. Java NETCONF Client is open source and can be found from

[9].

A class was created regarding to handling the NETCONF communication and event no-

tifications via Java NETCONF Client library in this part of the thesis. The first step in here

is to initialize a fixed size thread pool executor for a better performance and resource

utilization by limiting the maximum number of threads. There are also classes for keeping

ongoing NETCONF sessions and measurements of number of event notifications, pay-

load sizes and sessions during testing phases.

The environment variables are given to provide the required destination information of

NETCONF agent. Threads were executed as many total sessions as in order to send a

connection request and event notification subscription request for NETCONF agent. The

prior initialized threads were used from the thread pool to produce the NETCONF re-

quests towards the agent. In this way, the NETCONF manager application triggers the

connection and subscription requests to the NETCONF agent.

The JNC java class has the following tasks:

1. Create threads from a fixed size thread pool.
2. Trigger executions of the threads to make NETCONF connection and subscrip-

tion of NETCONF Event Notifications stream.
3. Wait until all NETCONF sessions and subscriptions are established successfully.
4. Read NETCONF Event Notifications coming from NETCONF agent.

An SSH connection is established between the agent and the manager. Every session

is identified by a unique session ID. Once the SSH connection has been established, a

request is sent to open a NETCONF connection over the established SSH connection.

A NETCONF session is created and each session corresponds to one SSH channel

towards the agent. The created every session is stored here to be modified afterwards.

18

A synchronized list Java component is used to store SSH sessions since it is thread-safe

solution.

Once the NETCONF session has been established successfully, an event notification

subscription request is sent to the agent. The agent and the manager must support the

event notification capability since this capability makes it possible to receive and send

event notifications specified in a subscription. By sending a subscription request, the

manager implies that it wants to receive event notifications specified by name in the

subscription request.

Each established SSH session is continuously checked to read incoming notifications.

When an event notification arrives, the event notification counter is increased, and its

payload size is added in sum of payload counter. Java synchronized block is benefited

to work with measurement logic since it is a thread-safe way.

3.3 NETCONF Event Notification Using Call Home Feature

This implementation of proof of concept, which supports NETCONF Event Notifications

using Call Home feature is described in this chapter. NETCONF agent and manager

applications are presented in section 3.3.1 and section 3.3.2, respectively.

NETCONF Event Notification using Call Home feature was used in the second imple-

mentation. The main business need is that the initial request needs to be sent by

NETCONF agent. The operators ask to have agents initiate management connections,

believing it is easier to secure one open port in the data center than to have an open port

on each agent in the network [4]. More details were presented in section 2.1.2.

The NETCONF protocol communicates over a secure connection, which must be per-

manently established between the sides. So, constant connections need to be opened

to get messages. However, this behavior is not suitable for cloud-native applications.

Cloud-native applications must be stateless and scalable in the cloud environment. Be-

ing stateless makes applications to be scalable without a problem since sessions do not

need to be continued. Therefore, constant established connections bring problems to

cloud-native applications. The problems were explained in section 2.4.

For solving the problem, NETCONF Call Home is used to initialize the NETCONF com-

munication by the agent. Once the agent sends the events to the manager, the agent

finishes the session and closes the connection. In the second implementation, the clos-

ing the session after sending the event by the agent is the most important part of the

communication flow. In case the agent needs to send events to the manager again, the

agent triggers the communication flow and eventually ends the connection. By having

19

such communication, the connections are not kept open permanently in cloud environ-

ment. The design is more convenient for a cloud-native application.

The applications were planned and implemented base on the flow below.

Flow of communication,

1. Start Manager, listens for TCP connection at 4334 recommended port
2. Start Agent, sends connection request to Manager
3. Manager accepts the TCP connection and initiates SSH connection to Agent
4. SSH connection established after cipher negotiation and key exchange com-

pleted
5. Manager starts NETCONF session and sends hello capabilities and notification

subscription request to Agent
6. Agent sends hello capabilities after the NETCONF session established
7. Agent sends a notification to Manager
8. Agent closes the connection

Apache MINA SSHD library was used in the applications since it provides asynchronous

communication between the sides. It is a Java library provided by The Apache Software

Foundation. It supports the SSH protocols on both the client and server side with a scal-

able and high performance asynchronous IO library. Apache MINA SSHD is open source

and can be found from [10].

3.3.1 Agent Application

The manager application, which is mentioned in section 3.2.2, was used to start the im-

plementation of the agent application. For this reason, in the second implementation, the

NETCONF agent application was developed using Java programming language. The

inputs for the application are hostname, port of the manager, username and password

for the SSH connection. These are read from environment variables of the application.

Providing execution type to environment variables as ‘callhome_server’ starts the appli-

cation.

First, an SSH server is needed to be created for receiving the initial SSH connections to

the agent from the manager. SSHServer class in the Apache library was used to initialize

SSH server with default settings. Password and key were provided to the server for the

authentication. Additionally, the agent application must communicate with the NETCONF

protocol. Thereupon, a subsystem was set to the SSH server. The subsystem class im-

plements SubsystemFactory class from the Apache library and has two methods which

provide xml file of the ‘hello message’, and subsystem name, which is ‘netconf’. The SSH

server was started after the initialization was done.

20

By using the connection information of the SSH server, a TCP connection was initialized

and started towards the manager with the hostname and port provided in environment

variables. After the TCP connection was started, TCP client awaits a response from the

manager. Once the TCP connection was established, the SSH server is ready to serve

the SSH connection and the NETCONF protocol.

NetconfSubSystem class, which is set to the SSH server, provides the ability to send

hello message and event notification. After sending the both messages to the manager

application, the agent application closes the all connections and then the application.

3.3.2 Manager Application

As used in the agent application, the manager application was implemented with the

same way using Java programming language. This time, ‘callhome_client’ needs to be

given into execution type of environment variables to start the manager application. The

inputs for the application are port, username, password. These are read from environ-

ment variables of the application.

An SSH client was initialized using Apache library and started with default settings of the

library. A session listener was created and set to the SSH client to be invoked once the

a new SSH session was just created. Username and password were provided into the

session for the authentication in the listener.

Once the SSH session has been created, a new listener was set for the asynchronous

authentication process. SSHFutureListener class was benefited from Apache library to

listen SSH operations. Once the authentication of the SSH session has been completed,

a subsystem channel was created named ‘netconf’. The subsystem is needed to estab-

lish the NETCONF connection. Once the session has been opened, a subscription re-

quest is read from the xml file and sent to the agent.

By using the SSH client session information, a TCP server was prepared to receive TCP

connections from the agent application.

21

4. EVALUATION AND RESULTS

This chapter focuses on the evaluation of the applications described in the previous sec-

tion 3. It gathers findings of using the NETCONF protocol in cloud-native environment.

The evaluation has been done based on the research questions of the thesis:

• What are the actual problems and challenges of NETCONF in cloud-native envi-
ronment?

• How should NETCONF Event Notifications in cloud-native environment be sup-
ported from network management system perspective in case of large networks?

• What are needs and limitations in the environment on scalability?

To answer to the research questions, the applications were deployed on cloud environ-

ment and their performances were measured. The measurements include event notifi-

cation counts and payload size during the evaluation.

The first section 4.1 introduces the test environment and test cases. In sections 4.2 and

4.3 explain the evaluations as well as the results and findings are presented.

4.1 Test Environment and Test Cases

Since the main idea is to see the behavior from network management system perspec-

tive during the evaluations, the manager applications were deployed in a cloud environ-

ment which is a Platform as a Service (PaaS). It provides easiness to the developers for

focusing only deploying their applications and managing them. The PaaS cloud environ-

ment gets images of the developers’ applications and their configuration data, contain-

erizes the applications and runs them into a container orchestrator. The platform pro-

vides a user interface for organizing applications, resources and configurations. The

cloud environment has Kubernetes as container-orchestration tool for automating appli-

cation deployment, scaling, and management and Docker for containers. The environ-

ment resources were 32 GB RAM, 20 CPU and 2GB storage.

There are two implementations in the thesis as described in section 3. The first one is

the application of standard NETCONF Event Notifications. The second one is the appli-

cation of NETCONF Event Notifications using Call Home feature. The test cases are to

run the both applications individually and get the measurements of the durations of com-

munication flows. The main difference in these two cases is initialization of the commu-

nication flow. In the first one, which is with the application of standard NETCONF Event

22

Notifications, the manager initializes the session. On the other hand, the agent initializes

the session in the second one, which is with the application of NETCONF Event Notifi-

cations using Call Home feature.

4.2 Measurements of The First Test Case

The first test case is to run the application of standard NETCONF Event Notifications,

which is described in section 3.2. Since the aim of the thesis is to see the behavior of the

manager application during the communication flow, the measurements are done on the

manager side.

In the first implementation, as presented in section 3.2.1, the agent application is ConfD,

which is a software agent and helps to manage network elements. VirtualBox [11] is

selected to run the agent application when getting measurements of the application of

standard NETCONF Event Notifications. Because, VirtualBox is a powerful virtualization

product and helps users to load multiple guest operation systems under a single host

operation system. Each guest operation can be started, paused and stopped inde-

pendently within its own virtual machine. The host and guest operation systems can be

configured and so that they can communicate with each other. VirtualBox is free and

open source developed by Oracle Corporation.

A virtual machine was created using VirtualBox software. Ubuntu 64x [12] was installed

into the virtual machine as the guest operation system. The resources were set to 8MB

RAM and 1 CPU. This virtual machine was used for both development and testing envi-

ronment for the agent implementation. The manager application was also deployed into

the cloud environment to be run in the test scenario.

As mentioned in section 3.2.1, two bash scripts were implemented to run the ConfD

simulator and send notifications, respectively. The test scenario starts by running the

simulator to initialize the agent. Then the manager application is started, and it triggers

the connection establishment. As explained in section 2.1.1, first, SSH session and then

NETCONF session is established according to NETCONF specifications, which is de-

scribed in RFC-6241 [1]. After the establishment of the connections, the events are gen-

erated in the agent side. Receiving the events on the manager side is observed.

The agent application gets ‘number of connections’, ‘payload size’, and ‘number of

events per second’ as inputs, so that they are configurable during the test scenarios. The

evaluation is performed with changing the parameters and observing the results.

Table 2 below presents the results of the evaluation with changing number of connec-

tions while keeping the same payload and number of events. The measurements are

23

done by observing the notification events count and payload size within 30 seconds pe-

riod of time on the manager side.

Connections
Count

Payload
size (KB)

Events
Count per
Second

RESULTS
(each row in 30 sec)

 Events Count Payload Size (MB)

32 1 1 960 ~1

64 1 1 1920 ~2

128 1 1 3840 ~4

256 1 1 7680 ~8

512 1 1 15360 ~16

1024 1 1 30720 ~32

The analysis of the results in Table 2 says that when the number of connections is in-

creased, the events reach the manager side within 30 seconds of time period in the test

environment for each round. The event counts indirectly went up in the evaluation, how-

ever the measurements on the manager side were stable and regular.

On the other hand, another test round was done by keeping the connections count and

payload size constant while increasing the events count. The measurements of the noti-

fication events count and payload size on the manager side are noted within 30 seconds

of time period. The results are shown in Table 3.

Connections
Count

Payload
size (KB)

Events
Count per
Second

RESULTS
(each row in 30 sec)

 Events Count Payload Size (MB)

4 1 100 12000 ~12.5

4 1 1000
77178 ~80.5

42822 ~44

4 1 2000

78387 ~81.7

77928 ~81.2

73984 ~77.1

9701 ~9.2

8 1 100 24000 ~25

8 1 1000
61853 ~64.5

100418 ~104.7

Table 2. Results based on changing connections count with 30 seconds test duration

Table 3. Results with changing events count per second within 30 seconds test duration

24

77729 ~81.2

8 1 2000

130901 ~136.5

132708 ~138.4

139633 ~145.6

76758 ~80

16 1 100 48000 ~50

16 1 1000

162558 ~169.5

172052 ~179.4

145390 ~152

16 1 2000

167241 ~174.4

164325 ~171.3

162679 ~169.6

164145 ~171.2

165309 ~172.1

136301 ~143.1

In Table 3, on the manager side, each result was measured in 30 seconds period of time

and noted. According to the results, the maximum throughput is up to 5 MB payload/sec-

ond and up to 5000 events/second. Additionally, CPU level was very high during the

evaluation. As a consequence, data transfer limited by these conditions in given test

environment.

4.3 Measurements of The Second Test Case

The second test case was done by running the application of NETCONF Event Notifica-

tions using Call Home feature, which is described in section 3.3. For the test, the man-

ager application was deployed into the cloud environment to be observed the measure-

ments during the evaluation. The agent application of NETCONF Event Notifications us-

ing Call Home feature was also deployed into the same virtual machine which was de-

scribed in the previous section and used in the first test case.

The communication flow of the test case is given below:

• Manager is initialized and ready to receive request from Agent.

• Agent is initialized and ready to send request from Manager.

• Agent “calls home” (single connection) to Manager.

• Manager performs all mandatory handshakes and verifications according to the
Call Home specification.

• Manager subscribes for events.

25

• Agent sends event notification.

• Agent closes the connection.

During the implementation of the application, the flow was designed in the given order

and the connection was closed at the end of the flow. Because, NETCONF Call Home

feature is considered to be used to deal with permanent connections in the cloud envi-

ronment. In NETCONF Call Home flow, the agent starts the communication flow contrary

to the flow of standard NETCONF protocol and sends its event notification. However, the

NETCONF protocol needs permanent SSH connection. So, the session is closed by the

agent itself after sending the notification event. By closing the connection, the design is

considered to be more suitable for a stateless application in cloud environment.

Table 4 and Table 5 show the results of the evaluation with changing number of connec-

tions while keeping the same payload and number of events. The measurements are

noted within 30 seconds period of time.

Connections
Count

Payload
size of an
event (KB)

Events
Count per
Connec-

tion

RESULTS
(each row in 30 sec)

 Events Count Payload Size (MB)

1K ~0.3

1 hello

request +

1 event

1734 ~3.1

266 ~0.5

2K ~0.3

1 hello

request +

1 event

1660 ~2.9

2340 ~4.2

5K ~0.3

1 hello

request +

1 event

2298 ~4.1

2004 ~3.6

2314 ~4.1

2164 ~3.8

1220 ~2.1

Table 4. Results with 1 event counts within 30 seconds test duration

26

Connections
Count

Payload
size of an
event (KB)

Events
Count per
Connec-

tion

RESULTS
(each row in 30 sec)

 Events Count Payload Size (MB)

1K ~0.3
1 hello
request +
5 event

5065 ~3.1

935 ~0.5

2K ~0.3
1 hello
request +
5 event

5460 ~4.2

6318 ~4.9

222 ~0.1

5K ~0.3
1 hello
request +
5 event

4956 ~3.8

8448 ~6.5

7632 ~5.9

7872 ~6.1

1092 ~0.8

Each connection has 1 hello message to initialize the NETCONF connection. Therefore,

number of events have an additional event for each connection. Size of the hello request

is around 3.3KB while an event size is around 0.3KB.

The measurements show that the event throughput was limited by mostly CPU. More

resources would be needed to work with, compared to the application of standard

NETCONF Event Notifications.

Connections
Count

Payload
size of an
event (KB)

Events
Count per
Connec-

tion

RESULTS
(each row in 30 sec)

 Events Count Payload Size (MB)

1 ~0.3

1 hello
request +
1000K
event

115513 ~31.3

89208 ~24.1

74007 ~20.1

94693 ~25.6

76833 ~20.8

93779 ~25.4

90108 ~24.4

Table 5. Results with 5 event counts within 30 seconds test duration

Table 6. Results with 1000K events within 30 seconds test duration

27

108051 ~29.2

97097 ~26.3

112267 ~30.4

48445 ~13.1

Each result was measured in 30 seconds period of time and showed on Table 4, 5 and

6. According to the results, the maximum throughput is up to 3800 events/second and

up to 1 MB payload/second.

During the testing of the application of NETCONF Event Notifications using Call Home

feature, different security providers were used. Based on the observations, one finding

was that authentication was taking only 100 milliseconds, but more time was taken in

SSH mac/cipher negotiation and key exchanges based on the security provider.

Connec-

tions

Count

TCP

Con-

nection

(ms)

SSH Connection

(key exchange)
Password

based

authenti-

cation

(ms)

Netconf

Session

(ms)

Total time taken

to receive

notification (ms)

Java In-

built

Secu-

rity Pro-

vider

(ms)

Bouncy-

Castle

Security

Provider

(ms)

1 30 300 - 100 100 700

1 40 - 1800 100 200 2300

According to the numbers on Table 7, the total duration which was taken from TCP con-

nection till receiving notification is 700ms using Java Inbuilt Security Provider and

2300ms using BouncyCastle Security Provider, which comes default with Apache Mina

SSHD library. The time, which is taken to establish SSH connection, drastically vary

based on security provider implementation. The measurements show that the communi-

cation flow is relatively long. The connection establishment duration might take long de-

pends on the security provider being used.

Table 7. Time comparison of communication initialization with different security providers

28

5. CONCLUSIONS

In this thesis a proof of concept for cloud-native Network Configuration Protocol was

studied and developed. By way of the proof of concept, the evaluations were made, and

the following research questions of the thesis were searched for an answer.

• What are the actual problems and challenges of NETCONF in cloud-native envi-
ronment?

• How should NETCONF Event Notifications in cloud-native environment be sup-
ported from network management system perspective in case of large networks?

• What are needs and limitations in the environment on scalability?

This research aimed to identify the problems and challenges for realization of Network

Configuration Protocol in cloud-native environment. Based on the implementations and

analysis, which are presented in the thesis, it can be concluded that terminating the es-

tablished NETCONF sessions after sending messages between network elements and

network management system is an operable solution when implementing realization of

Network Configuration Protocol in cloud-native environment. The results indicate that

using Network Configuration Protocol Call Home for cloud-native environment is more

secure and manageable solution to large networks security and maintenance point of

view.

Both implementations of standard Network Configuration Protocol and Network Config-

uration Protocol Call Home were covered in cloud-native environment. By analyzing

changing number of connections and events per connection in the both implementations,

this thesis shows how throughput and CPU can limit the communication flow when work-

ing with NETCONF in cloud-native environment.

Moreover, a topic was discussed about how important security providers selection during

an implementation. Based on the analysis of security providers, it can be stated that

different type of security providers must be considered since it affects authentication time

during secure connection establishment.

As future work, there could be more discussion and analysis about who terminates the

session and what the reasons for doing it are. The network management system might

close the session as opposed to what was done in this thesis. Furthermore, what if there

are still notifications to be sent by the network element when the management system

29

closes the sessions. This discussion seems important and could be studied to extend

the research.

Another plan for later work should be doing a test setup to analyze high availability of the

applications in case of being crashed or killed, so that any events are missing. In addition,

the thesis could be improved with using TLS for the secure connection instead of SSH.

30

6. REFERENCES

[1] Internet Engineering Task Force (IETF), RFC 6241 - Network Configuration Pro-

tocol (NETCONF), IETF, 2011. Available: https://tools.ietf.org/html/rfc6241

[2] Christos Rizos, Why use NETCONF/YANG when you can use SNMP and CLI?,

SNMP center, 2016. Available: https://www.snmpcenter.com/why-use-netconf/

[3] Internet Engineering Task Force (IETF), RFC 5277 - NETCONF Event Notifica-

tions, IETF, 2008. Available: https://tools.ietf.org/html/rfc5277

[4] Internet Engineering Task Force (IETF), RFC 8071 - NETCONF Call Home and

RESTCONF Call Home, IETF, 2017. Available: https://tools.ietf.org/html/rfc8071

[5] Janakiram MSV, 10 Key Attributes of Cloud-Native Applications, The New Stack,

2018. Available: https://thenewstack.io/10-key-attributes-of-cloud-native-applica-

tions/

[6] Bernard Golden, 5 Critical Elements to Building Next-Generation Cloud-Native

Apps, TechBeacon. Available: https://techbeacon.com/app-dev-testing/5-critical-

elements-building-next-generation-cloud-native-apps

[7] What is Scalability in the Cloud, Stonefly, 2018. Available: https://stone-

fly.com/blog/what-is-scalability-in-the-cloud

[8] Tail-f a Cisco Company, ConfD Basic Tail-f Systems, 2019. Available:

https://www.tail-f.com/confd-basic/

[9] Tail-f Systems, JNC, 2019. Available: https://github.com/tail-f-systems/JNC

[10] The Apache Software Foundation, Apache MINA SSHD, 2019. Available:

https://github.com/apache/mina-sshd

[11] Oracle VM VirtualBox, 2019. Available: https://www.virtualbox.org/

[12] Ubuntu, 2019, Available: https://ubuntu.com/

https://github.com/tail-f-systems/JNC

